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Figure 1: Fictionalized user timeline for one day, based on log data. Queries of interest shown on each device.

ABSTRACT
Ownership and use of multiple devices such as desktop com-
puters, smartphones, and tablets is increasing rapidly. Search
is popular and people often perform search tasks that span
device boundaries. Understanding how these devices are
used and how people transition between them during infor-
mation seeking is essential in developing search support for
a multi-device world. In this paper, we study search across
devices and propose models to predict aspects of cross-device
search transitions. We characterize multi-device search across
four device types, including aspects of search behavior on
each device (e.g., topics of interest) and characteristics of de-
vice transitions. Building on the characterization, we learn
models to predict various aspects of cross-device search, in-
cluding the next device used for search. This enables many
applications. For example, accurately forecasting the device
used for the next query lets search engines proactively re-
trieve device-appropriate content (e.g., short documents for
smartphones), while knowledge of the current device com-
bined with device-specific topical interest models may assist
in better query-sense disambiguation.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—search process; selection process
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1. INTRODUCTION
Cross-device search is an important emerging domain. The

number of people who own and use multiple devices such as
desktop computers, smartphones, and tablets has increased
rapidly [6]. Search across multiple devices by an individ-
ual has become a common usage pattern since people can
query search providers almost anytime and from anywhere
[34]. In addition, the functional boundaries between dif-
ferent computing devices have become blurred. For exam-
ple, gaming console users can now conduct Web searches
directly from consoles and use applications previously only
found on other devices. Figure 1 presents an example of a
single user’s search activity across four types of device (desk-
top or laptop computer (referred to as “PC” in this paper),
smartphone, tablet, and gaming console) within a single day.
This example is drawn from the logs of a large commercial
search engine used in our analysis, but query text is replaced
with similar alternatives to preserve anonymity. According
to our analysis, described later in the paper, at least 5%
of searchers are multi-device users, with queries from such
searchers accounting for 16% of search volume on the engine
studied (i.e., such searchers are highly engaged). Better sup-
port for these multi-device searchers is therefore important
both for the research community and for search providers.

Despite its importance, supporting cross-device search is
a challenging task. From the example presented in Figure 1
we can observe different topical patterns and different tem-
poral patterns. For this searcher on this day, the PC and
the gaming console are used in the morning (perhaps when
they are at home), and smartphone and tablet are used in
the evening (when they may be at work or commuting). The
morning activity involves planning future events and staying
updated on events in social and news media. In the evening,
we also observe a longer-running search task between smart-
phone and tablet for dining related topics; the topic and the
mobile nature of the devices used suggest that the searcher
may not be at home. Recent work has shown that the nature
of the current location can be estimated using geolocation
data [20]. Figure 1 also suggests some predictability in usage



patterns. Aside from the time of day that the devices are
utilized, gaming console usage precedes PC usage in both
instances. We refer to these switches as cross-device tran-
sitions. All that being said, this represents only one user’s
(fictionalized) search behavior on one day. Improving the
experience for all searchers as they transition between de-
vices requires a better understanding of multi-device usage
patterns over many searchers and queries. We present such
an analysis as part of the research described in this paper.

Multi-device behavior has been studied in the human fac-
tors community [7, 17], but without an emphasis on search.
Search on different devices has also been studied separately
with a variety of datasets [13, 14, 29]. However, the transi-
tions between devices were not analyzed. Wang et al. [34]
examined cross-device task continuation, but only from PC
to smartphone and for a particular definition of search task.
We examine a more general scenario, with up to four device
types, and target a broader set of prediction tasks including
switch detection and the identification of target devices.

The main contributions of our research are:

• Introduce cross-device search as an important emerg-
ing domain in the field of information retrieval.

• Analyze multi-device usage in Web search on four de-
vice types, including gaming consoles, an important
emerging platform. Although not our primary focus
of this study, our research is the first examination of
search behavior on gaming consoles.

• Characterize transitions between devices, which is an
area where search engines could provide more direct
support for applications such as task continuation. We
explore topical, temporal, and historical aspects.

• Develop models to accurately predict the next device
from which a searcher will query, to predict if a device-
switch will take place, and to predict the next de-
vice given that a switch will occur. Among other
things, this enables the search engine to provide sup-
port such as proactively retrieving device-appropriate
content (e.g., favoring shorter articles if the searcher
will transition to a smartphone), better asess the scope
and semantics of a query, or detect device switches if
device information is missing from a request.

2. RELATED WORK
Relevant related work falls into the following three areas:

(1) large-scale log analysis of search behavior; (2) studies of
user behavior, especially characterizations of that behavior,
on desktop and mobile, and; (3) user behavior across multi-
ple devices, including their use in domains beyond search.

Behavioral logs from search engines are valuable in un-
derstanding how people search in naturalistic settings. Re-
search has focused on the use of automated methods to an-
alyze and predict aspects of search behavior for individual
queries [30] and search sessions [2, 35] using logs. Qualitative
studies have sought a deeper understanding of the nature
and motivations underlying online searching [18]. Other re-
search has focused on tasks that extend over time, but have
not considered different devices [1, 19, 22, 23].

Studies of search in mobile settings have examined the
characteristics of queries issued from mobile devices, analyz-
ing behavior along different dimensions such as geographic

location and search interfaces [3, 36]. Others have studied
mobile search intent and the effect of contextual factors on
behavior. Church and Smith [5] studied mobile search, fo-
cusing on their underlying intents, topics, and the impact of
contexts such as location and time. Teevan et al. [33] showed
that local searches are influenced by geography, time, and
social context. Smaller scale studies of online behavior have
considered other devices such as tablets [25], and mobile de-
vice usage rationales [26, 31].

Research on comparing and contrasting search behavior
on multiple devices is also relevant [13, 14, 21]. Kamvar and
Baluja [13] describe a large-scale study of search patterns be-
tween phones, personal digital assistants, and conventional
computers and examine the search queries and their cate-
gories as well as other aspects of their interaction such as
query input speeds and clickthrough. Kamvar et al. [14]
presented a log-based comparison of search patterns on dif-
ferent devices (computers and mobile). They showed that
search usage is more focused on mobile than on computer,
but behavior on high-end phones resembles computer-based
search. Li et al. [21] studied good abandonment of search
results on desktop and mobile (where users do not click but
are still satisfied) and showed that it is significantly higher
in mobile settings. Song et al. [29] compared search be-
havior on three different platforms—desktop, mobile, and
tablet—and developed specialized rankers for each platform
separately.

Wang et al. [34] examined cross-device search tasks ini-
tiated on a desktop computer and resuming soon thereafter
on a mobile device. They performed a detailed analysis on
topics and transition times for these tasks and showed, for
example, that interdevice time varied by time of day. They
developed models to accurately predict task continuation
from PC to mobile. We address a more general scenario,
with up to four device types, and predict key aspects of
cross-device search that were not addressed in [34], including
whether a person will switch devices and their next device.

There has been other research on multi-device use in do-
mains beyond search. Studies have shown that user activi-
ties tend to span multiple devices [2] and frustrating experi-
ences on mobile devices will drive users to complete tasks on
conventional computers [16]. Karlson et al. [17] analyzed the
usage log of desktops and mobile phones from a user study
and showed that there is little support for carrying over tasks
between devices. Kane et al. [15] studied Web browsing us-
age patterns across devices. Their results indicated sharing
browsing information between devices could help improve
the effectiveness of browsing on mobile devices. Dearman
and Pierce [7] conducted an interview study of multiple de-
vice use and showed that current support is inadequate.

The research described in this paper is the first to study
cross-device search in a general sense. It also extends pre-
vious work in a number of ways. First, we focus on multi-
device usage during Web search across four device types, in-
cluding search on gaming consoles. Previous studies on mo-
bile, desktop, and tablet search have focused on devices inde-
pendently, and not considered cross-device searching within
users (i.e., the same user transitioning between devices over
time, as seen in Figure 1). Second, we study key aspects
of multi-device usage such as differences in topical interests
and usage patterns on these devices. Third, we character-
ize aspects of the transitions between devices, which is an
activity where search engines could help directly. Finally,



we implement classifiers to predict aspects of cross-device
search, demonstrating that this can be accurately forecast
using a range of features. Foreknowledge of the next device
(especially coupled with task-continuation prediction [1, 34])
can help the search engine select device-appropriate content,
feeding into methods to help people search over time [8, 24]

3. CROSS-DEVICE SEARCH ANALYSIS
We analyzed sampled search logs from a large commer-

cial search engine, over a period of several months. Our
goal was to understand search behavior across devices along
different dimensions, including time and topic. We con-
sider queries on four types of device: PC (desktop or lap-
top computers, which were indistinguishable in our logs),
smartphones, tablets, and gaming consoles. Our dataset
comprises 2,271,142,893 records from the United States En-
glish language locale (en-US) market, representing queries
from 33,221,253 users. We map searchers across devices us-
ing unique identifiers obtained from those who queried when
signed into the engine (for most searchers, sign-in happened
automatically), allowing us to identify the same searcher
as they moved across devices. We retained only records
with non-empty queries, filtering abnormal records (such as
those from bot traffic) and further eliminated records with-
out query classification information (labeling the type and
optionally the query type/topic (e.g., navigational) with pro-
prietary classifiers, discussed more later).

Our filtering methods reduced the number of smartphone
records, since a significant proportion were missing meta in-
formation (e.g., user identifiers). We are still able to reliably
track users who were signed in on all devices (the default for
most users), allowing us to analyze transitions between de-
vices over time. While the sample of smartphone users is
sufficient to justify analysis, the relative proportions of each
device type are likely not representative of general multi-
device behavior, independent of search engine. The numbers
reported here primarily document the sample sizes used for
our analyses, and the multi-device usage seen here repre-
sents a lower bound on actual multi-device usage. Table 1
presents the final query counts from this filtered dataset is-
sued on each of the four devices considered in our study.

Table 1: Query dataset statistics.
Description Total %

Queries 2,271,142,893 100.00

Multi-Device User Queries 370,865,428 16.33

PC Queries 2,074,083,054 91.32

Smartphone Queries 53,939,886 2.38

Tablet Queries 137,979,833 6.08

Gaming Console Queries 1,854,422 0.08

3.1 Users and Queries
Of the 33 million unique users in our primary dataset,

1.68 million (5.04%) were observed using more than one
device. These users are extremely active searchers; their
queries comprise over 16% of the total search volume in our
dataset (see Table 1). Understanding and supporting these
users’ search activity is therefore of critical importance to
search providers. Delving into the specifics of observed de-
vice usage, Table 2 presents the number of users associated
with each type of device, as well as the number of users
associated with each combination of device type.

Table 2: User device-type statistics.
Device(s) Users %

Any Device(s) 33,221,253 100.00

More Than One Device 1,675,272 5.04

One Device 31,545,981 94.96

Two Devices 1,585,018 4.77

Three Devices 89,834 0.27

Four Devices 420 < 0.01

PC 31,770,955 95.63

Smartphone 1,301,717 3.92

Tablet 1,863,783 5.61

Gaming Console 50,744 0.15

PC-Smartphone 696,928 2.10

PC-Tablet 1,022,279 3.08

PC-Console 20,153 0.06

Smartphone-Tablet 111,554 0.34

Smartphone-Console 4,026 0.01

Tablet-Console 2,100 < 0.01

PC-Smartphone-Tablet 86,840 0.26

PC-Smartphone-Console 2,689 < 0.01

PC-Tablet-Console 1,521 < 0.01

Smartphone-Tablet-Console 464 < 0.01

As we can see, the most common device is PC, accounting
for roughly 95% of search volume, and most users (95.0%)
are associated with a single device. A significant fraction
of people use two devices and a small percentage (less than
0.01%) are s searching on all four devices. The most common
device pairings are PC-smartphone and PC-tablet, reflecting
the still-central role of personal computers in search.

3.2 Query Topic Distributions
We begin by focusing on how searchers’ content interests

differ among the four device types. Understanding the topics
of interest on each device can help establish interest priors
to pre-fetch appropriate content or personalization during
“cold start” scenarios [28]. To do this, we analyzed the dis-
tribution of query topics in the dataset. We classified each
query using proprietary classifiers (used by the search engine
in determining if support such as instant answers should ap-
pear on the result page and characterizing query type for the
search engine), corresponding to around 50 query categories.
A query could belong to multiple categories. The categories
were then grouped by the authors into fifteen higher-level
topics, including Movies and TV, Music, and Celebrities.

3.2.1 Topic Distributions Per Device
Figure 2 displays the differences in topical interest be-

tween devices, by using the pointwise mutual information
(PMI) between P(topic|device) and P(topic), calculated as

log P(topic|device)
P(topic) . Positive PMI values indicate an increase in

topic popularity on a particular device, with negative values
indicating a decrease in popularity. Since the PC contained
most query volume, it was most similar to the background
model. The most prominent change is the sharp increase in
gaming related queries on gaming consoles. Also apparent
in Figure 1 is the increase in food-related queries on mobile
devices associated with dining (as in Figure 1).

3.2.2 Topic Distributions Per Device Over Time
Rather than assuming a static view of topical interests

aggregated over time, we were also interested in how they
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Figure 2: Topic probability lift (PMI) by device.

varied temporally. The queries were partitioned by device
and hour of day, taking counts of the number of queries in
each partition. The counts were then normalized by the
total number of queries across partitions, resulting in a per-
device topic distribution over time. We could then investi-
gate how the topic distribution changed over the day. We
calculated the PMI divergence of P(topic|device, hour) from
P(topic|device). Figure 3 shows how topics with large abso-
lute PMI divergence shift throughout the day. For each de-
vice we plot only the top three topics, in descending order by
largest absolute PMI lift throughout the day. Distributions
for gaming console is least smooth given data sparseness.

Across the four sub-figures, we observe some noteworthy
trends. First, interest in food and adult content appear to
be inversely related for three of the four devices: search-
ing for adult material is common at night and less common
during the work day, food searching exhibits the opposite
trend. We notice two peaks of interest for food related
queries, one around lunch hour and another around din-
ner time. Querying for gaming related activities (including
social media games from facebook.com and zynga.com) is
popular on PC and tablet late at night, with interest in
gaming on tablets exceeding expectations for most of the
day. Halvey et al. [11] studied temporal dynamics in topical
interests on early smartphones. However, they used a differ-
ent content classification and studied Web surfing not Web
search, making direct comparisons with this work difficult.

It is clear that there are significant variations in interests
across devices and time, and that both (and their interac-
tion) need to be considered by search engines when support-
ing search on different devices. The analysis can also help
generate features for the device identification aspects of the
later prediction tasks. However, we focus on cross-device
behavior, especially device transitions. This is a critical and
defining activity in cross-device search and one that needs
better support, for a range of information tasks [7, 17].

3.3 Device Transitions
We now describe the characteristics of device transitions.

3.3.1 Device-Device Transition Probabilities
We define a transition as a pair of consecutive queries

issued on the same or different device. Cross-device transi-
tions include a device change between consecutive queries.
To improve the likelihood that the transitions are meaning-
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Figure 3: Topic probability lift (pointwise mutual
information) by device type and hour of day.

ful, we limit consideration to transitions with delay times
of three hours or less between consecutive queries. Previ-
ous work [34] used a six hour threshold, but had a simpler
switching scenario (single device pair, single direction). To
begin, we computed the maximum likelihood estimates for
device transitions as a Markov graph, conditioned on the
previous device, which are the empirically observed tran-
sition probabilities. Figure 4 shows the probability of the
transitions, as percentages, given the previous device.

TABLET
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SMARTPHONE

0.18

0.04 99.37
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0.120.84

0.00
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0.42

0.46

0.00

2.56 96.97

Figure 4: Device transition probabilities (%).

We can see from the figure that the majority of transi-
tions are self-transitions, meaning that the user is likely to
continue using the same device. This seems reasonable as
searchers are known to search in bursts (as search sessions
[35]) and may be unlikely to change device mid-session (al-
though as we show later, cross-device transition delays are
also often short). The transition analysis becomes more in-
teresting if we remove self-transitions and only consider tran-
sitions between different devices. That is, only cases where
the first query in the transition is on one device and the sec-
ond query is on a different device. This allows us to generate
the modified Markov graph shown in Figure 5.

Figure 5 shows that although most transition mass leads
to PC devices (and very little leads to gaming console de-
vices), there is also evidence of significant interplay between
particular pairs of devices. Specifically, we can observe that
PC-smartphone and PC-tablet exhibit a close relationship,
with transitions between those devices (in both directions)
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being particularly common. Our earlier statistics (in Table
2) suggested that these pairs were most likely to be used
by the same searchers, but here we show more direct evi-
dence of interaction between them. More work is needed
on understanding the nature of the search tasks that people
pursue before and after these transitions, perhaps via quali-
tative user studies, e.g., rapid switches from smartphone to
PC may be indicative of a dissatisfying mobile search expe-
rience, as has been suggested in a non-search setting [16].

3.3.2 Previous Topic to Next Device
We make some progress in understanding task continua-

tion by examining the relationship between the immediately
preceding query topic and the device used for the next query.
Figure 6 shows that while to-PC transitions continue to
dominate, certain topics indicate a shift in next-device prob-
ability. The proportions in the figure should be compared
to the overall likelihood of transitions into the devices, in-
dependent of preceding topic (i.e., PC: 63.9%, Smartphone:
11.2%, Tablet: 24.6%, Console: 0.3%, all shown at the top of
Figure 6). It is clear from the figure that the PC dominates
given the strong prior. However, there are cases where other
devices become more evident depending on the preceding
topic. For example, for Events and Nightlife-related previ-
ous queries, the likelihood of using a gaming console next
increases by an extraordinary 870% over the background.
Similarly, searches for Celebrities-related content signifies
an increased likelihood of using a tablet device for the next
query (a 34% increase over the background), perhaps signi-
fying that searchers are actively engaged in leisure pursuits.

3.3.3 Previous Hour to Next Device
We also analyzed the temporal relationship between the

previous hour and next device that was used. We focus
on the previous hour and not the current hour for two rea-
sons. First, focusing on current hour simply gives propor-
tions reflective of the background device proportions in most
cases, and does not produce informative results. More im-
portantly, any system aiming to predict device transitions
(see Section 4) may benefit from exploitable patterns link-
ing past query times to future device choices. Inspecting
our results, we find that PC usage is most likely during the
workday, when the previous query was issued between 7AM
to 5PM. Transitions to tablets and smartphones are most
likely when searching in the early morning and late evening
(perhaps signifying commuting activities), and transition to
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Figure 6: Prev. topic to current device proportions.

a gaming console reaches its peak probability between 12AM
and 4AM; late-night gaming practices are well known [9].

The variations in future device usage given previous topic
and query appear promising for the prediction task described
later. Before considering that task, we also examine the time
between queries, referred to as the transition delay, since
a regressor to predict transition delay may also have util-
ity, e.g., in determining the amount of time that the engine
has to proactively work on the searcher’s behalf or employ
crowdworkers to help with an ongoing search task [32].

3.3.4 Device Transition Delay Times
To study transition delays, we examine all transitions (in-

cluding self-transitions, which are the majority and take al-
most no time) and cross-device transitions. As we will show
in Section 4.2, the transition delay time (DT) has strong
predictive value for whether a device switch occurred. Fig-
ure 7 depicts the proportion of delay times for all transitions
and all cross-device transitions (times in seconds from 0 to
10,800 (3 hrs)) on a log-log plot. A spike occurs for all transi-
tions at a delay time of approximately five minutes, perhaps
associated with session termination [12]. In general, cross-
device transitions take longer on average, although the dis-
tributions are heavily skewed, with many short delay times
(especially for the “all transitions” set) and long tails.

4. PREDICTING DEVICE TRANSITIONS
We now focus on predicting transitions between devices.

Using features such as those outlined in the previous section,
including the searcher’s previous device, query times, and
transition history, we perform three prediction tasks:

1. Predict the next device that a person will search from.
This could help engines select device-appropriate in-
formation in anticipation of the next device used.

2. Predict whether a device switch has occurred between
two consecutive queries. This could help if device in-
formation is missing at query time. For example, a
personalization system should use a cloud-based user
profile (not a client-side profile) if a switch is detected.
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3. Predict the next device given a switch. This could
help if device information is missing, facilitates selec-
tion of device-appropriate information, and may also
help with query-sense disambiguation.

4.1 Methodology

4.1.1 Datasets
We predict device transitions using three datasets derived

from our primary search log dataset described earlier. From
these queries, we created a set of device-device transition
data, which was then used to create three datasets of fea-
tures for training and testing. The first dataset (“Main”)
contained both same- and cross-device transitions. The sec-
ond dataset (“Balanced”) consisted of an equal 50-50 mix of
same-device and cross-device transitions, used in predicting
whether or not a change in device would occur during a tran-
sition. The final dataset (“Cross-Device Only”), comprised
only instances where the next device did not equal the pre-
vious device and the user had at minimum 200 transitions
observed in the historical dataset (from which user specific
transition statistics were computed). For all three datasets,
250,000 instances were selected at random for five-fold cross-
validation. It should be noted that sampling was done with
respect to filtered transitions rather than with respect to
users or queries, so the final datasets do not necessarily re-
flect user and device type proportions reported earlier.

4.1.2 Features
A set of 177 features were used for training and testing.

These include features for the previous device used, proba-
bilities of device-type usage, and device-pair transition prob-
abilities for the current user and globally. Other features
such as the previous query topic and the previous hour are
directly informed by the analysis presented in the previous
section. For historical features, a separate dataset from pre-
vious months was used to compute the feature statistics,
allowing for no overlap between historical data and train-
ing/test data.

Table 3 lists the features used, with counts for each type.
A count of “x4” denotes four features of that type. Some of
the features, such as the Previous Query Local Hour Flag,
are represented using one-hot binary vectors, hence creat-

Table 3: Features used in predictive models.
Type Features and Counts

Previous Device Previous Device Flag (x4)

Query Length Query Length

Hour Previous Query Local Hour Flag (x24)

Topic
Previous Query Topic Flags (x15)

Current Query Topic Flags (x15)

Global Stats

Global Device Probabilities (x4)

Global Device-Device Transition

Probabilities (x16)

Global Cross-Device Transition

Probabilities (x12)

Global Temporal Stats

Global Device Avg. Transition

Delay (x4)

Global Device-Device Avg.

Transition Delay (x16)

User Stats

Number of Historical User Samples

Number of Historical User Cross-

Device Samples

User Device Probabilities (x4)

User Device-Device Transition

Probabilities (x16)

User Cross-Device Transition

Probabilities (x12)

User Cross-Device Destination

Device Probabilities (x4)

User IsDeviceDominant Flags (x4)

User IsCrossDeviceDominant Flags (x4)

User Temporal Stats

User Device Avg. Transition Delay (x4)

User Device-Device Avg. Transition

Delay (x16)

ing twenty-four binary flags for that single feature (one per
hour). The features are as follows. The Previous Device Flag
is a one-hot binary representation of which device was used
for the previous query. The Query Length feature denotes
the length of the previous query (in characters). The Previ-
ous Query Local Hour Flag records the hour when the pre-
vious query was issued. The Previous (and Current) Query
Topic Flags are sets of fifteen binary flags showing which
topics are assigned to the query, as measured by the top-
ical classifiers discussed in Section 3.2. The Global Device
Probabilities record how often queries were issued from each
device type across all users. Similarly, the Global Device-
Device Transition Probabilities give the likelihood of tran-
sitions between each device-type pair (such as PC-to-PC
and Tablet-to-Smartphone transitions). The Global Cross-
Device Transition Probabilities are similar, but limited to
the probabilities for cross-device transitions (thus the nor-
malization of the probabilities differs). The Global Device
Avg. Transition Delay measures the average delay between
queries conditioned on the previous device type. The Global
Device-Device Avg. Transition Delay measures the average
delay time between device-type pairs.

We also have several user specific features and variants
of the above. The Number of Historical User Samples fea-
ture denotes how many transitions were previously seen for a
given user, and the Number of Historical User Cross-Device
Samples feature is similar, but restricted to cross-device
transitions. The User Device Probabilities, User Device-
Device Transition Probabilities, User Cross-Device Transi-
tion Probabilities, User Device Avg. Transition Delay and
User Device-Device Avg. Transition Delay features are all
similar to their global counterparts, but are instead com-
puted on a per user basis. The User Cross-Device Desti-



nation Device Probabilities features measure the probability
that a certain device will be the destination of a transi-
tion, regardless of the origin device, given that it differs from
the destination device. Lastly, The User IsDeviceDominant
Flags record which of the four device types is the histori-
cally dominate destination device, and the User IsCrossDe-
viceDominant Flags are analogous, but restricted to cross-
device transitions. There is some feature overlap, with some
features derivable from others. We use L1 regularization to
prune unnecessary and redundant features.

All Stats features in Table 3 are computed from the non-
overlapping historical data. We further group the features
into sets to measure their effect on predictive accuracy. The
baseline feature set consists of the previous device type only.
The query length feature gives the number of characters in
the previous query, and previous hour gives the hour of day
when the previous query was issued. Topical features are
grouped by previous and current query and the user tran-
sition features are partitioned into six groups, outlined in
Table 4. The full list of groupings are given in the ablation
results of Table 7 and are discussed in Section 4.2.

Table 4: User-specific historical feature sets.
Set Description

U1 Number of user transitions seen in historical data

(total transitions and cross-device transitions).

U2 Historical probabilities for each device type.

U3 Unconditioned device-device transition probabilities.

U4 Destination device probabilities, i.e., the probability

a cross-device transition lands on a given device type.

U5 Conditioned cross-device transition probabilities.

(similar to U3, but only for cross-device transitions

and conditioned on previous device type).

U6 Average device-device transition delay times.

4.1.3 Learning Algorithms
Using these datasets, we performed multi-class classifi-

cation to forecast different aspects of cross-device search
given the previous device and other contextual features re-
lated to the previous query and user history. We evaluated
an L1-regularized Logistic Regression model [4] and a Gra-
dient Boosting Tree ensemble [10] through five-fold cross-
validation, using the Scikit-learn package for Python [27].
Since the primary objective of this study is to demonstrate
the feasibility of developing accurate predictive models of
cross-device searching (and not to develop new machine learn-
ing algorithms), we limited our evaluation to two represen-
tative classes of learning methods. We compared their per-
formance against three baselines: (1) Most Frequent Label,
which predicts the most common class label in the training
dataset, (2) Uniform Guessing, which predicts class labels
uniformly at random, and (3) Stratified Guessing, which
predicts class labels randomly, while respecting the observed
global class label proportions encountered during training.

4.2 Prediction Results

4.2.1 Predict Next Device
For the task of predicting the next device, both models

show significant improvements over the baseline methods,
with over 98% accuracy, and high average precision, recall
and F1-score. The metrics shown represent weighted (by

class proportion) averages of per class scores, uniformly av-
eraged across folds1. Table 5 presents the results. Examin-
ing the feature contributions (not shown for this dataset),
we found that conditioning on the previous device produces
the accuracy observed (98.3%), so that the previous device
state is the strongest feature for next device prediction, and
extra features do not improve performance.

4.2.2 Predict Device Switch
Our next task was to predict whether or not a user switched

devices between queries. This is a non-trivially important
task in some scenarios, such as when a new query is issued
without corresponding device-type information (as was the
case for many records excluded from our dataset). To per-
form the prediction, we trained our classification models on
the balanced transition dataset, where transition instances
were equally split among the “same-device” and “different-
device” class labels. In addition to the features given in
Tables 3 and 4, we considered an additional feature for this
task, the transition delay time, which is the elapsed time
between two consecutive queries. We evaluated the effect of
adding this feature to the existing historical features.

The classification results for predicting whether a device
switch will occur are given in Table 6. Predictive accuracy
is significantly increased over the baseline methods, indicat-
ing the existence of exploitable non-randomness in device
transition behavior. Table 7 demonstrates the effect of dif-
ferent feature sets on classification accuracy, including the
use of current query features. The greatest gains are seen
when adding user-specific historical transition features (U1-
U6) and the transition delay time feature (see Figure 7).

4.2.3 Predict Next Device Given Device Switch
Given a classifier capable of predicting whether or not

a cross-device transition occurred, the next step is to de-
velop a classifier that predicts the next device for cases when
it differs from the previous device. In practice the classi-
fiers could be chained, but we do not do that here since we
wanted to limit interaction effects. The task of predicting
the next device given it differs from the previous device is
more difficult than predicting the next device in general,
since a learner cannot simply predict the class label of the
previous device (as is normally the case). Table 8 demon-
strates the increased difficulty of this task, with all meth-
ods (except uniform random guessing) suffering decreased
performance compared to the next-device prediction task
from Table 5. However, the feature-based methods continue
to significantly outperform the baselines. Surprisingly, the
previous device still produced the strongest signal when pre-
dicting the future device, apparent in the ablation results of
Table 9. This held even though the next device and previ-
ous device were guaranteed to differ. Other features, such
as previous topics (PT) and global transition stats (G), had
no effect on performance, despite proving useful when pre-
dicting the occurrence of a device switch. User transition
statistics led to significant increases in performance in com-
bination with the other features, but also on their own (as
Baseline+U1-6). Thus, strong, exploitable patterns emerge
for searchers when switching to new devices.

1This weighting method, combined with the one-vs-all
learner implementation and class label imbalance, tends to
produce precision -recall scores near or equal to accuracy.



Table 5: (Predict Next Device) Main. Statistical significance is computed with reference to the Most
Frequent Label baseline method.

Method Accuracy Avg. Precision Avg. Recall Avg. F1-Score Log-Loss

Baseline Method - Most Frequent Label 0.648 0.420 0.648 0.510 12.157
Baseline Method - Stratified 0.489 0.489 0.489 0.489 0.883
Baseline Method - Uniform 0.250 0.488 0.250 0.309 1.386

Gradient Boosting Trees Classifier 0.982*** 0.982*** 0.982*** 0.982*** 0.097***
L1 Logistic Regression 0.983*** 0.983*** 0.983*** 0.983*** 0.089***

(Statistical significance assessed by two-tailed paired t-test, with: * < α = .05, ** < α = .01, *** < α = .001)

Table 6: (Predict Device Switch) Balanced Transition Data. Statistical significance is computed with
reference to the Most Frequent Label baseline method.

Method Accuracy Avg. Precision Avg. Recall Avg. F1-Score Log-Loss

Baseline Method - Most Frequent Label 0.499 0.249 0.499 0.332 17.320
Baseline Method - Stratified 0.498 0.498 0.498 0.498 0.693
Baseline Method - Uniform 0.501 0.501 0.501 0.501 1.386

Gradient Boosting Trees Classifier 0.787*** 0.788*** 0.787*** 0.786*** 0.462***
L1 Logistic Regression 0.779*** 0.782*** 0.779*** 0.778*** 0.484***

(Statistical significance assessed by two-tailed paired t-test, with: * < α = .05, ** < α = .01, *** < α = .001)

Table 7: (Predict Device Switch - Feature Ablations, Balanced Transition Data) L1 Logistic Regression.
Statistical significance is computed with reference to the Baseline feature group.

Feature Group Accuracy Avg. Precision Avg. Recall Avg. F1-Score Log-Loss

Baseline 0.589 0.591 0.589 0.587 0.676
Baseline+Q 0.589 0.591 0.589 0.587 0.674***
Baseline+Q+PT 0.599*** 0.602*** 0.599*** 0.596*** 0.665***
Baseline+Q+PT+PH 0.608*** 0.609*** 0.608*** 0.607*** 0.661***
Baseline+Q+PT+PH+U1 0.660*** 0.661*** 0.660*** 0.660*** 0.615***
Baseline+Q+PT+PH+U1-2 0.665*** 0.666*** 0.665*** 0.664*** 0.610***
Baseline+Q+PT+PH+U1-3 0.665*** 0.666*** 0.665*** 0.665*** 0.608***
Baseline+Q+PT+PH+U1-4 0.668*** 0.668*** 0.668*** 0.668*** 0.607***
Baseline+Q+PT+PH+U1-5 0.668*** 0.669*** 0.668*** 0.668*** 0.606***
Baseline+Q+PT+PH+U1-6 0.673*** 0.674*** 0.673*** 0.673*** 0.601***
Baseline+Q+PT+PH+U1-6+G 0.674*** 0.674*** 0.674*** 0.673*** 0.602***

Baseline+Q+PT+PH+U1-6+G+CT 0.675*** 0.675*** 0.675*** 0.675*** 0.599***
Baseline+Q+PT+PH+U1-6+G+DT 0.778*** 0.782*** 0.778*** 0.778*** 0.485***

All Features 0.779*** 0.782*** 0.779*** 0.778*** 0.484***

Baseline = Previous Device
Q = Previous Query Length
G = Global Transition Stats Features
PT = Previous Topic features
CT = Current Topic Features
PH = Previous Query Hour
U1 = Number of historical samples for the user and the number of cross-device samples for the user
U1-2 = U1 and user-specific device probabilities
U1-3 = U1, U2 and device-device pair transition probabilities
U1-4 = U1, U2, U3 and destination device transition probabilities
U1-5 = U1 through U4 and device conditioned transition probabilities
U1-6 = U1 through U5 and user-specific average transition times for device-device pairs
DT = Delay time (in seconds) between previous and current queries
All Features = All of the above feature sets

(Statistical significance assessed by two-tailed paired t-test, with: * < α = .05, ** < α = .01, *** < α = .001)

Table 8: (Predict Next Device Given Device Switch) Min. 200 Historical Samples. Statistical signifi-
cance is computed with reference to the Most Frequent Label baseline method.

Method Accuracy Avg. Precision Avg. Recall Avg. F1-Score Log-Loss

Baseline Method - Most Frequent Label 0.455 0.207 0.455 0.284 18.829
Baseline Method - Stratified 0.370 0.371 0.370 0.371 1.046
Baseline Method - Uniform 0.250 0.370 0.250 0.292 1.386

Gradient Boosting Trees Classifier 0.931*** 0.931*** 0.931*** 0.931*** 0.197***
L1 Logistic Regression 0.934*** 0.933*** 0.934*** 0.933*** 0.193***

(Statistical significance assessed by two-tailed paired t-test, with: * < α = .05, ** < α = .01, *** < α = .001)



Table 9: (Predict Next Device Given Device Switch - Feature Ablations) L1 Logistic Regression. Sta-
tistical significance is computed with reference to the Baseline feature group.

Feature Group Accuracy Avg. Precision Avg. Recall Avg. F1-Score Log-Loss

Baseline+U1-6 0.932*** 0.931*** 0.932*** 0.931*** 0.196***

Baseline 0.781 0.642 0.781 0.703 0.496
Baseline+Q 0.781 0.642 0.781 0.703 0.496
Baseline+Q+PT 0.781 0.642 0.781 0.703 0.495
Baseline+Q+PT+PH 0.781 0.679 0.781 0.703 0.493
Baseline+Q+PT+PH+U1 0.781 0.716 0.781 0.703 0.491
Baseline+Q+PT+PH+U1-2 0.903*** 0.903*** 0.903*** 0.898*** 0.281***
Baseline+Q+PT+PH+U1-3 0.928*** 0.927*** 0.928*** 0.927*** 0.203***
Baseline+Q+PT+PH+U1-4 0.932*** 0.932*** 0.932*** 0.931*** 0.195***
Baseline+Q+PT+PH+U1-5 0.932*** 0.932*** 0.932*** 0.931*** 0.195***
Baseline+Q+PT+PH+U1-6 0.933*** 0.932*** 0.933*** 0.932*** 0.194***
Baseline+Q+PT+PH+U1-6+G 0.933*** 0.932*** 0.933*** 0.932*** 0.194***

Baseline+Q+PT+PH+U1-6+G+CT 0.933*** 0.932*** 0.933*** 0.932*** 0.194***
Baseline+Q+PT+PH+U1-6+G+DT 0.933*** 0.933*** 0.933*** 0.932*** 0.194***

All Features 0.934*** 0.933*** 0.934*** 0.933*** 0.193***

For Feature Group legend, see Table 7

(Statistical significance assessed by two-tailed paired t-test, with: * < α = .05, ** < α = .01, *** < α = .001)

4.2.4 Summary
Overall, we observe significant improvements over base-

lines, with gains in predictive accuracy of over 25% for all
three classification tasks evaluated. The previous device and
searchers’ own transition histories were the primary factors
in the prediction. These results are important as they clearly
demonstrate successful prediction of various aspects of cross-
device search (the first time this has been accomplished),
but also that high accuracy can be achieved with compact
models comprising only a few key features. Compactness is
important for large-scale deployment in search engines.

5. DISCUSSION AND IMPLICATIONS
We showed that there are variations in interests across the

four different device types and that multi-device searchers
were fairly common (5% of users) and generated a signif-
icant amount of search engine traffic (16%). Of particular
interest were the transitions between devices (many of which
are more or less immediate, as shown in Figure 7), which
provides insight into the context within which devices are
used. For example, smartphone/tablet and PC appear to
frequently be used consecutively, and more work is needed
to understand device interplay (e.g., are there tasks or sce-
narios for which a device switch should be recommended?)
and how best to support it from a search perspective.

If the search system is expected to work proactively, the
ability to predict the device that a searcher will use for their
next query is important in determining what type of in-
formation to seek on the searcher’s behalf. Different de-
vices have different display, bandwidth, and interaction con-
straints, as well as differences in the type of information that
people are interested in on each device (as demonstrated in
Section 3.2). This information could be coupled with data
about cross-session search tasks and searchers’ long-term in-
terests [1, 19] to model their interests and intentions. An
additional component that would be welcome in this model
is the anticipated time until next query (i.e., the transition
delay), which could help guide system assistance decisions.

With that goal in mind, we attempted to predict the time
until the next query. Our efforts at this regression task

were met with limited success, even when using predictions
from the classification models and device-device transition
time statistics as features. Neither of the regression models
tested (Lasso Regression and Gradient Boosting Trees Re-
gression) significantly improved performance over the base-
lines of guessing the mean and median delay times. Trans-
forming the task into a three-way classification task (classes
= {delay less than 30 seconds, delay between 30 secs. and
10 mins., delay greater than 10 mins.}) was more promising,
with significant improvements of approximately 10 percent-
age points over the best baseline method, but accuracy was
still below 50% (results not shown given space constraints).

There are some limitations that we should acknowledge.
First, since the study is log-based, we do not have insight
about searchers’ rationales for moving between devices or
the context of the transitions, which is important for, say,
understanding why some device pairings are more tightly
coupled than others. Follow-up qualitative studies in the
search context are needed to understand: (1) how people
transition between devices (both physically and practically),
and (2) criteria that they use to select a particular device if
multiple devices are accessible in a particular location (e.g.,
searcher is at home with access to all of their devices). Sec-
ond, our prediction tasks focused on query-query transitions,
however there are other scenarios that should be explored,
e.g., predicting the device used for the next search session.
Finally, the dataset used for our analysis is proprietary and
cannot be shared publically given privacy considerations.
Researchers seeking to perform similar studies should con-
sider the need to represent users, their devices, and their
inter-device transitions when designing logging mechanisms.

We considered three important prediction tasks where we
see significant improvements over the three baselines: (1)
predict next device, (2) predict if a device switch occurred,
and (3) predict next device given that a device switch oc-
curred. The predict-next-device classifier (#1) was highly
accurate, although primarily because people frequently stay
on the same device. The device prediction task (#3) relies
on foreknowledge of a device switch, which could be provided
by a device switch classifier (#2). We assessed #2 and #3
separately, and we need to study chaining them together.



6. CONCLUSIONS
We introduced cross-device search and drew several data-

supported conclusions about search across devices. We show
that people use different devices to search for different con-
tent, and time of day interacts with device to affect content
sought. Exploitable patterns emerge for device transitions
(especially from historic user features), with previous device
signaling the next device, even when the devices differ.

We analyzed device-specific and temporal aspects of cross-
device search, and were able to successfully predict the next
device from which a searcher will query, even on datasets
limited to cross-device transitions. For two of the prediction
tasks (i.e., predict next device and predict next device given
switch), predictive accuracy, recall and precision exceeded
90% with a fairly compact feature set. The remaining task
(predict device switch) also saw significant gains in accu-
racy over the baselines, approaching 80% given all features.
We will continue work in this important emerging area, fo-
cused on developing more accurate predictive models, in-
cluding further investigating delay time prediction. We will
also integrate these models into search systems, enabling
capabilities such as proactively locating device-appropriate
information in advance of anticipated device transitions.
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