Domain Name System (DNS)
Reading: Section in Chapter 9
RFC 1034, STD 13

Name Syntax and rules for delegating authority over names
Specify implementation of a distributed system that maps
names to addresses
Protocols to accomplish the above
Goals of Today’s Lecture

• Computer science concepts underlying DNS
 – Indirection: names in place of addresses
 – Hierarchy: in names, addresses, and servers
 – Caching: of mappings from names to/from addresses

• Inner-workings of DNS
 – DNS resolvers and servers
 – Iterative and recursive queries
 – TTL-based caching

• Web and DNS
 – Influence of DNS queries on Web performance
 – Server selection and load balancing
Names: Overview

• What do names do?
 – identify objects
 – help locate objects
 – define membership in a group
 – specify a role
 – convey knowledge of a secret

• Name space
 – defines set of possible names
 – consists of a set of name to value bindings
Host Names vs. IP addresses

• Host names
 – Mnemonic name appreciated by humans
 – Variable length, alpha-numeric characters
 – Provide little (if any) information about location

• IP addresses
 – Numerical address appreciated by routers
 – Fixed length, binary number
 – Hierarchical, related to host location (network)
 – Examples: 64.236.16.20 and 193.30.227.161
Separating Naming and Addressing

• Names are easier to remember
 – www.cnn.com vs. 64.236.16.20

• Addresses can change underneath
 – Move www.cnn.com to 64.236.16.20
 – E.g., renumbering when changing providers

• Name could map to multiple IP addresses
 – www.cnn.com to multiple replicas of the Web site

• Map to different addresses in different places
 – Address of a nearby copy of the Web site
 – E.g., to reduce latency, or return different content

• Multiple names for the same address
 – E.g., aliases like ee.mit.edu and cs.mit.edu
History: Global Namespace gathered in Local File

- Original name to address mapping
 - Flat namespace
 - /etc/hosts
 - SRI kept main copy
 - Downloaded regularly

- Count of hosts was increasing: moving from a machine per domain to machine per user
 - Many more downloads
 - Many more updates
Global Namespace: Central Server

- Central server
 - One place where all mappings are stored
 - All queries go to the central server

- Many practical problems
 - Single point of failure
 - High traffic volume
 - Distant centralized database
 - Single point of update
 - Does not scale

Need a distributed, hierarchical collection of servers
Global Namespace:
Domain Name System (DNS)

• Properties of DNS
 – Hierarchical name space divided into zones
 – Distributed over a collection of DNS servers

• Hierarchy of DNS servers
 – Root servers
 – Top-level domain (TLD) servers
 – Authoritative DNS servers
 – Local DNS server

• Performing the translations
 – Local DNS servers
 – Resolver software
Domain Name System (DNS)

- **Elements**
 - **Resolver**
 - Stub: simple, only asks questions
 - Recursive: takes a simple query and makes all necessary steps to get the full answer.
 - Caching: A recursive resolver that stores prior results and reuses them
 - **Server**
 - Authoritative: the servers that contain the zone file for a zone, one Primary and one or more Secondaries
 - Caching: A recursive resolver that stores prior results and reuses them
 - Some perform both roles at the same time.
DNS Root Servers

- 13 root servers (see http://www.root-servers.org)
- Labeled A through M

A Verisign, Dulles, VA
B USC-ISI Marina del Rey, CA
C Cogent, Herndon, VA (also Los Angeles)
D U Maryland College Park, MD
E NASA Mt View, CA
F Internet Software C. Palo Alto, CA (and 17 other locations)
G US DoD Vienna, VA
H ARL Aberdeen, MD
J Verisign, (11 locations)
K RIPE London (also Amsterdam, Frankfurt)
L ICANN Los Angeles, CA
I Autonomica, Stockholm (plus 3 other locations)
m WIDE Tokyo
TLD and Authoritative DNS Servers

- Top-level domain (TLD) servers
 - Generic domains (e.g., com, org, edu + new ones)
 - Country domains (e.g., uk, fr, ca, jp)
 - Typically managed professionally
 - Network Solutions maintains servers for “com”
 - Educause maintains servers for “edu”
- Authoritative DNS servers
 - Provide public records for hosts at an organization
 - For the organization’s servers (e.g., Web and mail)
 - Can be maintained locally or by a service provider
Distributed Hierarchical Database

- **com**
- **edu**
- **org**
 - **bar**
 - **west**
 - **east**
 - **foo**
 - **my**
 - my.east.bar.edu
 - generic domains
 - organizational
- **ac**
 - country domains
 - geographic
- **uk**
- **zw**
- **arpa**

DNS Prefixes
- **12.34.56.0/24**
 - 12
 - 34
 - 56

Domain Examples
- my.east.bar.edu
- usr.cam.ac.uk
- 12.34.56.0/24
Name Servers

- Partition hierarchy into zones

- Each zone implemented by two or more name servers
Using DNS

• Local DNS server (“default name server”)
 – Usually near the end hosts who use it
 – Local hosts configured with local server (e.g., /etc/resolv.conf) or learn the server via DHCP

• Client application
 – Extract server name (e.g., from the URL)
 – Do `gethostbyname()` to trigger resolver code

• Server application
 – Extract client IP address from socket
 – Optional `gethostbyaddr()` to translate into name
Example

Host at cis.poly.edu wants IP address for gaia.cs.umass.edu

Recursive
Or
Iterative?
Recursive vs. Iterative Queries

- Recursive query
 - Ask server to get answer for you
 - E.g., request 1 and response 8

- Iterative query
 - Ask server who to ask next
 - E.g., all other request-response pairs
DNS Caching

• Performing all these queries takes time
 – And all this before the actual communication takes place
 – E.g., 1-second latency before starting Web download
• Caching can substantially reduce overhead
 – The top-level servers very rarely change
 – Popular sites (e.g., www.cnn.com) visited often
 – Local DNS server often has the information cached
• How DNS caching works
 – DNS servers cache responses to queries
 – Responses include a “time to live” (TTL) field
 – Server deletes the cached entry after TTL expires
Negative Caching

• Remember things that don’t work
 – Misspellings like www.cnn.comm and www.cnnn.com
 – These can take a long time to fail the first time
 – Good to remember that they don’t work
 – … so the failure takes less time the next time around
DNS Resource Records

RR format: (name, value, type, ttl)

DNS: distributed db storing resource records (RR)

- **Type=A**
 - **name** is hostname
 - **value** is IP address

- **Type=NS**
 - **name** is domain (e.g. foo.com)
 - **value** is hostname of authoritative name server for this domain

- **Type=CNAME**
 - **name** is alias name for some "canonical" (the real) name
 - **value** is canonical name

- **Type=MX**
 - **value** is name of mailserver associated with **name**
DNS Protocol

DNS protocol: query and reply messages, both with same message format

Message header

- **Identification:** 16 bit # for query, reply to query uses same #
- **Flags:**
 - Query or reply
 - Recursion desired
 - Recursion available
 - Reply is authoritative

<table>
<thead>
<tr>
<th>Identification</th>
<th>flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of questions</td>
<td>number of answer RRs</td>
</tr>
<tr>
<td>number of authority RRs</td>
<td>number of additional RRs</td>
</tr>
</tbody>
</table>

| questions | answers | authority | additional information |
| variable number of questions | variable number of resource records | variable number of resource records | variable number of resource records |

12 bytes
Reliability

• DNS servers are replicated
 – Name service available if at least one replica is up
 – Queries can be load balanced between replicas
• UDP used for queries
 – Need reliability: must implement this on top of UDP
• Try alternate servers on timeout
 – Exponential back off when retrying same server
• Same identifier for all queries
 – Don’t care which server responds
Inserting Resource Records into DNS

- Example: just created startup “FooBar”
- Register foobar.com at Network Solutions
 - Provide registrar with names and IP addresses of your authoritative name server (primary and secondary)
 - Registrar inserts two RRs into the com TLD server:
 - (foobar.com, dns1.foobar.com, NS)
 - (dns1.foobar.com, 212.212.212.1, A)
- Put in authoritative server dns1.foobar.com
 - Type A record for www.foobar.com
 - Type MX record for foobar.com
Playing With Dig on UNIX

- Dig program
 - Allows querying of DNS system
 - Use flags to find name server (NS)
 - Disable recursion so that operates one step at a time

```
unix> dig +norecurse @a.root-servers.net NS www.cs.princeton.edu

;; AUTHORITY SECTION:
edu. 2D IN NS L3.NSTLD.COM.
edu. 2D IN NS D3.NSTLD.COM.
edu. 2D IN NS A3.NSTLD.COM.
edu. 2D IN NS E3.NSTLD.COM.
edu. 2D IN NS C3.NSTLD.COM.
edu. 2D IN NS G3.NSTLD.COM.
edu. 2D IN NS M3.NSTLD.COM.
edu. 2D IN NS H3.NSTLD.COM.
```
DNS and the Web
DNS Query in Web Download

• User types or clicks on a URL
• Browser extracts the site name
 – E.g., www.cnn.com
• Browser calls gethostbyname() to learn IP address
 – Triggers resolver code to query the local DNS server
• Eventually, the resolver gets a reply
 – Resolver returns the IP address to the browser
• Then, the browser contacts the Web server
 – Creates and connects socket, and sends HTTP request
Multiple DNS Queries

• Often a Web page has embedded objects
 – E.g., HTML file with embedded images

• Each embedded object has its own URL
 – … and potentially lives on a different Web server
 – E.g., http://www.myimages.com/image1.jpg

• Browser downloads embedded objects
 – Usually done automatically, unless configured otherwise
 – Requires learning the address for www.myimages.com
When are DNS Queries Unnecessary?

• Browser is configured to use a proxy
 – E.g., browser sends all HTTP requests through a proxy
 – Then, the proxy takes care of issuing the DNS request
• Requested Web resource is locally cached
 – E.g., cache has http://www.cnn.com/2006/leadstory.html
 – No need to fetch the resource, so no need to query
• Browser recently queried for this host name
 – E.g., user recently visited http://www.cnn.com/
 – So, the browser already called gethostbyname()
 – … and may be locally caching the resulting IP address
Web Server Replicas

- Popular Web sites can be easily overloaded
 - Web site often runs on multiple server machines
Directing Web Clients to Replicas

- Simple approach: different names
 - But, this requires users to select specific replicas
- More elegant approach: different IP addresses
 - Single name (e.g., www.cnn.com), multiple addresses
 - E.g., 64.236.16.20, 64.236.16.52, 64.236.16.84, …
- Authoritative DNS server returns many addresses
 - And the local DNS server selects one address
 - Authoritative server may (should) vary the order of addresses
Clever Load Balancing Schemes

• Selecting the “best” IP address to return
 – Based on server performance
 – Based on geographic proximity
 – Based on network load
 – …

• Example policies
 – Round-robin scheduling to balance server load
 – U.S. queries get one address, Europe another
 – Tracking the current load on each of the replicas
Challenge: What About DNS Caching?

- Problem: DNS caching
 - What if performance properties change?
 - Web clients still learning old “best” Web server
 - … until the cached information expires
- Solution: Small Time-to-Live values
 - Setting artificially small TTL values
 - … so replicas picked based on fresh information
- Disadvantages: abuse of DNS?
 - Many more DNS request/response messages
 - Longer latency in initiating the Web requests
DNSSEC

- RFC 3833, Summary of DNS Weakness
- Role: Protect DNS
 - DNS Rrset is signed by the zone it belongs to
 - Zone DS Rrset is vouched for by parent zone.
 - DNSSEC is intended to protect DNS clients from forged DNS data
- What DNSSEC does not do:
 - Make data in DNS any more current….
Conclusions

• Domain Name System
 – Distributed, hierarchical database
 – Distributed collection of servers
 – Caching to improve performance

• Readings
 – DNS Related RFCs > 100
 – DNSSEC - 4033, 4034, 4035
 – Original - 1034, 1035