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Abstract: Does structure dictate function and can function be reliably inferred from structure? Previous work has shown
that an artificial agent’s ability to detect function (e.g., lethality) from structure (e.g., the coherence of traps)
can confer measurable survival advantages. We explore the link between structure and function in simple
combinatorial machines, using genetic algorithms to generate traps with structure (coherence) and no function
(no lethality), generate traps with function and no structure, and generate traps with both structure and func-
tion. We explore the characteristics of the algorithmically generated traps, examine the genetic algorithms’
ability to produce structure, function, and their combination, and investigate what resources are needed for the
genetic algorithms to reliably succeed at these tasks. We find that producing lethality (function) is easier than
producing coherence (structure) and that optimizing for one does not reliably produce the other.

1 INTRODUCTION

Recent research has shown that intention per-
ception (the ability to detect the intentions of
others) can benefit artificial agents in a variety
of adversarial situations [Maina-Kilaas et al., 2021a,
Maina-Kilaas et al., 2021b, Hom et al., 2021]. One
study found that when artificial agents were able to
perceive their environments as intentionally designed
(e.g., to detect traps), their survival rates significantly
increased [Hom et al., 2021]. Within their framework
of virtual gophers and projectile traps, Hom et al. as-
sumed that traps designed to harm gophers were much
more likely to be “coherent” than those generated uni-
formly at random, and used this coherence as a ba-
sis for creating statistical hypothesis tests (classifying
traps as designed to harm or unintended). Im-
plicit within their experimental framework was an as-
sumed correlation between the structure of a trap and
its lethality: coherence implied design which implied
lethality. In this study, we test whether the correlation
between coherence (structure) and lethality (function)

a https://orcid.org/0000-0002-1641-4430
b https://orcid.org/0000-0003-2497-120X
c https://orcid.org/0000-0002-6987-9194
d https://orcid.org/0000-0002-1333-4611

was isolated to their particular context, or whether the
relationship holds more generally.

The relationship between structure and function is
of general importance to science and engineering, as
every machine has structure that at least partially de-
termines its function. In Hom et al.’s work, coherence
(a property of trap structure) served as a reliable in-
dicator of trap functionality, able to separate human-
designed traps from those generated uniformly at ran-
dom. While Hom et al. considered only two types of
trap-generating processes, we explore the relationship
between trap coherence and trap functionality more
broadly, for machines generated by processes such as
genetic algorithms.

Genetic algorithms are an easy-to-implement
metaheuristic method commonly used to solve
optimization and search problems. They em-
ploy biologically inspired operators such as mu-
tation, crossover and selection [Golberg, 1989,
Mitchell, 1998, Reeves and Rowe, 2002]. Genetic
algorithms can solve problems defined over com-
plex, high-dimensional, multimodal, and/or dis-
crete spaces. They have become a popular opti-
mization tool for structural optimization, which is
the automated synthesis of mechanical components
based on structural considerations [Chapman, 1994,
Wang et al., 2006]. Generating traps with desirable



traits, namely coherence and lethality, can be consid-
ered as a simplified structural optimization problem
over a discrete search space, motivating their use in
the present study.

We examine the correlation between trap coher-
ence and trap lethality for structures produced by ge-
netic algorithms and find that Hom et al.’s implicit
assumption may not hold in all situations. Further-
more, we investigate genetic algorithms’ capacity to
generate functional and coherent traps, given that hu-
mans have little difficulty producing them. Finally,
to the extent our genetic algorithms are successful,
we determine what information resources are nec-
essary for them to generate traps with either lethal-
ity or coherence (or both), by varying the informa-
tion encoded in their fitness functions. We find that
contrary to assertions by earlier researchers (e.g.,
[Häggström, 2007]), simply having fitness functions
with structural order (such as local neighborhood
clustering) is not sufficient for genetic algorithms to
perform the search task any better than blind uni-
form sampling. To the contrary, we find that align-
ment of the fitness functions to the particular task at
hand is also necessary, agreeing with other prior work
[Montañez, 2017, Montañez et al., 2019].

2 RELATED WORK

There has been a wide range of research on the
relationship between structure and function. Gero
and Kannengiesser proposed the Function-Behaviour-
Structure ontology [Gero and Kannengiesser, 2007],
which provides three categories for the properties of a
human-designed object: Function (F), Behavior (B),
Structure (S). They assert that function (F) is “as-
cribed to” behaviour (B) by establishing a teleologi-
cal connection between a human’s design purpose and
what the object does, while behaviour (B) is “derived
from” structure (S) directly. Thus, they imply there is
no direct connection between function and structure.

Bock and Wahlert, however, argue that structure
and function constitute the two inseparable dimen-
sions of biological features when considering mor-
phology and evolutionary biology, and “must always
be considered together” [Bock and Wahlert, 1965].
Weibel proposed the theory of symmorphosis, which
predicts that the design of parts within an organism
must be matched to their functional demands. He also
tested these predictions by quantifying the relation-
ship between structure and function in different organ
systems [Weibel, 2000].

While Hom et al. only dealt with two kinds of
traps (those generated uniformly at random and those

they designed to be lethal [Hom et al., 2021]), we ex-
plore the lethality and coherence produced by a wider
variety of trap-generating processes. In particular, we
generate traps with structure (coherence) and no func-
tion (lacking lethality), traps with function and no
structure, and traps with both structure and function,
by means of genetic algorithms.

Genetic algorithms compose part of the larger
field of evolutionary optimization [Golberg, 1989,
Mitchell, 1998, Reeves and Rowe, 2002]. Evolution-
ary optimization has been applied to a diverse
range of problems, with their associated difficul-
ties. One such difficulty is uncertainty—fitness func-
tions are often noisy or approximated, environmen-
tal conditions change dynamically, and optimal so-
lutions may change over time [Krink et al., 2004,
Then and Chong, 1994, Bhattacharya et al., 2014]. A
wide range of techniques have been developed to
combat such problems [Jin and Branke, 2005].

3 METHODS

3.1 TRAPS

We adapt the virtual trap framework of Hom et al.
[Hom et al., 2021]. A trap contains food to entice an
artificial gopher to enter and laser beams to “kill” the
gopher once it is inside. The traps are simple, com-
binatorial objects embodying both form and function.
This allows us to explore that relationship in a con-
trolled manner while investigating the effect of ge-
netic algorithm processes on their generation.

Each trap consists of a 4× 3 grid. Three of the
tiles are fixed for all traps: one acts as an entrance and
senses when the gopher enters the trap; directly above
the entrance is a fixed blank floor tile that the gopher
can traverse to get to the third fixed tile, which holds
the food enticing the gopher to enter the trap. The
remaining nine tiles can either be blank floor, laser
emitters (arrows), or wires meant to connect the laser
emitters to the sensor at the entrance. The arrows and
wires can be one of three thicknesses, with elements
of greater thickness more likely to kill a gopher. In
particular, the probabilities of killing a gopher on a
successful hit with a wide, normal, skinny arrow are
Pk,w = 0.45, Pk,n = 0.3, and Pk,s = 0.15 respectively.
Two example traps are shown in Figure 1.

The laser will only be functional if the thickness
of the arrow matches the thickness of every wire piece
connecting it to the sensor. A wire tile can either be
straight or bent at a right angle, and can be rotated
by 90◦ as needed. Arrows can similarly be rotated by
90◦. Accounting for all possible rotations and thick-



(a) Example of a func-
tional trap generated by
the genetic algorithm.

(b) Example of a designed
trap created by Hom et al.

Figure 1: Example traps.

nesses, there are a total of 91 possibilities each of
these nine tiles can take. Hence—keeping in mind
that the entrance and food tiles are each used exactly
once per trap—there is a total of 919 ≈ 4.28× 1017

possible traps in this framework. We let X denote the
set of all valid traps, with |X | ≈ 4.28×1017.

In agreement with Hom et al., we define trap co-
herence as follows [Hom et al., 2021]. First, we must
define the notion of a coherent connection. There is a
coherent connection between two non-entrance tiles if
all of the following conditions are met: (1) both tiles
contain either a wire or an arrow, (2) the thicknesses
of the two elements match, and (3) the two elements
share an endpoint (i.e., the rotation of the wires align).
The coherence of a trap is then the number of coher-
ent connections per nonempty (wire or arrow) tiles.

Furthermore, we define the lethality of a trap as
the probability that it kills a gopher entering it. Also
referred to as functionality in this context, lethality
can either be estimated by running simulations that
present traps to gophers of varying hunger levels and
measure the proportion of gophers killed, or com-
puted analytically. We compute both coherence and
functionality analytically, with empirical simulation
verifying the correctness of our approach (not shown).

3.1.1 Trap Encoding

We introduce a genotypic representation of a trap
(called an encoding) for our genetic algorithm. Our
encoding method takes in a 4×3 trap matrix and out-
puts a 1×12 array of integers. First, we look at the 93
individual tiles and map each of them to a unique in-
teger x ∈ [0,92]. For instance, the skinny arrow with
right-acute angle rotated at 0◦ has the encoding 33.
Note that the encoding for door tile is 0, food tile 1,

and the floor tile 2. The encoding for each tile of an
example trap is shown in Figure 2a.

(a) Encodings for 12 trap
tiles.

(b) Indexing the 12 trap
tiles.

Figure 2: Tile encoding and trap location indexing.

Next, we enumerate the 12 tiles in a trap as
shown in Figure 2b. Intuitively, each trap can be en-
coded by listing the encodings of its tiles in the order
(0,1,2,3,4,5,6,7,8,9,10,11), creating a zig-zag pat-
tern; this is Method 1, demonstrated in Figure 3. A
potential problem with this method is that the order
of the tiles in an encoding does not reflect the spatial
layout of the trap. See, for example, how tiles 2 and
3 are positioned on opposite sides of the trap but are
ordered sequentially in the encoding. To address this,
we developed an additional method, Method 2, which
encodes a trap by listing the encodings of its tiles in
the order (9,6,3,0,1,2,5,8,11,10,7,4). This order
lists the traps in a wrap-around pattern, as shown in
Figure 4. Thus, sequential tile encodings in the trap
encoding are adjacent to each other in the actual trap.

3.2 GOPHERS

Like Hom et al., we used gophers as the artificial
agents in our experiments. Hom et al. designed
two types of gophers: intention gophers and base-
line gophers. Intention gophers were given inten-
tion perception—the ability to assess the coherence
of the trap and then determine if the trap is deliber-
ately harmful, based on its coherence. If the trap is
found sufficiently coherent, the intention gopher will
avoid it; otherwise, the gopher will enter it. Base-
line gophers, however, will enter any trap according
to some predetermined probability. Whereas Hom et
al. compared survival outcomes of intention and base-
line gophers, we seek to merely assess the coherence
and lethality of traps generated using a genetic algo-
rithm. As such, we simplify our gopher framework to



(a) Encoding with permu-
tation (0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11)

(b) Encoded trap: [47, 6,
86, 25, 1, 29, 26, 2, 62, 72,
0, 9]

Figure 3: First encoding method and corresponding en-
coded trap, Method 1.

(a) Encoding with permu-
tation (9, 6, 3, 0, 1, 2, 5, 8,
11, 10, 7, 4)

(b) Encoded trap: [72, 26,
25, 47, 6, 86, 29, 62, 9, 0,
2, 1]

Figure 4: Second encoding method and corresponding en-
coded trap, Method 2.

include only one type of gopher, which is described
below. Each gopher has a hunger level H uniformly
sampled from {0,0.2,0.4,0.6,0.8}, and will enter a
trap with probability

P′e(H) = Pe · (1−H10)+H10,

where Pe is the default probability of entering (what
a baseline gopher would have in Hom et al.’s frame-
work) and H ∈ [0,1) is the current hunger level.

The eating time teat of the gopher is how long (in
discrete time steps called frames) the gopher takes to
eat and is selected according to the probability vector

p⃗ = [p1, p2, p3, p4, p5],

where, p j is the probability that a gopher eats for j
frames. By this definition of p⃗, each gopher will take

between 1 and 5 frames (inclusive) to eat. The prob-
ability vector p⃗ depends only on the default probabil-
ity of entering Pe, and it is calculated by methods in
[Hom et al., 2021].

When a gopher decides to enter a trap, it will di-
rectly head to the food with speed 1 tile/frame, eat for
teat frames, and then exit the way it came with speed
1 tile/frame. When the gopher first enters the trap,
the sensor will detect it instantly and release a pulse
on each side of the entrance door. If the arrow is co-
herently connected to the door, the pulse will travel
through the wire with speed 1 tile/frame and fire a
projectile with speed 1 tile/frame that can possibly hit
the gopher. We designed our gophers to be “skittish,”
that is, they flee traps whenever a laser fires, regard-
less of their hunger level.

3.3 GENETIC ALGORITHMS

In mimicking natural selection, genetic algorithms
optimize toward increasing fitness. Here the popu-
lation consists not of biological organisms but of po-
tential solutions to an optimization problem.

A genetic algorithm requires a fitness function
(see below) to generate a subset of elements X ⊆ X .
In our setting, for example, X is the set of all valid
traps defined in Section 3.1. Then, the algorithm
goes through a process of selection, recombination,
and mutation to generate a new subset X ′ ⊆ X . The
algorithm usually begins with a generation of ran-
domly generated elements. For each generation of
the genetic algorithm, a subset of the population is
selected to “reproduce” to fill the next generation’s
population. Much as organisms of higher fitness in
nature are more likely to reproduce (by definition),
elements of higher fitness in the genetic algorithm are
more likely to contribute to the next generation. To
achieve this, we used a roulette-wheel selection pro-
cess: two elements of the previous generation are se-
lected at random, with their probability of selection
directly proportional to their fitnesses. These two
elements undergo a recombination process in which
their information is combined—usually by splicing
each element in two and sampling a piece from each
element—to produce a new element that contains in-
formation from both parents. Example of such splits
are shown in Figure 5.

Finally, we mutate the resulting element by flip-
ping a random element in its encoding to some ran-
dom value in the cell alphabet, in the style of a genetic
point mutation. This element is now fully formed and
joins the new generation. The process repeats until the
size of the new generation matches that of the old gen-
eration. New generations are iteratively created until



(a) Method 1 (b) Method 2
Figure 5: An example of recombining at the fifth cell under
both encoding methods.

some threshold is met, usually requiring that one of
the elements have a fitness above a specified value or
that a specific number of generations is produced. The
single element with highest fitness is then returned.
Algorithm 1 provides pseudocode for this entire pro-
cess, where f (·) is the fitness evaluation function.

Algorithm 1 Sample Genetic Algorithm

1: procedure GENETICALGORITHM
2: globalBest← none
3: population← generateRandomPopulation()
4: while not terminationConditionsMet do
5: newPopulation← empty
6: for element in population do
7: selectedPair← roulette(population)
8: combined← recombine(selectedPair)
9: mutated← pointMutate(combined)

10: newPopulation.add(mutated)
11: popBest← bestTrap(newPopulation)
12: if f (popBest) > f (globalBest) then
13: globalBest← popBest
14: population← newPopulation
15: return globalBest

3.4 FITNESS FUNCTIONS

To determine the optimality of a member x ∈ X , we
define a fitness function. This function f : X → R
allows us to impose an ordering on the elements of
the search space, X , thereby giving the algorithm a
measure of how optimal the current solution is. We
next describe our process for creating a set of fitness
functions based on different optimization criteria. To
make our language more precise, we define the order

and alignment of a fitness function. Order within a
fitness function refers to any underlying patterns or
regularities that may be present in its spatial distribu-
tion of values, such as local neighborhood clustering.
The alignment of a fitness function refers to the mea-
sure of preference for elements in a specific target set
of interest. For example, if we want to optimize for
coherence, a fitness function is correctly aligned if it
gives high fitness values to coherent traps and low fit-
ness values to non-coherent traps.

In the subsections that follow, we describe the fit-
ness functions used in our experiments.

3.4.1 RANDOM FITNESS

For any trap x∈X , we define the random fitness func-
tion as r(x)= n where n is a number chosen uniformly
at random from the range [0,1). In other words, when
running the genetic algorithm, we impose a random
ordering on the population through the random fitness
function and select traps according to this random or-
dering. Thus, we do not expect the random fitness
function to exhibit either order or alignment.

3.4.2 BINARY DISTANCE (HAMMING)
FITNESS

Let t ∈X be a uniformly sampled random trap, and let
it serve as our target trap. The binary distance fitness
function returns a number indicating how “close” a
given trap to the target trap t.

For any trap x ∈ X , we define the binary distance
fitness to be

d(x) =
#diff

#total
,

where #diff is the number of differences in the tiles
between x and t, and #total is the maximum number
possible differences; this value is 12−3 = 9 as, it ex-
cludes the three fixed cells—door, floor, and food—
in the middle column of every trap. Thus, this fitness
function will quantify how close x is to t, thereby giv-
ing it local neighborhood structure and order. How-
ever, this measure does not give us any meaningful in-
formation about the coherence or lethality of the trap.
Hence, this fitness function is not aligned.

3.4.3 FUNCTIONAL FITNESS (LETHALITY)

For any trap x∈ X , we define the functional fitness by

f (x) =
Pkill(x)
Pmax

,

which is the normalized probability that the trap x will
kill the gopher. Pkill(x) is the (non-normalized) prob-
ability that the trap x will kill the entering gopher, and



Pmax is the maximum probability of a gopher dying.
We calculate these values analytically (as detailed in
Appendix A).

Our fitness function f (x) evaluates the functional-
ity of traps in terms of killing gophers. Since it gives
higher values to lethal traps and similar traps often
have similar lethality, this fitness function has both
order and alignment.

3.4.4 COHERENT FITNESS

Following Hom et al., for any trap x ∈ X , we define
the coherent fitness function as

g(x) =
cx

tx
,

where cx is the total number of coherent con-
nections and tx is the number of nonempty
cells [Hom et al., 2021]. Since g(x) gives higher val-
ues to coherent traps and similar traps have similar co-
herence, this fitness function has both alignment and
order, as well.

3.4.5 MULTIOBJECTIVE FITNESS

For clarification, we will define two different fitness
functions in this section. Both of them aim to priori-
tize traps that are both lethal and coherent, penalizing
large gaps between coherence and lethality values (so
that the process does not merely optimize for lethality
at the expense of coherence, for example).

We define a global multiobjective fitness function
h : X → R which takes a trap as an input and out-
puts a fitness value representing both coherence and
lethality of the trap. This fitness function is similar
to functional and coherence fitness functions, but it
is not efficient enough when optimizing multiple ob-
jectives. Therefore, we implement an additional local
multiobjective fitness function, ϕ : X n → Rn, where
n ∈ N is the population size. The function takes in
a population of traps and outputs a fitness value for
each, effectively imposing a partial ordering on the
current population. The local multiobjective fitness
function only provides relative ranks of traps within
a generation; the same trap can be assigned different
fitness values in different generations, making it dif-
ficult to compare traps across generations, which was
necessary for our analysis.

Therefore, we use the global multiobjective fitness
value of each trap for record-keeping and analysis,
and use the local multiobjective fitness function for
selection within the genetic algorithm, for efficiency.
We describe both fitness functions in detail next.

Local Multiobjective Fitness We begin by defin-
ing a notion of dominance among traps. Trap A dom-
inates trap B if trap A has both a greater functional
fitness and a greater coherent fitness than trap B.

Our local multiobjective fitness function is defined
as follows. Each trap in the population is given a base
score, which is equal to one more than the number of
traps it dominates. Next, to disincentivize sampling
traps that are too similar to each other, we compute the
point-wise Euclidean distance between each trap and
its closest neighbor of the same base score. If there
is only one trap of a particular base score, then the
distance is defined to be

√
2 (the maximum possible

distance between two traps). The point-wise distance
for each trap is divided by

√
2 and added to its base

score to determine its boosted score. Each boosted
score is then divided by the maximum boosted score
across the population, leaving the most fit trap with a
fitness value of 1. This set of boosted scores—which
is contained in the interval (0,1]—is then returned.

This function is a variation of a standard
method for multiobjective evolutionary optimization
[Fonseca et al., 1993]. The number of other traps a
particular trap dominates is a good measure of over-
all fitness, as traps with either a greater functional or
coherent fitness are likely to dominate more traps. By
boosting each trap’s score by an amount proportional
to its distance from the nearest neighbor of the same
base score, the genetic algorithm is disincentivized
from sampling traps that are too similar to each other.
This should not only help the genetic algorithm reach
a fitness threshold more quickly, but encourage popu-
lations to become diverse.

Global Multiobjective Fitness For any trap x ∈ X ,
we define the global multiobjective fitness to be

h′(x) =
f (x)+g(x)
e2| f (x)−g(x)| ,

where f (x) and g(x) are the functional and coherent
fitness values of x, respectively. We sought to mini-
mize the difference between f (x) and g(x) in the final
generated trap, so we introduced another penalty to
disincentivize solely optimizing coherence or lethal-
ity alone (which could lead to large gaps between the
functional and coherent fitness values):

h(x) =

{
h′(x) | f (x)−g(x)| ≤ kdiff,

1
10kdiff

h′(x) | f (x)−g(x)|> kdiff,

where kdiff is some constant we defined. Further-
more, since this fitness function assigns higher values
to traps that are both lethal and coherent, it also has
both order and alignment.



4 EXPERIMENTAL SETUP

The general framework for our experiments consists
of generating a trap using our genetic algorithm, then
assessing the trap to determine what expected propor-
tion of gophers would die when entering it.

To generate a single satisfactory trap—a trap opti-
mized for either random fitness, hamming fitness, co-
herence fitness, functional fitness, or multiobjective
fitness—we create an initial population of size 20 and
run the genetic algorithm with its corresponding fit-
ness function for 10,000 generations. Then, we out-
put the trap with the highest fitness value among all
200,000 traps. We repeated this process 1,000 times
for each fitness function, performing 1,000 indepen-
dent trials and thus generating 1,000 optimized traps
for each.

Additionally, in order to compare our experiments
to some baseline distribution, we randomly gener-
ate the same number of traps uniformly at random.
We also use the designed trap’s given by Hom et
al. as a control for highly coherent and lethal traps
[Hom et al., 2021].

5 RESULTS

5.1 Proportion Vectors

First, we show the coherence and lethality distribu-
tions of traps generated by genetic algorithms with
different fitness functions. Figure 6 depicts the pro-
portion of traps at given lethality/coherence levels,
separated by each method used to generate the traps.

Analyzing these vectors, we notice that the ran-
dom, uniform, and binary distance methods give iden-
tical proportion vectors with respect to both lethal-
ity and coherence. This suggests two things; first,
that uniform random sampling of traps is as effective
as using a genetic algorithm equipped with a fitness
function that randomly assigns each trap its fitness
value. Second, it suggests that simply having order in
a fitness function is not sufficient to improve the prob-
ability of success (contrary to [Häggström, 2007]):
fitness functions must also have intentional align-
ment, which leads the genetic algorithm towards a
target set of interest. Since the binary distance fitness
function chooses a random target trap and tries to gen-
erate similar traps, we can see that this fitness func-
tion has sufficient order, but it does not align with the
problem of optimizing for coherence and/or lethality.
In other words, genetic algorithms with random, uni-
form random, and binary distance fitness functions
only perform as well as uniform random sampling in

terms of generating coherent and/or lethal traps, due
to their lack of correct alignment. More simply, we
must embed some selection bias towards the target set
into our fitness function to get improved results. It is
not sufficient to simply have order.

Next, note that the lethality fitness function is not
aligned with the coherence fitness function and vice
versa. More specifically, the coherence proportion
vector in Fig. 6a is highly similar to the uniform ran-
dom proportion vector when we optimize for lethality.
This is due to a mismatch in alignment. The intersec-
tion of the coherence and lethality target sets is too
small, so when we optimize for coherent traps, we do
not necessarily get lethal traps as well. The same rea-
soning explains why the lethality proportion vector in
Fig. 6b is highly similar to the uniform random pro-
portion vector when we optimize for coherence.

Moreover, notice that a large proportion of traps
reached maximum lethality in both the functional and
multiobjective experiments in Fig. 6a. While this
makes sense (since these fitness functions were meant
to optimize for lethality), notice the same cannot be
said for coherence in Fig. 6b, whose maximum value
(of sufficient magnitude such that it does not appear
white on the color bar) is 0.556. Thus, in 10,000
generations we have seen that at least ∼40% of traps
had maximum lethality when optimizing for lethal-
ity, while only ∼10% of traps had coherence of 0.556
when optimizing for coherence. This discrepancy
suggests that it is much easier to create lethal traps
than it is to create coherent traps. It is important to
note that the proportion of traps varies greatly. While
it appears there are no traps with coherence greater
than 0.556, there are, but not in significant enough
quantities to show up in Figure 6b.

Additionally, notice that for uniform-random sam-
pling, there were traps sampled with lethality 0.215,
0.430, and 0.645. These all correspond to simple,
functional traps such as those shown in Figure 7.

Finally, we can notice that the human designed
traps of Hom et al. are starkly different from any traps
generated by our programs. Their traps were created
to simply zap gophers in a broad variety of ways; they
were not intentionally optimized for coherence nor for
perfect lethality, but optimized for diverse functional-
ity. However, we see that every designed trap had a
coherence of 1, and its lethality was essentially ran-
domly distributed. Thus, we can confirm that the form
of a trap is a good indicator of intended construction.
It is also important to note that, as far as we are aware,
the human-designed traps of Hom et al. were not in-
tentionally designed to be highly coherent. Instead,
they were made to test all types of traps, as shown
by the uniform probability distribution for lethality in
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Figure 6: Heat map showing the proportion of traps with a given lethality / coherence, split by the parameter which the genetic
algorithm was optimizing for (and designed traps).

Figure 7: Four simple traps of lethality 0, 0.215, 0.430, and 0.645, respectively.

Figure 6a. This unintended coherence could simply
be attributed to the fact that humans have an innate
sense of structure. However, this affinity for structure
is challenging to imitate in silico, as shown by the
lack of coherent traps generated by our algorithms,
even when trying to optimize for coherence directly.

5.2 Time to Optimal Trap

Figure 8 shows when an optimal trap was found for
each trial. The functional fitness function seems to
find its optimal trap in roughly 100 generations. This
makes sense, since we have already seen that it is not
very hard to get a maximally lethal trap; all that is
needed are two angled, thick arrows on either side of
the door. Additionally, its interquartile range is ex-
tremely small (as shown by the outliers proximity to
the box) which provides further evidence of the ease
of finding a maximally lethal trap.

The coherence and multiobjective fitness func-
tions are more interesting. They both have similar
(essentially the same) distributions, with medians at
roughly 3,000 generations (where the coherence dis-
tribution is slightly higher), and ranges spanning the

whole x-axis. The interquartile range is higher for the
multiobjective function.

Figure 9a shows the average optimal fitness across
all generations. This is calculated as follows: take a
generation i in all 10,000 generations. We then take
the best observed fitness up to generation i for each
trial, and then average them across all 1,000 trials.
This gives us monotonically increasing averages for
all three functions. For the functional fitness function,
we notice that the curve approximates a step function.
This makes sense, since we know that the functional
experiments quickly converge to 1.0. The lack in vis-
ibility of the confidence intervals is due to low vari-
ance in the outcomes. Notice, however, that the co-
herence and multiobjective curves converge at a much
slower rate. This is due to the increased difficulty in
finding coherence. Additionally, we note that these
values seem to approach roughly 0.75 and 0.6 respec-
tively, which indicate that these are the highest fitness
values we found (on average). Finally, notice how the
change in the slope drastically falls off after genera-
tion 4,000. This is due to the fact that most of the
experiments have converged, and there are few traps
with higher fitness left for the algorithm to find.
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Figure 8: Boxplot showing the distribution of when the optimal trap was found across all generations.
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(a) Line plot showing the cumulative average optimal fit-
ness across all trials over generations. The shaded region
represents the 95% confidence interval.
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(b) Line plot showing the average fitness across all tri-
als over generations. The (imperceptible) shaded region
again represents the 95% confidence interval.

Figure 9: Line plots showing the trends of average fitness over generations

On the other hand, Figure 9b shows the average
population fitness across trials at a given generation,
for all generations. Unlike the previous graph, this
was made by taking a given generation of the algo-
rithm and averaging all the fitnesses across the 1,000
trials (instead of the optimal cumulative fitness). We
only plot generations 0-500 since there are no notable
deviations from the observed trend. As we can see,
the average fitness across all trials seems to plateau
for each fitness function. While this makes sense for
the functional fitness function (since it arrives at its
max value the fastest), we notice that the average fit-
ness for coherence and multiobjective plateau at com-
paratively low fitness values of 0.25 and 0.1 respec-
tively. This is surprising, since our genetic algorithm
is equipped to generate coherent structures; we ex-
pected the average fitness across generations to gen-

erally increase in the absence of finding the optimal
solution.

Finally, notice that there is a peak in the multiob-
jective curve. We believe this is due to the algorithm
ceasing to optimize for primarily lethal traps and in-
stead optimize for coherently lethal traps. In this
event, the algorithm would have to sacrifice lethality
in favor of coherence and lethality, which decreases
the overall fitness.

5.3 Frequency Density Heatmaps

Figures 10a - 10c show the log proportion of traps
with a given lethality and coherence value. Note that
all traps generated across the 10,000 generations of
the genetic algorithm are included in this dataset.

We can observe some shared trends in these
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(a) Random.
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(b) Uniform-random.
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(c) Binary Distance.
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(d) Functional.
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(e) Coherence.
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(f) Multiobjective.
Figure 10: Heatmaps representing the log proportion of traps with a given lethality and coherence value separated by opti-
mization parameter.



heatmaps; first, notice that the most common lethality
values are 0, 0.215, 0.430, and 0.645. These all corre-
spond to simple, functional traps such as the examples
given in Figure 7.

Since these traps are quite simple, we observe that
it is not too difficult for the algorithm to generate
lethal traps. To see this more clearly, consider the
coherence values below 0.222 (which corresponds to
having at most one coherent connection) among all
graphs. As is evident, there are only four possible
lethality values among these coherences, since any
coherence value below 0.222 indicates there is at most
one functional arrow. Thus, we can see that lethal
traps also provide a baseline coherence, since the only
way a trap can be lethal is if it is built upon coherent
connections. An absolute lack of coherence implies a
lack of functionality.

Studying Figures 10a - 10c more closely, we can
see that these heatmaps look roughly the same. Thus,
this supports the idea that the random fitness func-
tion, uniform-random sampling, and the binary dis-
tance function all generate results of similar quality
(as evidenced by the way they sample the same space
during the genetic algorithm process). More specifi-
cally, the random and binary distance functions seem
to be as good as uniform random sampling, and they
cannot reliably produce coherent or lethal traps.

Finally, studying Figures 10d - 10f, we see that
the multiobjective heatmap shares characteristics with
both the functional and coherent heatmaps. More
specifically, we see that the multiobjective heat map
resembles the functional heatmap closely, except that
it shifts some frequency mass towards higher coher-
ence traps. This is evidence that the multiobjective
heatmap was successfully creating coherent and func-
tional traps, however it does not seem to be able to
reliably create highly functional and coherent traps.

6 DISCUSSION

We can see how the complexity of generating co-
herent traps factored into the multiobjective function.
While the multiobjective frequencies in Figure 10f re-
semble aspects of both the lethality and coherence fre-
quency plots, it is much further skewed towards the
lethality frequency plot. This is due to the fact that
our genetic algorithm could much more easily opti-
mize for lethality than coherence. We generally see
highly lethal traps within 200 generations. Observing
these lethality-optimized traps, it is apparent that the
genetic algorithm almost always produces traps with
the simplest form of lethality: arrows attached to the
side of the door. For these traps, a baseline level of co-

herence is guaranteed as they have two coherent con-
nections to the door. However, it is difficult to gener-
ate traps with just these two arrows. Instead, most of
these functional traps have additional, non-functional
tiles that decrease their coherence.

While lethality-optimized traps usually reach
maximum lethality within 200 generations, the
coherence-optimized traps do not reach their maxi-
mum until ∼2,500 generations. We can attribute this
difference to the lack of a short-cut to coherence;
while we can generate extremely simple but func-
tional traps by attaching arrows to the door, coherent
traps by nature require coordination.

This may also suggest that there are more func-
tional traps than coherent traps. We can verify
this through simple calculations and sampling exper-
iments. Among all possible traps, there are at least
917 ≈ 2.288× 1013 traps with lethality 1, even if we
only consider traps with two wide arrows directly at-
tached to the door, pointing at the middle column.
However, there are only 26,733 traps with coherence
1. Moreover, according our sampling of one mil-
lion uniform random traps, 2.27% of the traps have
lethality values greater than or equal to 0.5, but only
0.0037% of the traps have coherence values greater to
equal to 0.5.

Also note that the coherence of a trap is solely de-
termined by the connectedness of the wires, which
is a property that is not preserved under mutation
and recombination. On the other hand, many traps
can have arrows in the first cell adjacent to the door,
so mutations and recombinations do not affect these
traps as much. Hence, as single, stepwise changes
may reduce, rather than improve fitness, improve-
ments in trap coherence may require multiple, coor-
dinated changes in trap cells. Therefore, modifying
the genetic algorithm to allow coordinated mutations
and recombination may be a possible method to over-
come the current barriers to achieving high coherence
levels.

7 CONCLUSIONS

How strong is the link between coherence and lethal-
ity, representing structure and function? Since lethal
traps require at least one coherent connection, where
there is a lack of coherence, there is a correspond-
ing lack of lethality. However, it’s important to note
that even though high lethality guarantees a base-
line coherence (≥ 0.222) when producing lethality-
optimized traps, the genetic algorithm does not gen-
erate high coherence as a side-product. Similarly,
coherence alone does not beget lethality, but it may



boost the probability of finding firing traps. So the
relationship, while present, is weak.

As we can see in Figure 6b, the designed traps
all have a coherence of 1, whereas the genetic al-
gorithm was not able to reliably achieve coherence
levels above 0.556 when optimizing for coherence.
These findings suggest that contingent coherence re-
mains a plausible sign of intentional construction, as
optimizing trap coherence is effortless for human de-
signers. This supports Hom et al.’s use of trap co-
herence as an indicator of intentional design in their
original experiment.

Our genetic algorithms were able to generate cer-
tain types of traps well. Specifically, they were ef-
ficient in generating highly functional traps, produc-
ing maximally lethal traps in a reasonably small num-
ber of generations. Coherent traps, however, were
much more difficult to produce. The genetic algo-
rithms struggled to produce traps with high levels of
coherence, even when optimizing for coherence di-
rectly. Optimizing for both lethality and coherence
proved even more difficult. Most of the traps gener-
ated had high lethality but relatively low coherence.

To reliably generate traps with high coherence
and/or lethality using genetic algorithms, both order
and correct alignment of fitness functions were es-
sential. First, our fitness functions required order,
with neighborhood constraints on the elements of the
search space, allowing a genetic algorithm to perform
a meaningful local search. However, order in the fit-
ness functions was not enough, as was evident in the
failure of the binary distance fitness function. To gen-
erate traps with specific characteristics (e.g., coher-
ence), the fitness functions also needed to be correctly
aligned with a specific target set. In other words, op-
timizing for lethality did not reliably produce coher-
ence, and vice versa. Only when we designed a fitness
function that was intelligently aligned to a specific
goal was the genetic algorithm able to successfully
produce traps with either the structural or functional
characteristics sought.
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APPENDIX

A Calculating Pkill(x) and Pmax

We take a trap and find all possible arrows that fire
(of which there are at most two). Then, we determine
the time, given by t1, t2, and position, given by r1,r2,
that these arrows hit the middle cells. These values
indicate possible gopher collision points.

Next, we calculate the position of the gopher,
pos(t), at a given time t analytically, which depends
on the gopher’s skittishness and the time it takes a go-
pher to eat. The skittishness of a gopher is represented
by the gopher’s departure from the cell as soon as an
arrow is fired (regardless of whether or not the gopher
is hit). The eating time teat for a gopher is defined by
the probability vector

p⃗ = [p1, p2, p3, p4, p5],

where, p j is the probability that a gopher eats for j
frames.

Using t1, t2, and teat, we can determine the position
of a gopher at time t. First, we define the time at which
the gopher starts to leave, to be

tleave = min(t1, t2, teat +3).

Note that we use teat + 3 to represent the maximum
number of frames for the gopher to turn back in the

absence of arrows; it takes 3 frames to arrive at the
food and teat frames to eat the food.

Finally, we can define the position of the gopher
to be

pos(t) =

{
min(t,3) t ≤ tleave,

min(tleave,3)− (t− tleave) t > tleave.

After defining pos(t), we can see that a gopher is
hit if pos(t1) = r1 or pos(t2) = r2. Let

hi =

{
1 pos(ti) = ri

0 pos(ti) ̸= ri.

Hence, the probability that a gopher survives arrow i
after eating for teat = j frames is

Psurvive, i, j(x) = 1−hiPk,i,

where Pk,i is the probability of arrow i killing the go-
pher on a successful hit (dependent on the thickness
of arrow i).

Furthermore, we define the probability of surviv-
ing a trap given that the gopher eats for j frames to
be

Psurvive, j = Psurvive, 1, j ·Psurvive, 2, j,

which implies that

Pkill, j = 1−Psurvive, j = 1−Psurvive, 1, j ·Psurvive, 2, j.

Notice that the probability of surviving a trap is de-
pendent on the t1, t2,r1,r2, and teat, however we ex-
clude these from the expression for the reader’s con-
venience.

Finally, we must take into account teat since this
determines tleave. We do so using the probability dis-
tribution, p⃗, defined above to compute the weighted
sum

Pkill =
5

∑
i=1

Pkill, i · pi.

Using this framework, we can see that the maxi-
mum probability of a gopher dying is

Pmax = 1−P2
k, w,

where Pk,w is probability of a wide arrow killing a go-
pher on a successful hit.

Code Repository The code used for exper-
iments and visualizations, as well as the data
our experiments generated, can be found at
(https://github.com/AMISTAD-lab/gopher-grounds-
source).

https://github.com/AMISTAD-lab/gopher-grounds-source
https://github.com/AMISTAD-lab/gopher-grounds-source

