
1

11/8/2007 Maintainability, Readability, Style & Standards 2

Maintainability and Readability
• elements of maintainability
• program readability

– module structure
– code layout (use of white space)

– commenting
– naming conventions

• coding standards and tools
• external documentation

– types, audiences, purposes

A1

11/8/2007 Maintainability, Readability, Style & Standards 3

What makes code “understandable”?
• good architecture

– intuitive components, well chosen interfaces
– straight-forward hierarchical structure

• good specifications
– good overview of system structure & operation
– clear descriptions of each component

• good design
– good modularity and cohesion
– well abstracted interfaces

• readable code
– it is relatively obvious how the code works

B1

B2

B3

11/8/2007 Maintainability, Readability, Style & Standards 4

What makes code “readable”?
• module organization

– order in which we describe/define routines, variables
• visual layout

– use white-space to delimit functional units
– use consistent visual metaphors to convey structure

• commenting
– to further accentuate structure
– to guide us though non-obvious parts of the code

• variable and routine naming conventions
– to make meaning of code more obvious

• these aren’t merely style; they involve technique

11/8/2007 Maintainability, Readability, Style & Standards 5

General Module Structure
• standard preamble

– copyrights, version, module overview
• include files type definitions
• static global, then private data declaration
• routine pre-declarations (if required)
• constructors and destructors (if required)
• public, then private routine definitions

– in some logical order (e.g. top-down,
alphabetical order, temporal call order, etc)

11/8/2007 Maintainability, Readability, Style & Standards 6

General Routine Structure
• standard preamble

– description of function, parameters, returns
• routine declaration

– return type, name, parameters & types
• local variables

– by type, one per line, with descriptions
• blank-separated paragraphs of code

– preceded, if necessary, with comments
describing, in general, what each does C1

11/8/2007 Maintainability, Readability, Style & Standards 7

white-space & program structure

IF
THEN

ELSE

WHILE

UNTIL

DO SWITCH
case

case

case

• blank lines make block separation clear

• indentation makes block nesting clear

• visually clearer than keywords or braces D1

2

11/8/2007 Maintainability, Readability, Style & Standards 8

standard (K&R) C indentation
• most braces on same line as keyword
• closing braces, un-indented, on own line
• motivation - ease of editing
If (condition) {

statement;

statement;

} else {

statement;

statement;

}

while (condition) {

statement;

statement;

}

do {

statement;

statement;

} until (condition);

switch (var) {

case 1:

statement;

statement;

break;

case 2:

statement;

statement;

break;

}

11/8/2007 Maintainability, Readability, Style & Standards 9

Indentation Guidelines
• use consistent indentations for all ...

– lines within a single loop, block, or sub-case
– loops, blocks or sub-cases at the same level,

(especially siblings within a larger block)
– labels are allowed to hang to the left

• avoid excessively large indentations
– no more than 50-75% of a line
– use a smaller indent (e.g. 4 vs 8)
– put the sub-block into a sub-routine
– as a last resort, shift whole block left E1

11/8/2007 Maintainability, Readability, Style & Standards 10

• expressions
– use parens to make precedence explicit
– use spaces to make sub-expressions obvious

• continuation lines
– break line at an argument/operand boundary
– indent each continuation to same level

Line Formatting

((x>4) && ((y/10) > 0)) x>4&&y/10>0vs.

fprintf(stderr, “Free space %d entries (%02d\% full)\n”,

cache.totsize - cache.current,

(cache.current * 100) / cache.totsize);

F1

F2

11/8/2007 Maintainability, Readability, Style & Standards 11

simpler code: boolean exprs
If (errors > MAX_ERRORS)

return(TRUE);
else

return(FALSE);

return (errors > MAX_ERRORS);

If (personType == STUDENT)
salesTax = 0;

else
salesTax = 0.085;

salesTax = (PersonType==STUDENT) ? 0 : 0.085;

if (((index+1) % tablesize) == 0)
xxx;

…
if (((index+1) % tablesize) == 0)
yyy;
…

wrap = ((index+1) % tablesize) == 0;

if (wrap)
xxx;

…
if (wrap)

yyy;

G1

G2

11/8/2007 Maintainability, Readability, Style & Standards 12

Useful Code Commenting
• prose or pseudo-code summaries

– explain the purpose of the code that follows
– high level overview of the algorithm
– enumerate pre-conditions that must hold

• rationale and references
– remind reader of important issues
– explain non-obvious choices
– refer reader to more detailed discussions

• draw attention to module sub-sections
– start of a new class or routine

H1

H2

11/8/2007 Maintainability, Readability, Style & Standards 13

Labels for non-obvious targets
if (queue.numEntries > 0) {

…
} else /* (queue.numEntries <= 0) */

…
if (request.status == ERR_FATAL)

break; /* NextRequest */
…

}
/* NextRequest: */

…

I1

3

11/8/2007 Maintainability, Readability, Style & Standards 14

Explanations and Excuses
• often non-obvious code is bad

– complexity results from a bad approach
– it is usually better to fix it than to explain it

• some non-obvious approaches are good
– eliminate problems, improve performance
– explain problem and the novel approach

• sometimes we leave code incomplete
– designed features that aren’t yet required
– work we plan to complete later
– leave warning, excuse, advice, comment

11/8/2007 Maintainability, Readability, Style & Standards 15

Commenting Data Items
• we mostly talk about commenting code?
• many data items also need comments

– who uses it for what purpose
– units, range, and meanings of its values
– validity assertions, synchronization rules

• can be true for all types of declarations
– basic types, structures, bit-fields, unions, etc.

• associate comments with declarations
– end-line comments for simple declarations
– large block comments for complex items

11/8/2007 Maintainability, Readability, Style & Standards 16

non-Readability Comments
• mandatory module preambles

– copyright notices, legal disclaimers
– title, version, and authorship information

• information for use by CAD tools
– semantic interface descriptions

• for documentation and test generation tools
– notes for static analysis tools

• information that is not statically determinable
– correctness assertions

• for automated testing or run-time checking

J1

J2

11/8/2007 Maintainability, Readability, Style & Standards 17

Coding Standards - scope
• naming conventions

– generation, use of case, prefixes, suffixes
• usage conventions

– e.g. versions, defines, include file processing
• commenting conventions

– standard module preamble
– standard routine preamble

• formatting conventions
– indentation and commenting style

K1

11/8/2007 Maintainability, Readability, Style & Standards 18

Standards - tools
• static analysis tools (e.g. lint)

– stricter checking than the C compiler
• style checkers (e.g. cstyle, hdrchk, libchk)

– audit code against specified standards
• pretty-printers (e.g. indent, C beautifier)

– reformat code w/standard indents/spacing
• auto-documenters (e.g. javadoc)

– generate routine documents from comments
• code browsers (e.g. cxref, source navigator)

11/8/2007 Maintainability, Readability, Style & Standards 19

For Next Lecture
McConnell 21.1-2 - collaborative development
McConnell 28.1, 28.5 – good practices
McConnell 33 – Personal character
Wikipedia: XP Practices
Williams: Pair Programming
– how well it can work
Rosenberg: Problems w/Pair Programming
– how it can not work
CACM: Global Software Development (eres)
– how it challenges development practices

4

11/8/2007 Maintainability, Readability, Style & Standards 20

Supplementary Slides

11/8/2007 Maintainability, Readability, Style & Standards 21

Product Documentation
• design documentation

– architectural/design introduction/overview
– component level design specifications
– design rationale folders

• end-user documentation
– manuals on how to use the product

• support documentation
– installation/configuration guidelines
– trouble-shooting guidelines
– detailed technical descriptions

11/8/2007 Maintainability, Readability, Style & Standards 22

Architectural Overviews
• author - lead engineers
• audience - initially developers, later everyone
• form - eventually a polished report/presentation
• content

– describe overall structure of product
– goals, principles, components, interfaces
– later, a technical introduction to the product

• role in code maintainability
– lays conceptual foundations, intro to design

11/8/2007 Maintainability, Readability, Style & Standards 23

Design Rationale(s)
• author - architects & designers
• audience - other architects and designers
• form - usually just a collection of notes

– some may eventually turn into white papers
• content

– issues, problems, options, decisions
• role in code maintainability

– explain non-obvious features of the design
– keep important lessons from being forgotten

11/8/2007 Maintainability, Readability, Style & Standards 24

Installation/Configuration
• author - responsible engineers
• audience - support and customers
• form - external product documentation
• content

– process for installing product
– product configuration options
– performance considerations and tuning

• role in code maintainability
– explain how the product is managed

11/8/2007 Maintainability, Readability, Style & Standards 25

Trouble-Shooting Guidelines
• author - development and support engineers
• audience - technical support
• form - internal product documentation
• content

– how to diagnose likely problems
– how to fix or get around them

• role in code maintainability
– direct how-to guidance for support engineers
– acquaint maintenance engineers w/problems

5

11/8/2007 Maintainability, Readability, Style & Standards 26

Detailed Technical Descriptions
• author - responsible engineers
• audience - support/maintenance engineers
• form - internal product documentation
• content

– detailed component design descriptions
• may be at routine level, or even more detailed

• role in code maintainability
– training for new code maintainers

NOTE: these are not common
11/8/2007 Maintainability, Readability, Style & Standards 27

Detailed Technical Descriptions
• often mandated by large organizations

– with very long maintenance commitments
• e.g. aerospace, government

– when many maintainers will be trained
• e.g. military, telecommunications

– they do improve product maintainability
• they are very expensive to produce

– documentation takes longer than the code
– they have to change whenever the code does

• easier just to make code more readable

11/8/2007 Maintainability, Readability, Style & Standards 28

javadoc
• A commenting discipline and tool for

automatically generating documentation
from the code.

• A set of standard tags
– @param, @return, @throws, @serial
– @link, @see, @version, @since, @author

• A convention for descriptions
/**
* stuff for javadoc
*/

11/8/2007 Maintainability, Readability, Style & Standards 29

choosing good names
• well chosen routine names ...

– describe what the routine does
– suggest the meaning of their return value

• well chosen variable names ...
– tell us what the variable means
– suggest its scope and general class

• good names are better than comments
– because they take up much less space
– because they appear on every usage

11/8/2007 Maintainability, Readability, Style & Standards 30

mnemonic naming conventions
• describe the entity/action they represent

– integer: linesPerPage
– boolean: outOfSpace
– routine: pushStack()

• follow recognizable patterns
– scoreMax, scoreMin, scoreMean, …
– addStudent(), dropStudent(), ...

• are long enough to make sense
– but short enough to be manageable

• easy to type, don’t take up the whole line

11/8/2007 Maintainability, Readability, Style & Standards 31

syntactic naming conventions
• can suggest general variable classes

– UpperMixed classes and defined types
– lowerMixed locals and parameters
– UPPERCASE constants and macros

• can suggest scope
– m_mixedCase member-private data
– G_mixedCase global data

• can suggest class from which they come
– base_Value enumerated types

