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Abstract—We derive generalization bounds on learning algo-
rithms through algorithm capacity and a vector representation
of inductive bias. Leveraging the algorithmic search framework,
a formalism for casting machine learning as a type of search,
we present a unified interpretation of the upper bounds of
generalization error in terms of a vector representation of bias
and the mutual information between the hypothesis and the
dataset.

Index Terms—generalization error; bias; algorithm capacity;
inductive orientation;

I. INTRODUCTION

Bias is a crucial component in the analysis of machine
learning algorithms. Unbiased algorithms cannot outperform
uniform random sampling in expectation [1]. Recent work has
established an information-usage framework to quantify and
bound the bias produced through data exploration [2], [3]. Xu
and Raginsky [4] extended Russo and Zou’s [2] work on bias
due to data exploration to provide an information-theoretic
perspective on the generalization capabilities of learning al-
gorithms. Specifically, they developed generalization error
bounds through the mutual information of the algorithm’s
inputs and outputs.

An alternative framework for understanding learning algo-
rithms is the algorithmic search framework [5]. The algorith-
mic search framework is a formalism for casting machine
learning as a type of search. It allows for a quantitative
measure of algorithmic bias to be defined [1]. Its measure
of algorithmic bias introduced a geometric representation of
inductive bias [6], [7]. This representation is referred to as the
inductive orientation vector of an algorithm, a vector that can
be used to quantify algorithmic bias.

Additionally, Bashir et al. [7] used the algorithmic search
framework to present an information-theoretic perspective on
overfitting and underfitting in machine learning algorithms.
Overfitting and underfitting are defined in terms of an algo-
rithm’s capacity via the information transferred from training
datasets to models. Moreover, Bashir et al. defined algorithm
capacity in terms of the same search framework and de-
rived upper bounds on algorithm capacity, showing how high
capacity models can overfit [7]. Segura Sandoval et al. [8]
developed a tool for estimating algorithm capacity within the
same framework.

The algorithmic search framework has also been used to
relate bias and algorithm flexibility, defined in the framework
as entropic expressivity, and establish the trade-off between the
two quantities [6], [9]. In addition to being a unified framework
applicable to different learning problems, the framework offers
the pedagogical benefit of framing machine learning as search,
which is often more easily understood and more intuitive than
information theoretic approaches.

The algorithmic search framework is applicable to many
machine learning problems. Specifically, Montañez [10]
showed that Vapnik’s generalized learning problem [11],
which is applicable to classification, regression, and density
estimation, can be reduced to an algorithmic search problem.
Montañez also showed that classification, clustering, parameter
estimation, and hyperparameter optimization problems can be
reduced to an algorithmic search problem [10]. Consequently,
the algorithmic search framework is a useful framework for
understanding machine learning problems generally.

A. Contributions

The algorithmic search framework, while generally useful,
lacks a method for deriving generalization bounds, a necessary
component for understanding supervised learning algorithms.
We close this gap by introducing generalization bounds into
the algorithmic search framework for the first time. We do
this by combining the work of Montañez [5], the bounds on
an algorithm’s capacity developed by Bashir et al. [7], and
the bounds on the generalization error of learning algorithms
developed by Xu, Raginsky, Russo and Zou [3], [4]. We derive
the bounds in terms of algorithm capacity and the inductive
orientation vector. We show that an algorithm’s generalization
error can be upper-bounded in terms of distributional algorithm
capacity, which measures the mutual information between the
hypothesis and the dataset, and the inductive orientation vector.
Lastly, our paper helps unify information-theoretic results with
a geometric representation of bias.

Section II reviews the algorithmic search framework. Sec-
tion III defines algorithm capacity and the algorithm bias in
terms of the inductive orientation vector. Section IV presents
the theorems defining generalization error bounds in terms
of algorithm capacity and algorithm bias. Finally, Section V



presents examples of the bounds being used in overfitting and
underfitting cases.

II. THE SEARCH FRAMEWORK

Before proceeding with the main results, we review the
algorithmic search framework, which is used to construct
definitions of algorithmic capacity, algorithmic bias, and the
inductive orientation vector of an algorithm.

A. The Search Problem

Following Montañez, we cast machine learning problems
as search problems using the algorithmic search framework
[5]. Within the algorithmic search framework, search problems
have a 3-tuple representation (Ω, T, F ), where Ω is the finite
search space that can be sampled,1 T is the target set, and F
is the external information resource. The target set T is the
subset of elements in the search space that are being searched
for. A target function that represents set T is defined as a |T |-
hot vector of length |Ω| that specifies which elements of Ω are
contained within T [1]. The external information resource F
is defined to be a binary string that represents the initialization
and querying information for the search. It guides the search
process as it is used to evaluate queried points in |Ω| [1].

B. The Search Algorithm

An algorithmic search is a process that determines the
querying of elements in Ω when provided with a search prob-
lem, a history of elements that have already been examined,
and information resource evaluations [5]. The points that the
search algorithm queries, along with the information resource
evaluations, are indexed by time and added to the search
history. The search is deemed successful if an element ω ∈ T
is queried by the algorithm [5].

C. Measuring Performance

We measure a learning algorithm’s performance by examin-
ing the expected per-query probability of success, as suggested
in [5]. The expected per-query probability of success provides
a measure of performance in relation to an algorithm’s total
probability of being successful, normalized. This normaliza-
tion accounts for the fact that the number of sampling steps
could vary with the algorithm that is used, affecting the total
probability of success [1]. Furthermore, it also accounts for
sampling procedures that could sample the same subset of
points in the search space multiple times — such as in genetic
algorithms [12], [13]. This measure naturally accommodates
algorithms that have to weigh the benefits and drawbacks
between exploration and exploitation.

The expected per-query probability of success is defined as

q(T, F ) = EP̃ ,H

 1

|P̃ |

|P̃ |∑
i=1

Pi(ω ∈ T ) | F

 , (1)

1The requirement that Ω be a finite search space is a mild limitation given
that all algorithms run on physical computer hardware are limited by finite-
precision numerical representations, with finite amounts of compute time. [10]
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Fig. 1. A black-box search algorithm, as represented by Montañez [5]. First,
the algorithm calculates a probability distribution Pi over the search space
Ω at some time i. This distribution is computed using information from the
algorithm’s history. Then, using Pi, a new point is chosen and evaluated using
F , the external information resource. The history is then updated at position
i by adding the tuple (ω, F (ω)). The indices on the elements of ω in Fig. 1
correspond to sampled locations, not to time steps.

where P̃ is a sequence of probability distributions over the
search space, where each timestep i produces a distribution
Pi ∈ P̃ , T is the target, F is the information resource, and H
is the search history. The number of queries during a search
is equal to the length of the probability distribution sequence,
|P̃ | [5].

III. PRELIMINARIES

Next, we present the definitions and quantitative measures
necessary for the main results, beginning with the definition
of the generalization error of a learning algorithm.

A. Generalization Error

Let D = (Z1, Z2, · · · , Zn) be an input dataset of size n,
with a probability distribution D, and elements independently
and identically drawn from a probability distribution DZ over
an instance space Z . Note that D = D⊗n

Z . Using a stochastic
map PG|D, let A be a learning algorithm that induces a
distribution from which the hypothesis g is chosen out of
a hypothesis space G, when given an input D. Additionally,
define a non-negative loss function l : G × Z → R≥0 which
is used to calculate both empirical and population risk.

Definition 1 (Empirical Risk of a Hypothesis): For a spe-
cific training dataset D, the empirical risk R̂D of a chosen
hypothesis g is given by the average loss over all training set
elements,

R̂D(g) =
1

n

n∑
i=1

ℓ(g, zi). (2)

Definition 2 (Population Risk of a Hypothesis): The popula-
tion risk of the hypothesis is the expected value of loss across
all possible elements in the distribution D, such that

RD(g) = EDZ [ℓ(g, Z)] =

∫
Z
ℓ(g, z)dDZ(z). (3)



Using the empirical and population risks of a hypothesis,
we can define the generalization error of an algorithm.

Definition 3 (Generalization Error of an Algorithm): The
generalization error of an algorithm A is defined as the
expected difference between population risk and empirical
risk, where expectation is taken over the joint distribution of
datasets and hypotheses:

gen(D, PG|D) = E[RD(G)− R̂D(G)]. (4)

Algorithms with low generalization error allow us to tightly
bound the population risk — which cannot directly be com-
puted without knowledge of D — to empirical risk, which is
typically what A uses to select a hypothesis from G.

B. Algorithm Capacity

We will show that an algorithm’s generalization error can be
upper bounded in terms of distributional algorithm capacity,
which measures the mutual information between the hypoth-
esis G and the dataset D.

Definition 4 (Algorithm Capacity): Bashir et al. [7] define
the capacity CA of an algorithm A to be the maximum amount
of information that A can extract from a dataset D ∼ D, where
D is an unknown distribution of that dataset, when selecting
its output hypothesis g, namely,

CA = sup
D

I(G;D), (5)

where G takes values in G and denotes the random variable
representing the output of A with D as input.

Definition 5 (Distributional Algorithm Capacity): For a
fixed distribution D, Bashir et al. [7] define algorithm capacity
relative to that particular distribution, called distributional
algorithm capacity, to be

CA,D = I(G;D), (6)

for D ∼ D. This is the mutual information between an
hypothesis G and the dataset D.

C. Inductive Orientation

Definition 6 (Inductive Orientation): Let F be an external
information resource, such as a dataset, and let

PF := EP̃ ,H

 1

|P̃ |

|P̃ |∑
i=1

Pi

∣∣∣∣ F
 . (7)

That is, vector PF is the expected average conditional distri-
bution on the search space given F . Bashir et al. [7] define
the inductive orientation of an algorithm (relative to D) to be

PD = EF∼D[PF ]. (8)

D. Algorithmic Bias

Definition 7 (Algorithmic Bias): Following Montañez et
al. [1], let D be a distribution over a space of information
resources F and let F ∼ D. For a given D and a fixed k-hot
target function t,

Bias(D, t) = ED[t
⊤PF ]−

k

|Ω|
. (9)

The algorithmic bias is the deviation in expected per-query
probability of success of an algorithm from that of a uniform
random sampler, relative to a distribution over information
resources and a fixed target.

The inductive orientation vector is a vector representation
of inductive bias, as PF is the geometric representation of
biases relative to our external information resource F . Thus,
PD represents the expected value of the difference between
different regions’ probability masses placed by the algorithm.

Using the definition of the inductive orientation vector,
Bashir et al. [7] showed that algorithmic bias can be defined
in terms of the inductive orientation of an algorithm, such that

Bias(D, t) = t⊤(PD −PU ), (10)

where PU = 1 · |G|−1, the inductive orientation vector for a
uniform random sampler.

E. Entropic Expressivity

Definition 8 (Entropic Expressivity): Given a distribution
over information resources D, Lauw et al. [6] define the
entropic expressivity of an algorithm to be the Shannon entropy
of its inductive orientation vector,

H(PD) = H(U)−DKL(PD || U), (11)

where DKL(PD || U) is the Kullback-Leibler (KL) divergence
between distribution PD and the uniform distribution U , and
both are distributions over the search space Ω. Note, in the
special case of the uniform distribution, the cross-entropy
H(PD,U) = EPD

[− log2 U(X)] = H(U).

IV. MAIN RESULTS

In this section, we derive generalization bounds in terms of
algorithm capacity and the inductive orientation vector.

A. Generalization Bounds Through Algorithmic Capacity

We first derive a generalization error bound under dis-
tributional algorithm capacity for loss functions that are σ-
subgaussian.

Theorem 1 (Generalization Error Bound Under Distribu-
tional Algorithm Capacity): When D ∼ D and ℓ(g,D) is
σ-subgaussian under D for all g ∈ G, then

|gen(D, PG|D)| ≤
√

2σ2

n
· CA,D, (12)

where CA,D is the distributional algorithm capacity, defined
in [7].



Recall that a variable is said to be σ-subgaussian if, for all
σ > 0, the following inequality is satisfied

E
[
eλ(X−E[X])

]
≤ e

λ2σ2

2 (13)

for all λ ∈ R. A random variable which is bound in the
interval (a, b) is subgaussian with σ = b−a

2 . Thus, common
loss functions such as the 0-1 loss function and the hinge loss
function, which are used for support vector machines in multi-
class classification problems, are always subgaussian. This is
regardless of the hypothesis and training dataset distribution
they are defined by.

Next, we provide a result for the generalization error in
terms of the inductive orientation vector of an algorithm.

Corollary 1 (Generalization Error Bound Under Entropic
Expressivity):

|gen(D, PG|D)| ≤
√

2σ2

n

(
H(PD)− ED[H(PF )]

)
, (14)

where H(PD) and ED[H(PF )] are the entropic expressivity
and the expected entropic expressivity of A, respectively. PF

is the expected average conditional distribution on the search
space given an external information resource F , and PD is
the inductive orientation of the algorithm.

We see that Theorem 1 relates the generalization error to
the algorithm capacity, which is defined in terms of the mutual
information between the hypothesis and the dataset. Corollary
1 relates the generalization error to the inductive orientation
vector. The generalization error can also be interpreted in terms
of algorithmic bias, which is shown below.

Corollary 2 (Generalization Error Bound Under Algorith-
mic Bias): For a classification problem in the algorithmic
framework with fixed target function t,

|gen(D, PG|D)| ≤
√

2σ2

n
B, (15)

where

B := log2 |G| − 2Bias(D, t)2 − ED[H(PF )]. (16)

Additionally, we present a bound on the generalization error
using KL divergence.

Corollary 3 (Generalization Error Bound Under KL Diver-
gence):

|gen(D, PG|D)| ≤

√
2σ2

n

(
sup
D

[
DKL(PG|D||PG)

])
. (17)

B. Generalization Bounds For Additional Distributions

We now introduce a new random variable L̂, which is a
tuple of empirical risk values for all hypotheses g ∈ G, such
that

L̂ = (ℓ̂1, ℓ̂2, . . . , ℓ̂m) (18)

= (R̂D(g1), R̂D(g2), . . . , R̂D(gm)), (19)

where m = |G| is the total number of hypotheses in our
hypothesis space. Notice that L̂ is a function of D ∼ D, so

I(G; L̂) ≤ I(G;D) (20)
= CA,D (21)

by the Data-Processing Inequality [14]. We use L̂ to upper
bound generalization error for other distributions of the loss
function.

Theorem 2 (Generalization Bound Under Algorithmic Ca-
pacity for σi Distributions): If the input dataset D is drawn
from a distribution D, such that ℓ(gi, D) is σi-subgaussian
under D for all 1 ≤ i ≤ m, then

|gen(D, PG|D)| ≤
√

E[σ2
G]

n
· 2CA,D. (22)

Notice that Theorem 1 can be obtained from Theorem 2 by
setting σi = σ for all 1 ≤ i ≤ m. Using the upper bounds on
CA,D that were proved in [7] and referred to in Corollaries 1,
2, and 3, we may obtain similar corollaries for Theorem 2.

Corollary 4 (Generalization Bound Under Entropic Expres-
sivity for σi Distributions):

|gen(D, PG|D)| ≤
√
2
(
H(PD)− ED[H(PF )]

)√E[σ2
G]

n
.

(23)
Corollary 5 (Generalization Bound Under KL Divergence

for σi Distributions):

|gen(D, PG|D)| ≤
√
2 sup

D

(
DKL(PG|D||PG)

)√E[σ2
G]

n
. (24)

Theorem 3 (Generalization Bound for Sub-exponential Dis-
tributions): If the input dataset D is drawn from a distribution
D, such that ℓ(g,D) is sub-exponential with parameters (σ, b)
under D for all g ∈ G, then

gen(D, PG|D) ≤ b · CA,D +
σ2

2nb
. (25)

Recall that a variable X is said to be sub-exponential with
parameters (σ, b), where b > 0, if (13) is satisfied for all
|λ| < 1

b . By definition, all subgaussian variables are sub-
exponential, so the 0-1 and hinge loss functions are examples
of sub-exponential loss functions.

V. EXAMPLES

We now consider applications of the generalization bounds
proved above.

A. Underfitting Case

To demonstrate the effect of an underfitting algorithm, let us
define A, which induces a fixed distribution over the hypothe-
ses in G. Upon receiving a dataset D = (Z1, Z2, · · · , Zn),
where Zi ∈ Z , it does not update its distribution but selects
a hypothesis based on the same fixed distribution as before.
Since the input training dataset has no effect on the distribution
over hypotheses, i.e., P (G|D) = P (G), the mutual informa-
tion transferred between any given dataset and the algorithm is



zero. That is, I(G;D) = 0 for all datasets D. By definition of
algorithmic capacity and distributional algorithmic capacity,

CA,D = I(G;D) = 0, and (26)

CA = sup
D

I(G;D) = 0. (27)

Since the distribution of G does not change over time, the
time-indexed capacity Ci

A = 0 for all timesteps i.
This is canonically an underfitting algorithm by the def-

inition of underfitting proposed in [7], which states that an
algorithm underfits at iteration i if

Ci
A < E[CD] (28)

where CD = min(CD,M , C ′
D). CD,M measures the length of

the shortest program which correctly maps every input in D
to the correct output, and C ′

D measures the number of bits
required to memorize D. For any non-empty dataset D both
these values must be positive, and so their minimum is also
positive. Therefore,

Ci
A = 0 < E[CD] (29)

at all timesteps i, so A underfits throughout all iterations of
the algorithm.

Using our theorems for generalization error, all of which
involve an upper bound with CA,D as a factor, we see that
for any distribution D across datasets and any loss function
satisfying the required criteria,

|gen(D, PG|D)| ≤ 0, (30)

which implies that

|gen(D, PG|D)| = 0. (31)

While this may seem promising, notice that in minimizing
the generalization error, the algorithm has neglected any infor-
mation possibly provided by D. That is, A has no control over
empirical risk, since it selects a hypothesis without taking into
consideration loss over D, and thus no control over population
risk despite generalization error being zero.

B. Overfitting Case

To demonstrate the effect of an overfitting algorithm, let us
define A for a binary classification task, i.e., each training
example is a k-element vector which is classified as 0 or
1. Upon receiving a dataset D = (Z1, Z2, . . . , Zn), where
Z is the instance space with probability distribution DZ ,
and Zi ∈ Z . Algorithm A selects the hypothesis G ∈ G
which minimizes absolute error, with a predetermined ordering
across all hypotheses to break ties. Since we assume a finite
hypothesis set, A places all probability mass on a single
hypothesis once it is given a training dataset.

Consider any fixed dataset D. The mutual information trans-
ferred between the dataset and hypothesis random variables is
defined as

I(G;D) = H(G)−H(G|D). (32)

Assuming a uniform distribution across hypotheses prior to
conditioning on D, the entropy of G is:

H(G) = log2 |G|. (33)

Since D induces a distribution with no uncertainty and all
probability mass lies on a single hypothesis,

H(G|D) = 0. (34)

Therefore, for any distribution across datasets D,

CA,D = I(G;D) (35)
= H(G)−H(G|D) (36)
= log2 |G|. (37)

In order to overfit, the algorithmic capacity CA,D must be
greater than E[CD], where CD = min(CD,M , C ′

D). Let C ′
D

measure the number of bits required to memorize D without
compression. Assuming each feature in a single training ex-
ample requires one bit to store its value, the entire n-element
dataset would require at most n(k + 1) bits to memorize —
that is, to store feature vectors along with their corresponding
binary classifications — without compression. Thus,

E[CD] ≤ E[C ′
D] (38)

≤ n(k + 1). (39)

In our example, let |G| = 2100, and because we are seeking
to demonstrate overfitting, let n = 10 and k = 5. Then,

log2 |G| = 100 > 60 = n(k + 1), (40)

so
CA,D > E[CD] (41)

for all datasets D. Thus, A is an overfitting algorithm for these
specific values.

Since this is a binary classification task, we use a 0-1 loss
function ℓ. A random variable bounded within [a, b] is (b−a)

2 -
subgaussian. Therefore, ℓ(g,D) is σ-subgaussian under D for
all g ∈ G, where σ = 1

2 . By Theorem 1, we can bound the
algorithm’s generalization error,

|gen(D, PG|D)| ≤
√

2σ2

n
· CA,D (42)

=

√
2

10
· 1
4
· 100 (43)

=
√
5. (44)

Notice that since loss is bounded above by one, we already
know that the generalization error must be bounded above
by one. Thus, in this sort of extreme overfitting situation,
these bounds do not give us any useful information about
how low generalization error must be. This aligns with how
the algorithm works: the algorithm prioritizes minimization
of empirical risk by always selecting the hypothesis which
minimizes loss for the given training dataset. However, in
doing so, we risk a higher generalization error, which in turn
affects our uncertainty of the overall population risk.



C. Standard Case

We consider an algorithm similar to that used in the
overfitting example: a binary classification algorithm which
selects a hypothesis which minimizes absolute training error.
However, we change the size of the training dataset as well
as the number of features of each training example, and add a
component of domain knowledge, which allows us to disregard
certain hypotheses.

Suppose that n = 106 and k = 30, where n is the number of
examples and k is the number of features of each example. The
maximum possible number of vectors in this input space is 230,
so the maximum possible number of hypotheses is 22

30

since
each vector has a binary classification. However, suppose that
by using domain-specific knowledge, the algorithm can pare
down the number of feasible hypotheses to 22

19

. For example,
the algorithm may do this by eliminating illogical predictions
using domain knowledge about the co-occurrence of certain
feature values. Consequently, |G| = 22

19

.
As in the preceding algorithm, a 0-1 loss function ℓ is used,

and ℓ(g,D) is σ-subgaussian under D for all g ∈ G, where
σ = 1

2 .
The mutual information transferred between the dataset and

hypothesis random variables is

I(G;D) = H(G)−H(G|D). (45)

We again assume a uniform distribution across feasible hy-
potheses prior to conditioning on D, so the entropy of G is
given by

H(G) = log2 |G|. (46)

and
H(G|D) = 0. (47)

Therefore, for any distribution across training datasets D,

CA,D = log2 |G|. (48)

By Theorem 1, the algorithm’s generalization error can there-
fore be bound,

|gen(D, PG|D)| ≤
√

2σ2

n
· CA,D (49)

=

√
2

106
· 1

22
· 219 (50)

=

√
212

56
(51)

= 0.512. (52)

VI. CONCLUSION

Using the information-theoretic bounds of Xu and Raginsky
[4] and Russo and Zou [3], we introduce generalization bounds
into the algorithmic search framework for the first time.
We relate the generalization error of learning algorithms to
algorithm capacity, inductive orientation, entropic expressivity,
and KL divergence under subgaussian and sub-exponential loss
functions.

We employ the bounds in examples of overfitting and
underfitting. The underfitting example yields intuitive results.
Through analysis of the generalization bounds, we can see that
the generalization error is upper bounded by zero, implying
that it is equal to zero. In the extreme overfitting example, the
resulting bound is not any tighter than the general upper bound
on loss. However, for more representative algorithms, which
are not clearly underfitting nor overfitting, our results can be
used to obtain non-trivial bounds on generalization error.

The addition of generalization bounds to the algorithmic
search framework furthers its promise as a formalism for
understanding machine learning problems. Future work in
the algorithmic search framework may include analyzing
generalization bounds under additional distributions and loss
functions. With ongoing research into methods of estimating
algorithm capacity [15] and inductive orientation empirically
[8], [16], the algorithmic search framework may also become a
useful tool for applied researchers. Future work may include
leveraging algorithms for estimation of inductive orientation
[16] to empirically study the efficacy of the given bounds.
Furthermore, problems such as constraint satisfaction may
be reduced into an algorithmic search problem, increasing
the scope of the framework. Finally, additional information-
theoretic approaches for understanding machine learning algo-
rithms have arisen, leading to improved generalization bounds
[17]–[20]. Following the approach of our paper, these could
be used to derive stronger generalization bounds within the
search framework as well.
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APPENDIX

Theorem 1 (Generalization Error Bound Under Distribu-
tional Algorithm Capacity): If the input dataset D is drawn
from a distribution D, such that ℓ(g,D) is σ-subgaussian under
D for all g ∈ G, then

|gen(D, PG|D)| ≤
√

2σ2

n
· CA,D, (53)

where CA,D is the distributional algorithm capacity, defined
in [7].

Proof: By Theorem 1 in [4], if ℓ(g,D) is σ-subgaussian
under D for all g ∈ G, then

|gen(D, PG|D)| ≤
√

2σ2

n
· I(D;G), (54)

where I(D;G) is the input-output mutual information of
algorithm A. As discussed in [7], CA,D = I(G;D) = I(D;G)
for a fixed distribution D. Therefore, a direct substitution into
(54) yields the desired inequality,

|gen(D, PG|D)| ≤
√

2σ2

n
· CA,D. (55)

Corollary 1:

|gen(D, PG|D)| ≤
√

2σ2

n

(
H(PD)− ED[H(PF )]

)
, (56)

where H(PD) and ED[H(PF )] are the entropic expressivity
and the expected entropic expressivity of A, respectively.

Proof: Theorem 3 in [7] shows that

CA,D = H(PD)− ED[H(PF )]. (57)

Applying (57) to (54) yields the desired inequality.
Corollary 2: For a classification problem in the algorithmic

framework with fixed target function t,

|gen(D, PG|D)| ≤
√

2σ2

n
B, (58)

where

B := log2 |G| − 2Bias(D, t)2 − ED[H(PF )]. (59)

Proof: Theorem 4 in [7] states that

CA,D ≤ log2 |G| − 2Bias(D, t)2 − ED[H(PF )]. (60)

Applying (60) to Theorem 1 yields the desired inequality.
Corollary 3:

|gen(D, PG|D)| ≤

√
2σ2

n

(
sup
D

[
DKL(PG|D||PG)

])
(61)

Proof: The proof follows directly from Theorem 5 in [7],
which states that

CA,D ≤ sup
D

[
DKL(PG|D||PG)

]
. (62)

Applying (62) to Theorem 1 yields the desired inequality.
Theorem 2 (Generalization Bound Under Distributional

Algorithmic Capacity): If the input dataset D is drawn from a
distribution D, such that ℓ(gi, D) is σi-subgaussian under D
for all 1 ≤ i ≤ m, then

|gen(D, PG|D)| ≤
√

E[σ2
G]

n
· 2CA,D. (63)

Proof: For each i ∈ {1, 2, . . . ,m}, we define ℓi = E[ℓ̂i].
Notice that ℓi is simply the population risk of hypothesis gi.
That is,

L = (ℓ1, ℓ2, . . . , ℓm) (64)
= (RD(g1), RD(g2), . . . , RD(gm)). (65)

Consequently,

|gen(D, PG|D)| = |E[RD(G)− R̂D(G)]| (66)

= |E[ℓ̂G − ℓG]|. (67)

Since ℓ(gi, D) is σi-subgaussian under D, it follows that

ℓ̂i = R̂D(gi) (68)

=
1

n

n∑
j=1

ℓ(gi, zj) (69)

is σ√
n

-subgaussian under D, since E[ℓ̂i] = 1
nE[ℓ(gi, D)].

Therefore, ℓ̂i − ℓi is σi√
n

-subgaussian for all 1 ≤ i ≤ m,
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since loss is a non-negative function, so P (ℓ̂i − ℓi ≤ ℓ̂i) = 1.
Consequently, we can apply Proposition 8 in [3], so

|E[ℓ̂G − ℓG]| ≤

√
E
[
σ2
G

n

]√
2I(G; L̂) (70)

=

√
E[σ2

G]

n

√
2I(G; L̂) (71)

≤
√

E[σ2
G]

n

√
2CA,D, (72)

using (21) for the final inequality. This gives us the desired
bound,

|gen(D, PG|D)| ≤
√

E[σ2
G]

n

√
2CA,D. (73)

Notice that Theorem 1 can be obtained from Theorem 2 by
setting σi = σ for all 1 ≤ i ≤ m. Using the upper-bounds on
CA,D that were proved in [7] and referred to in Corollaries 1,
2, and 3, we may obtain similar corollaries for Theorem 2.

Corollary 4:

|gen(D, PG|D)| ≤
√
2
(
H(PD)− ED[H(PF )]

)√E[σ2
G]

n
.

(74)
Corollary 5:

|gen(D, PG|D)| ≤
√

2 sup
D

(
DKL(PG|D||PG)

)√E[σ2
G]

n
. (75)

Theorem 3: If the elements of the input dataset D are drawn
from a distribution D, such that ℓ(g,D) is sub-exponential
with parameters (σ, b) under D for all g ∈ G, then

gen(D, PG|D) ≤ b · CA,D +
σ2

2nb
. (76)

Proof: We use L̂ and L as they are defined in Equations
(18) and (64), respectively. If ℓ(gi, D) is sub-exponential with
parameters (σ, b), then ℓ̂i is sub-exponential with parameters
( σ√

n
, b), and accordingly ℓ̂i − ℓi is sub-exponential with pa-

rameters ( σ√
n
, b), since loss is a non-negative function, so

P (ℓ̂i − ℓi ≤ ℓ̂i) = 1. Consequently, we can apply Proposition
9 from [3], so

E[ℓ̂G − ℓG] ≤ b · I(G; L̂) +
(σ/

√
n)2

2b
(77)

= b · I(G; L̂) +
σ2

2nb
(78)

≤ b · CA,D +
σ2

2nb
. (79)

The left hand side may be equated to generalization error, so

gen(D, PG|D) ≤ b · CA,D +
σ2

2nb
. (80)

If b < 1, Proposition 9 promises a tighter bound,

gen(D, PG|D) ≤
√
b · CA,D +

σ2

2n
√
b
. (81)

The corollaries due to upper-bounding CA,D apply here as
well.
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