
Methods for Access Control:
Advances and Limitations

Ryan Ausanka-Crues
Harvey Mudd College

301 Platt Blvd
Claremont, California

rausanka@cs.hmc.edu

ABSTRACT
This paper surveys different models for providing system
level access control and explores the benefits and limitations
inherent to various model implementations.

Included in the model survey are Discretionary Access Con-
trol (DAC), Mandatory Access Control (MAC), Role-Based
Access Control (RBAC), Domain Type Enforcement (DTE)).

Implementations explored are matrices, access control lists
(ACLs) capability lists, role based transactionsDomain Types.

Limitations covered include scalability, sparse matrices, “safety”
problem, complexity, maintenance, and development costs.

Keywords
Access Controls, DAC, MAC, RBAC

1. INTRODUCTION
The application of security policies for computer systems
into mechanisms of access control is a vast and varied field
within computer security. The fundamental goal of any ac-
cess control mechanism is to provide a verifiable system for
guaranteeing the protection of information from unautho-
rized and inappropriate access as outlined in one or more
security policies. In general, this translation from security
policy to access control implementation depends on the na-
ture of the policy but involves the inclusion of at least one
of the following controls:

• Confidentiality - Control disclosure of information

• Integrity - Control modification of information

The wide array of policies, usage patterns, and protectable
objects make it difficult to develop an umbrella definition of
“unauthorized and inappropriate access” to guide develop-
ment of a comprehensive access control model.

Bishop[4] identifies military security policies and commer-
cial security policies as two distinct types of policies that
underline the difficulty in developing an all-purpose security
model.

Military security policies are defined as primarily concerned
with preserving information confidentiality while commer-
cial security policies primarily focus on guaranteeing infor-
mation integrity.

The dichotomy between governmental and commercial needs
led to the development of two distinct access control mecha-
nisms, Mandatory Access Control (MAC) and Discretionary
Access Control (DAC). MAC focuses on controlling disclo-
sure of information by assigning security levels to objects
and subjects, limiting access across security levels, and the
consolidation of all classification and access controls into the
system. Conversely DAC focuses on fine-grained access con-
trol of objects through Access Control Matrices and object
level permission modes.

Limitations in each model can be summarized as failings
of one or more of three characteristics of an ideal security
model:[6]

• Inescapable inability to break security policies by cir-
cumventing access controls set by the model

• Invisible seamless user and administrative interaction
with model

• Feasible cost-effective and practical to implement model

Discovered limitations that break the inescapability charac-
teristic include lack of support for principle of least-privilege,
assurance violation, storage inefficiency, reliance on un-verifiable
trusted components. Limitations that affect workflows, in-
teractions, and implementation feasibility include difficulty-
of-use, difficulty-of-management, incompatibility, performance
hits, and high implementation costs. Many of these prob-
lems are fixable but at the cost of making the model either
infeasible or more visible.

These flaws in MAC and DAC led to research in new ways
of modeling and implementing access control. Among the
recent developments, Role Based Access Control (RBAC)
enjoys a strong and loyal following that advocates its ex-
tension of UNIX groups to incorporate features from both
MAC and DAC.



2. ACCESS CONTROL MODELS
Access control models are generally concerned with whether
subjects, any entity that can manipulate information (i.e.
user, user process, system process), can access objects, enti-
ties through which information flows through the actions of a
subject (i.e. directory, file, screen, keyboard, memory, stor-
age, printer), and how this access can occur. Access control
models are usually seen as frameworks for implementing and
ensuring the integrity of security policies that mandate how
information can be accessed and shared on a system. The
most common, oldest, and most well-known access control
models are Mandatory Access Control and Discretionary Ac-
cess Control but limitations inherent to each has stimulated
further research into alternatives including Role Based Ac-
cess Control, Dynamic Typed Access Control, and Domain
Type Enforcement.

2.1 Mandatory Access Control (MAC)
Loosely defined as any access control model that enforces
security policies independent of user operations, Mandatory
Access Control is usually associated with the 1973 Bell-
LaPadula Model[2] of multi-level security.

2.1.1 Bell-LaPadula Confidentiality Model
Bell-LaPadula assigns security labels to subjects and ob-
jects and uses two security properties, simple security prop-
erty and *-property to verifiably ensure military classifica-
tion policies that restrict information flow from more secure
classification levels to less secure levels.

The simple security property states that no process may ac-
cess information labeled with a higher classification.

The *-property prevents processes from writing to a lower
classification.

These two properties are supplemented by the tranquility
property, which is stated in two forms: strong and weak. Un-
der the strong tranquility property, security labels can never
change during system operation. Under the weak tranquility
property, however, labels can change during operation but
never in a way that violates defined security policies.

The benefit of the weak tranquility property is that it allows
least privilege by starting a user session in the lowest security
session, regardless of the user’s clearance level, and only
upgrades the session when objects requiring higher clearance
levels are accessed. Once upgraded, the session can never
have its classification level reduced and all objects created
or modified will have the clearance level held by the session
when the object is created or modified, regardless of the
objects initial level. This is known as the high water mark
principle.

2.1.2 Biba Integrity Model
While Bell-LaPadulas model describes methods for assur-
ing confidentiality of information flows, Biba[3] developed a
similar method aimed at information integrity. Integrity is
maintained through adherence to reading writing principles
that can be thought of as a reverse of the Bell-LaPadula
principles. In the Biba model, integrity levels are low to
high with objects labeled high having high integrity. A sub-
ject can read objects at a higher level but can only write

to objects of lower levels. This is known as the low water
mark principle and assigns created objects the lowest in-
tegrity level that contributed to the creation of the object.
Because the MAC method is primary developed for purposes
where confidentiality is far more important than integrity,
Bibas influence was minor on further development of MAC
models.

2.1.3 Benefits
Through its implementation of Bell-LaPadula in Multi-Layer
Secure (MLS) systems, MAC is the main access control
model used by the military and intelligence agencies to main-
tain classification policy access restrictions. The combina-
tion of Bell-LaPadula and trusted component assurance also
has the nice benefit of making MLS systems immune to Tro-
jan Horse attacks. In perfect implementations, MLS sys-
tems implementing Bell-LaPadula MAC are not suscepti-
ble Trojan Horse forced security violations because users do
not have the ability to declassify information. Addition-
ally, MAC is relatively straightforward and is considered a
good model for commercial systems that operate in hostile
environments (web servers and financial institutions) where
the risk of attack is very high, confidentiality is a primary
access control concern, or the objects being protected are
valuable.[9]

2.1.4 Problems
MAC, however, is not without serious limitations. The
assignment and enforcement of security levels by the sys-
tem under the MAC model places restrictions on user ac-
tions that, while adhering to security policies, prevents dy-
namic alteration of the underlying policies, and requires
large parts of the operating system and associated utilities to
be “trusted” and placed outside of the access control frame-
work.

Trusted components are processes and libraries, such as de-
classifying cryptographic processes, that need to violate MAC
principles and thus must sit outside of the MAC model. In
order to maintain the security policies and prevent unautho-
rized or inappropriate access, the code behind these compo-
nents is assumed (hopefully with verification) to be correct
and conforming to the underlying security policies of the
system. Additional access control methods must be used to
restrict access to these trusted components. Unfortunately,
in practice it has been shown that it is virtually impossible
to implement MLS using MAC without moving essentially
the entire operating system and many associated utilities
outside the MAC model and into the realm of trusted com-
ponents.[1]

Additionally, MAC can unnecessarily over-classify data through
the high-water mark principle and hurt productivity by lim-
iting the ability to transfer labeled information between sys-
tems and restricting user control over data. MAC also does
not address fine-grained least privilege, dynamic separation
of duty or security or validation of trusted components.

MAC systems are difficult and expensive to implement due
to the reliance on trusted components and the necessity for
applications to be rewritten to adhere to MAC labels and
properties. It is rumored that application developer reluc-
tance to take these steps is the reason behind Microsofts



abandonment of MAC related trusted computing in their
long awaited new operating system.[10]

2.2 Discretionary Access Control (DAC)
MAC, while immensely important to military applications,
is not the most widely used method of access control. That
distinction belongs to DAC largely thanks to spawning from
primarily commercial and academic research as well as the
integration of DAC Access Control integration into UNIX,
FreeBSD, and Windows 2000. DAC was developed to im-
plement Access Control Matrices defined by Lampson in
his paper on system protection.[8] Access Control Matrices
are usually represented as three dimensional matrices where
rows are subjects, columns are objects and the mapping of
subject and object pairs results in the set of rights the sub-
ject has over the object.

Unlike the MAC framework where decisions to allow or deny
access are made by the system according to pre-determined
policies, DAC allows subjects the discretion to decide access
rights on objects they own. Because Access Control Matri-
ces have one row for every subject and one column for every
object, the number of entries is intuitively the number of
subjects times the number of objects. This means that O(n)
growth in subjects and objects results in O(n2) growth in
the size of the matrix. The size of the access control matrix
would not be a concern if the matrix was dense, however,
most subjects have no access rights on most objects so, in
practice, the matrix is very sparse. If access control infor-
mation was maintained in this matrix form, large quantities
of space would be wasted and lookups would be very ex-
pensive. Thus, DAC access settings are typically stored as
either per-object file permission modes (default on UNIX)
or as lists.

2.2.1 Lists
Access lists can be stored in a number of configurations with
each configuration offering benefits and drawbacks under
varying circumstances.

Access Control Lists(ACLs)
Access control lists are the representation of object rights
as a table of subjects mapped to their individual rights over
the object. ACLs are the default representation of access
rights on UNIX systems and essentially correspond to indi-
vidual columns in the system Access Control Matrix. ACLs
are effective but not time-efficient with a low number of sub-
jects. Typically, the operating system knows who the user
of a process is but doesnt know what rights the user has
over objects on the system. ACLs require the operating sys-
tem to either perform a rights lookup on each object access
or somehow maintain the subjects active access rights. Be-
cause of this rights management issue, and the difficulty in
performing multi-object rights modifications for individual
users, ACLs dont scale well on systems with large numbers
of subjects or objects.

Capabilities Lists
Capabilities Lists are similar to ACLs but instead of tables of
subjects and rights, capability lists represent subject rights
as mappings of objects to rights.

2.2.2 Benefits

A primary benefit associated with the use of DAC is enabling
fine-grained control over system objects. Through the use of
fine-grained controls, DAC can easily be used to implement
least-privilege access. Individual objects can have access
control restrictions to limit individual subject access to the
minimum rights needed. DAC is also intuitive in implemen-
tation and is mostly invisible to users so it is regarded as the
most cost-effective for home and small-business users.[14]

2.2.3 Problems
DAC, however, is not without issues. Allowing users to con-
trol object access permissions has a side-effect of opening the
system up to Trojan horse susceptibility. Additionally main-
tenance of the system and verification of security principles
is extremely difficult for DAC systems because users con-
trol access rights to owned objects. The so-called “Safety
Problem, the lack of constraints on copy privileges, is an-
other liability inherent to DAC. The lack of constraints on
copying info from one file to another makes it difficult to
maintain safety policies and verify that safety policies have
are not compromised while opening potential exploits for
Trojan horses.

2.3 Role-Based Access Control(RBAC)
RBAC is considered a much more generalized model than
either MAC or DAC, encompassing both models as special
cases while providing a policy neutral framework that allows
RBAC to be customized on a per-application basis.[12] As
a blend of the MAC and DAC models and integri, RBAC is
partially founded on principles outlined in Biba.

2.3.1 Differences from MAC/DAC
First proposed by Ferraiolo and Kuhn in 1992,[7] RBAC ad-
dresses most of the failings of DAC while maintaining DACs
focus on non-military systems. RBAC approaches commer-
cial and civilian governmental security needs from an in-
tegrity first, confidentiality second position based on Clark
and Wilsons research into commercial security policies.[5]
Security policies are maintained in RBAC through the grant-
ing of rights to roles rather than individuals. Right granting
and policy enforcement is consolidated in the hands of a
security administrator and users are prevented from trans-
ferring permissions assigned to a role they are allowed to
perform to other users. This rule removes the ownership
rights granted in DAC and thus behaves like a finer-grained
version of the MAC model. In fact, this is precisely how
Ferraiolo and Kuhn see RBAC.

RBAC also stands apart from the more traditional MAC
and DAC by granted rights on transactions, not on under-
lying subjects. These rights are granted to roles, which at
first glance appear to be a synonym for DAC groups. The
difference lies in that groups consist of a collection of users
while roles are a bridge between a collection of users and a
collection of the Clark-Wilson model of transaction rights.[5]

2.3.2 Benefits
Transaction based rights help ensure system integrity and
availability by explicitly controlling not only which resources
can be accessed but also how access can occur. In large orga-
nizations, the consolidation of access control for many users
into a single role entry allows for much easier management



Figure 1: Example of RBAC role relationships

of the overall system and much more effective verification of
security policies.

Another benefit of RBAC is integrated support for principle
of least-privilege, separation of duties, and central adminis-
tration of role memberships and access controls. Separation
of duties and least-privilege are not a part of MAC while
central administration is loosely supported in MAC with
trusted components and impossible in DAC due to the vio-
lation of the safety principle.

2.3.3 Problems
While RBAC marks a great advance in access control, the
administrative issues of large systems still exist, albeit in a
markedly more manageable form. In large systems, mem-
berships, role inheritance, and the need for finer-grained
customized privileges make administration potentially un-
wieldy.

Additionally, while RBAC supports data abstraction through
transactions, it cannot be used to ensure permissions on se-
quences of operations need to be controlled.[11] To do this,
a less general and more sophisticated access control model
must be used.

2.4 Domain Type Enforcement(DTE)
Domain Type Enforcement (DTE) is an extension of Type
Enforcement (TE) and is itself extended into Dynamic Typed
Access Control (DTAC). The principle of type enforcement
is more that flexible policy expressions are possible when
objects are assigned to types and thus columns in the access
control matrix are replaced by types.[16] The DTE exten-

sion to this is to assign subjects to domains and complete
the matrix transformation so the access control matrix is
now a domain definition table (DDT) with rows of domains
and columns of types. DTAC expanded upon this to in-
clude RBAC type administrative controls.[15] It is claimed
that DTE models can implement the Bell-LaPadula confi-
dentiality model as well as some of the more robust integrity
features in DAC and RBAC. As of yet, this is not demon-
stratable.[13]

3. CONCLUSIONS
Access Control models have come quite a ways since the
initial implementations of MAC and DAC in the early 70’s.
Researchers have learned volumes about the complexities
of maintaining security policies through model applications
and with RBAC have come very close to seamlessly inte-
grating integrity and confidentiality.

Work still needs to be done on translating policies into ver-
ifiable model implementations and in efficient and accurate
management of these implementations.

Future work in the area of models for access control is likely
to be focused on the proliferation of Role-Based Access Con-
trol models and case study analysis of their relative effective-
ness. Oracle already has incorporated RBAC as part of their
database management access controls as has the SQL:1999
standard, PostgreSQL, and SAP. Solaris, Windows Active
Directory, and SELinux all also provide support for the use
of Role Based Access Control.

Additionally, further development of new models DTAC and
Attribute-Based Access Control (ABAC) and the specializa-
tion of these and other access control models is very likely.
Operating systems are also likely to expand support for ad-
ditional access control models both internally and with Plug-
gable Policy Modules to allow users and administrators more
comprehensive and user-friendly ways to secure systems.

4. REFERENCES
[1] R. Anderson. Security Engineering: A Guide to

Building Dependable Distributed Systems. Wiley
Computer Publishing, New York, New York, 2001.

[2] D. Bell and L. LaPadula. Secure computer system:
Unified exposition and multics interpretation. TR
M74-244, March 1976.

[3] K. Biba. Integrity considerations for secure computer
systems. Technical Report MTR-3153, April 1977.

[4] M. Bishop. Computer Security: Art and Science.
Addison-Wesley Publishing Company, Boston,
Massachusetts, 2004.

[5] D. D. Clark and D. R. Wilson. A comparison of
commercial and military computer security policies.
IEEE Symposium on Security and Privacy, pages
184–194, April 1987.

[6] J. Daniel E. Geer. The shrinking perimeter: Making
the case for data-level risk management. Veradsys
White Paper, January 2004.



[7] D. Ferraiolo and R. Kuhn. Role-based access control.
15th National Computer Security Conference, pages
554–563, October 1992.

[8] B. W. Lampson. Protection. ACM SIGOPS Operating
System Review, 8(1):18–24, January 1974.

[9] M. L. Matthews. Position paper. In SACMAT’01,
page 144. SACMAT, May 2001.

[10] A. Orlowski. Ms trusted computing back to drawing
board. The Register, May 2004.

[11] H. L. F. Ravi S. Sandhu, Edward J. Coyne and C. E.
Youman. Role-based access control models. IEEE
Computer, 29(2):38–47, February 1996.

[12] R. Sandhu. The next generation of access control
models: Do we need them and what should they be?
In SACMAT’01, page 53. SACMAT, May 2001.

[13] C. Schaulfler. They want froot loops: Why industry
will continue to deliver multi-level security. In
SACMAT’01, pages 145–146. SACMAT, May 2001.

[14] S. Smalley. Which operating system access control
technique will provide the greatest overall benefit to
users? In SACMAT’01, page 147. SACMAT, May
2001.

[15] J. A. Solworth and R. H. Sload. Security property
based administrative controls. 2005.

[16] R. Watson. Statement for the sacmat 2001 panel. In
SACMAT’01, page 149. SACMAT, May 2001.


