
april 2012 | vol. 55 | no. 4 | communications of the acm 71

In the m id- 1990s , the prescribed means of keeping
software development projects out of trouble and
on schedule was to follow a heavyweight software
development methodology consisting of a complete
requirements document, including architecture and
design, followed by coding and testing based on a

What Agile
Teams Think
of Agile
Principles

doi:10.1145/2133806.2133823

Even after almost a dozen years, they
still deliver solid guidance for software
development teams and their projects.

By Laurie Williams

thorough test plan. The philosophy
was often summarized as “Do it right
the first time.” Common belief among
software engineers at the time was that
projects run into trouble when they do
not strictly adhere to a methodology,
and, if only they did, all would be well.
In reality, all was rarely well.

At the same time, a simmering under-
current that had begun to undercut this
doctrine was to follow an exceedingly iter-
ative, lightweight software development
methodology. Purportedly, a number
of independent “rogue” consultants
were rescuing projects in trouble
through variations of these methodolo-
gies. The first to stand up and say, “Look
at me,” and attract wide attention, was
Extreme Programming1 in about 1999.
The creators of other methodologies,

including Adaptive Software Develop-
ment, or ASD,6 Crysta,4 Dynamic Sys-
tems Development Method, or DSDM,11
Feature Driven Development, or FDD,8
and Scrum,10 followed suit with “Hey,
I’m doing something like that, too!”

Then, in February 2001, something
remarkable happened: Rather than fo-
cus on their differences and the “com-
petitive advantage” of their own meth-
odologies, 17 creators and supportersa
of the lightweight methodologies gath-
ered in Snowbird, UT, to discuss their

a	 Software engineers in attendance in Snowbird
included Kent Beck, Mike Beedle, Alistair Cock-
burn, Ward Cunningham, Martin Fowler, James
Grenning, Jim Highsmith, Andy Hunt, Ron Jef-
fries, Jon Kern, Brian Marick, Robert Martin,
Steve Mellor, Ken Schwaber, Jeff Sutherland,
Dave Thomas, and Arie van Bennekum.

72 communications of the acm | april 2012 | vol. 55 | no. 4

contributed articles

common interests and philosophies,
coining the term “agile software devel-
opment” to describe their methodolo-
gies. This unity rocked the software in-
dustry. In Snowbird, the Manifesto for
Agile Software Developmentb and Prin-
ciples Behind the Agile Manifestoc were
born and endorsed by all 17 attendees,
spelling out their values like this:

Manifesto for Agile
Software Development

We are uncovering better ways of devel-
oping software by doing it and helping
others do it. Through this work we have
come to value:

˲˲ �Individuals and interactions
over processes and tools;

˲˲ �Working software
over comprehensive documentation;

˲˲ �Customer collaboration
over contract negotiation; and

˲˲ �Responding to change
over following a plan.

That is, while there is value in the items
below (not bold), we value the items
above (bold) more.

The Agile Manifesto and the agile
principles thus began to serve as a ral-
lying cry for some and the bull’s-eye in
the dartboard for others. “Religious”
methodology wars ensued between
the agilists and those supporting what
came to be known as “plan driven,2
methodologies, the term that came to
be used for “not agile” methodologies.

These wars have since subsided. Ob-
servations at international agile con-
ferences indicate that companies in all
industrial domains have generally come
to coexist peacefully with agile method-
ologies. Many have embraced them,

b	 http://agilemanifesto.org/
c	 http://agilemanifesto.org/principles.html

while some use many agile practices
and others just a few. Meanwhile, agile
practices have evolved, with new ones
emerging and others fading away.

So how well do the Agile Manifesto
and its 12 principles still capture what
is valued by practicing software engi-
neers in industry and by teams that
have adopted agile methodologies as
their own practices have matured and
evolved? How do agile teams regard the
principles today? Here, “agile teams”
refers to teams claiming to use an agile
software development methodology.

Surveys
I conducted two surveys in 2010 at
North Carolina State University to weigh
the community’s view of the principles
and use of associated practices. I ad-
ministered them through surveymon-
key.com, advertising the first survey on
a number of agile-related user groups
(such as those on Yahoo! and LinkedIn).
Additionally, I emailed approximately
100 personal contacts, inviting them
to participate and forward the survey
to their colleagues. Respondents from
the first survey could optionally provide
their email address if they wanted me
to send aggregated results of the sur-
vey. When respondents received these
results, I further invited them to partici-
pate in a follow-on survey.

The first survey focused on the origi-
nal principles and commonly used soft-
ware development practices, as of 2010,
beginning the first set of questions with
the following instruction, followed by a
list of the principles in random order:

How important is this principle that
comes from the original agile principles
authored in 2001 for agile teams in
2010? (1=not very important; 5=essen-
tial, the team is not agile if it doesn’t fol-
low this principle)

I began the second set of questions
with the following instruction, followed
by a list of 45 software development
practices typically associated with agile:

What practices are essential for a team
to be considered agile? (1=not important;
5=essential, a team is not agile unless it
does this practice)

With each set of questions, I offered
respondents space to provide textual
commentary to augment their quantita-
tive responses.

The first survey was completed by
326 respondents with extensive experi-

ence in agile software development (see
the figure here). Those indicating they
had been using an agile methodology
for 10 years or more were using what
came to be called an “agile methodolo-
gy” post-Manifesto. Respondents were
primarily from North America (59%)
and Europe (29%). Of the 326, 18 (55%)
indicated they worked on teams with
30 or more members; 313 (96%) worked
in a distributed fashion, with 110 (34%)
having teams all in the same country,
42 (13%) all in the same continent, and
160 (49%) spread across different con-
tinents; and 52 (16%) indicated they
worked on safety-critical projects.

I based the follow-on survey on the
optional textual commentary provided
by respondents of the first survey (see
Table 1), distilling the most common
comments from the first survey in
a revised agile principle and asking
their opinion of the revised principle.
The motivation behind creating the
suggested revision was to highlight
emerging industry trends and possible
missing subtleties and/or evolution of
the original principles; for example, I
changed the original principle “Work-
ing software is the primary measure
of progress” to “Valuable, high-qual-
ity software is the primary measure
of progress at the end of each short,
timeboxed iteration.” The follow-on
survey sought feedback on the revised
principle, though my intent was not to
replace the original principle. Respon-
dents in the follow-on survey reflected
roughly the same characteristics as
participants in the first survey in terms
of professional experience and geo-
graphic location, with 93 of the origi-
nal 326 respondents providing feed-
back on each of the revised principles.

The second survey also asked how
valuable respondents considered the
principles, as well as “Why are the
agile principles valuable?,” letting re-
spondents pick as many responses as
they felt were applicable, along with
the opportunity to provide additional
comments.

The personal comments in the sur-
vey’s “Other” category are best repre-
sented by this one: “The purpose of any
principle is to provide a simple, clear
source of guidance and inspiration.
The agile principles are important be-
cause they distill the values of ‘agile’
into as little text as possible. By review-

 key insights

 � �The 12 original agile principles created
by 17 software engineers in 2001
defined the agile trend that continues to
transform the entire software industry.

 � �Rather than view one another solely as
competition, these same engineers also
wrote the Agile Manifesto, cooperatively
focusing on their common interest in agile
development and greatly magnifying any
of their potential individual contributions.

 � �Supported by this foundation, agile
practices used by software development
teams today continue to evolve to
address ever-changing user expectations
and development team challenges.

contributed articles

april 2012 | vol. 55 | no. 4 | communications of the acm 73

ing them as we consider implementa-
tion specifics, we can make sure our
day-to-day processes are serving the
purposes that presumably we decided
we wanted to meet.”

Original Principles
My discussion here highlights the
most noteworthy of the 93 textual com-
ments from both surveys and the sup-
porting data analysis rather than look-
ing to explain each principle. Note that
11 of the 12 had a mean score of 4.1 out
of 5 or higher, indicating a high level
of support for principles that had been
spelled out 10 years earlier.

Tier One (mean 4.6)
Principle 1 (standard deviation 0.8).

Our highest priority is to satisfy the cus-
tomer through early and continuous de-
livery of valuable software.

Principle 3 (standard deviation 0.7).
Deliver working software frequently,
from a couple of weeks to a couple of
months, with a preference for the short-
er timescale.

Respondents’ commentary empha-
sized delivery of a solution with “high
business value” to a customer early and
often, along with willingness to respond
to feedback. One respondent suggested
that principles 1 and 3 were probably re-
dundant, a view supported by statistics
based on overall survey responses. The
Pearson’s r values for these two princi-
ples was 0.31, among the highest corre-
lations between any two principles.

Tier Two (mean 4.5)
Principle 5 (standard deviation 0.9).

Build projects around motivated indi-
viduals. Give them an environment and
support they need, and trust them to get
the job done.

Principle 7 (standard deviation 0.8).
Working software is the primary mea-
sure of progress.

Principle 12 (standard deviation 0.8).
The team regularly reflects on how to be
more effective, tuning and adjusting its
behavior accordingly.

Respondents’ comments concern-
ing principle 5 emphasized the need
to empower and respect motivated in-
dividuals while making them “feel they
can make a difference and [are] part
of building something out of the ordi-
nary.” Some respondents said provid-
ing the “support they need” included

removing obstacles so the team could
operate efficiently.

Principle 7 attracted the most com-
ments, with respondents saying that
it, in particular, along with the full set
of principles, in general, did not ade-
quately emphasize the need to produce
high-quality software and test and elicit
nonfunctional requirements. The short-
term, functional focus of iterations can
lead to trouble. “Flaccid Scrum”d is the
term coined by Martin Fowler, a noted
author and speaker on software devel-
opment, to refer to teams using only
Scrum’s project-management practices
without also following sound engineer-
ing practices. Progress eventually slows
for all Flaccid Scrum teams, according
to Fowler, because they have not paid
enough attention to the quality of the
code. In some cases, only the easiest
scenario of a feature (often called the
“happy path”) is demonstrated at the
end of an iteration. The feature can
then be considered “done,” with project
focus then turning to implementing a

d	 http://www.martinfowler.com/bliki/Flaccid-
Scrum.html

new set of features. Teams today more
often define and adhere to sound “done
criteria,” stipulating the quality and
testing steps a team must take before a
feature is considered done (see Table 2).

Reacting to principle 12, respon-
dents showed strong enthusiasm for
holding retrospectives at least every it-
eration if not more often “for feedback
and creating a culture of continuous
improvement and building respect.”

Tier Three (mean 4.4)
Principle 9 (standard deviation 0.8).

Continuous attention to technical ex-
cellence and good design enhances
agility.

Respondents gave strong support for
this principle but provided no further
commentary or clarification of their
views.

Tier Four (mean 4.3)
Principle 2 (standard deviation 0.8).

Welcome changing requirements even
late in development; agile processes
harness change for the customer’s com-
petitive advantage.

Principle 10 (standard deviation 1.0).

Survey respondents’ experience with agile software development.

How long have you been doing agile software development?
30.0%

25.0%

10.0%

15.0%

10.0%

5.0%

0.0%

< 1 year 1–2 years 3–4 years 5–6 years 6–9 years 10+ years

7.4%

14.7%

25.4%

14.0%
15.1%

23.5%

Table 1. Value of agile principles.

Why are the agile principles valuable? Response Percent

They aren't really; the important thing is to use agile practices. 9.8%

They aren't really; the important thing is to look at the Agile Manifesto. 0%

Because they guide teams new to agile. 48.8%

Because all agile teams choose among software development practices,
but, if they want to be agile, they should choose practices that are in line
with the principles.

64.6%

They aren't really; no one looks at them anyway. 0%

Other [please comment] 20.7%

74 communications of the acm | april 2012 | vol. 55 | no. 4

contributed articles

Simplicity, the art of maximizing the
amount of work not done, is essential.

Some commenters on principle 2
suggested a project’s requirements
should change only at the beginning
of each iteration. Agile methodologies
aim to reduce waste associated with
“thrashing,” or progress implement-
ing a feature, stopping and starting

and maybe never being complete due
to constantly changing priorities. This
wasted effort can be reduced through a
rule stating that once a feature is start-
ed, it must be completed.

One commenter described prin-
ciple 10 as “Build great software…that
addresses users’ needs without unnec-
essary features.”

Tier Five (mean 4.1)
Principle 4 (standard deviation 1.0).

Businesspeople and developers must
work together daily throughout the
project.

Principle 6 (standard deviation 1.0).
The most effective method of conveying
information to and within a develop-
ment team is face-to-face conversation.

Principle 8 (standard deviation 0.9).
Agile processes promote sustainable
development; sponsors, developers,
and users should be able to maintain a
constant pace indefinitely.

Concerning principle 4 several re-
spondents said that developers (often
seen as those writing the code) should
not be the only ones to work with busi-
nesspeople (a.k.a product owners).
Rather, the whole team, including user-
interface analysts, testers, project man-
agers, developers, and businesspeople
should collaborate. Others commenters
said, “Every day often isn’t realistic, nor
is it necessarily needed.”

Principle 6 was generally supported,
though some commenters said the “re-
quirement for face-to-face conversation
is a severely limiting factor for distrib-
uted teams, and it seems to be a genera-
tional issue as well.” In today’s connect-
ed world, synchronous communication
through instant messaging, Voice over
IP, and WebEx may effectively stand in
for face-to-face communication.

Several representative comments on
principle 8 indicating the commenters’
negative experience with relatively in-
tense iterations ad infinitum:

 “Agile does not promote sustainable
development but increases the kind of
focus that leads to burnout”;

“Sustainable pace is extremely im-
portant, but we also sometimes have
to slow down and think about things a
little”;

“Emphasize scheduled downtime as
part of sustainable pace”; and

“The team should have dedicated ex-
ploratory study time that contributes to
its ability to produce innovation.”

Tier Six (mean 3.8)
Principle 11 (standard deviation

1.0). The best architectures, require-
ments, and designs emerge from self-
organizing teams.

Concerning principle 11, sever-
al commenters suggested the need
for a release vision and that teams

Table 2. Agile principles.

Mean Standard Deviation

Continuous integration 4.5 0.8

Short iterations (30 days or less) 4.5 0.8

"Done" criteria 4.5 0.8

Automated tests run with each build 4.4 0.9

Automated unit testing 4.4 0.9

Iteration reviews/demos 4.3 0.8

"Potentially shippable" features at the end of each iteration 4.3 0.9

"Whole" multidisciplinary team with one goal 4.3 0.8

Synchronous communication 4.4 0.9

Embracing changing requirements 4.3 0.8

Features in iteration are customer-visible/customer-valued 4.3 0.8

Prioritized product backlog 4.4 0.9

Retrospective 4.2 1.0

Collective ownership of code 4.2 0.9

Sustainable pace 4.2 0.8

Refactoring 4.2 1.0

"Complete" feature testing done during iteration 4.1 0.9

Negotiated scope 4.1 0.9

Stand up/Scrum meeting 4.1 1.1

Timeboxing 4.1 1.1

Test-driven development unit testing 4.0 1.0

Just-in-time requirements elaboration 4.0 1.0

Small teams (12 people or less) 4.0 1.1

Emergent design 4.0 1.0

Configuration management 4.0 1.2

Daily customer/product manager involvement 3.9 1.0

Release planning 3.9 1.1

Test-driven development acceptance testing 3.8 1.0

Team documentation focuses on
decisions rather than planning

3.8 1.2

Informal design; no big design up front 3.7 1.0

Co-located team 3.6 1.1

Team velocity 3.6 1.1

Requirements written as informal stories 3.6 1.1

10-minute build 3.6 1.3

Task planning 3.5 1.2

Coding standard 3.5 1.2

Kanban 3.4 1.6

Acceptance tests written by product manager 3.4 1.2

Pair programming 3.3 1.2

Burndown charts 3.3 1.3

Code inspections 3.2 1.3

Design inspections 3.3 1.3

Planning Poker 3.1 1.4

Stabilization iterations 3.0 1.5

contributed articles

april 2012 | vol. 55 | no. 4 | communications of the acm 75

should understand how the product
“contribute[s] to the larger goals of the
[user] organization.” The principles do
not explicitly state that a release plan
must be developed, with agile teams
often beginning their iterations with-
out such a vision communicated to the
whole team. However, agile methodolo-
gies have always advocated producing a
feasible, prioritized release backlog that
also serves as the release vision. One
commenter said, “You really need to do
some systems engineering when build-
ing large systems,” while some agilists
may consider such systems engineering
the equivalent of “big design up front.”

Respondents also commented that
the lean software development9 con-
cept of minimizing work-in-process was
missing from the principles but still
important for agile teams. An emerg-
ing lean trend in agile software develop-
ment that does not appear in the origi-
nal principles is the use of kanban, or
signboard or billboard in Japanese, as a
possible replacement for iterations and,
in general, a focus on limiting work-in-
process. However, this trend is not in-
consistent with the original principles.
Finally, commenters also said the prin-
ciples did not cover planning, learning,
and collaboration, and communication
was not emphasized enough.

Overall, the results of both surveys
suggested overwhelming support for
the original principles, even after more
than 10 years of use. However, survey
commenters also said three concepts
were missing from the principles but
had still been part of the agile software
development methodologies from the
beginning. First, two principles in-
cluded the term “developer” in places
where the intended connotation was
more likely the “whole team.” Second,
the principles did not explicitly say that
a release vision would be created prior
to starting incremental development.
Finally, the principles did not insist
that the working software produced
should be valuable and of high quality,
though this notion has been part of ag-
ile since it was first laid out.

Revised Principles
I assimilated the most common com-
ments from the first survey to revise the
original principles through the follow-
on survey seeking feedback on the revi-
sions, including:

Principle 1. Our highest priority is to
satisfy the customer through early and
continuous delivery of valuable soft-
ware. [no change]

Principle 2. Welcome changing re-
quirements at the start of each itera-
tion, even late in development; agile
processes harness change for the cus-
tomer’s competitive advantage.

Principle 3. [delete; redundant with
Principle 1]

Principle 4. The whole team, from
businesspeople through testers, must
communicate and collaboratively work
together throughout the project.

Principle 5. Build projects around
empowered, motivated individuals with
a shared vision of success; give them the
environment and support they need,
clear their external obstacles, and trust
them to get the job done.

Principle 6. The most efficient, effec-
tive method for conveying information
to and within a development team is
through synchronous communication;
important decisions are documented
so are not forgotten.

Principle 7. Valuable, high-quality
software is the primary measure of
progress at the end of each short time-
boxed iteration.

Principle 8. Agile processes promote
sustainable development. The whole
team should be able to maintain a
reasonable work pace that includes
dedicated time for exploration, vision-
ing, refactoring, and obtaining and re-
sponding to feedback.

Principle 9. Continuous attention to
technical excellence and good design
enhances agility. [no change]

Principle 10. Simplicity—the art of
maximizing the amount of work not
done—is essential. [no change]

Principle 11. The best architectures,
requirements, and designs emerge
from self-organizing teams guided by a
vision for product release.

Principle 12. With each iteration, the
team candidly reflects on the success
of the project, feedback, and how to be
more effective, then tunes and adjusts
its plans and behavior accordingly.

The 93 respondents to the second
survey also provided 164 textual com-
ments on the principles. About 11% of
the comments (18 of 164) indicated the
respondents preferred fewer words, as
in “keep it simple.” The revised princi-
ples are often longer than the original.

Principle 6
(standard
deviation 1.0).
The most
effective method
of conveying
information to
and within a
development team
is face-to-face
conversation.

76 communications of the acm | april 2012 | vol. 55 | no. 4

contributed articles

However, the follow-on survey indi-
cated general agreement with the revi-
sions, with two exceptions:

First, the most prominent reaction
among survey commenters was when
the word “iterations” was added to a
principle (such as in revised principles
2, 7, and 12). The recent introduction of
the lean software development kanban7
practice removed the notion of itera-
tions for many teams. With kanban, a
feature can begin at any time if the “pull
system” indicates the team has the ca-
pacity to start new work. As a result, kan-
ban teams often lack defined iterations.

Second, many commenters also
reacted negatively to the switch from
“face-to-face communication” to “syn-
chronous communication.” Despite
the fact (discussed earlier) that 96% of
survey respondents worked on distrib-
uted teams and the assertion by one
commenter that the change was “a nice
update for the digital world,” survey re-
spondents generally emphasized that
nothing beats face-to-face for verbal
and non-verbal communication alike,
and wanted principle 6 to represent the
ideal practice.

Agile Practices
Table 2 lists the results of the first sur-
vey, which asked whether agile practices
are essential for a team to be considered
agile; each agile practice is followed by
the mean response and the standard
deviation of the responses, with 1 indi-
cating the practice is not very important
and 5 that the practice is essential for
agile teams. Note that the practices at
the top of the list generally have a lower
standard deviation (connoting greater
consistency among survey respondents)
than those at the bottom of the list.

Many original agile practices (such
as continuous integration and short it-
erations) are often at the top of such a
list, while the more recent, emergent
practices (such as Planning Poker, kan-
ban, and stabilization iterations) are at
the bottom. Planning Poker5 is a Wide-
band Delphi3 practice for estimating
team-based effort. Stabilization itera-
tions (generally two weeks) can occur at
the end of all feature-producing itera-
tions or periodically throughout a lon-
ger release cycle. During stabilization it-
erations, testers can perform additional
integration, regression, and perfor-
mance testing; the defect backlog can

be reduced; the product backlog can be
more intensively groomed; and some
preliminary architecture, design, and
dependency analysis for the next group
of iterations can take place. Some teams
find that stabilization iterations mid-re-
lease reduce burnout and provide time
for exploration and learning.

An agile practice that survey re-
spondents said was left off the list was
the “spike”; that is, teams do spikes
when they do not know enough about
a feature to effectively estimate the re-
sources needed for its implementation.
A spike is a timeboxed experiment that
allows developers to learn just enough
about something unknown about a
feature implementation (such as a new
technology) to be able to estimate the
effort required to deliver the feature.

Conclusion
The authors of the Agile Manifesto
and the original 12 principles spelled
out the essence of the agile trend that
has transformed the software industry
over more than a dozen years. That is,
they nailed it.

Acknowledgements
Funding for my two-part study was pro-
vided by the Scrum Alliance (http://www.
scrumalliance.org/). Many thanks to the
North Carolina State University Real-
search group (www.realsearchgroup.
org) and to the survey respondents. 	

References
1.	B eck, K. Extreme Programming Explained: Embrace

Change, Second Edition. Addison-Wesley, Reading, MA,
2005.

2.	B oehm, B. and Turner, R. Using risk to balance agile
and plan-driven methods. IEEE Computer 36, 6 (June
2003), 57–66.

3.	B oehm, B.W. Software Engineering Economics.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1981.

4.	C ockburn, A. Agile Software Development. Addison
Wesley Longman, 2001.

5.	G renning, J. Planning Poker or How to Avoid Analysis
Paralysis while Release Planning, 2002; http://renais-
sancesoftware.net/files/articles/PlanningPoker-v1.1.pdf

6.	H ighsmith, J. Adaptive Software Development. Dorset
House, New York, 1999.

7.	 Kniberg, H. and Skarin, M. Kanban and Scrum: Making
the Most of Both. C4Media, Lexington, KY, 2010.

8.	 Palmer, S.R. and Felsing, J.M. A Practical Guide to
Feature-Driven Development. Prentice Hall PTR,
Upper Saddle River, NJ, 2002.

9.	 Poppendieck, M. and Poppendieck, T. Lean Software
Development. Addison Wesley, Boston, 2003.

10.	S chwaber, K. and Beedle, M. Agile Software
Development with SCRUM. Prentice-Hall, Upper
Saddle River, NJ, 2002.

11.	S tapleton, J. DSDM: The Method in Practice, Second
Edition. Addison Wesley Longman, 2003.

Laurie Williams (williams@csc.ncsu.edu) is a professor
of computer science in the Department of Computer
Science at North Carolina State University, Raleigh, NC,
and an agile trainer and coach.

© 2012 ACM 0001-0782/12/04 $10.00

