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Abstract. Bias, arising from inductive assumptions, is necessary for success-
ful artificial learning, allowing algorithms to generalize beyond training data and
outperform random guessing. We explore how bias relates to algorithm flexibility
(expressivity). Expressive algorithms alter their outputs as training data changes,
allowing them to adapt to changing situations. Using a measure of algorithm flex-
ibility rooted in the information-theoretic concept of entropy, we examine the
trade-off between bias and expressivity, showing that while highly biased algo-
rithms may outperform uniform random sampling, they cannot also be highly
expressive. Conversely, maximally expressive algorithms necessarily have per-
formance no better than uniform random guessing. We establish that necessary
trade-offs exist in trying to design flexible yet strongly performing learning sys-
tems.

Keywords: Machine Learning, Search, Algorithmic Bias, Inductive Bias, En-
tropic Expressivity

1 INTRODUCTION

Assumptions are essential for learning [7, 9, 10]. Unless a learning algorithm is biased
towards certain outcomes, it cannot outperform random guessing [10]. However, biased
algorithms are less flexible; increasing performance comes at a price. Being predisposed
towards some outcomes means being predisposed away from others. The degree to
which an algorithm can respond to data and output a variety of different responses
is its expressivity. We investigate the inherent tension between bias and expressivity
in learning algorithms, presenting a number of theorems which show that the two are
at odds. Flexible and expressive algorithms can change their outcomes in response to
changes in data, but highly flexible algorithms cannot widely deviate in performance
from uniform random sampling. Conversely, highly biased algorithms can be successful
on only a narrow set of problems, limiting their expressivity. Biased algorithms are
specialized and our work explores the costs of this specialization in terms of reduced
flexibility.

We build on existing research in theoretical machine learning viewing machine
learning, AI, and optimization as black-box search processes [8], allowing us to prove
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theorems simultaneously applying to many different types of learning, including clas-
sification, regression, unsupervised clustering, and density estimation. Within the algo-
rithmic search framework, we define a form of expressivity, entropic expressivity, which
measures the information-theoretic entropy of an algorithm’s induced probability dis-
tribution over its search space. An algorithm with high entropic expressivity will spread
its probability mass more uniformly on the search space, allowing it to sample widely
and without strong preference within that space, displaying flexibility. Conversely, an
algorithm with low entropic expressivity concentrates its mass on few regions of the
search space, displaying bias towards those outcomes. No algorithm can be both highly
expressive and highly biased.

2 BIAS IN MACHINE LEARNING

The word “bias” used in this paper may call a number of associations to the reader’s
mind. In this section, we seek to disambiguate between different definitions of bias as
they arise in machine learning, clarify how we use the term bias, and discuss how our
notion interacts with other definitions.

Definition 1. (Prejudicial Bias (Tim Jones, IBM)) Prejudicial Bias is a prejudice in
favor of or against a person, group, or thing that is considered to be unfair. Such bias
can result in disparate outcomes when machine learning algorithms, such as facial
recognition systems, behave differently when applied to different groups of people.

Definition 2. (Inductive Bias (Tom Mitchell)) In the case of a machine leaning algo-
rithm, Inductive Bias is any basis for choosing one generalization over another, other
than strict consistency with the observed training instances.

Informally, the definition of bias that we will employ in this paper quantifies the
predisposition an algorithm has towards certain outcomes over others. This controls
how an algorithm interprets data and influences how “well-suited” an algorithm is to a
particular task, resulting in performance deviations from uniform random sampling. For
example, the naı̈ve Bayes classifier is predisposed towards hypotheses that interpret the
training data as a set of conditionally independent inputs, where each feature depends
only on its output label.

Our mathematical definition of bias is inspired by Definition 2, and is similar to the
notion of bias used in statistical parameter estimation, being the difference between an
expected random outcome and a baseline value. Bias, as used in this paper, is quite dif-
ferent from the notion of bias in Definition 1. The machine learning community has paid
a great deal of attention to confronting the problematic and unethical consequences of
prejudicial bias in our field. We believe any applications that use insights from our work
and similar work on bias should reflect the responsible consideration of the potential for
prejudicial bias and seek to eliminate, or at least minimize, its impact.

As an illustrative example, prejudicial bias can arise when either the researchers
designing a machine learning system or the data used to train that system themselves
exhibit problematic bias. For example, in the facial recognition case, a vision model
being used to recognize people might be trained on images of those that are mostly of



Trading Bias for Expressivity in Artificial Learning 3

European descent. As a result, the vision model might have trouble recognizing people
of non-European racial backgrounds and skin tones.

We would also like to briefly comment on how our notion of bias interacts with
prejudicial bias. As we have discussed, a facial recognition system may not work as
well for some groups of people as it does for others either because it chose a hypothe-
sis based on training data that reflects such a bias, because it was predisposed towards
prejudicially biased hypotheses in the first place (inductive bias), or some combination
of both. Under our definition of bias, the algorithm that is inductively biased towards
prejudicially biased hypotheses would indeed be considered more biased than a “base-
line” algorithm that is not more likely to select one hypothesis over another. At the same
time, and perhaps less intuitively, we would also consider an algorithm strongly predis-
posed not to select a racially biased hypothesis more biased than the baseline, precisely
because this reflects the algorithm’s predisposition towards certain outcomes (and away
from others).

We strongly oppose the use of prejudicial biases in learning systems, and support
continued efforts to expose and eliminate them. Knowledge that all nontrivial systems
must be biased is some way can help us identify and critically evaluate the biases inher-
ent in our own systems, removing prejudicial biases wherever we find them.

3 RELATED WORK

Our notion of algorithmic expressivity stands among many other measures of expressiv-
ity found in the statistical learning literature. Among the most well-established are the
Vapnik-Chernovekis (VC) dimension [16], a loose upper bound based on the number of
points that can be perfectly classified by a learning algorithm for any possible labeling
of the points; the Fat-shattering VC dimension, an extension to the VC dimension de-
veloped by Kearns and Schapire that solves the issue of dependence on dimensionality
when the algorithm operates within a restricted space [4]; and Rademacher complexity,
a measure of algorithmic expressivity developed by Barlett and Mendelson that elim-
inates the need for assuming restrictions on the distribution space of an algorithm [1].
More recent work has attempted to capture the expressivity of deep neural networks
in particular, by using structural properties of neural networks to consider their repre-
sentative power [11]. While this more recent work is of interest, we seek a much more
general notion of algorithmic expressivity under which other such notions might be
captured.

This paper delves into the relationships between algorithmic (inductive) bias, a con-
cept explored by Mitchell due to its importance for generalization [7], and algorithmic
expressivity. Towards this end, we build on the search and bias frameworks developed
in [10], where Montañez et al. prove the necessity of bias for better-than-random per-
formance of learning algorithms and that no algorithm may be simultaneously biased
towards many distinct target sets. In addition to giving explicit bounds on the trade-offs
between bias and algorithmic expressivity, we establish a general measure of algorith-
mic flexibility that applies to clustering and optimization [9] in addition to the problems
considered in Vapnik’s learning framework [15], such as classification, regression, and
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density estimation. Our framework’s generality is conducive to applying theoretical
derivations of algorithmic expressivity to many different types of learning algorithms.

3.1 Relation to Lauw et al.’s “The Bias-Expressivity Trade-off”

This manuscript is most closely related to Lauw et al.’s “The Bias-Expressivity Trade-
off” [6], being an extended presentation of that work. Our discussion of the various
uses of the term “bias” in machine learning acts as a helpful supplement to the space-
constrained introduction made there. We also provide an improved presentation and
motivation for the concepts of algorithmic bias and entropic expressivity found in that
paper. The theorems from that work, along with their proofs and key figures, are repro-
duced here.

4 ALGORITHMIC SEARCH FRAMEWORK

4.1 The Search Problem

The framework used in this paper views machine learning problems as instances of
algorithmic search problems [8]. In the algorithmic search framework, a search problem
is defined as a 3-tuple, (Ω,T,F). An algorithm samples elements from a finite search
space Ω in order to find a particular nonempty subset T of Ω, called the target set.
The elements of Ω and T are encoded in a target function, a |Ω|-length binary vector
where an entry has value 1 if it belongs to the target set T and 0 otherwise. The external
information resource F provides initialization information for the search and evaluates
points in Ω to guide the search process. In a traditional machine learning scenario, the
search space Ω corresponds to a hypothesis space an algorithm may have available
(such as the space of linear functions). The external information resource F would be
a dataset with an accompanying loss function. The target set T would correspond to
those hypotheses which achieve sufficiently low empirical risk on a dataset given some
desired threshold. The loss function included in F guides the algorithm in searching
through Ω for a hypothesis in T .

4.2 The Search Algorithm

Black-box search algorithms can be viewed as processes that induce probability distri-
butions over a search space and subsequently sample according to those distributions, in
order to locate target elements within the space. Black-box algorithms use their search
history to produce a sequence of distributions. The search history contains information
gained during the course of the search by sampling elements of Ω and evaluating them
according to the external information resource F , along with any information given as
initialization information. As the search proceeds, a sequence of probability distribu-
tions gets generated, one distribution per iteration, and a point is sampled from each
distribution at every iteration. The sampled point and its evaluation under F are added
back to the search history, and the algorithm updates its sampling distribution over Ω. A
search algorithm is successful if at any point of the search it samples an element ω ∈ T
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Fig. 1: Graphical representation of the search process. As a black-box algorithm
searches a space by sampling from Ω, it induces a probability distribution Pi at each
time step, based on its current search history. A sampled point ω ∈ Ω is evaluated ac-
cording to the external information resource F , and the tuple (ω, F(ω)) is added to the
search history. The process repeats until a termination criterion is met. Figure repro-
duced from [6].

contained in the target set. Success is determined retrospectively, since the algorithm
has no knowledge of the target T during its search apart from that information given by
F . Figure 1 gives a graphical representation of the search process.

4.3 Measuring Performance

A more fine-grained measure of search performance is given by the expected per-query
probability of success [8], which normalizes the expected total cumulative probability
of success by the number of queries taken. Different algorithms may choose to ter-
minate their searches using different criteria, taking a different number of sampling
steps. Using the expected total probability of success without normalization would un-
fairly reward algorithms making a larger number of queries. As an additional benefit,
the expected per-query probability of success gracefully handles algorithms which may
repeatedly resample the same points, such as genetic algorithms [3, 12].

Following Montañez [8], the expected per-query probability of success is defined
as

q(T,F) = EP̃,H

[
1
|P̃|

|P̃|

∑
i=1

Pi(ω ∈ T )

∣∣∣∣∣F
]

(1)

where P̃ = [P1,P2, . . . ,PN ] is a sequence of induced probability distributions on search
space Ω (with Pi denoting the distribution at the ith iteration), H is the search history,
T is the target set, and F is the external information resource. Thus, the expected per-
query probability of success measures the expected amount of probability mass placed
on the target set, averaged over the entire search. As Lauw et al. explain [6], “The
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outer expectation accounts for stochastic differences in multiple runs of the algorithm,
whereas the inner quantity is equivalent to the expected probability of success for a
uniformly sampled time step of a given run.”

5 INDUCTIVE ORIENTATION AND ALGORITHMIC BIAS

We begin by introducing a geometric concept of algorithm behavior, the inductive ori-
entation, which will allow us to define algorithmic bias in a way that is simultaneously
quantitative and geometric. We then review the definition of algorithmic bias introduced
in Lauw et al. [6], and define it in terms of inductive orientation.

5.1 Inductive Orientation

The definition of expected per-query probability of success given in Equation 1 natu-
rally suggests a way of characterizing the behavior of an algorithm based on its expected
average probability distribution on the search space. For a fixed target set t, define a
corresponding |Ω|-length binary target vector t, which has a 1 at its ith index if the ith
element of Ω is in the target set t, and has a zero otherwise. For a random information
resource F ∼D , we can see that

q(t,F) = EP̃,H

[
1
|P̃|

|P̃|

∑
i=1

Pi(ω ∈ t)

∣∣∣∣∣F
]

= EP̃,H

[
1
|P̃|

|P̃|

∑
i=1

t>Pi

∣∣∣∣∣F
]

= t>EP̃,H

[
1
|P̃|

|P̃|

∑
i=1

Pi

∣∣∣∣∣F
]

= t>PF

where we have defined PF := EP̃,H [
1
|P̃| ∑

|P̃|
i=1 Pi | F ] as the expected average conditional

distribution on the search space given F . We notice two things. First, the expected per-
query probability of success is equivalent to an inner product between two vectors, one
representing the target and the other representing where the algorithm tends to place
probability mass in expectation. As Montanez et al. note [10], the degree to which the
expected distribution aligns geometrically to the target vector is the degree to which a
search algorithm will be successful. Second, as Sam et al. have shown, this implies that
the expected per-query probability of success is a decomposable probability-of-success
metric [13].

The inductive orientation of an algorithm is then defined as

PD = EF∼D [PF ] (2)



Trading Bias for Expressivity in Artificial Learning 7

given a marginal distribution D on the information resource F . From this definition, we
see that

ED [q(t,F)] = ED [t>PF ] (3)

= t>ED [PF ] (4)

= t>PD . (5)

Thus, the expected per-query probability of success relative to a randomized F can
be computed simply and geometrically, by taking an inner product of the inductive
orientation with the target vector.

We can further extend the concept of inductive orientation with regards to any de-
composable probability-of-success metric φ, since we can take any weighted average
of the probability distributions in a search, not just the uniform average. We define the
φ-inductive orientation for decomposable metric φ(t,F) = t>Pφ,F as

Pφ,D = EF∼D [Pφ,F ], (6)

of which PD is simply a special case for uniform weighting [13].

5.2 Algorithmic Bias

We now review the definition of bias introduced in [10] and show how it can be defined
as a linear function of the inductive orientation. We then restate some existing results
for bias, which show the need for bias in learning systems.

Definition 3. (Algorithmic Bias) Given a fixed target function t (corresponding to tar-
get set t), let p = ‖t‖2/|Ω| denote the expected per-query probability of success under
uniform random sampling, let PU = 111 · |Ω|−1 be the inductive orientation vector for a
uniform random sampler, and let F ∼D , where D is a distribution over a collection of
information resources F . Then,

Bias(D, t) = ED [q(t,F)− p]

= t>(PD −PU)

= t>ED
[
PF
]
− t>(111 · |Ω|−1)

= t>
∫

F
P f D( f )d f − ‖t‖

2

|Ω|
.

The above definition is in complete agreement with that given by Lauw et al. [6], but
makes clearer the relation of bias to inductive orientation, the bias being a linear func-
tion of the orientation vector. The first equality in the definition highlights the semantic
meaning of bias, being a deviation in performance from uniform random sampling. The
second equality highlights the cause of this deviation, namely the algorithm’s induc-
tive orientation encoding assumptions concerning where target elements are likely to
reside, distributing its probability mass unevenly within the search space. The larger
the deviation from uniform mass placement, the greater the opportunity for improved
(or degraded) performance.
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As a special case, we can define bias with respect to a finite set of information
resources, as follows.

Definition 4. (Bias for a finite set of information resources) Let U[B] denote a uniform
distribution over a finite set of information resources B . Then,

Bias(B, t) = Bias(U[B], t)

= t>
(

1
|B| ∑

f∈B
P f

)
− ‖t‖

2

|Ω|
.

6 EXISTING BIAS RESULTS

We restate a number of theorems given in Montañez et al. [10] which are useful for
understanding the results in the present paper.

Theorem 1 (Improbability of Favorable Information Resources). Let D be a dis-
tribution over a set of information resources F , let F be a random variable such that
F ∼D , let t ⊆Ω be an arbitrary fixed k-sized target set with corresponding target func-
tion t, and let q(t,F) be the expected per-query probability of success for algorithm A
on search problem (Ω, t,F). Then, for any qmin ∈ [0,1],

Pr(q(t,F)≥ qmin)≤
p+Bias(D, t)

qmin

where p = k
|Ω| .

This theorem tells us that sampling highly favorable information resources remains
unlikely for any distribution without high algorithmic bias for the given target. Given
that we typically search for very small targets in very large spaces (implying a tiny
p), the bound is restrictive for values of qmin approaching 1, unless the bias is strong.
The upper bound is controlled linearly by the bias of the sampling distribution with
respect to the fixed target and algorithm. Furthermore, bias is a conserved quantity: to
be highly biased towards one target means to be equally biased against other targets.
Thus, choosing an inductive orientation and bias represents a zero-sum game, as the
next result shows.

Theorem 2 (Conservation of Bias). Let D be a distribution over a set of information
resources and let τk = {t|t ∈ {0,1}|Ω|,‖t‖ =

√
k} be the set of all |Ω|-length k-hot

vectors1. Then for any fixed algorithm A ,

∑
t∈τk

Bias(D, t) = 0.

1 k-hot vectors are binary vectors containing exactly k ones.
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This result can be viewed as a special case of No Free Lunch [14, 17] behavior,
since bias is a relative performance measure between two algorithm strategies, and the
set of all k-sized targets is closed under permutation [14], a necessary and sufficient
condition for the original No Free Lunch theorems.

Theorem 3 (Famine of Favorable Information Resources). Let B be a finite set of
information resources and let t ⊆ Ω be an arbitrary fixed k-size target set with corre-
sponding target function t. Define

Bqmin = { f | f ∈ B,q(t, f )≥ qmin},

where q(t, f ) is the expected per-query probability of success for algorithm A on search
problem (Ω, t, f ) and qmin ∈ [0,1] represents the minimum acceptable per-query prob-
ability of success. Then,

|Bqmin |
|B|

≤ p+Bias(B, t)
qmin

where p = k
|Ω| .

By the above theorem, the proportion of qmin-favorable information resources is
bounded by the problem difficulty and the average bias of the set as a whole. For any
fixed value of bias, fixed target, and fixed algorithm, the proportion of highly favorable
information resources remains strictly bound.

Lastly, we see that without bias, the single-query probability of success for any al-
gorithm is equivalent to uniform random sampling: it is the same as flipping coins. Al-
gorithms must have nonuniform inductive orientations to perform well, and any choice
of inductive orientation is a choice against some targets sets, thus encoding trade-offs
among the various possible targets.

Theorem 4 (Futility of Bias-Free Search). For any fixed algorithm A , fixed target
t ⊆Ω with corresponding target function t, and distribution over information resources
D , if Bias(D, t) = 0, then

Pr(ω ∈ t;A) = p

where Pr(ω ∈ t;A) represents the single-query probability of successfully sampling an
element of t using A , marginalized over information resources F ∼ D , and p is the
single-query probability of success under uniform random sampling.

At this point, we remind the reader that although the above theorems are stated with
reference to search and sampling, they apply far more widely to most forms of artificial
learning, such as AI methods and other types of machine learning [9], being formalized
within the algorithmic search framework for that purpose [8].
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7 MAIN RESULTS

In this section, we present results building on the definitions of algorithmic bias and
inductive orientation given in Section 5. We reproduce the main results of Lauw et al. [6]
and add new discussion concerning the relevance of each result. These results include
an upper bound on the bias of a learning algorithm in relation to its minimum value over
the set of possible targets, a concentration bound on the difference between estimated
and actual bias, and bounds relating algorithmic bias to entropic expressivity. These
bounds capture an inherent trade-off between the expressivity and bias for artificial
learning systems.

7.1 Bias Bounds

Theorem 5 (Bias Upper Bound). Let τk = {t|t ∈ {0,1}|Ω|, ||t|| =
√

k} be the set of
all |Ω|-length k-hot vectors and let B be a finite set of information resources. Then,

sup
t∈τk

Bias(B, t)≤
(

p−1
p

)
inf
t∈τk

Bias(B, t)

where p = k
|Ω| .

This result presents limitations on the amount of bias that can be induced within a
learning algorithm from all possible target sets of a fixed size. From Theorem 5, we see
that the maximum amount of bias that can be induced in a learning algorithm is related
to the minimum amount that can be induced. The two are related by, at most, a constant
factor p−1

p , where p is the proportion of elements in the |Ω|-sized search space that are
in the target set.

Figure 2 demonstrates the relationship between the value of p and the upper bound
on bias in Theorem 5. We see that as p increases, the upper bound on bias tightens
considerably. This is due to the fact that the target set k increases in size relative to the
size of Ω, which substantially increases the probability that the algorithm will do well
on a greater number of target sets because of target element density in the search space.
This indicates that the algorithm is not predisposed towards any particular target set,
giving evidence against the presence of strong bias (Theorem 2).

Theorem 6 (Difference Between Estimated and Actual Bias). Let t be a fixed target
function, let D be a distribution over a set of information resources B , and let X =
{X1, . . . ,Xn} be a finite sample independently drawn from D . Then,

P(|Bias(X , t)−Bias(D, t)| ≥ ε)≤ 2e−2nε2
.

While the bias with respect to an underlying distribution over information resources
may not be accessible, it may be possible to estimate it by drawing, independently at
random, a sample from that distribution. Theorem 6 quantifies how well the empirical
bias estimates the true bias with high probability.
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Fig. 2: As plotted for different values of m = p−1
p , the upper bound of the supremum of

bias changes with different values of p, where the supremum is over all possible target
sets of some fixed size k. Figure reproduced from [6].

7.2 Entropic Expressivity

Just as the bias of an algorithm can be defined as a function of inductive orientation, so
can the expressivity. We now formalize such a definition.

Definition 5 (Entropic Expressivity). The entropic expressivity of a search algorithm
is the information-theoretic entropy of its inductive orientation, namely,

H(PD) = H(U)−DKL(PD ||U)

where DKL(PD || U) is the Kullback-Leibler divergence between distribution PD and
the uniform distribution U, both being distributions over search space Ω.

Informally, the expressivity of an algorithm is how well it responds to changes in
data: different datasets produce different probability distributions over the search space.
More formally, expressivity is the degree to which an algorithm’s inductive orienta-
tion vector blurs towards uniformity, meaning that in expectation it places probability
mass on many different regions of the search space, in reaction to changing informa-
tion resources. Again, expressive algorithms will shift mass around different regions of
the space as the dataset changes. This stands in contrast to a highly biased algorithm,
which places substantial mass in a limited number of regions of the search space. Con-
sequently, the inductive orientation of the more flexible algorithm will be closer to uni-
form than that of the highly biased algorithm. Using the information-theoretic entropy
for discrete probability mass functions, our notion of entropic expressivity characterizes
this aspect of algorithmic flexibility.
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7.3 Expressivity and Bias Trade-Off

We now present results relating entropic expressivity to algorithmic bias, bounding ex-
pressivity in terms of bias and bias in terms of expressivity, demonstrating a trade-off
between the two quantities.

Theorem 7 (Expressivity Bounded by Bias). Let ε := Bias(D, t). Given a fixed k-hot
target vector t and a distribution over information resources D , the entropic expressiv-
ity, H(PD), of a search algorithm can be bounded in terms of bias, ε, by

H(PD) ∈
[

H(p+ ε),

(
(p+ ε) log2

(
k

p+ ε

)
+(1− (p+ ε)) log2

(
|Ω|− k

1− (p+ ε)

))]
.

Theorem 7 gives the minimum and maximum amount of entropic expressivity for
a given amount of bias and fixed target set size. We see that bias limits the entropic
expressivity of a learning algorithm, by reducing the uniformity of its inductive orienta-
tion. To get a better sense of this result, we show how the range of entropic expressivity
varies in response to plugging in different values of algorithmic bias. In Table 1, we con-
sider some exemplar cases, where a learning algorithm has minimum bias, zero bias, as
well as maximum bias, and present the entropic expressivity range computed based on
Theorem 7.

Table 1: As computed for cases where there is minimum bias, zero bias, and maximum
bias, the bound for the range of entropic expressivity changes with different levels of
bias relative to target function t. Table reproduced from [6].

Bias(D, t) t>PD Expressivity Range

−p
(Minimum bias)

0 [0, log2(|Ω|− k)]

0
(No bias)

p [H(p), log2 |Ω|]

1− p
(Maximum bias)

1 [0, log2 k]

As an algorithm’s bias increases, its entropic expressivity becomes more tightly
bounded. In the majority of cases, the size k of the target set is substantially smaller
than the size |Ω| of the search space. Therefore, in the case of minimum bias, entropic
expressivity has only a loosely bounded range of [0, log2(|Ω| − k)]. Similarly, when
there is no bias, the expressivity can take on values up to log2 |Ω|. In the case of maxi-
mum bias, however, the algorithm becomes extremely predisposed towards a particular
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outcome. Given that k� |Ω|, log2 k� log2(|Ω− k|), indicating a considerable tight-
ening of the bound. With these observations in hand, we now present our main result,
which demonstrates a quantifiable trade-off between the algorithmic bias and entropic
expressivity of artificial learning systems.

Theorem 8 (Bias-Expressivity Trade-off). Given a distribution over information re-
sources D and a fixed target t ⊆ Ω, entropic expressivity is bounded above in terms of
bias,

H(PD)≤ log2 |Ω|−2Bias(D, t)2.

Additionally, bias is bounded above in terms of entropic expressivity,

Bias(D, t)≤
√

1
2
(log2 |Ω|−H(PD))

=

√
1
2

DKL(PD ||U).

This theorem extends the results of Theorem 7 to demonstrate a mathematical rela-
tionship between algorithmic bias and entropic expressivity. As in Theorem 7, entropic
expressivity is bound from above in terms of algorithmic bias. As the level of algo-
rithmic bias on a specified target set increases, the level of entropic expressivity in the
underlying inductive orientation decreases. We see that there is an opposing relation-
ship between entropic expressivity and bias, such that higher values of algorithmic bias
result in smaller values of entropic expressivity, and vice versa. We upper-bound algo-
rithmic bias in terms of entropic expressivity, which again demonstrates this trade-off.
The higher the entropic expressivity of a learning algorithm, the lower the bias. This
result establishes that if a learning algorithm is strongly oriented towards any specific
outcome, the algorithm becomes less flexible and less expressive over all elements, and
the more flexible an algorithm, the less it can specialize towards specific outcomes.

Finally, we present a bound for algorithmic bias in terms of the expected entropy of
induced strategy distributions. Similar to the trade-off relationship between algorithmic
bias and entropic expressivity, the following corollary further establishes a trade-off
between algorithmic bias and the expected entropy of induced strategy distributions.

Corollary 1 (Bias Bound Under Expected Expressivity).

Bias(D, t)≤
√

1
2
(log2 |Ω|−ED [H(PF)])

=

√
ED

[
1
2

DKL(PF ||U)

]
.

8 CONCLUSION

We extend the algorithmic search framework to consider a new notion of bias, being
the difference in performance from uniform random sampling caused by the inductive
assumptions encoded within an algorithm. We also define the entropic expressivity of
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a learning algorithm and characterize its relation to bias. Given an underlying distribu-
tion on information resources, entropic expressivity quantifies the expected degree of
uniformity for strategy distributions, namely, the uniformity of the resulting inductive
orientation. In addition to upper-bounding the bias on an arbitrary target set and the
probability of a large difference between the estimated and true biases, we upper- and
lower-bound the entropic expressivity with respect to the bias on a given target. These
bounds concretely demonstrate the trade-off between bias and expressivity.

The bias-variance trade-off [2, 5] is well-known in machine learning. Our results
present a similar trade-off, providing bounds for bias and expressivity in terms of one
another. Our notion of bias corresponds to the expected deviation from uniform ran-
dom sampling that results from an algorithm’s inductive assumptions, while expressiv-
ity, similar to variance, captures how an algorithm’s output distribution over its search
space changes in expectation with regards to the underlying distribution on information
resources (e.g., training data).

As shown by Mitchell [7] and later Montañez et al. [10], bias is necessary for learn-
ing algorithms to perform better than random chance. However, this comes at the cost of
reducing the algorithm’s ability to respond to varied training data. A maximally biased
algorithm will have very little flexibility, while a maximally flexible algorithm, making
no assumptions about its input, cannot perform better than uniform random sampling
(Theorem 4). Fundamentally, bias and expressivity are both functions of an algorithm’s
inductive orientation: the more strongly pronounced its inductive orientation, the better
an algorithm can generalize, but the less flexible it will be. Understanding the nature of
this trade-off can help us design the type of behavior we want, according to the situation
at hand.

References

1. Bartlett, P.L., Mendelson, S.: Rademacher and gaussian complexities: Risk bounds
and structural results. J. Mach. Learn. Res. 3, 463–482 (Mar 2003), ISSN 1532-
4435, URL http://dl.acm.org/citation.cfm?id=944919.944944

2. Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance
dilemma. Neural computation 4(1), 1–58 (1992)

3. Goldberg, D.: Genetic algorithms in search optimization and machine learning.
Addison-Wesley Longman Publishing Company (1999)

4. Kearns, M.J., Schapire, R.E.: Efficient distribution-free learning of prob-
abilistic concepts. In: Proceedings [1990] 31st Annual Symposium
on Foundations of Computer Science, pp. 382–391 vol.1 (Oct 1990),
https://doi.org/10.1109/FSCS.1990.89557

5. Kohavi, R., Wolpert, D.H., et al.: Bias plus variance decomposition for zero-one loss
functions. In: ICML, vol. 96, pp. 275–83 (1996)

6. Lauw, J., Macias, D., Trikha, A., Vendemiatti, J., Montañez, G.D.: The bias-
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APPENDIX

For completeness, in this appendix we reproduce all proofs from Lauw et al. [6] in their
entirety, without modification.

Lemma 1 (Existence of subset with at most uniform mass). Given an n-sized subset
S of the sample space of an arbitrary probability distribution with total probability mass
MS, there exists a k-sized proper subset R⊂ S with total probability mass MR such that

MR ≤
k
n

MS.
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Proof. We proceed by induction on the size k.

Base Case: When k = 1, there exists an element with total probability mass at most
MS
n , since for any element in S that has probability mass greater than the uniform mass

MS
n , there exists an element with mass strictly less than MS

n by the law of total probabil-
ity. This establishes our base case.

Inductive Hypothesis: Suppose that a k-sized subset Rk ⊂ S exists with total probabil-
ity mass MRk such that MRk ≤

k
n MS.

Induction Step: We show that there exists a subset Rk+1 ⊂ S of size k+ 1 with total
probability mass MRk+1 such that MRk+1 ≤

k+1
n MS.

First, let MRk =
k
n MS− s, where s ≥ 0 represents the slack between MRk and k

n MS.
Then, the total probability mass on Rk

c := S\Rk is

MRk
c = MS−MRk = MS−

k
n

MS + s.

Given that MRk
c is the total probability mass on set Rk

c, either each of the n−k elements
in Rk

c has a uniform mass of MRk
c/(n− k), or they do not. If the probability mass is

uniformly distributed, let e be an element with mass exactly MRk
c/(n− k). Otherwise,

for any element e′ with mass greater than MRk
c/(n− k), by the law of total probability

there exists an element e ∈ Rk
c with mass less than MRk

c/(n− k). Thus, in either case
there exists an element e ∈ Rk

c with mass at most MRk
c/(n− k).

Then, the set Rk+1 = Rk ∪{e} has total probability mass

MRk+1 ≤MRk +
MRk

c

n− k

=
k
n

MS− s+
MS− k

n MS + s
n− k

=
kMS(n− k)+n(MS− k

n MS + s)
n(n− k)

− s

=
knMS− k2MS +nMS− kMS +ns

n(n− k)
− s

=
(n− k)(kMS +MS)+ns

n(n− k)
− s

=
k+1

n
MS +

s
n− k

− s

=
k+1

n
MS +

s(1+ k−n)
n− k

≤ k+1
n

MS

where the final inequality comes from the fact that k < n. Thus, if a k-sized subset
Rk ∈ S exists such that MRk ≤

k
n MS, a k + 1-sized subset Rk+1 ∈ S exists such that

MRk+1 ≤
k+1

n MS.
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Since the base case holds true for k = 1 and the inductive hypothesis implies that
this rule holds for k+1, we can always find a k-sized subset Rk ∈ S such that

MRk ≤
k
n

MS.

Lemma 2 (Maximum probability mass over a target set). Let τk = {ttt|ttt ∈{0,1}|Ω|, ||ttt||=√
k} be the set of all |Ω|-length k-hot vectors. Given an arbitrary probability distribu-

tion P,

sup
t∈τk

t>P≤ 1−
(

1− p
p

)
inf
t∈τk

t>P

where p = k
|Ω| .

Proof. We proceed by contradiction. Suppose that

sup
t∈τk

t>P > 1−
(

1− p
p

)
inf
t∈τk

t>P.

Then, there exists some target function t ∈ τk such that

t>P > 1−
(

1− p
p

)
inf
t∈τk

t>P.

Let s be the complementary target function to t such that s is an |Ω|-length, (|Ω|− k)-
hot vector that takes value 1 where t takes value 0 and takes value 0 elsewhere. Then,
by the law of total probability,

s>P <

(
1− p

p

)
inf
t∈τk

t>P.

By Lemma 1, there exists a k-sized subset of the complementary target set with total
probability mass q such that

q≤ k
|Ω|− k

(s>P)

<
k

|Ω|− k

((
1− p

p

)
inf
t∈τk

t>P
)

=
k

|Ω|− k

((
|Ω|− k

k

)
inf
t∈τk

t>P
)

= inf
t∈τk

t>P.

Thus, we can always find a target set with total probability mass strictly less than
inft∈τk t>P, which is a contradiction.

Therefore, we have proven that

sup
t∈τk

t>P≤ 1−
(

1− p
p

)
inf
t∈τk

t>P.
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Theorem 5 (Bias Upper Bound). Let τk = {t|t ∈ {0,1}|Ω|, ||t||=
√

k} be the set of all
|Ω|-length k-hot vectors and let B be a finite set of information resources. Then,

sup
t∈τk

Bias(B, t)≤
(

p−1
p

)
inf
t∈τk

Bias(B, t)

where p = k
|Ω| .

Proof. First, define

m := inf
t∈τk
EU[B][t>PF ] = inf

t∈τk
Bias(B, t)+ p

and
M := sup

t∈τk

EU[B][t>PF ] = sup
t∈τk

Bias(B, t)+ p.

By Lemma 2,

M ≤ 1−
(

1− p
p

)
m.

Substituting the values of m and M,

sup
t∈τk

Bias(B, t)≤ 1− p−
(

1− p
p

)
(

inf
t∈τk

Bias(B, t)+ p
)

=

(
p−1

p

)
inf
t∈τk

Bias(B, t).

k |Ω|− k

p+ ε
1 - (p+ ε)

k |Ω|− k

p+ε

k
1−(p+ε)
|Ω|−k

Fig. 3: Assuming positive bias, this figure shows two discrete probability distributions
over Ω. The top is of an algorithm with high KL divergence while the bottom is of an
algorithm with low KL divergence. Figure reproduced from Lauw et al. [6].
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Theorem 6 (Difference Between Estimated and Actual Bias). Let t be a fixed target
function, let D be a distribution over a set of information resources B , and let X =
{X1, . . . ,Xn} be a finite sample independently drawn from D . Then,

P(|Bias(X , t)−Bias(D, t)| ≥ ε)≤ 2e−2nε2
.

Proof. Define

BX :=
1
n

n

∑
i=1

t>PXi

= Bias(X , t)+ p.

Given that X is an iid sample from D , we have

E[BX ] = E

[
1
n

n

∑
i=1

t>PXi

]

=
1
n

n

∑
i=1

E
[
t>PXi

]
= Bias(D, t)+ p.

By Hoeffding’s inequality and the fact that

0≤ BX ≤ 1

we obtain

P(|Bias(X , t)−Bias(D, t)| ≥ ε) =P(|BX −E[BX ]| ≥ ε)

≤ 2e−2nε2
.

Theorem 7 (Expressivity Bounded by Bias). Let ε := Bias(D, t). Given a fixed k-hot
target vector t and a distribution over information resources D , the entropic expressiv-
ity, H(PD), of a search algorithm can be bounded in terms of bias, ε, by

H(PD) ∈
[

H(p+ ε),

(
(p+ ε) log2

(
k

p+ ε

)
+(1− (p+ ε)) log2

(
|Ω|− k

1− (p+ ε)

))]
.

Proof. Following definition 5, the expressivity of a search algorithm varies solely with
respect to DKL(PD || U) since we always consider the same search space and thus
H(U) is a constant value. We obtain a lower bound of the expressivity by maximizing
the value of DKL(PD ||U) and an upper bound by minimizing this term.

First, we show that H(p+ ε) is a lower bound of expressivity by constructing a
distribution that deviates the most from a uniform distribution over Ω. By the definition
of Bias(D, ttt), we place (p+ ε) probability mass on the target set t and 1− (p+ ε)
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probability mass on the remaining (n− k) elements of Ω. We distribute the probability
mass such that all of the (p+ ε) probability mass of the target set is concentrated on
a single element and all of the 1− (p+ ε) probability mass of the complement of the
target set is concentrated on a single element. In this constructed distribution where
DKL(PD ||U) is maximized, the value of expressivity is

H(PD) =− ∑
ω∈Ω

PD(ω) log2 PD(ω)

=−(p+ ε) log2(p+ ε)

− (1− (p+ ε)) log2(1− (p+ ε))

= H(p+ ε)

where the H(p+ ε) is the entropy of a Bernoulli distribution with parameter (p+ ε).
The entropy of this constructed distribution gives a lower bound on expressivity,

H(PD)≥ H(p+ ε).

Now, we show that

(p+ ε) log2

( k
p+ ε

)
+(1− (p+ ε)) log2

( |Ω|− k
1− (p+ ε)

)

is an upper bound of expressivity by constructing a distribution that deviates the least
from a uniform distribution over Ω. In this case, we uniformly distribute 1

|Ω| probability
mass over the entire search space, Ω. Then, to account for the ε level of bias, we add
ε

k probability mass to elements of the target set and we remove ε

n−k probability mass
to elements of the complement of the target set. In this constructed distribution where



Trading Bias for Expressivity in Artificial Learning 21

DKL(PD ||U) is minimized, the value of expressivity is

H(PD) =− ∑
ω∈Ω

PD(ω) log2 PD(ω)

=−∑
ω∈t

(
1
|Ω|

+
ε

k

)
log2

(
1
|Ω|

+
ε

k

)
− ∑

ω∈tc

(
1
|Ω|
− ε

|Ω|− k

)
log2

(
1
|Ω|
− ε

|Ω|− k

)
=−∑

ω∈t

(
p+ ε

k

)
log2

(
p+ ε

k

)
− ∑

ω∈tc

(
1− (p+ ε)

|Ω|− k

)
log2

(
1− (p+ ε)

|Ω|− k

)
=−k

(
p+ ε

k

)
log2

(
p+ ε

k

)
− (|Ω|− k)

(
1− (p+ ε)

|Ω|− k

)
log2

(
1− (p+ ε)

|Ω|− k

)
= (p+ ε) log2

(
k

p+ ε

)
+(1− (p+ ε)) log2

(
|Ω|− k

1− (p+ ε)

)
.

The entropy on this constructed distribution gives an upper bound on expressivity,

H(PD)≤ (p+ ε) log2

(
k

p+ ε

)
+(1− (p+ ε)) log2

(
|Ω|− k

1− (p+ ε)

)
.

These two bounds give us a range of possible values of expressivity given a fixed level
of bias, namely

H(PD) ∈
[

H(p+ ε),

(
(p+ ε) log2

(
k

p+ ε

)
+(1− (p+ ε)) log2

(
|Ω|− k

1− (p+ ε)

))]
.

Theorem 8 (Bias-Expressivity Trade-off). Given a distribution over information re-
sources D and a fixed target t ⊆ Ω, entropic expressivity is bounded above in terms of
bias,

H(PD)≤ log2 |Ω|−2Bias(D, t)2.
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Additionally, bias is bounded above in terms of entropic expressivity,

Bias(D, t)≤
√

1
2
(log2 |Ω|−H(PD))

=

√
1
2

DKL(PD ||U).

Proof. Let ω ∈ t denote the measurable event that ω is an element of target set t ⊆ Ω,
and let Σ be the sigma algebra of measurable events. First, note that

Bias(D, t)2 = |Bias(D, t)|2

= |t>ED [PF ]− p|2

= |t>PD − p|2

= |PD(ω ∈ t)− p|2

≤ 1
2

DKL(PD ||U)

=
1
2
(H(U)−H(PD))

=
1
2
(log2 |Ω|−H(ED [PF ]))

where the inequality is an application of Pinsker’s Inequality. The quantity DKL(PD ||U)
is the Kullback-Leibler divergence between distributions PD and U, which are distri-
butions on search space Ω.

Thus,

H(ED [PF ])≤ log2 |Ω|−2Bias(D, t)2

and

Bias(D, t)≤
√

1
2
(log2 |Ω|−H(PD))

=

√
1
2

DKL(PD ||U)

=

√
1
2
(log2 |Ω|−H(ED [PF ])).

Corollary 1 (Bias Bound Under Expected Expressivity).

Bias(D, t)≤
√

1
2
(log2 |Ω|−ED [H(PF)])

=

√
ED

[
1
2

DKL(PF ||U)

]
.
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Proof. By the concavity of the entropy function and Jensen’s Inequality, we obtain

ED [H(PF)]≤ H(ED [PF ])≤ log2 |Ω|−2Bias(D, ttt)2.

Thus, an upper bound of bias is

Bias(D, t)≤
√

1
2

DKL(PD ||U)

=

√
1
2
(log2 |Ω|−H(ED [PF ]))

≤
√

1
2
(log2 |Ω|−ED [H([PF ])])

=

√
ED

[
1
2

DKL(PF ||U)

]
,

where the final equality follows from the linearity of expectation and the definition of
KL-divergence.
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