Packet Forwarding
Reading: Chapter 4
Hop-by-Hop Packet Forwarding

• Each router has a forwarding table
 – Maps destination addresses…
 – … to outgoing interfaces

• Upon receiving a packet
 – Inspect the destination IP address in the header
 – Index into the table
 – Determine the outgoing interface
 – Forward the packet out that interface

• Then, the next router in the path repeats
 – And the packet travels along the path to the destination
Datagram Forwarding - Algorithm

- Extract destination IP address, Id from datagram
- Compute IP address of destination network In
- If In matches any directly connected network, send datagram to that network
- Else If Id appears as a host-specific route, route datagram as specified in table;
- Else If In appears in routing table, route datagram as specified in the table;
- Else if a default route available, route datagram to default gateway;
- Else, routing error.
Datagram Forwarding

• **Strategy**
 – every datagram contains destination’s address
 – if connected to destination network, then forward to host
 – if not directly connected, then forward to some router
 – forwarding table maps network number into next hop
 – each host has a default router
 – each router maintains a forwarding table

• **Example (R2)**

<table>
<thead>
<tr>
<th>Network Number</th>
<th>Next Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R3</td>
</tr>
<tr>
<td>2</td>
<td>R1</td>
</tr>
<tr>
<td>3</td>
<td>interface 1</td>
</tr>
<tr>
<td>4</td>
<td>interface 0</td>
</tr>
</tbody>
</table>
Separate Table Entries Per Address

• If a router had a forwarding entry per IP address
 – Match destination address of incoming packet
 – … to the forwarding-table entry
 – … to determine the outgoing interface

1.2.3.4 5.6.7.8 2.4.6.8
host host ... host

LAN 1

1.2.3.4 1.2.3.5
WAN

forwarding table

2/7/14 CS125 - myforwarding
Separate Entry Per 24-bit Prefix

- If the router had an entry per 24-bit prefix
 - Look only at the top 24 bits of the destination address
 - Index into the table to determine the next-hop interface
Separate Entry Classful Address

- If the router had an entry per classful prefix
 - Mixture of Class A, B, and C addresses
 - Depends on the first couple of bits of the destination
- Identify the mask automatically from the address
 - First bit of 0: class A address (/8)
 - First two bits of 10: class B address (/16)
 - First three bits of 110: class C address (/24)
- Then, look in the forwarding table for the match
 - E.g., 1.2.3.4 maps to 1.2.3.0/24
 - Then, look up the entry for 1.2.3.0/24
 - … to identify the outgoing interface
CIDR Makes Packet Forwarding Harder

• There’s no such thing as a free lunch
 – CIDR allows efficient use of the limited address space
 – But, CIDR makes packet forwarding much harder
• Forwarding table may have many matches
 – E.g., table entries for 201.10.0.0/21 and 201.10.6.0/23
Longest Prefix Match Forwarding

• Forwarding tables in IP routers
 – Maps each IP prefix to next-hop link(s)

• Destination-based forwarding
 – Packet has a destination address
 – Router identifies longest-matching prefix
 – Cute algorithmic problem: very fast lookups

forwarding table

destination 201.10.6.17

4.0.0.0/8
4.83.128.0/17
201.10.0.0/21
201.10.6.0/23
126.255.103.0/24

outgoing link Serial0/0.1
Simplest Algorithm is Too Slow

• Scan the forwarding table one entry at a time
 – See if the destination matches the entry
 – If so, check the size of the mask for the prefix
 – Keep track of the entry with longest-matching prefix

• Overhead is linear in size of the forwarding table
 – Today, that means 150,000-200,000 entries!
 – And, the router may have just a few nanoseconds
 – … before the next packet is arriving

• Need greater efficiency to keep up with line rate
 – Better algorithms
 – Hardware implementations
Patricia Tree

• Store the prefixes as a tree
 – One bit for each level of the tree
 – Some nodes correspond to valid prefixes
 – ... which have next-hop interfaces in a table

• When a packet arrives
 – Traverse the tree based on the destination address
 – Stop upon reaching the longest matching prefix
Even Faster Lookups

• Patricia tree is faster than linear scan
 – Proportional to number of bits in the address
• Patricia tree can be made faster
 – Can make a k-ary tree
 • E.g., 4-ary tree with four children (00, 01, 10, and 11)
 – Faster lookup, though requires more space
• Can use special hardware
 – Content Addressable Memories (CAMs)
 – Allows look-ups on a key rather than flat address
• Huge innovations in the mid-to-late 1990s
 – After CIDR was introduced (in 1994)
 – … and longest-prefix match was a major bottleneck
Where do Forwarding Tables Come From?

- Routers have forwarding tables
 - Map prefix to outgoing link(s)
- Entries can be statically configured
 - E.g., “map 12.34.158.0/24 to Serial0/0.1”
- But, this doesn’t adapt
 - To failures
 - To new equipment
 - To the need to balance load
 - ...
- That is where other technologies come in…
 - Routing protocols, DHCP, and ARP
What End Hosts Sending to Others?

• End host with single network interface
 – PC with an Ethernet link
 – Laptop with a wireless link
• Don’t need to run a routing protocol
 – Packets to the host itself (e.g., 1.2.3.4/32)
 • Delivered locally
 – Packets to other hosts on the LAN (e.g., 1.2.3.0/24)
 • Sent out the interface
 – Packets to external hosts (e.g., 0.0.0.0/0)
 • Sent out interface to local gateway
• How this information is learned
 – Static setting of address, subnet mask, and gateway
 – Dynamic Host Configuration Protocol (DHCP)
What About Reaching the End Hosts?

• How does the last router reach the destination?

• Each interface has a persistent, global identifier
 – MAC (Media Access Control) address
 – Burned in to the adaptors Read-Only Memory (ROM)
 – Flat address structure (i.e., no hierarchy)

• Constructing an address resolution table
 – Mapping MAC address to/from IP address
 – Address Resolution Protocol (ARP)
Conclusions

• IP address
 – A 32-bit number
 – Allocated in prefixes
 – Non-uniform hierarchy for scalability and flexibility

• Packet forwarding
 – Based on IP prefixes
 – Longest-prefix-match forwarding