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Abstract—According to the No Free Lunch theorems for
search, when uniformly averaged over all possible search func-
tions, every search algorithm has identical search performance
for a wide variety of common performance metrics [1], [2], [3],
[4]. Differences in performance can arise, however, between two
algorithms when performance is measured over non-closed under
permutation sets of functions, such as sets consisting of a single
function. Using uniform random sampling with replacement
as a baseline, we ask how many functions exist such that a
search algorithm has better expected performance than random
sampling. We define favorable functions as those that allow an
algorithm to locate a search target with higher probability than
uniform random sampling with replacement, and we bound the
proportion of favorable functions for stochastic search methods,
including genetic algorithms. Using active information [5] as our
divergence measure, we demonstrate that no more than 2−b of
all functions are favorable by b or more bits, for b ≥ 2 and
reasonably sized search spaces (n ≥ 19). Thus, the proportion of
functions for which an algorithm performs relatively well by a
moderate degree is strictly bounded. Our results can be viewed as
statement of information conservation [6], [7], [1], [8], [5], since
identifying a favorable function of b or more bits requires at least
b bits of information, under the conditions given.

I. INTRODUCTION

Over the past three decades, research into conservation
of information laws [6], [7], [9], [1], [8], [5], including the
No Free Lunch theorems [1], [4], have helped illuminate
fundamental constraints on algorithmic search and super-
vised machine learning. Early work in supervised learning by
Mitchell [6] demonstrated that unbiased learners, namely those
that could represent and learn any target function, were useless
and could be no more accurate at predicting target labels than
random guessing. Thus, biases were necessary for successful
inductive learning. Schaffer later proposed a conservation law
for generalization performance [7], demonstrating that when
generalization performance was summed over all possible tar-
get concepts, every algorithm performed equally well. Wolpert
and Macready extended these results in supervised learning [4]
and to search and optimization [1]. Wolpert’s extension of the
No Free Lunch theorem for supervised learning demonstrated
that not only were biases necessary for learning (agreeing
with Mitchell [6]), but biases also needed to be correct,
namely, consisting of assumptions that aligned with the actual
distribution of target functions in the problem domain via a
non-Euclidean inner product between two vectors, one rep-
resenting the distribution of problems in the real world and
the other representing the inductive bias of the learner [4].
Other researchers such as Culberson [2], Schumacher et al. [3],
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Fig. 1. Mapping a configuration space to a target function. Elements from
the configuration space Ω are evaluated according to some metric (such as
binding affinity) and the numerical evaluations are thresholded to produce the
final target function, a binary string of length |Ω|, where ones in the string
indicate that those elements ω ∈ Ω are in the target.

Whitley [10], Droste et al. [11], English [12], [8], and Dembski
et al. [5] have continued this line of inquiry, proving additional
results concerning conservation of information in algorithmic
processes. We extend these results by demonstrating a con-
servation of information result for the proportion of favorable
functions in stochastic search.

A. Search Problem

We consider a common search problem, where a config-
uration space Ω is searched to find some element that meets
or exceeds a given threshold, such as searching protein space
to find a configuration that catalyzes a specific reaction with
some desired alacrity [13], [14] or binds to a target site with
sufficient strength [15], [16]. Once an evaluation metric and
threshold are chosen, this action partitions the configuration
space into two sets, namely, those that satisfy the threshold
under the evaluation metric and those that do not. We can
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represent this partitioning as a binary string [8] of length |Ω|,
which we denote as a target function. The search problem
becomes one of sampling the configuration space to locate an
element such that it is mapped to a one in the target function,
i.e., it is contained in the target set. Figure 1 illustrates the
mapping from a configuration space to a target function.

In this problem setting, an algorithm must locate some
element of a target set and there is, as a result, a natural equiv-
alence between target sets and target functions. Specifically,
the ones of the target function correspond to target elements
and the zeros correspond to elements not within the target set.
We define favorable functions as those which allow a search
algorithm to locate an element of the target set with higher
expected per-query probability than uniform random sampling
with replacement. Our analysis makes use of the equivalence
between target sets and target functions to prove results in
terms of target sets, and later restate the results in terms of
target functions. Thus, both terms are used interchangeably in
this study.

B. Choosing Target Functions for a Fixed Search Algorithm

Previous research [17] has examined the information costs
for selecting a search algorithm that satisfies a minimum
performance threshold given a fixed target function and search
space, and found these costs to meet or exceed the amount
of information gained by using such an algorithm. Here we
consider the related case of identifying what proportion of pos-
sible target functions allow a fixed algorithm to satisfy a given
performance threshold. More concretely, given a fixed search
algorithm, how many target functions allow the algorithm to
locate an element in the target set with probability greater
than or equal to that of uniform random sampling? Our results
indicate that locating a target function for which the search
algorithm succeeds with relatively high probability (namely,
a function that effectively reduces the search space by b bits,
with b ≥ 2) requires at least b bits of information. Hence,
information is conserved in target choice, for b ≥ 2. Unless
one can (correctly) bias the space of possible target functions
in favor of the algorithm in question, then searching the space
of target functions for a good function remains a provably
difficult problem; finding an appropriate target function for a
fixed algorithm is as hard as finding a good algorithm for a
fixed target function. Generating b bits of active information
in either case requires b bits of information, whether selecting
a target set or search algorithm.

The No Free Lunch theorems stipulate that, uniformly av-
eraged over any closed under permutation set of functions, no
algorithm has better average performance than uniform random
sampling [3]. Assuming one has a set of target functions
not closed under permutation, thus allowing for performance
differences among algorithms, the next obvious question to
ask is: how many functions, at most, are a “good fit” for a
given algorithm? More precisely, given this algorithm, what
proportion of target functions are favorable? That question
motivates the present study and we find that this proportion
is strictly bounded, being inversely related to the degree of
favorability.

In addition, we also investigate the maximum amount of
(active) information that can be produced by a fixed search

algorithm when the search agent is given the freedom to choose
a target function favorably suited to their specific algorithm.

II. ACTIVE INFORMATION

Active information [5] is a method of quantifying im-
provement in a search over a baseline search method, such
as uniform random sampling with replacement. We use this
divergence measure since it allows us to quantify gains in
search performance in terms of information (bits). This, in turn,
allows us to characterize precisely the proportion of favorable
functions in a space of possible functions in relation to the
number b bits desired.

Following Dembski et al. [5], let p be the probability of
success for a single query taken uniformly at random over
search space Ω, where success is defined as selecting an ele-
ment from Ω belonging to a target set T , and let q represent the
(usually unknown) expected per-query probability of success
for some search algorithm under the same problem setting. The
endogenous information is then defined as IΩ = − log2(p),
which represents the difficulty of the original search problem,
in bits. It can be thought of as the difficulty, under uniform
random sampling, of selecting one particular binary string from
a search space of all binary strings of length − log2(p). The
active information I+ is defined as [5]

I+ = − log2

(
p

q

)
. (1)

Active information measures the difference of performance
in bits, providing a geometric interpretation of effectively
reducing (or increasing) the size of the underlying search
space, as illustrated in Figure 2. For a concrete example,
consider the search for a single, particular 16 bit binary string
within the space of all 16 bit strings. This search has a baseline
uniform random sampling probability of success p = 1

216 for
a single query. Assume an improved search method exists that
raises the probability of success to q = 16

216 . The resulting
active information, I+ = 4 bits, represents the reduction in
the size of the search problem: the probability of success q is
equivalent to the probability of drawing uniformly at random
a specific 12 bit string from the space of all 12 bit binary
strings. The 4 bits of active information reduce the original 16
bit search problem to an equivalent 12 bit search problem.

Given the definition of active information, we briefly
consider a difficulty that can arise when using such a measure.
When considering a probability of success q = 0, the active
information becomes undefined (due to division by zero, or
by taking I+ = log2( qp ), becomes −∞). In this paper, we
limit consideration to algorithms with probability of success
q > 0. This presents no loss of generality for search algorithms
with uniformly randomly sampled initial populations, since
uniformly sampling to create an initial population will produce
a nonzero probability of locating any element in a target set.

III. BOUNDING ACTIVE INFORMATION

We proceed towards our goal of bounding the propor-
tion of favorable functions for a search algorithm by first
considering bounds on the amount of active information that
can be produced by a search algorithm on a given function.
The present study will use genetic algorithms as an ongoing
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Fig. 2. Geometric interpretation of active information. Positive active
information results in an improved search that is equivalent to performing
uniform random sampling on a smaller search space (top-right), for a target
(denoted by T ) of the same size. Negative active information has the opposite
effect, enlarging the effective search space (bottom-right).

example, but the bounds derived apply to a richer variety
of search algorithms. We, therefore, begin our discussion of
active information bounds by considering a general black-box
search algorithm that chooses a probability distribution over
the search space Ω at time t and uses it to select elements for
evaluation. Using the definition provided in [18], a black-box
algorithm is defined as follows:

Definition 1. (Black-Box Algorithm)

1) Choose some probability distribution π on {0, 1}n
and produce a random search point x1 ∈ Ω according
to π. Compute f(x1), where f is the fitness evalua-
tion function.

2) In step t, stop if the considered stopping crite-
rion is fulfilled. Otherwise, depending on I(t) =
(x1, f(x1), . . . , xt−1, f(xt−1)), choose some proba-
bility distribution πI(t) on Ω and produce a random
search point xt ∈ Ω according to πI(t). Compute
f(xt).

Since this definition is sufficiently general it applies to
genetic algorithms in particular, if we consider each individual
of the population a queried point and allow the fitness map
to serve as the fitness evaluation function. Thus, any optimal
bounds derived for general black-box algorithms also hold for
typical genetic algorithms.

A. Optimal Black-Box Search

Let us consider a single search for elements in a target set T
within the search space Ω. Assuming that the initial probability
distribution π acts as an oracle and provides complete target
location information by placing all probability mass on an
element within the target, we can locate an element in T in one
query. This is the best performance possible, since an algorithm
cannot locate the target without sampling at least one point in
Ω.

Given the single-query uniform random sampling probabil-
ity of success equal to p and an assisted probability of success

q = 1, we find that the maximal amount of active information
is

I+max = − log2

(
p

q

)
= − log2

(p
1

)
= IΩ. (2)

Therefore, the maximum active information produced by a
black-box algorithm on a search for elements in Ω is equal to
the endogenous information of the original search. Since this
is the maximum active information achievable by any black-
box search algorithm, this quantity also places an upper bound
on the active information produced by a genetic algorithm.

Intuitively, this bound is expected given the geometric
interpretation of active information. Given an n-bit search
problem, each bit of information provided reduces the search
space size by half. This process can continue until there are
no more elements in the search space, forcing an end to
the halving process. Thus, if there are |Ω| items in a search
space, we can halve the space at most log2 |Ω| times, with
each halving operation providing one bit of active information.
Therefore, we would expect a maximum of log2 |Ω| bits of
active information and find that our bound does indeed match
this quantity.

Having derived the maximum active information achievable
by any black-box search algorithm, we now investigate how
much active information can be achieved through the choice
of target function, holding the search algorithm fixed.

IV. ACTIVE INFORMATION IN TARGET CHOICE

Montañez [19] noted the ability to store information in a
genetic algorithm through selection of a fitness map, much
like information is stored for later transmission in a flash
memory device through the selection of bit patterns. The ge-
netic algorithm search process acts as a noisy communication
channel, selecting a message (fitness map) at one end that
results in another message (population outcome) appearing on
the receiving end with some high probability. Because different
fitness maps result in different population outcomes, one can
select (or design) a fitness map for a particular desired outcome
or target.

We will now determine the effect of holding the algo-
rithm constant while allowing the target set to vary. Doing
so allows us to quantify the amount of active information
that arises from choice of target function in isolation. We
find that up to O(log |Ω|) bits of active information can be
produced through choice of target function alone, given a
fixed algorithm (and fixed fitness map, when considering a
genetic algorithm). In Section V, we will also demonstrate
that selecting a target function producing b or more bits of
active information requires at least b bits of information for
b ≥ 2 and |Ω| ≥ 19, mirroring the results obtained by
Dembski et al. [5] for selection of search algorithms. Overall,
our results demonstrate that choice of target function can act as
an additional source of active information for stochastic search,
but one that requires prior information to exploit effectively.

3021



A. Maximum Active Information in Target Choice

Consider a fixed algorithm that performs a search on space
Ω, such as a genetic algorithm with a fixed fitness map. We
define the endogenous probability of success for a search as
p = |T |

|Ω| , where T denotes a non-empty target set.

From the definition of active information, we see that the
maximum active information occurs when p is minimized and
q is maximized (= 1). The probability p is minimized when
|T | = 1, so we find

I+max
= − log2

(
p

q

)
= − log2

(
1
|Ω|

1

)
= log2 |Ω| (3)

which is the maximum active information produced by any
black-box search algorithm (see previous section) and matches
the boundary case given by Dembski et al. [5]. Therefore,
given a fixed search algorithm, up to log2 |Ω| bits of active
information can be generated during a search on Ω, under the
condition that at least one element ω ∈ Ω is, with probability
1, guaranteed to appear in the output population, allowing us
to set T = {ω} and fulfill the conditions outlined.

These findings indicate a level of freedom available to
programmers when target choice is left open to be be defined
after selection of the search algorithm. Varying the target set by
choosing a target function allows up to log2 |Ω| bits of active
information to be generated by the search algorithm, holding
all other settings unchanged. However, it should be noted that
one often has more freedom to alter search algorithms than to
choose target sets.

V. MAXIMUM NUMBER OF FAVORABLE FUNCTIONS

Having answered the question of how much information
can be gained by suitable choice of target function, we now
turn to our preliminary question, namely, how many favorable
functions can exist for a given search algorithm? Given the
constraints imposed by the No Free Lunch theorems, we
do not expect every function to be favorable for a fixed
search algorithm, since every search algorithm, no matter how
sophisticated or unsophisticated, has a domain of applicability
where it achieves best in-class performance. Although there are
cases when every algorithm has identical performance (and all
algorithms thus achieve “best” performance), there cannot exist
an algorithm that is uniformly dominated by another algorithm
over all functions. At best, it can be dominated for a majority of
functions, but must necessarily dominate the other algorithm
for the remaining functions [20]. Our concern is how many
target functions allow a given search algorithm to dominate
uniform random sampling to a certain extent, measured as b
bits of performance gain. We state our main result in the form
of a theorem.

Theorem 1. For b ≥ 2 and reasonably sized search spaces (of
size n ≥ 19), the number of functions (target sets) providing
b or more bits of active information in a finite set S2 of all
possible fixed-length target functions of size n is less than or
equal to |S2|

2b . The probability of finding any such target set in

S2 under uniform random sampling is, therefore, less than or
equal to 2−b.

Proof: Since there are 2|Ω| subsets possible over Ω, |S2| =
2|Ω|. Let τ denote the set of target sets in S2 that provide b or
more bits of active information. Formally

τ = {T ∈ S2 : I+ ≥ b} (4)

By Lemma 1 (see Appendix), τ is bounded above in size
by set

τ′ =

{
T ∈ S2 : |T | ≤ |Ω|

2b

}
(5)

since any target set providing greater than b bits of active
information must also have a size less than or equal to |Ω|

2b .

Although we restrict ourselves to b ≥ 2, when b = 0
the theorem holds trivially, since |S2|

20 = |S2|. Furthermore,
for b > log2 |Ω| = I+max

, we have that the number of
target sets producing greater than the maximum possible active
information is (by definition) zero. We will examine the case of
|Ω| ≥ 19 and 2 ≤ b ≤ log2 |Ω|, leaving the case of marginal
performance gains (0 < b < 2) or small search space size
(|Ω| < 19) for the Appendix (see Additional Lemmata and
Experiments) and for possible future research.

Since there are exactly
∑b |Ω|

2b
c

k=0

(|Ω|
k

)
unique subsets of Ω

with |Ω|
2b or fewer elements, by application of Lemma 3 (see

Appendix) we find

|τ′|
|S2|

=

∑b |Ω|
2b
c

k=0

(|Ω|
k

)
2|Ω|

≤ 2|Ω|−b

2|Ω|

=
1

2b
. (6)

Rearranging,

|τ′| ≤ |S2|
2b

and since |τ| ≤ |τ′|, we obtain

|τ| ≤ |S2|
2b

. (7)

Thus, we see that if S2 is the set of all possible target
sets on Ω, namely the power set of Ω with size |S2| = 2|Ω|,
the number of target sets producing b or more bits of active
information is less than or equal to |S2|

2b . Therefore, selecting
a target function (uniformly from among the set of possible
target functions) that effectively reduces the size of the search
space by b bits requires at least b bits of information, and
thus information is conserved when b ≥ 2. Furthermore, this
result quantifies a lower bound on the difficulty of finding
an applicable problem domain (i.e., set of target functions for
which an algorithm performs better than random sampling) for
any given search algorithm.
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VI. DISCUSSION

Our results are significant in at least two ways. First, they
demonstrate the power of agents to reduce the effective size
of a search space by carefully matching target function (i.e.,
search problem) to their search algorithm. This process allows
up to O(log |Ω|) bits of active information to be produced
solely through choice of target function, which we saw was
equivalent to effectively reducing the size of the search space.
Thus, even when no other changes can be made concerning
the search algorithm, performance gains over uniform random
sampling may be possible by identification of a favorable
function for that algorithm.

Second, these results answer the natural question that arises
from the No Free Lunch theorems once we learn that not all
functions are favorable: how many, at most, are? We bound
the maximum proportion of favorable functions for any search
algorithm, and find the proportion to be O(2−b) in b. Thus, the
greater the performance gain desired, the fewer functions exist
that produce at least such a performance gain. Furthermore,
these performance gains are necessarily limited to b ≤ log2 |Ω|
bits. For gains b greater than two bits, we find that identifying
a favorable function that meets or exceeds a desired level of
performance gain requires at least b bits of prior information.
For b ≥ 2, information is conserved, whether selecting a search
algorithm for a fixed target function, or selecting a target
function for a fixed search algorithm.

These results have real-world application in industrial and
research settings. For industry, given a search algorithm limited
by resource constraints and other restrictions, performance
gains may be achievable through clever manipulation of evalu-
ation criteria (and thus, target function), allowing the operator
to design a target function that is favorable for their algorithm,
even when other changes to the algorithm cannot be made.
For researchers studying the ability of genetic algorithms to
produce information, care must be taken to not inadvertently
introduce a favorable target function for the algorithm under
study while failing to account for the information introduced
by the researcher’s action in choosing such a target function.
Since choice of target function can introduce up to log2 |Ω|
bits of additional information, scientific rigor demands that
we carefully discriminate between the information introduced
by our own actions and that produced by the algorithm itself.

Although we have discussed the problem in regards to
the number of functions that allow a stochastic search al-
gorithm to perform well, one can also view the problem in
the reverse direction by asking how many functions exist for
which uniform random sampling performs poorly. Phrased in
this manner, Theorem 1 becomes a statement concerning the
diminishing number of sparse target functions and becomes
almost immediately obvious. Thus, our results simultaneously
prove the difficulty of finding a target function for which
the performance of uniform random sampling is significantly
worse than for other types of stochastic search, which agrees
with prior work of English [8], whose research concerning the
behavior of random sampling on the typical function prefigures
the results obtained here.

Finally, one must be careful to point out what these results
do not say. Theorem 1 does not state that given a problem
for which uniform random sampling performs poorly, there is

no more than a 2−b chance that a different search algorithm
will perform better by at least b bits. What it actually says is
closer to: under the size conditions specified, if we select a
target function uniformly at random, there is no more than a
2−b chance that a given search algorithm will perform better
than uniform random sampling by at least b bits. The difference
is subtle, but important. Once we condition on a specific target
function of a given sparseness (i.e. once we know that random
sampling performs poorly on the function in question), we are
asking what is P(Ab | f), the probability that our algorithm A
outperforms random sampling by at least b bits on the target
function f . This is a different probabilistic question than “what
is P(Ab)?” The former question remains a separate, open and
important problem.

VII. CONCLUSION

Given the search task of locating elements in a space that
meet or exceed a given criterion (such as having sufficient
binding affinity), we model this as an equivalent search through
a binary string called a target function. Defining favorable
functions as those which allow an algorithm to locate an
element of the search target with higher expected per-query
probability than uniform random sampling with replacement,
we determined the maximum proportion of favorable functions
for any fixed search algorithm once the level of favorability is
specified. To the author’s knowledge, this is the first explicit
nontrivial bound derived for such a problem setting.

In addition, we found that even with a fixed fitness map and
search algorithm, active information may be generated through
the act of defining a target set (equivalently, choosing a target
function). These results demonstrate that at least two methods
exist for producing active information in a search: defining
a fitness map and defining a target set. When one option is
not available, the other option may be. Since positive active
information is equivalent to an effective reduction in search
problem size, these results point to the ability of agents to
achieve performance gains for fixed algorithms through careful
choice of target function. This agrees with prior research [6],
[4] on the importance of correctly biasing computational
methods to the problem domain, or conversely, choosing a
correct problem domain (i.e. target function) for a specific
computational search method.

Gaining a general understanding of search processes and
leveraging them for human good continues to be a concern for
researchers in fields such as computational intelligence [21],
[22], [23], [24] and machine learning [25], [26], [27]. The work
presented here addresses some theoretical concerns regarding
the propensity of favorable functions for stochastic search, and
provides nontrivial quantitative bounds in positive answer to
the questions raised, which hold uniformly over all search
algorithms within the problem setting outlined.

APPENDIX
ADDITIONAL LEMMATA AND EXPERIMENTS

Lemma 1. Any target set T of search space Ω, T ⊆ Ω, pro-
viding b bits of active information must have a size |T | ≤ |Ω|

2b .

Proof: This follows from the definition of active infor-
mation. Since, under the single-query interpretation of active
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information, p = |T |
|Ω| and 0 ≤ q ≤ 1, we have

b = I+

= − log2

(
p

q

)

= log2

 q
|T |
|Ω|


= log2

(
q|Ω|
|T |

)
|T | = q|Ω|

2b

≤ |Ω|
2b
. (8)

Lemma 2 (Sauer-Shelah Inequality). For d ≤ n,
∑d
j=0

(
n
j

)
≤(

en
d

)d
.

Proof: This proof of the Sauer-Shelah inequality [28] is
reproduced here for completeness.

d∑
j=0

(
n

j

)
≤
(n
d

)d d∑
j=0

(
n

j

)(
d

n

)j
(9)

≤
(n
d

)d n∑
j=0

(
n

j

)(
d

n

)j
(10)

=
(n
d

)d(
1 +

d

n

)n
(11)

≤
(en
d

)d
. (12)

Lemma 3.
∑b n

2b
c

j=0

(
n
j

)
≤ 2n−b for n ≥ 19 and 2 ≤ b ≤

log2 n.

Proof: We seek to prove

b n

2b
c∑

j=0

(
n

j

)
≤ 2n−b. (13)

We present two proofs here, one for the case when 3 ≤
b ≤ log2 n with n ≥ 8, and a second, slightly less detailed
proof that additionally covers the case of 2 ≤ b < 3.

First, note that for b ≥ 3

2b ≤ 2b − 2

so that

b ≤ 2b − b− 2

= 2b − (b+ 2)

= 2b
(

1− b+ 2

2b

)
which implies

b(
1− b+2

2b

) ≤ 2b.

Also note that n = 2log2 n ≥ 2b, for b ≤ log2 n. Thus,

b(
1− b+2

2b

) ≤ n
which implies the following series of inequalities:

b ≤ n
(

1− b+ 2

2b

)
−b ≥ n

(
b+ 2

2b
− 1

)
−b ≥ n

(
b+ 2

2b

)
− n

n ≥ n
(
b+ 2

2b

)
+ b. (14)

We now use inequality (14) and the Sauer-Shelah inequal-
ity [28] to prove our main result.

2n ≥ 2n( b+2

2b
)+b

= 2b2n( b+2

2b
)

= 2b2
n

2b
(b+2)

= 2b
(
2b+2

) n

2b

= 2b
(
222b

) n

2b

> 2b
(
e2b
) n

2b

= 2b
(
en/

( n
2b

)) n

2b

≥ 2b

n

2b∑
j=0

(
n

j

)

≥ 2b
b n

2b
c∑

j=0

(
n

j

)
.

where the penultimate inequality follows from the Sauer-
Shelah inequality.

Thus,

2n ≥ 2b
b n

2b
c∑

j=0

(
n

j

)
and

b n

2b
c∑

j=0

(
n

j

)
≤ 2n−b

proving our result for b ≥ 3.

Second Proof: Let us now consider the case of 2 ≤
b ≤ log2 n. We make use of a previous result in complexity
theory [29], namely

bεnc∑
j=0

(
n

j

)
≤ 2H(ε)n,

where H(ε) = −ε log2 ε − (1 − ε) log2(1 − ε) is the binary
entropy of ε and 0 < ε ≤ 1/2. Let ε = 2−b, allowing us to
use the above result for any b ≥ 1.
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Thus,
b n

2b
c∑

j=0

(
n

j

)
≤ 2H(2−b)n

= 2[− 1

2b
log2

1

2b
−(1− 1

2b
) log2(1− 1

2b
)]n

= 2[ b

2b
−(1− 1

2b
) log2(1− 1

2b
)]n

≤ 2[1− b

2b
]n (15)

≤ 2[1− b
n ]n (16)

≤ 2n−b

where inequality (15) holds when b ≥ 2.79 and inequality (16)
holds when b ≤ log2 n, which implies n ≥ 7.

To prove our result for smaller values of b requires larger
values of n, thus we now make use of the condition that n ≥
19. For 2 ≤ b ≤ 2.79 and n ≥ 19, we have

b ≤ 2.79

< log2 19− 1.41

≤ log2 n− 1.41

which implies

n ≥ 2b+1.41.

Under the conditions of n ≥ 19 and 2 ≤ b ≤ 2.79, we thus
have

b n

2b
c∑

j=0

(
n

j

)
≤ 2[ b

2b
−(1− 1

2b
) log2(1− 1

2b
)]n

≤ 2[1− b

2b+1.41 ]n (17)

≤ 2[1− b
n ]n (18)

≤ 2n−b.

where inequality (17) holds for b ≥ 2 and inequality (18) holds
for b ≤ log2 n− 1.41.

Lemma 4. When n ≥ 100,
∑b n

2b
c

j=0

(
n
j

)
≤ 2n−b for 1.28 ≤ b ≤

log2 n. For n ≥ 500, the bound holds for 1.09 ≤ b ≤ log2 n.

Proof: For b ≤ 2 and any search space of size n ≥ 100,
we have

b ≤ 2

< log2 100− 4.643

≤ log2 n− 4.643

which implies

n ≥ 2b+4.643.

Thus, by the entropy bound used in Lemma 3, we have

b n

2b
c∑

j=0

(
n

j

)
≤ 2[ b

2b
−(1− 1

2b
) log2(1− 1

2b
)]n

≤ 2[1− b

2b+4.643 ]n (19)

≤ 2[1− b
n ]n (20)

≤ 2n−b
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Fig. 3. Numerically identified smallest b values for which bound of Lemma 3
still holds, for 7 ≤ n ≤ 500 and step size of 0.00001. Values are plotted
only for odd n, as for even n the values were roughly 1 in all cases (i.e.
< 1.00001).

where inequality (19) holds for b ≥ 1.28 and inequality (20)
holds when b ≤ log2 n− 4.643, which is true whenever b ≤ 2
and n ≥ 100. By a similar argument, we find that when n ≥
500, the bound interval holds for 1.09 ≤ b ≤ log2 n.

NUMERICALLY TESTING BOUND FOR SMALL b

We have proven Theorem 1 for b ≥ 2 and n ≥ 19, and
have proven results for smaller b that hold when n is large
(see Lemma 4). The question remains open as to how small
one can set b and still have the bound from Lemma 3 hold,
namely

b n

2b
c∑

j=0

(
n

j

)
≤ 2n−b, (21)

without requiring large n. To investigate this, we systematically
tested combinations of b and n values, for n from 7 to 500
and for b from log2 n to 1, using a step size of 0.00001. For
each n, we sought the smallest b for which inequality (21)
remained valid. Empirically, the bound holds for all b ≥ 1.23
tested. Figure 3 plots the minimum b value for which the bound
still holds for every given n. The values rapidly approach 1
and become smaller than the b values of our proven bounds
at n ≥ 25. Thus, the results of Theorem 1 appear to hold for
values as small as n ≥ 7 and b ≥ 1.23, once we combine
our numerical observations with the additional cases proved
in Lemma 4.
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