
A Computational Framework Enhancing Jazz Creativity
Robert M. Keller and David Morrison and Stephen Jones and Belinda Thom and Aaron Wolin 1

Abstract. A computational approach is described for helping jazz
improvisors create solos. Initial facets of the approach have been em-
bodied in a freely-available software tool called Impro-Visor (”Im-
provisation Advisor”) which we developed. The paper describes the
rationale and some of the computational challenges and issues asso-
ciated with designing and implementing such a tool.

1 INTRODUCTION

Conventional wisdom toward educating jazz musicians in improvi-
sation involves having them transcribe note-for-note recorded solos
of famous artists. While this approach is no doubt contributory to the
goal, it lacks an element of student ownership in that, regardless of
how good it may sound, the student is ultimately parroting another
soloist. The branching-off point, where the student begins inventing
his or her own phrases to construct a solo may still pose challenges.
There is also the issue of cost/benefit ratio, as transcription takes a
great deal of time to get right, even if aided by software tools.

We have been exploring an alternative approach over the last sev-
eral years in teaching a jazz improvisation course: have students
compose solos off-line and expect them to be able to play them in
class. How much of what the student composes is ultimately used in
performance is up to him or her, but is expected that at least some
fragments would likely be used, if from nothing more than latent
memory. Moreover, composition requires a greater understanding of
tune harmonic changes than does transcription, and performing such
composition on-line is what improvisation is all about. Therefore be-
ing forced to understand harmonic aspects of a tune by composing
a solo compatible with its harmony is expected to contribute a great
deal to the ability to improvise on the tune.

The rest of the paper describes several technical aspects of a soft-
ware tool, called Impro-Visor [3] intended to help musicians con-
struct solos. We discuss some of the musical underpinnings and how
they are used in the tool, followed by a discussion of issues currently
being addressed in our research and development.

2 RELATED WORK

A widely-used commercial software tool is Band-in-a-Box [7]. It can
generate complete jazz solos, but does not engage the user in their
construction, other than as the provider of the chord changes. Conse-
quently, the user does not learn from the process of solo generation.
The methods employed by Band-in-a-Box are proprietary, but expe-
rience suggests that a preset database of melodic sequences is in-
volved, rather than an algorithmic method for the generation of such
sequences.

1 Harvey Mudd College, Claremont, California, USA, email: improvi-
sor@cs.hmc.edu

Notable other work includes Biles’ GenJam [1] and the work of
Papadopoulos and Wiggins [8] using genetic algorithms, which re-
quire some kind of fitness function to perform genetic selection, and
Thom’s BoB [9], which uses a statistical learning approach.

3 SOFTWARE SUPPORT FOR CREATIVITY

A jazz solo consists of a melody composed over a given chord se-
quence (known as “the changes” to the musician). The changes are
chords chosen to support the original melody of a song, and usually
are somewhat standardized, although not necessarily unique for that
song. Common practice would be for the group to play the origi-
nal tune (called the “head”), then each soloist would improvise some
number of “choruses” over the changes, then the group would typi-
cally play the head a final time.

The challenge for the soloist is to have sufficient creative ideas to
be able to play one or more choruses. Good preparation for this kind
of creation entails knowing the melody and changes, as well as the
theoretical underpinnings of the changes.

The educational tool that we have developed is designed to as-
sist the budding soloist, who may not yet have a strong theory back-
ground, in the process of creating solos. Our intention is to provide
this as a practical end-user tool, not simply a research vehicle, so
we have included niceties such as MIDI-playback for usability. For
context, Figure 1 provides a screen-shot of Impro-Visor.

Figure 1. Screen shot of Impro-Visor



3.1 User Interaction
We want the user to be able to move freely through a chorus, filling
in melodic parts as knowledge or inspiration dictate. Our approach
to providing this ability is to display the full chorus as a “lead sheet”,
the term for a single melody line with chord symbols above. The
user can then select any focal point and include notes by point-and-
click. We have also developed an easy-to-use textual notation that
combines both melody and chords, which provides an alternate form
of entering melodic information.

While the user is free to enter notes based on his or own devices,
the tool provides various types of assistance on request, based on the
chord that is in force at the selected insertion point (shown to the left
of the dialog box in Figure 1).

The categories of assistance include:

1. Spelling of the current chord.
2. Color tones for the current chord. These are tones that are not in

the chord, but which are individually sonorous with it. They are
also often called “tensions”.

3. Approach tones: non-chord tones that make good transitions to
chord-tones. When a second chord follows sufficiently closely, say
within the current or next measure, there is an additional option
available: tones within the current chord that approach tones in
the next chord. (See Voice Leading in the next section.)

4. Scales that are compatible with the current chord, and the notes of
any selected scale.

5. Chords that substitute for the current chord, so that comparable
information can be accessed as for this chord as an alternative.

Figure 2 shows the advice menu of Figure 1 opened to a particular
scale option.

3.2 Teacher/Administrator Support
As can be seen, there is quite a lot of relevant information that goes
with a chord. One of the challenges faced was providing this infor-
mation in a form that was easily changed or extended by the teacher
or administrator. Another was to have as little redundancy in the in-
formation specification as possible. Accordingly, here are some of
the ideas we used to meet these challenges:

1. The spelling for each chord and scale is given only with C as the
tonic. The tool automatically translates them to other tonics as
needed.

2. With each chord may be identified zero or more extensions, chords
that include the same tones as the given chord, but add other tones.
The notes that are added in extensions automatically become color
tones of the given chord, but additional color tones can be speci-
fied.

Information regarding chords and scales is part of a single vocab-
ulary file with entries in the form of S-expressions [5] so that the
file can be easily read and modified outside the tool if desired. Fig-
ure 3 provides a glimpse at how this information is encoded. The
sub-expressions under approach have the chord tone followed by the
tones approaching it. Normally these are regarded as the tones one
half-step below and one or one-half step above.

The priority attribute is used to suggest the relative importance of
tones in the chords, which is theoretical knowledge. We also use pri-
ority to automate voicing in the played-back chord accompaniment.
Voicing entails determining a sonorous stacking order for the chord

Figure 2. An expanded advice menu

(chord
(name CM7)
(pronounce C major seven)
(family major)
(spell c e g b)
(priority b e g c)
(approach

(c c# d) (e eb f)
(g f# g#) (b bb c))

(extensions CM9 CM7#11 CM7add13)
(scales

(C major)
(C lydian)
(C bebop major)
(C major pentatonic)
(G major pentatonic)
(E harmonic minor)
(B augmented)
)

(substitute CM69 Em7 Am9)
)

(scale
(name C major pentatonic)
(spell c d e g a c))

Figure 3. Vocabulary chord specification



tones. It is also intimately related to voice-leading in harmony. We
do not have space to expound on the harmonic aspect, but discuss
voice-leading for melody in the next section. A simple but effective
algorithm developed is to stack the first so many notes (say four or
five, which may be specified by the user) from the priority list in
the first octave beginning a certain distance above the root. This has
the nice feature of automatically creating voice-leading on the inner
voices of the chord progression.

In addition to the basic information listed above, we provide sets
of pre-constructed melodic segments that the user can use as is or
modify. These segments are provided by the administrator or teacher,
but can be augmented by the student herself. They are classified into
the following categories:

1. Cells are the most basic category. They are sequences of notes,
usually of the same duration and associated with a single chord.

2. Idioms are like cells, but are identifiable sequences that have been
recorded. Consequently, their use is cautioned if novelty is de-
sired.The notes don’t necessarily have the same duration.

3. Licks are coherent melodic sequences over one or more chords.
4. Quotes are melodic sequences from familiar songs or famous jazz

solos. Using a quote within ones solo is regarded as a form of
humor by the jazz musician and knowledgeable listener.

If there already is a note at the selected position, the tool restricts
the sequences offered to ones that contain that note at the indicated
position. As with the chord and scale repertoire, the melodic seg-
ments are entered only relative to one first chord, then automatically
translated to others by the tool.

As with chord and scale definitions, sequences are also part of the
vocabulary file, represented as S-expressions. An example is:

(lick
(notes ab-8 c8 f8 d8 e8 ab8 c+8 e+8

bb8 a8 ab8 g8 f#8 f8 eb8 b-8 d8)
(sequence Dm7b5 | G7b9)
(name minor 2-5))

This defines the lick, as it would be rendered in the key of C minor,
as shown in Figure 4.

Figure 4. Example of a vocabulary lick

To give a little more explanation to the notation for notes, the first
letter, possibly followed by # for sharp or b for flat, gives the pitch
class. Any immediately following + or - characters raise or lower the
actual pitch from the octave above middle-C. The number 8 indicates
an eighth-note, 4 would indicate a quarter-note, etc. Duration values
can be added together using further + characters, and there is a nota-
tion for dotted notes and triplets as well.

4 THEORETICAL ASPECTS
4.1 Voice Leading
One of the main examples of such a theoretical basis is the concept
known as “voice-leading”. This entails creating a melody in which

the notes of the melody align with chord tones in the underlying
changes.

A very common example of voice leading can be seen in the chord
sequence known as II-V (“two five”), meaning the chord built on the
second note of the scale followed by the chord built on the fifth note.
In the key of C major, for example, the II would be a Dm7 (D minor-
seven) chord and the V would be a G7 (G seven) chord. To illustrate
voice leading, it is common in jazz to extend those chords to a Dm9
(D minor-nine) and a G13 chord. Setting aside the bass notes for the
moment, the essential notes of these chords can be closely aligned to
illustrate voice leading:

Dm9 : FACE (1)

G13 : FABE (2)

(In the G13 the 5th, D, is often omitted from the voicing, but typi-
cally is still heard as part of the overtone series of the root G.) As can
be seen, the only difference between (1) and (2) is C vs. B. Hence in
exploiting voice leading in the solo, one might choose a melodic line
in which the C appears, followed by B. In musical terminology, this
is termed “resolution” of the dissonance between the root D and C
in the Dm9 chord, since the D-C interval of a minor seventh is more
dissonant than the D-B interval of a major sixth. (A stronger F-B
dissonance is introduced consequently, and that would normally be
resolved in a separate step after the G13 chord, e.g. by changing to a
C chord.) Figure 5 illustrates this type of resolution in a jazz melody.

Figure 5. Resolution of the D-C interval (D is not shown, but implied as
the root of Dm9) by a C to B transition

This succession could be intermediate or one or more notes could
be interposed between them, as shown in Figures 6 and 7.

Figure 6. Resolution by C-B, delayed by one note

In both the direct and deferred resolution cases, the chosen notes
resonate with the underlying harmony, which is usually being articu-
lated by the accompanying rhythm section while the soloist is play-
ing.

4.2 Modularity
Impro-Visor exploits modularity, by which we mean that melodic
lines can often be broken into parts, then mixed or matched with
parts from other to form new lines. This is similar in some ways to



Figure 7. Resolution by C-B, delayed by more than one note

children’s mix-and-match books that make silly faces, creatures, or
stories by combining segments of normal pictures or stories that are
offered in parallel (cf. [6]). An early musical equivalent can be found
in Mozart’s dice game [2].

A benefit of modularity is combinatorial economy. If M differ-
ent cells over one chord can be combined with N cells over another
chord, we can obtain MN melodic segments using storage space of
just M + N. At the present time, we have not fully exploited this ben-
efit, insofar as the repertoire of licks over two chords is not currently
represented as combinations of sub-licks. However, the user is con-
stantly exploiting modularity in focusing on providing melodies for
a small number of chords, typically one or two, at a time, some of
which can be constructed from cells.

Figure 8. Three cells over each of two chords

Figures 8 and 9 illustrate this form of modularity. Figure 8 shows
three cells for Dm9 on the left and three cells for G13 on the right.
If the ending note of the Dm9 cell has the right interval in relation
to the starting note of the G13, we can juxtapose the two cells to get
a lick. In present example, we may be able to get as many as nine
good-sounding licks from those six cells, and in fact we do get this
many, the Cartesian product shown in Figure 9.

The main issue to resolve here is what constitutes an acceptable
interval connecting two cells. A half-step apart is very common and
desirable in jazz. But other intervals such as two, three, or four half
steps generally sound fine as well. Further research is needed to de-
termine whether we can simply restrict to certain connecting inter-
vals or that additional context is needed to establish connectability.

4.3 Pattern Matching

Pattern matching between chords occurring in the tune and chords
indexing stored melodic segments is one of the major problems in
developing this software, for the following reasons:

Figure 9. A product of nine licks generated from the six cells in Figure 8

1. A chord in the tune might not exactly equal a chord in the
vocabulary segment, but rather imply it or be a discretionary
alternative. For example, a Dm7 in a stored melodic segment
would usually work with any of Dm7, Dm9, Dm11, Dm13 in
a tune. Fortunately, these are extensions of the chord, and this
information is represented in the vocabulary and thus is available
for use in the matching algorithm.

2. A chord in the tune might have the chord in the vocabulary seg-
ment as its proper extension, or just be a cousin of the other chord.
This case is not as straightforward as the above, because the tones
assumed in the vocabulary chord might not work well in the con-
text of the more limited chord in the tune. For this reason, we sep-
arate the two types of match when providing advice to the user, as
follows:

(a) with same first chord type (or having this type as an extension)

(b) with related first chord type (or extending this chord type)

Here the concept of related currently means having the same
family, where the latter is optionally given for each chord in the
vocabulary. For example, dominant is the family to which G7,
G9, G13, G7b9, etc. belong. Complications are introduced by the
possibility of some chords, in principle, being able to be in more
than one family. For example, G7b9 could also be regarded as
part of a diminished family, because the part above the root forms
a diminished-seventh chord. A chord with no family specified
defaults to a family of itself alone. At the moment, we assume
only one family per chord, but plan to extend the matcher to
multiple families in the future.

3. Chords are often used to embellish a chord sequence, in a
non-essential way. The presence of embellishing chords gets
in the way of pattern matching, because it may be unclear
that they are serving an embellishing function. It is not hard
for an experienced jazz musician to recognize this use, but it
is another matter for software. Our plan for dealing with this
problem is to design a non-intrusive annotation to the chord
specification for tunes, which will enable embellishments to be
stripped off in layers. For example, in Dm7 G7, the Dm7 can be
regarded as an embellishment approaching the G7 chord. It is
also common for a chord to be preceded by its relative V chord
as an embellishment. So if Dm7 is present, there could be an
A7 before it. Thus the notation might read {{A7} Dm7} G7,



meaning: Dm7 can appear before G7, and if it appears, an A7
can appear before that. Pattern matching in the presence of this
kind of embellishment is yet to be worked out, but the concept
is familiar in computer science for syntax specification. For a
more detailed musical explanation, please refer to chapter 2 of [4].

4. Inter-chord timing is a major issue. A segment designed for a
1-measure Dm9 G13 won’t generally work for a 2-measure ver-
sion of the same chord sequence. This issue is complicated by the
fact that chords are not always placed on beat boundaries in the
published versions of songs. The chords themselves can be syn-
copated, sometimes at the level of half-beats, to align with the
original melody.

5 ON AUTOMATING MELODY GENERATION
We would like our tool to provide a very large repertoire of melodic
segments. Up until recently, our approach was to construct these by
hand or transcribe them from recorded sources. By-hand construction
is enjoyable, and turns out to be as educational, if not more educa-
tional, than using the segments to construct complete solos. How-
ever, by-hand construction is a slow process. It would be much better
if we could automate the generation of these segments, either on-line
while the tool is being used, or off-line, saving the segments in the
vocabulary file in which such segments currently reside.

On-line generation is somewhat risky. Unless one has a very reli-
able algorithm for doing it, the results can be poor and therefore mis-
leading to the student. Of course the ear can be used as the ultimate
selection device, and it is easy to backtrack to a different sequence,
but the beginner’s ear is often not sufficiently developed, so it would
be better to have every generated segment sounding good.

Creation of a melody generator is a topic of current research. We
have been considering a variety of machine learning approaches.
However, one associated problem is that there needs to be a corpus of
segments available to train the learning mechanism. Moreover, there
has to be a training set for each commonly-occurring chord sequence,
which is a lot of sets. So in a way it is a chicken-and-egg problem.
We are aware of the success of genetic approaches, but would like to
find something different.

Figure 10. Lick generation and triage device

As a step toward creating a corpus, we constructed a “lick triage”
device as part of Impro-Visor, as shown in Figure 10, from which
we learned some things about the problem, as we now describe. The
tool allows one to specify (unordered) sets of preferred tones over

two-chord sequences, although the idea could easily be extended to
more chords. The preferred tones are essentially scale tones and color
tones, information that is already available, as described earlier. Min-
imum and maximum duration for notes are set by the user. When
triggered by the user, the tool generates a random sequence of pitches
within the realm of the parameter settings. The user can then indicate
good or bad, and this indication is saved in the vocabulary along with
the sequence itself. Our intention was to use the resulting corpus to
train a machine learning method.

One surprise that resulted is that, when we specified avoid re-
peated notes and used a uniform duration of eighth-notes, most of
the segments were acceptable, at a level above 90 percent. When the
duration was not uniform, say a mixture of eighth and quarter notes,
the acceptance rate was not as high, but still encouraging. Some in-
teresting syncopated melodies were observed, consistent with the
intended use for jazz. The acceptance rate also deteriorated when
longer licks were stipulated. This suggests that rhythmic aspects are
at least as important as pitch aspects when characterizing acceptable
jazz melodies, which is perhaps not so surprising in retrospect.

Figure 11. A lick generated by the device

We are encouraged by the results from fairly simple technology,
and believe that it will be possible to develop a fairly proficient
melody generation tool by algorithmic techniques. This will be the
subject of future research. Options would include means of speci-
fying the preference of certain intervals, such as fourths, which are
generally regarded as “modern-sounding” by jazz musicians, for ex-
ample, or the avoidance of certain intervals. Enforced pairing of notes
of small duration is another trait that is probably desirable. A gram-
matical approach to melody generation is being considered in this
regard.

6 EVALUATION

A fair number of solos have been constructed by the first author as
demonstrations, and these are available for viewing and listening on
the website [3] currently. At the time of writing, we have not had
the opportunity to evaluate the approach fully in a course setting,
since the author who teaches improvisation has been on sabbatical
since the inception of the project. However, we plan to use the tool
throughout the 2006-2007 academic year at Harvey Mudd College,
and will be reporting on the usefulness of our tool in a future publi-
cation or on the Impro-Visor website.

7 CONCLUSION

We have described some of the motivation and workings behind a
software tool for assisting students to learn jazz improvisation or for
assisting intermediate players in becoming more proficient. We have
also indicated future approaches toward automating the generation
of useful melodic sequences to be made available in the tool.



ACKNOWLEDGEMENTS
This work was supported by a Faculty Enhancement grant from the
Mellon Foundation.

REFERENCES
[1] J. A. Biles, ‘Genjam: A genetic algorithm for generating jazz solos’, in

Proc. of the 1994 International Computer Music Conference, pp. 131–
137, Aarhus, Denmark, (1994).

[2] Mozart’s Dice Game. http://webplaza.pt.lu/public/mbarnig/pages/dicemus.html.
[3] Impro-Visor. http://www.cs.hmc.edu/˜keller/jazz/improvisor/.
[4] Henry Martin, Charlie Parker and Thematic Improvisation, Scarecrow

Press, Lanham, Maryland and London, 2001.
[5] John McCarthy, ‘Recursive functions of symbolic expressions and their

computation by machine’, Communications of the ACM, 184–195,
(1960).

[6] Norman Messenger, Famous Faces, Dorling Kindersley Publishing Inc.,
New York, 1995.

[7] PG Music. http://www.band-in-a-box.com/.
[8] George Papadopoulos and Geraint Wiggins, ‘A genetic algorithm for the

generation of jazz melodies’, in Proceedings of STeP 98, Jyvskyl, Fin-
land, (1998).

[9] Belinda Thom, ‘BoB: An interactive improvisational music companion’,
in Proceedings of the Fourth International Conference on Autonomous
Agents, eds., Carles Sierra, Maria Gini, and Jeffrey S. Rosenschein, pp.
309–316, Barcelona, Catalonia, Spain, (2000). ACM Press.


