Software Process Models

+ In Defense of Prescriptive Models
* Issues in Waterfall Models
—concurrent development
— phase transitions and overlap
* |Issues in Evolutionary Models
—incremental vs. iterative models
— planned iteration
» Choosing the Right Model

9/7/2007 Software Engineering Process 2

The Basic Waterfall Model

definition & requirements

high level design
project planning

definition
®

planning

detailed design .

- 2 construction

implementation

testing
validation
delivery deployment
support
9/7/2007 Software Engineering Process 3

(In Defense of Prescriptive Models)

+ they capture fundamental truths
—you can’t build “it” until you know what “it” is
—things go much better when you have a plan
* a basis for modeling any process
— basic task break-down and planning template
— planned progression from one step to next
+ some projects really do fit them
— clear requirements are obtainable
—technical risk is low
—agile processes can be seen as extensions

9/7/2007 Software Engineering Process 4

Concurrent Development

definition & requirements

high level design
project planning

i i 1

detailed design detailed design detailed design

implementation implementation implementation

testing testing testing

system test

validation

delivery

support

9/7/2007 Software Engineering Process 5

(Concurrent Development)

» most systems require many pieces o
—independent pieces can be built independently
+ advantages
—smaller teams are more efficient ®
—smaller projects involve less risk
—improved resource utilization, earlier finish
* cost ®
—resource allocation becomes more complex
— some problems only emerge after integrationg

9/7/2007 Software Engineering Process 6

Phase Overlap

definition ‘ ‘ general requirements ‘
project planning
‘ high level design ‘
database reqts
-db design
U/l reqts
U/l design
Ui
server engine regts

‘ server engine design ‘

‘ server engine implementation

9/7/2007 Software Engineering Process 7




(Phase Overlap)

» phase n+1 can start before phase n ends
—there are many tasks in phase n+1
—they don't all depend on all of phase ntasks g

+ such overlap has big advantages ©
— better resource utilization, earlier completion
—experience A impl can influence design of B

* but there are risks
—if phase n action invalidates phase n+1 work@
— component testing may be done in isolation

—dependencies must be tracked and managed
9/7/2007

Software Engineering Process 8

The Incremental Delivery Model

release 1
release 2

9/7/2007 Software Engineering Process 9

(The Incremental Model)

Doing everything in release 1 is a “canard”
—our requirements are incomplete & imperfect
—we don’t know how to build some pieces

— insufficient time/people to do everything

+ Deliver product in successive releases
—successive approximations to solution ®
—we learn from the experience we gain

—fewer and smaller tasks in each release
—sooner delivery, lower cost, lower risk

9/7/2007 Software Engineering Process 10

Keys to Incremental Development

+ each increment must be useful
—not all subsets of functionality are useful
—if it is not useful, nobody will use it

+ each increment must be build-able ®
—we must know how to build it
—we must have the time and resources

* need a plan to sustain the effort
—can we fund successive approximations ®
—can we retain internal/external commitment o

9/7/2007 Software Engineering Process 1

Where these models break down

« the “execute the plan” phase assumes ...

—we know what product we need to build
« the customers and their requirements

—we know what it takes to build the product
+ how to build it, with what resources, how quickly

+ these assumptions often fail
— requirements for new products are speculative
— estimates for unknown tasks are fantasy

* plans based on false assumptions are bad

9/7/2007 Software Engineering Process 12

Planning with Poor Information

» Option A: add fudge factors
—enumerate all of the major uncertainties
—guess at likely costs implied by each
— hope that they average out

+ Option B: a plan for a plan ®
—enumerate all of the major uncertainties
— plan research/prototype projects to resolve each
—this is a plan for developing a better plan

9/7/2007 Software Engineering Process 13




Prototyping addresses ignorance

+ Find mistakes before building the real thing
» We aren’t sure what we should build
— prototype a few alternatives, get feedback ®
» We aren’t sure how much work it will be
— identify the parts we don’t know how to build
— isolate, prototype, and test those mechanisms
—see what problems arise
» We aren’t sure how well it will work
— measure a model, simulation or prototype

9/7/2007 Software Engineering Process 14

lterative (spiral) Models

initial definition
& requirements

next phase
definition

= planning evaluation

construction

\

.
validation
delivery
support

9/7/2007 Software Engineering Process 15

(Spiral v.s. Incremental Models)

» each incremental iteration is a product
— it satisfies requirements (for that release)
—it is tested, documented, and validated
— it is delivered and supported

* gpiral iterations are research projects
— Goal: answer questions (vs. deliver product)
—they build a prototype to test the premise
—the resulting information feeds future planning

9/7/2007 Software Engineering Process 16

Planned lteration

» Each iteration has a clear goal

—we are seeking answers to specific questions
» Each iteration has a plan

—we know what we are going to do

—we know how long it will take

—we know what we will have when we finish
» Each iteration is a commitment point

—do we still believe in the ultimate goal?

— is this the right plan to get us there?

9/7/2007 Software Engineering Process 17

Why Models Matter

+ All projects are not the same
— different problems, organizations, constraints
— different models better suit different projects
+ Choosing a model sets expectations
—if model is wrong, expectations won’'t be met @
—plans and designs are predicated on a model @
« To choose a more appropriate model
—we must understand their differences
—we must understand our own situation

9/7/2007 Software Engineering Process 18

Sun Tzu

If you know the enemy and know yourself, you
need not fear the result of a hundred battles.

If you know yourself but not the enemy, for
every victory gained you will also suffer a
defeat.

If you know neither the enemy nor yourself,
you will succumb in every battle.

9/7/2007 Software Engineering Process 19




For the next Lecture

e McConnell 3.3-4, 4
— introduction to the importance of “first things first”
» wikipedia: Requirements Analysis
— overview of full range of approaches
» Kampe: gathering & analysis of user requirements
— introduction to the process, guide to project 1A
» Wiegers: Requirements Traps
— good overview of common mistakes
» Wiegers: Prioritizing Requirements
— intro to a fundamental planning methodology

9/7/2007 Software Engineering Process 20

Supplementary Slides

on real commercial processes

9/7/2007 Software Engineering Process 21

Process Specifications

+ written descriptions of steps to be performed
—when carrying out a particular type of project
— usually a combination of words and diagrams
» they usually describe, for each step,
—the work that should be performed
—the acceptance criteria for that work
—who has the authority to approve it
+ they may also specify, for each step
— required inputs and/or pre-conditions
— required output (work products)

9/7/2007 Software Engineering Process 22

Examples

 Definition stage — proposals, requirements
specifications, requirements review reports

» Detailed design — designs, design review reports

» Implementation — software, makefiles, test cases,
documentation, code review reports, test reports

» Validation — bug reports, test results, alpha/beta reports

« Deployment — installation statistics, bug reports, call
reports

» Process Paperwork — request and approval forms

9/7/2007 Software Engineering Process 23

Typical “Construction” Process

= = G

wit tos uites

9/7/2007 Software Engineering Process 24

Process Work Products

+ the outputs defined by a process
— specified outputs of development process steps
— analyses, plans, specs, code, reports, ...
— definitions may be general or very strict
» why do we produce them?
—they are required inputs to subsequent steps

—they represent project “mile-stones”
« they are concrete , measurable, deliverables
* reviewing them gives us confidence of our progress
« they are a record of our progress

9/7/2007 Software Engineering Process 25




Process Models & Strategy

» Model choice is not just about projects
— productivity is secondary to staying in business
+ Models must support business objectives

—understand the demands of that business ...
find a model that supplies those needs

—understand the challenges of that business ...
find a model that shields us from what we fear

* Process Models for commercial s/w are
often as much about business as s/w

9/7/2007 Software Engineering Process 26

A Real Development Process

If you are interested in seeing what a real
development process specification looks
like, you might want to check out:

http://www.opensolaris.org/os/community/onnv/os_dev_process/

This includes process flow charts,
descriptions of work products, and
discussions of motivations and principles.

9/7/2007 Software Engineering Process 27

Case Study: Microsoft

 the domain

— flagship applications like word and excel

the challenge

—maximum value in each new release
—maximize ROI on new feature development
—maximize release predictability (date/quality)
—maximize project predictability (cost/success)
the response

—a project qualification process

9/7/2007 Software Engineering Process 28

Microsoft Feature Management
« all new projects must create feature value
—if we can’t advertise it, we won’t do it
« all proposals must have business cases
—independent research, product use statistics
— projects prioritized based on projected revenue
« all projects must be small and complete
—no project can be larger than two staff weeks
—no project can depend on other projects
« only fully tested projects will be integrated
—they had very demanding test standards

9/7/2007 Software Engineering Process 29

Feature Management - benefits

high value releases with high ROI

— projects were chosen based on revenue

high project predictability

—small projects tend to have fewer side effects
—small projects are simpler and less risky

high release predictability

—rigorous testing requirements reduce breakage
—independence means we can back out losers
this helped to ensure business objectives

9/7/2007 Software Engineering Process 30

Feature Management - problems

« It effectively precluded infrastructure projects
— e.g. network or multi-media integration

« they do not deliver advertisable “features”
—rather they enable future feature projects

« they are neither small nor independent
—much new code, much change to existing code
—all future projects will depend on them

« they are hard to test
—they are complex, general, and pervasive

9/7/2007 Software Engineering Process 31




Case Study: Sun

+ the domain
—the Solaris Operating System

« the challenge
— encourage technological innovation
—avoid breaking customer applications
—maximize release predictability (date/quality)
—avoid future support disasters

* the response
— Architectural Review Committees

9/7/2007 Software Engineering Process 32

SUN: ARC process

« create Architectural Review Committees
—one for each major technology area
— staffed by very senior engineers in each area

+ create fast-track process for simple projects
— sponsored cases, auto-approve if unchallenged

* require review/approval for all other projects
— classify interfaces & ensure sufficient stability
—ensure conformance w/architectural mandates
— assess significant support/evolution issues

9/7/2007 Software Engineering Process 33

ARC Process - benefits

+ improved release compatibility/quality

— project integration seldom breaks a release
—new releases no longer break old applications
accelerated adoption of new technologies
— projects were quickly guided in new directions
significant improvements in product quality
—numerous support disasters were averted

— projects benefited from senior engineer review
this helped to ensure business objectives

9/7/2007 Software Engineering Process 34

ARC Process - problems

+ the process was expensive for the company
— it consumed 25-50% of 30 very senior engineers
—managers viewed this as development tax

+ the process was expensive for projects
— preparing for a review was time-consuming
—recommendations made projects larger
—managers viewed this as extortion

« the process was not applied uniformly
—different divisions had different processes

9/7/2007 Software Engineering Process 35




