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Abstract: Recent technical advances in identifying protein-protein interactions (PPIs) have generated the genomic-wide 

interaction data, collectively collectively referred to as the interactome. These interaction data give an insight into the 

underlying mechanisms of biological processes. However, the PPI data determined by experimental and computational 

methods include an extremely large number of false positives which are not confirmed to occur in vivo. Filtering PPI data 

is thus a critical preprocessing step to improve analysis accuracy. Integrating Gene Ontology (GO) data is proposed in this 

article to assess reliability of the PPIs. We evaluate the performance of various semantic similarity measures in terms of 

functional consistency. Protein pairs with high semantic similarity are considered highly likely to share common 

functions, and therefore, are more likely to interact. We also propose a combined method of semantic similarity to apply 

to predicting false positive PPIs. The experimental results show that the combined hybrid method has better performance 

than the individual semantic similarity classifiers. The proposed classifier predicted that 58.6% of the S. cerevisiae PPIs 

from the BioGRID database are false positives. 
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1. INTRODUCTION 

 Proteins interact with each other for biochemical stability 
and functionality, building protein complexes as larger 
functional units. PPIs therefore play a key role in biological 
processes within a cell. Recently, high-throughput 
experimental techniques, such as yeast two-hybrid system 
[1,2,3,4], mass spectrometry [5,6] and synthetic lethality 
screening [7], have made remarkable advances in identifying 
PPIs on a genome-wide scale, collectively referred to as the 
interactome. Since the evidence of interactions provides 
insights into the underlying mechanisms of biological 
processes, the availability of a large amount of PPI data has 
introduced a new paradigm towards functional 
characterization of proteins on a system level [8,9]. 

 Over the past few years, systematic analysis of the 
interactome by theoretical and empirical studies has been in 
the spotlight in the field of bioinformatics [10,11,12]. In 
particular, a wide range of computational approaches have 
been applied to the protein interaction networks for 
functional knowledge discovery, for instance, function 
prediction of uncharacterized genes or proteins [13,14,15], 
functional module detection [16,17,18], and signaling 
pathway identification [19,20]. Although the automated 
methods are scalable and robust, their accuracy is limited 
because of unreliability of interaction data. The PPIs  
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determined by large-scale experimental and computational 
approaches include an extremely large number of false 
positives, i.e., a significantly large fraction of the putative 
interactions detected must be considered spurious because 
they cannot be confirmed to occur in vivo [21,22,23]. 
Filtering PPI data is thus a critical preprocessing step to 
improve analysis accuracy when handling interactome. The 
erroneous interaction data can be curated by other resources 
which are used to judge the level of functional associations 
of interacting protein pairs, such as gene expression profiles 
[24,25]. 

 A recent study [26] has suggested the integration of GO 
data to assess the validity of PPIs through measuring 
semantic similarity of interacting proteins. GO [27] is a 
repository of biological ontologies and annotations of genes 
and gene products. Although the annotation data on GO are 
created by the published evidence resulted from mostly 
unreliable high-throughput experiments, they are frequently 
used as a benchmark for functional characterization because 
of their comprehensive information. 

 Functional similarity between proteins can be quantified 
by semantic similarity, a function that returns a numerical 
value reflecting closeness in meaning between two 
ontological terms annotating the proteins [28]. Since an 
interaction of a protein pair is interpreted as their strong 
functional association, one can measure the reliability of 
protein-protein interactions using semantic similarity: 
proteins with higher semantic similarity are more likely to 
interact with each other than those with low semantic 
similarity. Therefore, absent of true information identifying 
which proteins actually interact, semantic similarity can be 
an indirect indicator of such interactions. 
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 In this article, we assess reliability of PPIs determined 
experimentally and computationally. The performance of 
existing semantic similarity measures is analyzed in terms of 
functional consistency, including the combinations of the 
measures which achieve improved performance over the 
previous methods. These semantic similarity measures are 
applied to identify false positive PPIs in current S. cerevisiae 
PPI databases. The experimental results show that the 
combined hybrid method has better performance than the 
individual semantic similarity classifiers. The proposed 
combined classifier predicted that 58.6% of the S. cerevisiae 
PPIs from the BioGRID database [29] are false positives. 

2. METHODS 

2.1. Gene Ontology (GO) 

 An ontology is a formal way of representing knowledge 
which is described by concepts and their relationships [30]. 
As a collaborative effort to specify bio-ontologies, GO 
addresses the need for consistent descriptions of genes and 
gene products across species [31]. It provides a collection of 
well-defined biological concepts, called GO terms, spanning 
three domains: biological processes, molecular functions and 
cellular components. GO is structured as a Directed Acyclic 
Graph (DAG) by specifying general-to-specific relation-
ships, such as “is-a” and “part-of”, between parent and child 
terms. 

 As another intriguing feature, GO maintains annotations 
for genes and gene products to their most specific GO terms, 
called direct annotations. Because of general-to-specific 
relationships in the ontology structure, a gene that is 
annotated to a specific term is also annotated to all its parent 
terms on the paths towards the root. These are called inferred 
annotations. Considering both direct and inferred annotat-
ions, we can quantify the specificity of a GO term by the 
proportion of the number of annotated genes on the term to 
the total number of annotated genes in the ontology. Suppose 
Gi and Gj are the sets of genes annotated to the GO term ti 
and tj, respectively, and ti is a parent term of tj. The size of 
Gi, | Gi |, is always greater than or equals to | Gj |. 

 Note that a gene can be annotated to multiple GO terms. 
Suppose a gene x is annotated to m different GO terms. Gi(x) 
denotes a set of genes annotated to the GO term ti whose 
annotation includes x, where 1  i  m. In the same way, 
suppose n different GO terms have the annotations including 
both x and y, where n  m. Gj(x,y) denotes a set of genes 
annotated to the GO term Gj whose annotation includes both 
x and y, where 1  j  n. The minimum size of Gi(x), mini | 
Gi(x) |, is then less than or equal to minj | Gj(x,y) |. 

2.2. Semantic Similarity Measures 

 Semantic similarity measures are the functions 
computing the level of similarity in meaning between terms 
within an ontology. A variety of semantic similarity 
measures have been proposed previously [32,33,34]. They 
can be grouped into four broad categories: path length-based 
methods (or called edge-based methods), information 
content-based methods (or called annotation-based 
methods), common term-based methods (or called node-
based methods) and hybrid methods. Path length-based 

methods calculate the path length between terms in an 
ontology as their similarity. Information content-based 
methods use an information-theoretic measure based on the 
notion of term likelihood to assign higher values to terms 
that have higher specificity. Common term-based methods 
consider the number of shared ancestor terms in an ontology 
to assign a similarity value. Hybrid methods incorporate 
aspects of two different categories. The semantic similarity 
measures in these four categories are summarized in Table 1. 

2.2.1. Path Length-Based Methods (Edge-Based Method) 

 Path length-based methods calculate semantic similarity 
by measuring the shortest path length between two terms. 
The path length can be normalized with the maximum depth 
of the ontology, which represents the longest path length out 
of all shortest paths from the root to leaf nodes. 

simpath C1,C2( ) = log
length(C1,C2 )

2 depth
 

where length(C1,C2) is the shortest path length between two 
terms C1 and C2 in an ontology. 

 The semantic similarity is also measured by the depth to 
the most specific common ancestor (SCA) of two terms, i.e. 
the shortest path length from the root to SCA [35]. The 
longer the path length to SCA from two terms is, the more 
similar they are in meaning. Wu and Palmer [36] normalized 
the depth to the SCA by the average depth to the terms. This 
normalized measure is used to adjust the similarity distorted 
through the depths of the terms of interest. 

simWu C1,C2( ) =
2 length(Croot ,Csca )

length(Croot ,Csca )+ length(Croot ,Csca )+ 2

length(Croot ,Csca )

 

where Croot denotes the root term and Csca is the most 
specific common ancestor term of C1 and C2. 

 To compute functional similarity between two proteins, 
we take into consideration semantic similarity between 
pairwise combinations of the terms having direct annotations 
of the proteins. These path length-based methods are 
applicable to the well-balanced ontology in which each edge 
between two terms represents the same quantity of 
specificity. However, according to published results, new 
terms are added resulting in complex relationships between 
terms which lead to inconsistent specificity of edges in GO. 
Therefore, path length-based methods are not suitable for 
measuring semantic similarity from GO. 

2.2.2. Information Content-Based Methods (Annotation-

Based Method) 

 Self-information in Information Theory is a measure of 
the information content associated with the outcome of a 
random variable. The amount of self-information contained 
in a probabilistic event c depends on the probability P(c) of 
the event. More specifically, the smaller the probability of 
the event is, the larger the self-information to be received is 
when the event indeed occurs. The information content of a 
term C in an ontology is then defined as the negative log 
likelihood of C, log P(C). In the application to GO, the 
likelihood of a term P(C) can be calculated by the ratio of 
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the number of annotated genes on the term C to the total 
number of annotated genes in the ontology. 

 The information content-based semantic similarity is 
measured by commonality of two terms, i.e. more common 
information the two terms share, more similar they are. 
Resnik [37] used the information content of the SCA that 
subsumes two terms C1 and C2. 

simRe snik C1,C2( ) = logP(Csca )  

 Lin [38] considered not only commonality but a 
difference between terms by normalizing the Resnik's 
semantic similarity measure with the average of the 
individual information contents of C1 and C2. 

simLin C1,C2( ) =
2 logP(Csca )

logP(C1 )+ logP(C2 )  

 Jiang and Conrath [39] used the differences of 
information contents between C1 and Csca and between C2 
and Csca to measure the semantic distance between C1 and 
C2. 

distJiang C1,C2( ) = 2 logP(Csca ) logP(C1 ) logP(C2 )  

 The semantic similarity between C1 and C2 can then be 
calculated by inversing their semantic similarity. 

simJiang C1,C2( ) =
1

1+ distJiang (C1,C2 )
 

 Note that all methods in the path length-based and 
information content-based categories measure semantic 
similarity between two GO terms. We however aim at 

quantifying functional similarity between two proteins which 
might be annotated to multiple GO terms. We therefore 
apply three different ways of aggregating semantic similarity 
values between pairwise combinations of the terms having 
annotations of the two proteins. Suppose S1 and S2 are the 
sets of GO terms having direct annotations of protein g1 and 
protein g2, respectively. At first, in order to compute 
functional similarity between two proteins g1 and g2, we can 
select the maximum semantic similarity value among all 
similarity values of term pairs from S1 and S2. 

simMAX g1,g2( ) = max
C1 S1,C2 S2

sim(C1,C2 )  

 Next, the average sematic similarity value of all possible 
pairwise combinations of the terms from S1 and S2 can be 

 Finally, by combining the two used as the functional 
similarity of g1 and g2. 

simAVG g1,g2( ) =
1

| S1 | | S2 |
sim(C1,C2 )

C1 S1,C2 S2

 

methods above, the best-match average (BMA) approach 
computes the average of all pairwise best-matches [40]. 

simBMA g1,g2( ) =
max
C2 S2

sim(C1,C2 )
C1 S1

+ max
C1 S1

sim(C1,C2 )
C2 S2

| S1 | + | S2 |  

2.2.3. Common Term-Based Methods (Node-Based 

Method) 

 Common term-based methods calculate semantic 
similarity by measuring the overlap between two sets of 

Table 1. Summary of Semantic Similarity Measures in Four Categories. SCA Denotes the Most Specific Common Ancestor of Two 

Terms of Interest in GO 

 

Category/Method Description 

Path length (edge-based) methods 

 Path length Path length between two terms 

 Normalized path length Normalized path length between two terms with depth of GO 

 Depth to SCA of two terms [35] Depth of SCA of two terms 

 Normalized depth to SCA [36] Normalized depth of SCA with average depth of two terms 

Information content-based methods  

 Resnik [37] Information content of SCA of two terms 

 Lin [38] Normalized Resnik's method by information contents of two terms 

 Jiang and Conrath [39] Sum of differences of information contents between SCA and two terms 

Common terms (node-based) methods 

 Term overlap (TO) [41] The number of common ancestors of two terms 

 NTO [41]  Normalized TO method with the smaller set of ancestors of two terms 

 simUI/DTO [35] Normalized TO method with the union set of ancestors of two terms 

Hybrid methods 

 Wang [42] Combined method of TO with normalized depth 

 IntelliGO [43] Combined method of information content with normalized depth 

 simGIC [44] Combined method of simUI with information contents 
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terms, not between two terms. The methods in this category 
are therefore applied directly to estimating functional 
similarity between two annotating proteins. As a general 
measure of this category, the Term Overlap (TO) method 
counts the GO terms having direct and inferred annotations 
of both protein g1 and protein g2. More common GO terms 
which g1 and g2 are annotated to, higher functional similarity 
they have. Suppose S1 and S2 are the sets of GO terms having 
both direct and inferred annotations of g1 and g2, 
respectively. 

simTO g1,g2( ) =| S1 S2 |  

 This approach can be normalized by the union of the two 
sets of GO terms [35] or by the smaller set of them [41]. 

simUI g1,g2( ) =
| S1 S2 |

| S1 S2 |  

simNTO g1,g2( ) =
| S1 S2 |

min(| S1 |, | S2 |)  

 The Direct Term Overlap (DTO) measure uses the 
formula of simUI (g1, g2) with the sets of GO terms having 
only direct annotations of g1 and g2, instead of S1 and S2, 
respectively. 

2.2.4. Hybrid Methods 

 The approaches from different categories can be 
combined to compute semantic similarity. For example, 
Wang et al. [42] proposed a semantic similarity measure that 
integrates the Normalized Term Overlap (NTO) with the 
concept of the normalized depth to the most specific terms in 
an ontology. IntelliGO [43] is a vector representation model 
that combines the normalized depth with information 
contents as weights. However, as discussed, the path length-
based approaches do not fit in the GO applications because 
of complex relationships between terms. 

 SimGIC [44] integrates the information theoretic 
measures with term overlaps. It calculates the sum of the 
information contents in the intersection of S1 and S2 divided 
by the sum of the information contents in the union of them, 
where S1 and S2 are the sets of GO terms having both direct 
and inferred annotations of g1 and g2. 

simGIC g1,g2( ) =
logP(Ca )Ca S1 S2

logP(Cb )Cb S1 S2

 

where P(C) is the likelihood of the term C, i.e. the ratio of 
the number of annotated genes on the term C to the total 
number of annotated genes in the ontology. 

 As another way of integrating the measures from two 
different categories, we apply a linear combination. For 
example, we can combine the Resnik's information content-
based method with the DTO method in common term-based 
approaches such as 

simLC g1,g2( ) = simRe snik MAX (g1,g2 )+ (1 ) simDTO (g1,g2 )  

where  is a weighting parameter used to assign relative 
weight to the contributions from both similarity measures. 
This linear combination (LC) method takes advantage of two 

orthogonal sources of information: direct annotation term 
information and the information content of the most specific 
common term. By considering two distinct sources of 
information, a more accurate picture of semantic similarity is 
attained. Since the path length-based methods suffer from 
the inconsistency of term specificity represented by each 
edge in GO as discussed previously, we did not choose any 
measure from that category. 

2.3. Classification of PPIs 

 The false positive interactions can be identified by 
evaluating how dissimilar each interacting protein pair is 
semantically. We thus adopt the semantic similarity 
measures discussed in the previous section. The semantic 
similarity scores were then subjected to a variable threshold. 
When the score for an interacting protein pair exceeds the 
threshold, the corresponding PPI is classified as a true 
(positive) interaction. Otherwise, it is classified as a false 
(negative) interaction.  

 In addition to the semantic similarity classifiers, we 
propose an additional ‘voting’ scheme of the combined 
hybrid method, which only outputs a positive classification 
when the Resnik-MAX measure exceeds the threshold and 
the score from DTO is above the median DTO value for the 
data set. Mathematically, this voting classifier is formulated 
as follows: 

C g1,g2( ) = (simRe snik MAX (g1,g2 ) > ) (simDTO (g1,g2 ) > )  

where  is the threshold parameter and  is the median DTO 
semantic similarity score of the data set. The output of 
C(g1,g2) is restricted to the set {0,1} (binary output) due to 
the nature of logical conjunction. This method was 
developed to further reduce the number of identifying false 
PPIs over most threshold values. 

3. EXPERIMENTAL RESULTS 

3.1. Evaluation of Semantic Similarity 

 To compare the performance of the semantic similarity 
measures, we assessed general correlation of semantic 
similarity with functional consistency. We downloaded the 
genome-wide PPI data set of S. cerevisiae from the 
BioGRID database [29] and selected 10,000 interacting 
protein pairs uniformly at random. The semantic similarity 
scores have been calculated for each pair using all methods 
listed in Table 1. 

 As a reference ground-truth data set, we used manually 
curated functional categorizations (FunCat) from the MIPS 
database [45]. Since the functional categories are 
hierarchically distributed, we extracted the functional 
descriptions and their annotations on the third level from the 
root of the hierarchy. We then computed functional 
consistency from the FunCat data by taking the number of 
shared functions for a protein pair divided by the size of the 
union of their function sets (i.e., the jaccard index). Pearson 
correlation is then calculated between each semantic 
similarity score and the functional consistency. 

 Table 2 lists the Pearson correlation results for the tested 
semantic similarity measures. We observed that the 
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combined methods in the hybrid category, such as simGIC 
and LC, achieved higher correlation with the functional 
consistency than the other measures. In particular, the linear 
combination (LC) method of DTO and Resnik-MAX using 
an  weighting of 0.15 shows the best correlation. 

Table 2. Pearson Correlation Results for Semantic Similarity 

Measures with Functional Consistency on MIPS 

Functional Categorizations 

 

Semantic Similarity Measures Pearson Correlation 

Resnik-MAX 0.3774 

Resnik-BMA 0.5286 

Lin-MAX 0.2448 

Lin-BMA 0.5162 

DTO 0.7683 

NTO 0.6726 

simGIC 0.7703 

LC (  = 0.10) 0.7733 

LC (  = 0.15) 0.7742 

LC (  = 0.25) 0.7715 

LC (  = 0.50) 0.7215 

LC (  = 0.75) 0.5815 

 

 Fig. (1) graphically shows the correlation between the 
semantic similarity from various measures and the functional 
consistency. The semantic similarity values for each method 
were binned and the average functional consistency was 
taken for each bin. As can be seen, two hybrid methods, 
simGIC and LC, and a common term-based method, DTO, 
measured the semantic similarity which have strongly 
positive correlations with the functional consistency on the 
MIPS functional categorizations because their plots are close 
to the diagonal line. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Correlation plots between semantic similarity from 

various measures and functional consistency on MIPS 

functional categorizations. Semantic similarity measured by two 

hybrid methods (simGIC and LC) and a common term-based 

method (DTO) has strongly positive correlations with functional 

consistency because their plots are close to the diagonal line. 

 

3.2. Identification of False PPIs 

 The genome-wide PPI data of several model organisms 
are publicly available in a number of open databases, for 
example, BioGRID [29], IntAct [46], MINT [47], MIPS 
[48], STRING [49] and DIP [50]. Because they were mostly 
generated by high-throughput experimental and 
computational methods, we presume that they contain a 
significant number of false positives. To test false positive 
identification, we calculated the semantic similarity using the 
measures discussed previously for 10,000 PPIs randomly 
selected from the BioGRID database. All methods were 
implemented for one hundred different thresholds ranging 
from 0.00 to 0.99. 

 To compare the performance of false positive 
identification, we used as ground-truth any non-empty 
intersection of functions for two interacting proteins within 
the MIPS functional categorizations. When a protein pair 
share at least one functional categorization, they are assumed 
to interact with each other. Accuracy was then calculated as 
the number of correct classifications divided by the total 
number of classifications. 

 Of the 10,000 PPIs assessed, a majority of them (5,554) 
are expected to be false interactions as measured by the 
MIPS ground-truth data set. These interacting protein pairs 
have no shared functional categorizations, and therefore, are 
labeled as negative examples. Table 3 shows the 
classification accuracy for the tested semantic similarity 
classifiers. The most accurate method for PPI classification 
is the LC classifier of DTO and Resnik-MAX measures, 
using an  value of 0.90, which achieves a maximum 
accuracy of 0.82 over the data set. Equally important is the 
area under curve, which gives an indication of how accurate 
the various methods are over all thresholds. The combined 
voting method achieves the largest area under curve, with a 
value of 0.76. In addition to this result, it also achieves the 
second best maximum accuracy, behind the LC classifier 
with  = 0.90 and  = 0.75. The combined hybrid methods 
collectively achieve the best performance on the 
classification task, with the voting method performing well 
for almost all thresholds. 

 Lin's method has the worst performance on the 
classification task, with the lowest maximum accuracy of all 
methods tested. DTO appears to trade good performance 
over many thresholds (area under curve) for maximum 
classification accuracy, as does NTO. The simGIC measure 
achieves fairly good performance, with the second best area 
under curve performance. Since it is also a hybrid method 
combining the information contents with term overlaps, 
similar to the linear combination method that achieves the 
best performance, this provides additional evidence for the 
performance advantages of using common term-based 
methods in combination with information content-based 
methods. 

 Fig. (2) plots the accuracy curves for the LC classifier 
using several different  weighting values. As expected, the 
curves begin similar to DTO when the  value is low, since it 
places more weight on semantic similarity values given by 
the DTO measure. At  = 1.0, the curve is identical to that of  
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Table 3. Classification Accuracy for Semantic Similarity 

Classifiers 

 

Classifier Maximum Accuracy Area Under Curve 

Resnik-MAX 0.8087 0.5348 

Resnik-BMA 0.7671 0.5989 

Lin-MAX 0.6478 0.4970 

Lin-BMA 0.7528 0.5686 

DTO 0.7573 0.6519 

NTO 0.7636 0.6348 

simGIC 0.7892 0.6689 

LC (  = 0.10) 0.7670 0.6393 

LC (  = 0.15) 0.7723 0.6336 

LC (  = 0.25) 0.7810 0.6221 

LC (  = 0.50) 0.8020 0.5932 

LC (  = 0.75) 0.8135 0.5643 

LC (  = 0.90) 0.8163 0.5469 

Voting 0.8114 0.7606 

 

the Resnik-MAX measure. The classifier achieves the 
maximum accuracy over the tested data set when the  
weighting is near 0.9. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Classification accuracy of the linear combination (LC) 

classifier for nine different weighting values of . The LC 

classifier achieves the maximum accuracy over the tested data set 

when the  weighting value is near 0.9. 

 Fig. (3) shows the classification accuracy results for 
DTO, Resnik-MAX and the combined voting classifiers. 
Different from the DTO and Resnik-MAX measures, the 
voting classifier is able to achieve high classification 
accuracy across all threshold values. By forcing both sub-
classifiers to agree on a positive classification, false positives 
are avoided, leading to higher accuracy given the large 
percentage of negatively labeled instances in the data set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Classification accuracy over all thresholds for Resnik-

MAX, DTO and the Combined Voting classifier. Different from 

the DTO and Resnik-MAX measures, the voting classifier is able to 

achieve high classification accuracy across all threshold values. 

3.3. Reliability of PPI Data 

 We extend the classification task to assess the reliability 
of current PPI data. Using the most accurate parameters for 
the LC classifier of DTO and Resnik-MAX measures (  = 
0.90, threshold = 0.88), we classified all S. cerevisiae PPIs in 
the BioGRID database. As a preprocessing step, we excluded 
those that lacked corresponding gene annotations within the 
GO annotation data of S. cerevisiae. This resulted in a total 
of 247,048 interactions, of which 144,677 (58.6%) were 
classified as false positive interactions. 

 The PPIs in the BioGRID database have been determined 
by several different experimental systems. Among the 
experimental systems, Negative Genetic (0.47%) and 
Affinity-Capture-MS (0.15%) were the most prevalent in 
generating false positives. False interactions were most 
likely to result from genetic experiment types (73%) and 
high-throughput methods (90%). Table 4 displays an ordered 
ranking of the experimental systems responsible for the 
majority of false positive data. 

 Using the combined semantic similarity classifier, we are 
able to discover potential false positives existing in PPI data 
repositories and automate the process of filtering PPI data 
sets. Given a high accuracy of classification when calibrated 
against manually curated functional categorization data from 
the MIPS database (roughly 0.82% accuracy), it is likely that 
many of the false positive interactions identified by the 
classifier indeed represent spurious PPIs. Table 5 lists a 
random sampling of twenty negatively classified PPIs having 
a zero semantic similarity value as measured by the 
combined hybrid classifier, which are therefore likely to 
represent false positive interactions. 

4. CONCLUSION 

 PPIs are crucial resources for functional knowledge 
discovery. However, as an innate feature, the PPI data sets  
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Table 4. Experimental System Types and the Proportions of 

False Positives in the S. Cerevisiae PPI Data Set 

 

Experimental System Number of False Positives % of Total 

Negative Genetic 67,723 0.47 

Affinity Capture-MS 21,027 0.15 

Positive Genetic 12,078 0.08 

Synthetic Growth Defect 11,025 0.08 

Synthetic Lethality 6,390 0.04 

Two-hybrid 4,847 0.03 

Biochemical Activity 4,015 0.03 

Affinity Capture-RNA 3,461 0.02 

PCA 2,897 0.02 

Phenotypic Enhancement 2,485 0.02 

Phenotypic Suppression 2,385 0.02 

Affinity Capture-Western 1,578 0.01 

Synthetic Rescue 1,403 0.01 

Dosage Rescue 1,396 0.01 

Others 1,967 0.01 

 

Table 5. Twenty PPIs with Zero Valued Semantic Similarity 

(Likely False PPIs) 

 

Protein A Protein B Experimental System 

YDR124W YOR158W Affinity Capture-MS 

YGL122C YJL107C Affinity Capture-RNA 

YGL122C YML118W Affinity Capture-RNA 

YJR059W YER010C Biochemical Activity 

YNL307C YBR225W Biochemical Activity 

YHR082C YML083C Biochemical Activity 

YMR216C OK/SW-cl.3 Biochemical Activity 

YOL090W YGL081W Negative Genetic 

YEL051W YKL098W Negative Genetic 

YBL015W YDL118W Negative Genetic 

YDL074C YMR206W Negative Genetic 

YHR167W YDR249C Negative Genetic 

YPR078C YDR488C Negative Genetic 

YGR012W YLR053C Negative Genetic 

YDR542W YKL109W Negative Genetic 

YCR091W YJL147C Negative Genetic 

YNL197C YOL036W Negative Genetic 

YOR043W YGR161C Negative Genetic 

YDR388W YJR083C Protein-peptide 

YMR186W YER039C-A Synthetic Growth Defect 

 

include an extremely large number of false positives. Our 
results indicate that more than 50% of current S. cerevisiae 
PPI data are false positives, determined by mostly high-
throughput experimental systems. Identifying the false 
positive interactions is thus a critical preprocessing step for 
accurate analysis of PPIs. The work presented in this article 
focuses on using the ontology structures and annotations 
from GO to automatically prune false positives from the PPI 
data sets. 

 Several semantic similarity methods were assessed for 
their correlation to manually curated MIPS functional 
categorizations. A hybrid method by the linear combination 
was presented that demonstrates performance gains over 
existing methods. This method takes into account both the 
maximum information content of the most specific common 
ancestor as well as the overlap of directly annotated terms in 
the GO for a pair of genes. Although the individual method, 
in isolation, is less accurate for classification, it can improve 
the performance when combined in a majority-vote fashion. 
It was motivated by the idea that two separate low-accuracy 
classifiers can become more accurate when combined in a 
suitable manner. An additional ‘voting’ variant was also 
presented that achieves the best overall classification 
accuracy over a variety of selection thresholds. 
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