Switching and Forwarding
Reading: Chapter 3
Switching and Forwarding

Next Problem:
 Enable communication between hosts that are not directly connected…Fundamental Problem of the Internet or any large Network

Outline/Goals
 Store-and-Forward Switches
 Bridges and Extended LANs
 Cell Switching
 Segmentation and Reassembly
 Spanning Tree
 Cut-through
Shuttling Data at Different Layers

• Different devices switch different things
 – Physical layer: electrical signals (repeaters and hubs)
 – Link layer: frames (bridges and switches)
 – Network layer: packets (routers) – TCP/IP
Physical Layer: Repeaters

- Distance limitation in local-area networks
 - Electrical signal becomes weaker as it travels
 - Imposes a limit on the length of a LAN
- Repeaters join LANs together
 - Analog electronic device
 - Continuously monitors electrical signals on each LAN
 - Transmits an amplified copy
Hubs: Physical-Layer Repeaters

• Hubs are physical-layer repeaters (historical)
 – Bits coming from one link go out all other links
 – At the same rate, with NO frame buffering
 – No CSMA/CD at hub: adapters detect collisions
 – Joins multiple lines electrically – just multi port repeater
Interconnecting with Hubs

- Backbone hub interconnects LAN segments
- All packets seen everywhere, forming one large collision domain
- Can’t interconnect Ethernets of different speeds
- Collision Heaven!!!
Limitations of Repeaters and Hubs

• One large collision domain
 – Every bit is sent everywhere
 – So, aggregate throughput is limited
 – E.g., three departments each get 10 Mbps independently
 – … and then connect via a hub and must share 10 Mbps

• Cannot support multiple LAN technologies
 – Does not buffer or interpret frames
 – So, can’t interconnect between different rates or formats
 – E.g., 10 Mbps Ethernet and 100 Mbps Ethernet

• Limitations on maximum nodes and distances
 – Does not circumvent the limitations of shared media
 – E.g., still cannot go beyond 2500 meters on Ethernet
Link Layer: Scalable Networks

- **Switch/Bridge**
 - Forwards *frames* from input port to output port – stores frames, needs memory
 - port selected based on address in frame header

- **Advantages**
 - cover large geographic area (tolerate latency)
 - support large numbers of hosts (scalable bandwidth)
 - can add hosts without performance penalty vs. shared medium
Link Layer: Bridges

• Connects two or more LANs at the link layer
 – Extracts destination address from the frame
 – Looks up the destination in a table
 – Forwards the frame to the appropriate LAN segment

• Each segment is its own collision domain (LAN)
Bridges and Extended LANs

- LANs have physical limitations (e.g., 2500m)
- Connect two or more LANs with a bridge
 - accept and forward strategy, forwarding Frames
 - level 2 connection (does not add packet header)

- Ethernet Switch = Bridge on Steroids
Learning Bridges

- Do not forward when unnecessary
- Maintain forwarding table

<table>
<thead>
<tr>
<th>Host</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>2</td>
</tr>
<tr>
<td>Y</td>
<td>2</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
</tbody>
</table>

- Learn table entries based on source address of frame
- Table is an optimization; need not be complete
- Always forward broadcast frames
- Timeouts & Aging - Why?
Link Layer: Switches

• Link layer device
 – Stores and forwards (Ethernet) frames
 – Examines frame header and selectively forwards frame based on MAC dest address
 – When frame is to be forwarded on segment, uses CSMA/CD to access segment

• Transparent
 – Hosts are unaware of presence of switches

• Plug-and-play, self-learning
 – Switches do not need to be configured
Link Layer: Switches

- Typically connect individual computers
 - A switch is essentially same as a bridge
 - ... though typically used to connect hosts, not LANs
 - Collision domain moved into switch

- Like bridges, support concurrent communication
 - Host A can talk to C, while B talks to D
 - Many ports, many simultaneous conversations
Switching Hardware

• Design Goals
 – throughput (depends on traffic model)
 – scalability (a function of n)

• Ports
 – circuit management (e.g., map VCIs, route datagrams)
 – buffering (input and/or output)

• Fabric
 – as simple as possible
 – sometimes do buffering (internal)
Buffering

- Wherever contention is possible
 - input port (contend for fabric)
 - internal (contend for output port)
 - output port (contend for link)

- Head-of-Line Blocking
 - input buffering

```
1 2
```

```
Switch
```

```
Port 1
```

```
Port 2
```
Crossbar Switches
Workstation-Based or Switch Switching

• Aggregate bandwidth
 – 1/2 of the I/O bus bandwidth
 – capacity shared among all hosts connected to switch
 – example: 1Gbps bus can support 5 x 100Mbps ports (in theory)

• Packets-per-second
 – must be able to switch small packets
 – 300,000 packets-per-second is achievable
 – e.g., 64-byte packets implies 155Mbps
Bridges/Switches: Traffic Isolation

- Bridge/Switch breaks subnet into LAN segments when multiple nodes per port
- Bridge/Switch filters frames
 - Frame only forwarded to the necessary segments
 - Segments become separate collision domains
Bridge/Switch Advantages Over Hub/Repeater

• Only forwards frames as needed
 – Filters frames to avoid unnecessary load on segments
 – Sends frames only to segments that need to see them

• Extends the geographic span of the network
 – Separate collision domains allow longer distances, less collisions

• Improves privacy by limiting scope of frames
 – Hosts can ONLY “snoop” the traffic traversing their segment
 – … but not all the rest of the traffic

• Applies carrier sense and collision detection
 – Does not transmit when the link is busy
 – Applies exponential back-off after a collision

• Can join segments using different technologies
Bridge/Switch Advantages over Hubs/Repeater

• Dedicated access
 – Host has direct connection to the switch
 – … rather than a shared LAN connection

• Full duplex
 – Each connection can send in both directions
 – Host sending to switch, and host receiving from switch
 – E.g., in 10BaseT and 100BaseT

• Completely avoids collisions
 – Each connection is a bidirectional point-to-point link
 – No need for carrier sense, collision detection, and so on
Bridge/Switch Disadvantages Over Hubs/Repeater

- Delay in forwarding frames
 - Bridge/switch must receive and parse the frame
 - … and perform a look-up to decide where to forward
 - Storing and forwarding the packet introduces delay
 - Solution: cut-through switching ???

- Need to learn where to forward frames
 - Bridge/switch needs to construct a forwarding table
 - Ideally, without intervention from network administrators
 - Solution: self-learning

- Higher cost
 - More complicated devices that cost more money
 - But hardware is free
Bridge/Switch operation: Broadcast and Multicast

• Forward (flood) all broadcast/multicast frames
 – current practice
• Learn when no group members downstream
• Accomplished by having each member of group G send a frame to bridge multicast address with G in source field
• Must maintain many Multicast graphs
Bridge/Switch: Flooding Can Lead to Loops

- Switches sometimes need to broadcast frames
 - Upon receiving a frame with an unfamiliar destination
 - Upon receiving a frame sent to the broadcast address

- Broadcasting is implemented by flooding
 - Transmitting frame out every interface
 - … except the one where the frame arrived

- Flooding can lead to forwarding loops
 - E.g., if the network contains a cycle of switches
 - Either accidentally, or by design for higher reliability
Bridge/Switch: Loop Solution

Spanning Tree Algorithm

- Problem: loops

- Bridges run a distributed spanning tree algorithm
 - select which bridges actively forward
 - developed by Radia Perlman
 - now IEEE 802.1 specification
 - Subgraph covers all LANs, no loops
Spanning Tree Algorithm Overview

- Each bridge has unique id (e.g., B1, B2, B3)
- Select bridge with smallest id as root – key point
- Select bridge on each LAN closest to root as designated bridge (use id to break ties)

- Each bridge forwards frames over each LAN for which it is the designated bridge
- A: B5 over B3, hops
- B: B5 over B7, ID
- I: B4 over B6, ID
Spanning Tree Algorithm Details

- Bridges exchange configuration messages
 - id for bridge sending the message
 - id for what the sending bridge believes to be root bridge
 - distance (hops) from sending bridge to root bridge

- Each bridge records current best configuration message for each port

- Initially, each bridge believes it is the root – sends out config info
Spanning Tree Algorithm Details (cont)

• When learn not root, stop generating config messages
 – in steady state, only root generates configuration messages
• When learn not designated bridge, stop forwarding config messages
 – in steady state, only designated bridges forward config messages
• Root continues to periodically send config messages
• If any bridge does not receive config message after a period of time, it starts generating config messages claiming to be the root
Limitations of Bridges/Switches

• Do not scale
 – spanning tree algorithm does not scale
 – broadcast does not scale

• Do not accommodate heterogeneity

• Not really directly connected:
 – Drops, reorders, no guaranteed delivery
Motivation For Cut-Through Switching

• Buffering a frame takes time
 – Suppose L is the length of the frame
 – And R is the transmission rate of the links
 – Then, receiving the frame takes L/R time units

• Buffering delay can be a high fraction of total delay
 – Propagation delay is small over short distances
 – Making buffering delay (possibly) a large fraction of total time
Cut-Through Switching

• Start transmitting as soon as possible
 – Inspect the frame header and do the look-up
 – If outgoing link is idle, start forwarding the frame

• Overlapping transmissions
 – Transmit the head of the packet via the outgoing link
 – … while still receiving the tail via the incoming link
 – Sure hope it is a good frame….
Frame Routing
Knowing and Traveling the Path

• Problem: Choose output port
 – Source Routing
 – Virtual Circuits
 – Datagrams

• Problem: Name receiving host:
 – Addresses
Approach 1: Source Routing

Need to know:
Path to Destination
Ports on Path to Destination
Header size is variable
Header rotation – checksum issues
Approach 2: Virtual Circuit Switching

- Explicit connection setup (and tear-down) phase
- Subsequence packets follow same circuit
- Sometimes called *connection-oriented* model

- Analogy: phone call
- Each switch maintains a VC table

5 is VC ID, Not Port
Notes: Virtual Circuit Model

• Typically wait full RTT for connection setup before sending first data packet.

• While the connection request contains the full address for destination, each data packet contains only a small identifier, making the per-packet header overhead small.

• If a switch or a link in a connection fails, the connection is broken and a new one needs to be established.

• Connection setup provides an opportunity to reserve resources.
Approach 3: Datagram Switching

- No connection setup phase
- Each packet forwarded independently
- Sometimes called *connectionless* model

- Analogy: postal system
- Each switch maintains a forwarding (routing) table
Notes: Datagram Model

• There is no round trip delay waiting for connection setup; a host can send data as soon as it is ready.

• Source host has no way of knowing if the network is capable of delivering a packet or if the destination host is even up.

• Since packets are treated independently, it is possible to route around link and node failures.

• Since every packet must carry the full address of the destination, the overhead per packet is higher than for the connection-oriented model.

• Someone must build the tables in each switch…
Example Tables

- **Circuit Table** (switch 1, port 2)

<table>
<thead>
<tr>
<th>VC In</th>
<th>VC Out</th>
<th>Port Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- **Forwarding Table** (switch 1)

<table>
<thead>
<tr>
<th>Address</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Typical Network

- Individual broadcast and collision domains
- Connected by routers
- Routers add latency to packet transmission
Typical network with Switches and Routers

LAN == Collision Domain
Evolution Toward Virtual LANs

• In the olden days…
 – Thick cables snaked through cable ducts in buildings
 – Every computer they passed was plugged in
 – All people in adjacent offices were put on the same LAN
 – Independent of whether they belonged together or not

• More recently…
 – Hubs and switches changed all that
 – Every office connected to central wiring closets
 – Often multiple LANs (k hubs) connected by switches
 – Want flexibility in mapping offices to different LANs
 – Routers add some delay

VLAN allows Grouping users based on organizational structure, rather than the physical layout of the building.
Why Organize LAN by Organizational Structure?

- **Security**
 - Ethernet is a shared media
 - Any interface card can be put into “promiscuous” mode
 - … and get a copy of all of the traffic (e.g., midterm exam)
 - So, isolating traffic on separate LANs improves security

- **Load**
 - Some LAN segments are more heavily used than others
 - E.g., researchers running experiments get out of hand
 - … can saturate their own segment and not the others
 - Plus, there may be natural locality of communication
 - E.g., traffic between people in the same research group
 - Reduce router traffic by keeping on common collision domain
LAN Reality: People Move, and Roles Change

- Organizational changes are frequent
 - E.g., faculty office becomes a grad-student office
- Physical rewiring is a major pain
 - Requires unplugging the cable from one port
 - … and plugging it into another
 - … and hoping you don’t make a mistake
- Would like to “rewire” the building in software
 - The resulting concept is a Virtual LAN (VLAN)
- VLAN – Virtual LAN
 - Group devices on different physical LANs as if on same physical LAN
 - Shared Collision Domain
VLAN Grouping
Making VLANs Work

• Bridges/switches need configuration tables
 – Saying which VLANs are accessible via which interfaces

• Changing the Ethernet header
 – Adding a field for a VLAN tag
 – Implemented on the bridges/switches – key point
 – … but can still interoperate with old Ethernet cards
 – Devices (nodes) do not care, only switches need to understand.
VLAN Benefits

• Increased performance
 – Organized collision domains – workgroups with different private services
 – Group users into logical networks with smaller collision and broadcast domains –
 – Reduce routed traffic

• Improved manageability
 – Allow centralized configuration of devices located in diverse locations
 – Easier to add/subtract nonlocal users
 – Configure LANs without moving hosts
VLAN Benefits

• Network Tuning
 – Group users and software configurations
 – IP addresses, subnet masks, etc.
 – Bootp and DHCP easier to manage

• Increased Security
 – sensitive material
 – isolate testing
Moving From Switches to Routers

• Advantages of switches over routers
 – Plug-and-play
 – Fast filtering and forwarding of frames
 – No pronunciation ambiguity (e.g., “rooter” vs. “rowter”) :-(

• Disadvantages of switches over routers
 – Topology is restricted to a spanning tree
 – Large networks require large ARP tables
 – Broadcast storms can cause the network to collapse
Comparing Hubs, Switches, & Routers

<table>
<thead>
<tr>
<th></th>
<th>hubs</th>
<th>routers</th>
<th>switches</th>
</tr>
</thead>
<tbody>
<tr>
<td>traffic isolation</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>plug & play</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>optimal routing</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>cut through</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>
Conclusion

• Shuttling data from one link to another
 – Bits, frames, packets, …
 – Repeaters/hubs, bridges/switches, routers, …

• Key ideas in switches
 – Cut-through switching
 – Self learning of the switch table
 – Spanning trees
 – Virtual LANs (VLANs)