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Abstract: We present an abductive search strategy that integrates creative abduction and probabilistic reasoning to pro-
duce plausible explanations for unexplained observations. Using a graphical model representation of abduc-
tive search, we introduce a heuristic approach to hypothesis generation, comparison, and selection. To identify
creative and plausible explanations, we propose 1) applying novel structural similarity metrics to a search for
simple explanations, and 2) optimizing for the probability of a hypothesis’ occurrence given known observa-
tions.

1 INTRODUCTION

Imagine that one morning you step outside to find that
the grass is wet, ruining your new shoes. Could rain
have caused the wet grass? However, you cannot re-
call whether yesterday was cloudy. How likely is it to
have rained last night if there were no clouds?

Now imagine an alternative scenario, in which you
are a medical student studying the causes and symp-
toms of tuberculosis. You learn that if a patient has
an abnormal x-ray, there are several possible factors,
including lung cancer and tuberculosis. How can you
determine which diagnosis to give in light of the x-
ray results? What relevant information is available to
help you decide a best explanation?

For a final example, imagine arriving at work to
find that information on your company’s database has
been corrupted. Your boss is responsible for fixing the
deficiency that allowed this data corruption to occur.
Overwhelmed by the vast number of possible expla-
nations for the data corruption, your boss tasks you,
a database engineer, with identifying plausible causes
of the issue.

These tasks require abductive inference: creating
and identifying hypotheses (causes) that are the most
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promising explanations for the observed effects. You
can make use of background information, prior oc-
currences similar in nature to this one, where the ef-
fects and causes were successfully identified. How-
ever, you also acknowledge the possibility of unfa-
miliar causes, which are beyond the scope of prior
information and your current knowledge.

For example, in our database problem, corrupted
data is the unexplained observed effect. Your primary
task reflects that of abductive inference, which is a
strategy for discovering hypotheses that are worthy of
further investigation, which Schurz refers to as the
strategical function of abductive inference (Schurz,
2008). What constitutes further investigation de-
pends on the application of abductive inference; it
can be broadly defined as any work that provides
more information about the causes or effects. Addi-
tionally, the search space—the space of all available
hypotheses—can be significantly large, necessitating
an effective search strategy for finding promising hy-
potheses within reasonable time and computational
costs.

Despite significant advances in machine learning
research over the last three decades, traditional super-
vised learning models are ill-equipped to handle the
aforementioned example problems. Supervised learn-
ing models emulate inductive inference, in which hy-
potheses are causal rules that best fit the known data.
Unlike abduction, the primary function of inductive
inference is justificational, specifically the justifica-



tion of the conjectured conclusion. Induction serves
little strategical function because the range of possi-
ble conclusions is restricted by the methods of gener-
alizing prior observed cases.

In this paper, we present a novel abductive search
method capable of handling the examples previously
described. Our model first uses abductive search for
hypothesis identification. To limit redundancy in the
abductive search results, we introduce two distinct
similarity metrics that compare causal structures of
variables. Additionally, to account for possible un-
familiar causes, we implement hypothesis generation
in our model as a method of generating novel ex-
planations—hypothesized causes that are not neces-
sarily observed in the background information. Fi-
nally, while abductive “confirmation” does not in-
dicate whether an abduced hypothesis logically pre-
cedes the observed effects, our model utilizes a hy-
pothesis comparison method to compare hypotheses
based on the likelihood of the explanation.

Cox et al. used abduction with surface deduction
to generate novel hypotheses from Horn-clauses, and
suggested extending this method’s application to ab-
duction from directed graphs (Cox et al., 1992). Our
abductive search model relies on Reichenbach’s Com-
mon Cause Principle rather than surface deduction
for hypothesis generation, and uses edit-distance and
Jaccard-based reasoning to distinguish redundant hy-
potheses. This combination of creative and proba-
bilistic abduction with similarity-based reasoning for
abductive search is distinct from the approach of Cox
et al. (Cox et al., 1992). The use of Reichenbach’s
Common Cause Principle is inspired by Schurz’s
theory on common cause abduction (Schurz, 2008).
While Schurz seems to deny the potential usefulness
of integrating common cause and Bayesian reasoning,
we introduce a form of Bayesian confirmation that
provides probabilistic explanations for the hypotheses
discovered through common cause abduction. Like-
wise, while our abductive model checks consistency
and simplicity similarly to Reiter’s heuristic diagno-
sis model (Reiter, 1987), we rely on Bayesian condi-
tioning during hypothesis generation and comparison,
which strengthens the plausibility of our model’s con-
jectured hypotheses.

2 GRAPHICALLY MODELING
ABDUCTION

Graphical models are tools for integrating logical and
probabilistic reasoning in order to represent rational
processes and causal relationships. Developed by
Pearl, they comprehensively account for complexity

and uncertainty within a dataset (Pearl, 1998). A
probabilistic graphical model is composed of nodes
representing random variables, and edges connecting
the nodes to indicate conditional independence or de-
pendence.

An abductive search problem can be represented
in a directed acyclic graph (DAG), in which a di-
rected edge from one node (the “parent”) to another
(the “child”) represents a causal relationship between
them. For edges of a DAG that are weighted with the
conditional probability P(child | parent) of the child
variable given the parent, the weight speaks to the
causal relationship’s influential strength.

2.1 Bayesian Networks

We adapt the definition of Bayesian network from
(Feldbacher-Escamilla and Gebharter, 2019), and
make use of conventional notation: Sets of objects, in-
cluding sets of sets, are represented by boldfaced up-
percase letters (e.g., S). Variables are represented by
upper-case letters (e.g., X), and their respective real-
izations are represented by corresponding lower-case
letters (e.g., x). Additionally, a directed edge between
two variables is represented by an arrow, →, where
the parent node is at the arrow’s tail and the child node
is at the tip (e.g., Xi→ X j).

Following the definitions in (Feldbacher-
Escamilla and Gebharter, 2019), B〈VVV ,EEE,P〉 is a
Bayesian network such that VVV is a set of random
variables, EEE is a set of directed edges, and P is a
probability distribution over VVV .

For all Xi ∈VVV , PPPaaarrr(Xi) is the set of Xi’s parents:

PPPaaarrr(Xi) = {X j ∈VVV | X j→ Xi}. (1)

The set of Xi’s children is defined as

CCChhh(Xi) = {X j ∈VVV | Xi→ X j}. (2)

We define the set of Xi’s descendants to be

DDDeeesss(Xi) = {X j ∈VVV | Xi→ ...→ X j}, (3)

and the set of Xi’s ancestors to be

AAAnnnccc(Xi) = {X j ∈VVV | X j→ ...→ Xi}. (4)

Within the context of this paper, all variables in
VVV are discrete. To properly incorporate continuous
variables into the model, the discretization approach
presented in (Chen et al., 2017) can be used with a dis-
cretization runtime of O(r ·n2), where r is the number
of class variable instantiations. Furthermore, Freid-
man et al. present a method of discretizing continuous
variables while learning the structure of the Bayesian
network using background information, that is, data
denoting the values of previous instantiations of vari-
ables in VVV (Friedman et al., 1996).



Additionally, we define a set of observed nodes

OOO = OOOEEE ∪OOOOOO, (5)

where
OOOEEE = {OE1 , . . . ,OEl} (6)

is the set of nodes representing observed effects that
require explanation. Subsequently,

OOOOOO = {OO1 , . . . ,OO j} (7)

is the set of nodes representing observations that do
not require explanations. Sets OOOEEE and OOOOOO are disjoint,
namely, OOOEEE ∩OOOOOO = /0. Furthermore, UUU is the set of
unobserved nodes, such that

UUU =VVV −OOO. (8)

A hypothesis HHH will take the form

HHH = {h1, . . . ,hm}, (9)

where HHH ⊆ UUU . An explanation refers to hypotheses
that are causally related to a given set of observed ef-
fects.

2.1.1 Node Marginal Probability Distribution

We wish to calculate probabilities of n proposed
nodes vi ∈ {v1, . . . ,vn} given a set of known
nodes OOO = {x1, . . . ,xm} and unknown nodes UUU =
{U1, . . . ,U`}. Because there are unknown nodes—
random variables with unknown values—we need to
account for all potential outcomes. Thus, we calculate
the marginal probability distribution:

P(v1, . . . ,vn | x1, . . . ,xm)

=
P(v1, . . . ,vn,x1, . . . ,xm)

P(x1, . . . ,xm)
(10)

To calculate the marginal probability distribution
that accounts for all potential outcomes of U1, . . . ,U`,
we take a sum over all possible values. Thus, the nu-
merator of the full equation is:

P(v1, . . . ,vn,x1, . . . ,xm) = ∑
U1∈{u1,¬u1}

. . .

∑
U`∈{u`,¬u`}

P(v1, . . . ,vn,x1, . . . ,xm,U1, . . . ,U`) (11)

To complete the equation, the denominator fol-
lows the same computation.

3 Abduction as a Search Strategy

We will demonstrate how to use abductive reasoning
in a best-first search for explanations. Schurz defines
a best-first explanation within the search space of an
abductive model as one that meets the following cri-
teria (Schurz, 2008):

1. The hypothesis is the most justifiable out of all
candidate hypotheses.

2. The children/successors are the most plausible of
all the hypothesis’ successors.

We expand on Schurz’s definition by adding the fol-
lowing third criterion:
3. The hypothesis is a common cause or distant com-

mon cause (an ancestor node) of all given ob-
served effects.

Addition of this third criterion for potential hypothe-
ses is based on Reichenbach’s Common Cause Prin-
ciple (CCP). The CCP is cited by Schurz as the jus-
tification basis for creative abduction (Schurz, 2008),
and it is defined as follows:
Definition 3.1 (Reichenbach’s Common Cause Prin-
ciple). For two properties A and B that are 1) corre-
lated, and 2) unrelated by a conditional relationship,
there must exist some common cause C such that A
and B are both causal effects of C.

Our method relies on this principle during hypoth-
esis selection. Given observed effects, we target a
common cause (a hypothesis) that is the most promis-
ing explanation of the observed effects.

3.1 Problem Definition

Using abduction as a search strategy, we model a cre-
ative abductive solution for the following search prob-
lem adapted from (Feldbacher-Escamilla and Gebhar-
ter, 2019).

Given:
• A set of observed effects OOOEEE .
• A set of known or background data OOOOOO.

Find:
A solution with the following elements (Prendinger
and Ishizuka, 2005):

• A candidate hypothesis HHHCCC that is causally related
to all OOi ∈ OOOOOO and all OEi ∈ OOOEEE .

• A causal rule denoting that HHHCCC is a potential set
of causes for OOOEEE .

• The necessary condition that HHHCCC∩OOO is consistent
for all OOi ,OEi ∈ OOO.

4 Hypothesis Identification,
Generation, and Comparison

Due to the vast search space of possible causes, the
model’s first component, hypothesis identification,



must be completed using an abductive search strategy.
Hypothesis identification serves a strategical function
in the model by identifying possible common causes
of the observed effects. Treating possible causes as
hypotheses, we use the term abductive search because
we optimize our search for P(OOOEEE | HHH), the probabil-
ity of the observed effects occurring given the hy-
pothesis. P(OOOEEE | HHH) measures the fit of a hypoth-
esis, or the degree to which hypothesis HHH explains
observed effects OOOEEE . Abductive inference, by defini-
tion, is agnostic towards how probable a hypothesis
is, and instead optimizes for how well they explain
the observed effects. From a probabilistic reasoning
perspective, this is akin to optimizing for P(OOOEEE | HHH).
Thus, by optimizing our search for how well hypothe-
ses explain the observed effects, we are modeling
abduction. Additionally, optimizing the search for
P(OOOEEE | HHH) allows for the consideration of surprising
(unlikely) hypotheses that if true, sufficiently explain
the observed effects.

Having identified the set of possible common
causes, each cause is treated as a candidate hypoth-
esis and evaluated by a comparison function that opti-
mizes for P(HHH | OOOEEE), the probability that the hypoth-
esis is true given the observed effects occurring. By
Bayes’ Theorem, we see

P(HHH | OOOEEE) ∝ P(OOOEEE | HHH)P(HHH). (12)

Thus, by optimizing for P(HHH | OOOEEE), the probability
of the hypothesis is taken into account. Through hy-
pothesis comparison, our model incorporates a justifi-
cational function. The best performing candidate hy-
potheses are added to the set of promising hypotheses,
denoted HHHPPP.

4.1 Hypothesis Identification and
Abductive Search For Possible
Common Causes

This section discusses the search for possible com-
mon causes of a set of observed effects. For clarity,
in probability functions, we treat possible common
causes as possible hypotheses.

The abductive search attempts to model the fol-
lowing

argmax
HHH⊆UUU

P(OOOEEE | HHH), (13)

in cases where OOOEEE is given. Because edges in
a Bayesian network are weighted with conditional
probabilities, the hypotheses that optimize P(OOOEEE |HHH)
will generally be connected to more of the observed
effects by an edge or directed path. So, rather than
computing P(OOOEEE | HHH) for all of the possible hypothe-
ses, we can instead search for possible hypotheses that

maximize the number of observed effects to which
they are connected.

To begin the search for such possible hypothe-
ses, we can apply CCP to the observed effects if and
only if all variables OEi ∈ OOOEEE satisfy the conditions
of CCP. Specifically, for all OEi ,OE j ∈ OOOEEE such that
OEi 6= OE j , OEi and OE j must be correlated and unre-
lated by a conditional relationship. For now, we as-
sume that OOOEEE satisfies the criteria for CCP, and we
will later demonstrate how to handle the two possible
cases in which CCP criteria are not satisfied.

By CCP, there exists some common cause C
such that OEi and OE j are both effects of C, for all
OEi ,OE j ∈ OOOEEE where OEi 6= OE j . This means there
exists some directed path from C to Oi and O j.

Definition 4.1 (Directed Path). A directed path from
Xi to X j, where Xi,X j ∈ VVV , is a set of edges EEEXi,X j

such that either (Xi,Xα1), . . . ,(Xαk ,X j)∈ EEEXi,X j where
α1, . . . ,αk represent arbitrary node indices of the
graph for some k ∈ N, or (Xi,X j) ∈ EEEXi,X j .

Therefore, the set of common causes of the ob-
served effects, CCC(OOOEEE), must be a subset of the set of
variables with a directed path to OOOEEE .

Definition 4.2 (Singleton Complete Explanations).
A singleton complete explanation is a variable in
AAAnnnccc(OOOEEE) with a directed path to every variable in OOOEEE .
The set of singleton complete explanations is given by

CCCPPP(OOOEEE) :=
⋂

OEi∈OOOEEE

AAAnnnccc(OEi). (14)

We refer to the singleton explanations in CCCPPP(OOOEEE)
as possible common causes because P(OOOEEE | HHH)—
where HHH is the cause—has not yet been computed.
Calculating this marginal probability is the only
method of verifying a variable or set of variables as an
actual common cause. Each possible cause in this set
is considered a complete explanation because there
exists a directed path from the nodes composing the
explanation to each observed effect.

However, we must also consider cases where OOOEEE
does not satisfy the CCP criteria. Specifically, there
are two possible cases in which the CCP criteria is
not satisfied by OOOEEE .

Case 1 Suppose that there exists some distinct pairs
of variables OEi ,OE j ∈ OOOEEE such that OEi and OE j are
conditionally related. In such a case, there must be
a directed path between OEi and OE j . Consequently,
since the Bayesian network is acyclic, then without
a loss of generality, OEi ∈ DDDeeesss(OE j). Therefore, it
is possible that OE j explains OEi , meaning that OE j
causes OEi . So, OEi can be removed from OOOEEE and
added to OOOOOO. Thus, we would maintain the condition



that all pairs of distinct variables in OOOEEE are unrelated
by an edge or directed path. However, if we are not
certain that OE j explains OEi , then we can leave OEi ,
OE j in OOOEEE .

Case 2 Suppose there exists some distinct pairs of
variables OEi ,OE j ∈ OOOEEE such that OEi and OE j are
uncorrelated. In this case, because OEi and OE j are
observed effects, it may be impossible to find a single
common cause explaining both nodes. Therefore, we
must consider cases where the best explanation is a
hypothesis containing multiple variables.

There may exist three distinct types of possible
common causes:

1. Multivariate subsets of AAAnnnccc(OOOEEE) that are com-
plete explanations.

2. Multivariate subsets of AAAnnnccc(OOOEEE) that are partial
explanations.

3. Multivariate subsets of AAAnnnccc(OOOEEE) that are novel
explanations.

Note that the possible common causes are now multi-
variate sets rather than singleton sets.

When the CCP criteria is not satisfied, there may
not exist a single common cause of all the observed
effects. In such cases, we must instead consider ex-
planations that incorporate multiple variables.

Definition 4.3 (Multivariate Complete Explanations).
A multivariate complete explanation consists of mul-
tiple nodes whose joint set of descendants contains
the set of observed effects as a subset. The set of mul-
tivariate complete explanations is given by

{SSS⊆ AAAnnnccc(OOOEEE) | OOOEEE ⊆ DDDeeesss(SSS)}. (15)

We must also consider the existence of an ob-
served effect whose explanation is beyond the scope
of the model. This could occur when OOOEEE contains
noisy observed effects that cannot be sufficiently ex-
plained by the model.

A simple example of noisy observed effects in
Bayesian networks are root nodes: nodes with empty
ancestor sets. Since the ancestor sets of root nodes
are empty, there cannot exist any causes or hypothe-
ses that explain the root nodes. In such cases, the root
nodes in OOOEEE given by

OOORRR = {OEi ∈ OOOEEE | PPPaaarrr(OEi) = /0}, (16)

would be removed from OOOEEE and added to OOOOOO.
If a noisy observation is not a root node, it remains

in OOOEEE . To handle such cases, we include possible
causes that do not have a directed path from the pos-
sible cause to every observed effect.

Definition 4.4 (Multivariate Partial Explanations). A
partial explanation consists of multiple nodes whose
joint set of descendants contains a subset of OOOE . The
set of partial explanations is given by

{SSS⊆ AAAnnnccc(OOOE) | ∃OEi ∈ OOOEEE ,OEi ∈ DDDeeesss(SSS)}. (17)

Lastly, we account for observed effects that de-
scend from unfamiliar causes: causes of a given set of
observed effects that were not observed in the back-
ground information. In these cases, we develop a hy-
pothesis generation method to generate novel expla-
nations of the unique causes.

Definition 4.5 (Novel Explanations). A novel expla-
nation is an explanation found through hypothesis
generation.

Hypothesis generation refers to the introduction of
new edges in the Bayesian network for the purpose of
creating common causes of the observed effects. Gen-
erating an edge between two nodes entails the devel-
opment of a causal relationship between them. The
set of generated edges EEEHHHGGG of a hypothesis HHH will
take the form

EEEHHHGGG := {(hα1 ,hβ1), ...,(hαg ,hβg)}. (18)

However, the model is faced with a vast search
space of nodes to generate new edges between, neces-
sitating incorporation of bias in the search. Specif-
ically, in searching for a set of unobserved nodes to
generate edges between, we optimize for the number
of observed effects that are descendants of the given
set of unobserved nodes.

4.1.1 Implementation

Because there is uncertainty as to whether OOOEEE satis-
fies the CCP criteria, we must include multivariate
complete explanations, multivariate partial explana-
tions, and novel explanations in the set of possible
common causes.

Algorithm 1 identifies the sets of singleton com-
plete explanations, multivariate complete explana-
tions, and multivariate partial explanations, and it re-
turns their union, defined as CCCPPP(OOOEEE)

+. Algorithm 2
then uses CCCPPP(OOOEEE)

+ to generate novel explanations,
where CCCPPPGGG(OOOEEE) is the set of novel explanations.

Algorithm 1 is motivated by the Apriori algo-
rithm (Agrawal and Srikant, 1994) for inferring causal
relations between sales items from large transaction
datasets. The Apriori algorithm relies on the apriori
property, a relational invariant between sets and sub-
sets, in order to improve efficiency. We leverage a
similar property in the following algorithm.

Let k represent the size of the candidate possible
hypotheses set and kT be a hyperparameter specifying



Algorithm 1: Computing Partial and Com-
plete Explanations, CCCPPP(OOOEEE)

+

Set CCCPPP(OOOEEE)
+ = /0;

Set RRRPrev = AAAnnnccc(OOOEEE);
Set RRRCurr = /0;
for k = kT ,kT −1,kT −2, . . . ,1 do

if RRRPrev is empty then
Return CCCPPP(OOOEEE)

+;
end
for SSS⊆ RRRPrev such that |SSS|= k and
sim(RRRCurr,SSS)< ST do

if |OOOEEE∩DDDeeesss(SSS)|
|OOOEEE |

≥ PT then
Set CCCPPP(OOOEEE)

+ =CCCPPP(OOOEEE)
+∪{SSS};

Set RRRCurr = RRRCurr ∪SSS;
end

end
Set RRRPrev = RRRCurr;
Set RRRCurr = /0;

end
Return CCCPPP(OOOEEE)

+;

the maximum size k to be considered. The set RRRCurr
keeps track of variables for which the algorithm will
compute smaller subsets. Whether a set of variables
is added to RRRCurr is determined by measuring the sim-
ilarity of RRRCurr to the new set. If the new set is above
a certain threshold, specified by hyperparameter ST ,
then the new set does not substantially add to the ex-
isting connection between the nodes in RRRCurr and the
observed effects, nor does the new set significantly in-
crease the ability of RRRCurr to explain the observed ef-
fects. In such a case, we ignore that set. Finally, PT is
a hyperparameter that specifies the percentage of the
observed effects that must be connected to a possible
hypothesis.

Next, we use CCCPPP(OOOEEE)
+ to compute novel expla-

nations. Specifically, Algorithm 2 computes NNN(OOOEEE),
a set of tuples that associates hypotheses with their
corresponding generated edges. More precisely, for
the members of NNN(OOOEEE), the first element in each tu-
ple is a hypothesis and the second element in the tu-
ple is the hypothesis’ corresponding set of generated
edges, EEEHHHGGG . Consequently, the set of novel explana-
tions, CCCPPPGGG(OOOEEE), is the set of the first elements in the
tuples in NNN(OOOEEE). Additionally, note that CCCPPP(OOOEEE)

+ =
CCCPPPGGG(OOOEEE), but each hypothesis in CCCPPPGGG(OOOEEE) contains a
corresponding set of generated edges that defines new
edges between nodes, resulting in a new explanation.
As a technical note, the implementation of Algorithm
2 only iterates over partial explanations in CCCPPP(OOOEEE)

+,
since complete explanations contain nodes that are al-
ready connected to all observed effects.

Algorithm 2: Computing Novel Explana-
tions

Set NNN(OOOEEE) = /0;
for HHH ∈CCCPPP(OOOEEE)

+ do
Set OOOExc = OOOEEE − (OOOEEE ∩DDDeeesss(HHH));
Set EEEHHHGGG = /0;
for Oi ∈ OOOExc do

Set HMax = argmaxHi∈HHH sim(Oi,Hi);
Set EEEHHHGGG = EEEHHHGGG ∪{(HMax,Oi)};

end
Set NNN(OOOEEE) = NNN(OOOEEE)∪{(HHH,EEEHHHGGG)};

end
Return NNN(OOOEEE);

4.2 Hypothesis Comparison

Once we have identified the set of potential com-
mon causes CCCPPP(OOOEEE)

+, we refine it by optimizing for
P(HHH |OOO), the likelihood of a hypothesis, which serves
a justificational function in the model.

It is important to note that P(OOO | HHH) is not a ver-
ification measure of the hypothesis’ occurrence in a
given situation, but it is rather a justificational com-
ponent for the model’s output set CCCPPP(OOOEEE)

+. Each
HHH ∈ CCCPPP(OOOEEE)

+ is theoretical and therefore unverifi-
able by an abductive model, but we can estimate a
hypothesis’ promise given the observed facts with the
measure P(OOO | HHH).

4.2.1 Comparing Identified and Generated
Hypotheses

In order to compare selected and generated hypothe-
ses, we defined a cost function that optimizes for
P(HHH | OOO), while creating a negative “cost” for gen-
erated edges.

The comparison function is

F(HHH,EEEHHHGGG ,OOO) := P(HHH | OOO)−αc(EEEHHHGGG), (19)

where c(EEEHHHGGG) is the cost of generating edges, defined
below, α is a weighting hyperparameter, and EEEHHHGGG is
the set of generated edges of hypothesis HHH. The cost
of generating edges is defined by

c(EEEHHHGGG) := ∑
(Xi,X j)∈EEEHHHGGG

(1− sim(Xi,X j)), (20)

where sim(Xi,X j) is the similarity of Xi compared to
X j, according to the similarity metrics defined in Sec-
tion 5. Note that for each hypothesis under consid-
eration, the probability distribution for the particular
hypothesis is updated such that for all (Oi,Hi)∈EEEHHHGGG ,
P(Oi | Hi) = 1.

For all candidate hypotheses HHH ∈ CCCPPP(OOOEEE)
+,

F(HHH,EEEHHHGGG ,OOO) is computed, and the hypotheses with



the highest PZ percent of scores are added to the set
of promising hypotheses, HHHPPP, where PZ is a hyperpa-
rameter used to control the selectivity of the process.

5 Similarity Metrics

In hypothesis comparison, we incorporate bias to-
wards simple explanations. Simplicity in the graph-
ical model is indicated by structural dissimilarity,
as similar hypotheses can be deemed redundant. To
gauge structural similarity between hypotheses, we
introduce two metrics that determine node similarity:
1) graph edit distance, on the basis of edge weight,
and 2) the Jaccard Index of Variables, on the basis
of common descendants. In the search for plausible
explanations within a probabilistic Bayesian network,
disfavoring similarity reduces redundancy among hy-
potheses and produces simpler explanations. Intu-
itively, this bias reflects an innate understanding that
objects with similar properties and behaviors produce
similar outcomes, and vice versa.

5.1 Similarity Metric: Jaccard Index of
Variables

The Jaccard Index is defined as

J(A,B) :=
|A∩B|
|A∪B|

, (21)

where A and B are sets.
The model uses what we define as the Jaccard In-

dex of Variables, a Jaccard Index-inspired metric of
similarity between variables in VVV . But rather than re-
lying solely on set cardinalities, we use the probabil-
ity distribution P. Thus, we adapt the Jaccard Index
to compute similarity between two variables A and B
in the Bayesian network based on their children. The
children of A and B are denoted as CCChhh(A) = AAACCC and
CCChhh(B) = BBBCCC. The Jaccard Index of Variables is de-
fined as

simJaccard(A,B) :=
(CCChhh(A)∩CCChhh(B))
(CCChhh(A)∪CCChhh(B))

, (22)

=
(AAACCC ∩BBBCCC)

(AAACCC ∪BBBCCC)
, (23)

where

(AAACCC ∪BBBCCC) := |AAACCC−BBBCCC|+(AAACCC)+(BBBCCC)

− (AAACCC ∩BBBCCC), (24)

(AAACCC ∩BBBCCC) := ∑
C∈AAACCC∩BBBCCC

min(P(C|A),P(C|B)) (25)

and

(AAACCC) := ∑
C∈AAACCC∩BBBCCC

P(C | A), (26)

(BBBCCC) = ∑
C∈AAACCC∩BBBCCC

P(C | B). (27)

5.2 Similarity Metric: Edit-Distance

We refer to edit-distance (Bunke, 1997) as the cost of
operations required to transform one graphical struc-
ture into another. Edit-distance is the basis of our edit-
distance based similarity metric, which is defined as

simEdit(A,B) :=
c(A,B)
|CCChhh(A)|

(28)

=
c(A,B)
|AAACCC|

, (29)

where c(A,B) is a cost function to measure the cost of
graph changing operations such that

c(A,B) := ∑
C∈AAACCC∩BBBCCC

‖P(C |A)−P(C |B)‖+ |AAACCC−BBBCCC|,

(30)

where ‖P(C | A)−P(C | B)‖ is the absolute value of
the difference P(C | A)−P(C | B).

5.3 Similarity of Sets of Variables

In addition to computing the similarity of variables,
we can compute the similarity of sets of variables.
Specifically, for some similarity metric sim(·, ·), we
can compute

sim(AAA,BBB) :=
∑

Xi∈AAA
sim(Xi,X∗j )

|AAA|
(31)

where X∗j := argmaxX j∈BBB sim(Xi,X j). The algorithm
for computing the similarity of sets of variables is
given below in Algorithm 3.

Algorithm 3: Computing Similarity of Sets
of Variables, sim(AAA,BBB)

Set total = 0;
for Xi ∈ AAA do

Set X∗j = argmaxX j∈BBB sim(Xi,X∗j );
Set total = total+ sim(Xi,X∗j );

end
Set sim(AAA,BBB) = total/|AAA|;
Return sim(AAA,BBB);



6 APPLICATIONS

6.1 Database Corruption

Using the hypothesis identification, generation, and
comparison methods previously described, we can
demonstrate hypothesis selection within the example
of a corrupted database, which we discussed in Sec-
tion 1.

First, we will construct a graphical model to repre-
sent the situation. Figure 1 gives a hypothetical graph-
ical representation of the corrupted database example
to illustrate our process, with nodes that are related by
an arbitrary conditional probability table.

Figure 1: Data Corruption Example DAG

After inputting background information and ob-
served effects/surprising phenomena to the current
model, we can identify every potential hypothesis—
both probable and improbable. For example, we
could have observed Hardware Malfunction in con-
junction with Data Corruption.

Some of these hypotheses could be overly-
complicated and redundant. For example, a possi-
ble explanation could be the simultaneous occurrence
of an Internal Program Error and a Virus/Malware.
Another possible explanation could that only a
Virus/Malware caused Data Corruption. These two
hypotheses share common components and effects,
but we can reduce the complexity of our hypothesis
by simply selecting Virus/Malware. In these cases of
redundant hypotheses, our model utilizes the similar-
ity metrics to identify the simple hypothesis.

Our first step, which we refer to as observation-
testing, is calculating P(OOO | HHH iii) for some hypothesis
HHH iii. Given a potential hypothesis, we will calculate
the probabilities of the observed effects. However,
due to the graph structure, we need to calculate the
marginal probability, which takes into account all rel-
evant nodes, regardless of whether they are in our hy-
pothesis set or not. We will then choose the top n%
of these hypotheses to move on to the second phase.

Having found hypotheses that best explain the ob-
served effects, the second step is hypothesis refine-
ment: calculating P(HHH iii | OOO) for some hypothesis HHH iii.
Given the set of hypotheses from observation-testing,
we will then identify and choose the hypothesis that is
most probable given our background information. As
a result of this step, we are given the most probable
hypothesis that also adequately explains our observed
effects.

Suppose that our first step selected two potential
hypotheses to move forward into stage two: Cos-
mic Rays, which yielded a probability of .93, and
Virus/Malware, which yielded a probability of .71.
However, during phase two, suppose Virus/Malware
yielded a probability of .67, while Cosmic Rays
yielded a probability of .002. Virus/Malware would
have a higher final probability and would therefore be
chosen as our final hypothesis.

We continue the data corruption example to
demonstrate hypothesis generation. Consider a new
situation where we are given Internal Program Error
and Security Breach as potential explanations for the
observed occurrences of both Hardware Malfunction
and Read/Write Errors. Note that while Internal Pro-
gram Error is a parent node to Read/Write Errors, it
is not an ancestor for Hardware Malfunction. Also,
Security Breach is not an ancestor for Hardware Mal-
function nor Read/Write Errors. This means that we
have no common cause hypothesis for the observed
effects. In this case, the model will generate a com-
mon cause hypothesis using the edge generation pro-
cess described in Section 4.1.

An edge will be introduced to connect a hypothe-
sis node with a new child node that is also an observed
effect. In the current example, neither of our potential
hypotheses would cause a Hardware Malfunction, yet
a Hardware Malfunction has been observed. So, two
edges are generated: one connecting Security Breach
to Hardware Malfunction, and one connecting Inter-
nal Program Error to Hardware Malfunction. Security
Breach and Internal Program are now novel common
cause hypotheses, and will be reevaluated using the
observation-testing and hypothesis refinement meth-
ods previously described.

6.2 The Wet Grass Network

As an additional example, let us consider the Wet
Grass Bayesian network (Bayes Server, 2020), shown
in Figure 2. Using our similarity methods, the algo-
rithm successfully avoids choosing both “S” (Sprin-
kler) and “R” (Rain) to increase the probability when
the two are not given. However, when either “S” or
“R” is an observation, the algorithm chooses the cor-



Figure 2: Wet Grass Bayes Net

responding node to increase the probability of grass
being wet. However, it appears to strongly weight hy-
potheses that perform well in the first stage, especially
if the graph is small. As an example, when given
“W” (WetGrass) while observing “C” (Cloudy), the
algorithm chooses “S” as the cause, as it performs
better in the first phase and there are only two hy-
potheses, “S” and “R”, and the algorithm chooses the
top half for these testing purposes. Overall, this sys-
tem chooses simple hypotheses with no extraneous
information that aim to increase probability of the
observed effects, while also taking into account the
probability of the hypotheses.

6.3 Discussion

While our algorithms produce reasonable explana-
tions for small graphs, it remains to be seen how well
these methods scale to exponentially larger networks,
and how they adapt to non-Bayesian probability the-
ories or graphical models. As such, we view this
work as a preliminary investigation into using prob-
abilistic structures to develop abductive explanations,
in comparison to the large body of previous work
in abductive computation which has focused primar-
ily on symbolic methods and formal logic (Ng and
Mooney, 1992; Mooney, 2000; Juba, 2016; Ignatiev
et al., 2019).

7 CONCLUSION

The purpose of our abductive search model is to de-
velop plausible explanations for surprising phenom-
ena. Approaching this scenario as a search problem,
we are interested in finding our search target, which
is a set of the most promising potential hypothetical
causes for the unexplained observed events. The fit

of a hypothesis relative to known data is measured
by P(OOO | HHH), which is the probability of the observed
events occurring given that the hypothesis is also true.
So, we want a set of hypotheses CCCPPP = HHH111, . . . ,HHHmmm
that, for each HHH iii ∈CCCPPP, 1) optimizes the measure of fit
P(OOO | HHH iii), and 2) has a high P(HHH iii | OOO) value relative
to other hypotheses.

Having established criteria for a search target,
we apply an abductive search strategy to find these
promising potential hypotheses. We deemed abduc-
tion as the most effective form of inference for ad-
dressing such problems, including the data corruption
one, where a) known information is incomplete and
b) a set of novel hypotheses are the search target.
We used graphical models—specifically, Bayesian
networks—to represent both the causal relationships
within a search space and the elements of abductive
search.

We present hypothesis selection, generation, and
comparison as the primary methods for finding
promising potential hypotheses. Our hypothesis se-
lection criteria is based upon Reichenbach’s Common
Cause Principle. In the case that no common cause
hypothesis exists, we rely on hypothesis generation
to produce novel potential common cause hypothe-
ses. These generated hypotheses can be a) multivari-
ate hypotheses, b) partial explanations, or c) gener-
ated edges. Then, having obtained the set of all po-
tential hypothetical causes, we subject the individual
elements to hypothesis comparison, selecting the hy-
pothesis that maximizes P(HHH | OOO).

Future research on probabilistic abduction’s ex-
planatory capabilities can be conducted with regards
to search algorithms in general, which are often
viewed as black-box methods. We also see Bayes’
Theorem as a tool for bridging theoretical abductive
search methods—such as those presented in this pa-
per, those in (Schurz, 2008), and those in (Cox et al.,
1992)—with machine learning classification from in-
complete or fuzzy data.

Other future work includes analyzing algorithmic
scaling and implementing methods such as dynamic
programming to reduce algorithm runtime, as well
as further exploring effective hypothesis generation
methods by examining the effects of edge genera-
tion on hidden variables in a Bayesian network and
the implications of successive edge generation on our
model’s predictive accuracy.
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