
1

9/7/2007 Software Engineering Process 2

Software Process Models

• In Defense of Prescriptive Models

• Issues in Waterfall Models

– concurrent development

– phase transitions and overlap

• Issues in Evolutionary Models

– incremental vs. iterative models

– planned iteration

• Choosing the Right Model

9/7/2007 Software Engineering Process 3

The Basic Waterfall Model

definition & requirements

detailed design

implementation

testing

validation

delivery

support

high level design

project planning

definition

planning

construction

deployment

A3

A2

9/7/2007 Software Engineering Process 4

(In Defense of Prescriptive Models)

• they capture fundamental truths
– you can’t build “it” until you know what “it” is

– things go much better when you have a plan

• a basis for modeling any process
– basic task break-down and planning template

– planned progression from one step to next

• some projects really do fit them
– clear requirements are obtainable

– technical risk is low

– agile processes can be seen as extensions

9/7/2007 Software Engineering Process 5

Concurrent Development
definition & requirements

detailed design

implementation

testing

integration

delivery

support

high level design

project planning

detailed design

implementation

testing

detailed design

implementation

testing

validation

system test

9/7/2007 Software Engineering Process 6

(Concurrent Development)

• most systems require many pieces

– independent pieces can be built independently

• advantages

– smaller teams are more efficient

– smaller projects involve less risk

– improved resource utilization, earlier finish

• cost

– resource allocation becomes more complex

– some problems only emerge after integration

B3

B2

B3

B4

B5

9/7/2007 Software Engineering Process 7

Phase Overlap

high level design

project planning

definition general requirements

U/I reqts

database reqts

server engine reqts

U/I design

db design

server engine design

U/I implementation

db impl

server engine implementation

2

9/7/2007 Software Engineering Process 8

(Phase Overlap)
• phase n+1 can start before phase n ends

– there are many tasks in phase n+1

– they don’t all depend on all of phase n tasks

• such overlap has big advantages

– better resource utilization, earlier completion

– experience A impl can influence design of B

• but there are risks

– if phase n action invalidates phase n+1 work

– component testing may be done in isolation

– dependencies must be tracked and managed

C1

C2

C3

C4

9/7/2007 Software Engineering Process 9

The Incremental Delivery Model

definition

construction

deployment

planning

definition

construction

deployment

planning

release 1

release 2

9/7/2007 Software Engineering Process 10

(The Incremental Model)

• Doing everything in release 1 is a “canard”

– our requirements are incomplete & imperfect

– we don’t know how to build some pieces

– insufficient time/people to do everything

• Deliver product in successive releases

– successive approximations to solution

– we learn from the experience we gain

– fewer and smaller tasks in each release

– sooner delivery, lower cost, lower risk

D1

9/7/2007 Software Engineering Process 11

Keys to Incremental Development

• each increment must be useful

– not all subsets of functionality are useful

– if it is not useful, nobody will use it

• each increment must be build-able

– we must know how to build it

– we must have the time and resources

• need a plan to sustain the effort

– can we fund successive approximations

– can we retain internal/external commitment

D2

D3

D4

D5

D6

9/7/2007 Software Engineering Process 12

Where these models break down

• the “execute the plan” phase assumes ...

– we know what product we need to build

• the customers and their requirements

– we know what it takes to build the product

• how to build it, with what resources, how quickly

• these assumptions often fail

– requirements for new products are speculative

– estimates for unknown tasks are fantasy

• plans based on false assumptions are bad

9/7/2007 Software Engineering Process 13

Planning with Poor Information

• Option A: add fudge factors

– enumerate all of the major uncertainties

– guess at likely costs implied by each

– hope that they average out

• Option B: a plan for a plan

– enumerate all of the major uncertainties

– plan research/prototype projects to resolve each

– this is a plan for developing a better plan

E1

3

9/7/2007 Software Engineering Process 14

Prototyping addresses ignorance

• Find mistakes before building the real thing

• We aren’t sure what we should build

– prototype a few alternatives, get feedback

• We aren’t sure how much work it will be

– identify the parts we don’t know how to build

– isolate, prototype, and test those mechanisms

– see what problems arise

• We aren’t sure how well it will work

– measure a model, simulation or prototype

E2

E3

9/7/2007 Software Engineering Process 15

Iterative (spiral) Models

initial definition
& requirements

construction

validation
delivery

support

planning evaluation

next phase

definition

9/7/2007 Software Engineering Process 16

(Spiral v.s. Incremental Models)

• each incremental iteration is a product

– it satisfies requirements (for that release)

– it is tested, documented, and validated

– it is delivered and supported

• spiral iterations are research projects

– Goal: answer questions (vs. deliver product)

– they build a prototype to test the premise

– the resulting information feeds future planning

9/7/2007 Software Engineering Process 17

Planned Iteration

• Each iteration has a clear goal
– we are seeking answers to specific questions

• Each iteration has a plan
– we know what we are going to do

– we know how long it will take

– we know what we will have when we finish

• Each iteration is a commitment point
– do we still believe in the ultimate goal?

– is this the right plan to get us there?

9/7/2007 Software Engineering Process 18

Why Models Matter

• All projects are not the same

– different problems, organizations, constraints

– different models better suit different projects

• Choosing a model sets expectations

– if model is wrong, expectations won’t be met

– plans and designs are predicated on a model

• To choose a more appropriate model

– we must understand their differences

– we must understand our own situation

F2

F1

9/7/2007 Software Engineering Process 19

Sun Tzu

If you know the enemy and know yourself, you
need not fear the result of a hundred battles.

If you know yourself but not the enemy, for

every victory gained you will also suffer a
defeat.

If you know neither the enemy nor yourself,
you will succumb in every battle.

4

9/7/2007 Software Engineering Process 20

For the next Lecture

• McConnell 3.3-4, 4

– introduction to the importance of “first things first”

• wikipedia: Requirements Analysis

– overview of full range of approaches

• Kampe: gathering & analysis of user requirements

– introduction to the process, guide to project 1A

• Wiegers: Requirements Traps

– good overview of common mistakes

• Wiegers: Prioritizing Requirements

– intro to a fundamental planning methodology

9/7/2007 Software Engineering Process 21

Supplementary Slides

on real commercial processes

9/7/2007 Software Engineering Process 22

Process Specifications

• written descriptions of steps to be performed

– when carrying out a particular type of project

– usually a combination of words and diagrams

• they usually describe, for each step,

– the work that should be performed

– the acceptance criteria for that work

– who has the authority to approve it

• they may also specify, for each step

– required inputs and/or pre-conditions

– required output (work products)
9/7/2007 Software Engineering Process 23

Examples

• Definition stage – proposals, requirements

specifications, requirements review reports

• Detailed design – designs, design review reports

• Implementation – software, makefiles, test cases,

documentation, code review reports, test reports

• Validation – bug reports, test results, alpha/beta reports

• Deployment – installation statistics, bug reports, call

reports

• Process Paperwork – request and approval forms

9/7/2007 Software Engineering Process 24

Typical “Construction” Process

design

implement

request to
integrate

approved
?

put back DONE

write code

write test suites

write documentation

unit testing integration testing

identify document
reviewers

integrate
yes

?
interface
changes

?
dependencies

create/revise
test plan

test plan
review

yes
identify design

reviewers
create/revise

detailed design
design
review

create/revise
detailed architecture

architecture
review

yes

create/revise
mitigation plan

approved
?

yes

yes

document
review yes

identify code
reviewers

code
review

yes

9/7/2007 Software Engineering Process 25

Process Work Products

• the outputs defined by a process

– specified outputs of development process steps

– analyses, plans, specs, code, reports, …

– definitions may be general or very strict

• why do we produce them?

– they are required inputs to subsequent steps

– they represent project “mile-stones”

• they are concrete , measurable, deliverables

• reviewing them gives us confidence of our progress

• they are a record of our progress

5

9/7/2007 Software Engineering Process 26

Process Models & Strategy

• Model choice is not just about projects

– productivity is secondary to staying in business

• Models must support business objectives

– understand the demands of that business ...
find a model that supplies those needs

– understand the challenges of that business ...
find a model that shields us from what we fear

• Process Models for commercial s/w are
often as much about business as s/w

9/7/2007 Software Engineering Process 27

A Real Development Process

If you are interested in seeing what a real
development process specification looks

like, you might want to check out:

http://www.opensolaris.org/os/community/onnv/os_dev_process/

This includes process flow charts,
descriptions of work products, and

discussions of motivations and principles.

9/7/2007 Software Engineering Process 28

Case Study: Microsoft

• the domain

– flagship applications like word and excel

• the challenge

– maximum value in each new release

– maximize ROI on new feature development

– maximize release predictability (date/quality)

– maximize project predictability (cost/success)

• the response

– a project qualification process

9/7/2007 Software Engineering Process 29

Microsoft Feature Management
• all new projects must create feature value

– if we can’t advertise it, we won’t do it

• all proposals must have business cases

– independent research, product use statistics

– projects prioritized based on projected revenue

• all projects must be small and complete

– no project can be larger than two staff weeks

– no project can depend on other projects

• only fully tested projects will be integrated

– they had very demanding test standards

9/7/2007 Software Engineering Process 30

Feature Management - benefits

• high value releases with high ROI

– projects were chosen based on revenue

• high project predictability

– small projects tend to have fewer side effects

– small projects are simpler and less risky

• high release predictability

– rigorous testing requirements reduce breakage

– independence means we can back out losers

• this helped to ensure business objectives

9/7/2007 Software Engineering Process 31

Feature Management - problems

• It effectively precluded infrastructure projects

– e.g. network or multi-media integration

• they do not deliver advertisable “features”

– rather they enable future feature projects

• they are neither small nor independent

– much new code, much change to existing code

– all future projects will depend on them

• they are hard to test

– they are complex, general, and pervasive

6

9/7/2007 Software Engineering Process 32

Case Study: Sun

• the domain

– the Solaris Operating System

• the challenge

– encourage technological innovation

– avoid breaking customer applications

– maximize release predictability (date/quality)

– avoid future support disasters

• the response

– Architectural Review Committees

9/7/2007 Software Engineering Process 33

SUN: ARC process

• create Architectural Review Committees

– one for each major technology area

– staffed by very senior engineers in each area

• create fast-track process for simple projects

– sponsored cases, auto-approve if unchallenged

• require review/approval for all other projects

– classify interfaces & ensure sufficient stability

– ensure conformance w/architectural mandates

– assess significant support/evolution issues

9/7/2007 Software Engineering Process 34

ARC Process - benefits

• improved release compatibility/quality

– project integration seldom breaks a release

– new releases no longer break old applications

• accelerated adoption of new technologies

– projects were quickly guided in new directions

• significant improvements in product quality

– numerous support disasters were averted

– projects benefited from senior engineer review

• this helped to ensure business objectives

9/7/2007 Software Engineering Process 35

ARC Process - problems

• the process was expensive for the company

– it consumed 25-50% of 30 very senior engineers

– managers viewed this as development tax

• the process was expensive for projects

– preparing for a review was time-consuming

– recommendations made projects larger

– managers viewed this as extortion

• the process was not applied uniformly

– different divisions had different processes

