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Abstract. Highly-parameterized deep neural networks are known to have strong
data-memorization capability, but does this ability to memorize random data also
extend to simple standard learning methods with few parameters? Following re-
cent work exploring memorization in deep learning, we investigate memoriza-
tion in standard non-neural learning models through the label recorder method,
which uses a model’s training accuracy on randomized data to estimate its mem-
orization ability, giving a distribution- and regularization-dependent label record-
ing score. Label recording scores can be used to measure how capacity changes
in response to regularization and other hyperparameter choices. This method is
fully empirical, easy to implement, and works for all black-box classification
methods. The label recording score supplements existing theoretical measures
of model capacity such as Rademacher complexity and Vapnik-Chervonenkis
(VC) dimension, while agreeing with conventional intuitions regarding statisti-
cal learning processes. We find that memorization ability is not limited to only
over-parameterized models, but instead exists as a continuum, being present (to
some degree) even in simple learning models with few parameters.
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1 INTRODUCTION

Representational capacity of a model captures the ability of a model to fit various dis-
tributions [3,6, 10]. A low-capacity model is incapable of fitting a complex training
dataset, leading to underfitting and poor generalization. A high-capacity model can
memorize a training dataset and overfit [1,2]. Thus, representational capacity is cen-
tral to understanding whether a model will generalize well given a training set, and is
of general importance in machine learning research.

VC (Vapnik-Chervonenkis) dimension and Rademacher complexity are well-known
theoretical measures of representational capacity. The VC dimension upper bounds the
capacity of a model by considering the maximum size of a dataset for which the model
can correctly draw decision boundaries that differentiate all possible label combinations
[13]. In contrast, Rademacher complexity measures a model’s capacity through its abil-
ity to fit random noise, gauging the maximum expected correlation that a model can
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create between its predicted labels and the true (random) labels. Rademacher complex-
ity has been used to create algorithms for learning kernels [4] and to improve general-
ization performance of models trained with adversarial learning [15].

We take inspiration from these theoretical tools to present an empirical method for
estimating representational capacity, called the label recorder method. In the spirit of
Rademacher complexity, the label recorder method evaluates a learning algorithm’s
ability to fit noise and provides an empirical method for the same. It does this by train-
ing and evaluating a model on the same set of randomized data, hence the name label
recorder, as this method trains the model to record labels of random data. We seek to
measure the ability of a model to store and recall information from a random dataset, in
which there is no exploitable regularity between features and labels to compress. In su-
pervised learning, correct label prediction is the result of memorization, generalization,
and luck, in some combination. By using data with no dependence between features
and labels we remove the contribution of generalization, which allows us to probabilis-
tically bound a method’s information storage capacity for its models, a quantity that
affects its generalization behavior [1,2, 14]. We refer to the accuracy of the model in
reproducing labels as its label recording score.

The label recorder method was first introduced by Sandoval Segura et al. [11]. They
demonstrated how to directly estimate model capacity by proposing the label distribu-
tion matrix (LDM). For a model and some pre-selected datasets, the matrix computes
the probabilities that the model predicts each possible labeling for each dataset and
stores them in simplex vectors. It determines a probability distribution that can gener-
ate these simplex vectors and uses the entropy of the recovered distribution to infer the
flexibility of a model. The more uniformly a model spreads its corresponding probabil-
ity mass over the support (i.e., over the possible labelings of test examples), the more
flexible the model is. To verify their method, Sandoval Segura et al. ran experiments
to determine whether the LDM was a good empirical measure, but the results were
inconclusive. In the paper, Sandoval Segura et al. also introduced the label recorder
method. They showed that the method was promising because initial results of the
method aligned with intuition about the models tested. In our paper, we provide the-
oretical background, continue the empirical exploration of the label recorder method,
and explore its implications on model capacity with more experiments and a wider
range of models.

Zhang et al. recently investigated the relationship (or lack thereof) between memo-
rization and generalization for deep neural networks [16]. By training and testing state-
of-the-art neural network models on randomized data, Zhang et al. determined that
models which memorize training data perfectly can still generalize well. Smith and
Le followed up on the work of Zhang et al., considering the memorization ability of
logistic regression models [12]. They showed that a weakly regularized logistic regres-
sion model generalizes well, despite perfectly memorizing training data for the MNIST
dataset, similar to the behavior observed by Zhang et al. Others have looked at the
ability of human beings to create concepts from randomly generated data as a way of
estimating human Rademacher complexity [17]. These experiments serve as inspiration
for the label recorder method, and our study extends this mode of investigation to the
memorization behavior of several standard non-neural learning methods.
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2 Experimental Setup

We now describe our experimental setup, namely, the models, datasets, and data ran-
domization methods used by our label recorder experiments. The standard classification
methods we investigate are listed in Table 1. For Decision Trees and Random Forest,
we generated groups of models by varying the tree depth regularization parameter from
1 to 21, in increments of 5. For the k-Nearest Neighbors algorithm, we do the same by
varying the k regularization parameter from 6 to 21, in increments of 5. We used the
default parameters in sklearn toolkit for rest of the models [8].

Table 1. List of models used, their abbreviations and hyperparameters varied.

Model Name Abbreviation Hyperparameters
Decision Trees DT Depth: 1-21, Criterion: Gini Impurity
k-Nearest Neighbors KNN k:1-21, Weights: Uniform
Random Forest RF Max-Depth: 1-21, Criterion: Gini
Adaboost AB Learning Rate: 1.0, Algorithm: SAMME.R
Quadratic Discriminant QD Priors: None, Regularization Parameter: 0
Gaussian Process Classifier GPC Optimizer:fmin_1_bfgs_b, Max Iters: 100
Gaussian Naive Bayes NB Priors: None, Smoothing: 10~
Linear Support Vector Machine LinearSVC Penalty: 12, Loss: Square-hinged
Logistic Regression LogReg Penalty: 12. Tolerance: 104

We use two variants of data for our experiments. The first variant, as in Smith and Le
[12], is a randomized digits dataset. For computational efficiency, we used an abridged
version of randomized digits dataset, called Digits, provided by the scikit-learn library
[9]. To create a balanced binary classification problem (which facilitates our later anal-
ysis), we select the 150 samples with label 0 and 150 samples with label 1 from that
dataset. To randomize this digits dataset, we shuffle the labels of the samples. Then,
for each model, we train it on this shuffled dataset and measure its training accuracy
(namely, testing it on the same training set). To ensure the statistical significance of the
results, for each algorithm and hyperparameter configuration, we repeat the above pro-
cess for 500 independent trials, and compute the average and 95% confidence intervals
of the resulting accuracy values. The average of those values is the label recording score
of that model for the randomized Digits dataset.

However, the Digits dataset is limited in that we cannot vary the number of fea-
tures nor the number of labels without compromising the distribution (digits data) that
the dataset represents. Furthermore, being a real categorical dataset, the samples of the
Digits dataset cluster in Euclidean space and do not represent a uniform random sam-
pling of that space. We therefore create an additional dataset variant through uniform
random sampling. This scheme generates random features and labels using integers
drawn from a uniform random distribution. To create different datasets, we vary the pa-
rameters of the randomly sampled datasets as follows. The number of features for each
sample ranges between 2 and 12 dimensions. The sizes of the datasets vary between
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100 and 5000 samples. Finally, to compute the label recording score for the models on
each dataset, we apply the label recorder method as described in the Digits experiments.
In the following section, we organize our analysis of the results in the following
ways. First, we explore how label recording scores differ between the dataset variants,
demonstrating the distribution dependency of label recording scores. Then, we inspect
the label recording scores for all models on the shuffled Digits dataset; this demon-
strates how label recording scores differ across models. After this, we use the results of
the full synthetic data experiments to investigate how dataset parameters and model hy-
perparameters affect the label recording score of the models. Lastly, we conduct a brief
theoretical analysis of the label recorder method, showing how scores can be proba-
bilistically mapped to memorization capacities for rote learners and other supervised
classification methods. Throughout all sections, we explore how the label recording
score aligns with intuition on model capacity through the lens of decision boundaries.

3 Results

3.1 Differences Between Data Distributions

First, we investigate how the distribution of our datasets affects the label recording score
for our models. We observe that the label recording score for models on the shuffled
Digits dataset (shown in Table 3) and those of the fully synthetic data (Table 4) are
clearly different. Namely, the label recording score of each model is generally lower
for the shuffled Digits dataset than for the fully synthetic dataset. We can explain this
phenomenon through the consideration of decision boundaries. As embodied in the
notion of VC dimension, the more difficult it is to shatter a dataset, the harder it is to
memorize that dataset. We hypothesize that it is more difficult to shatter the shuffled
Digits dataset, i.e., to draw decision boundaries that separate the samples of that dataset
by label within the feature space, than it is for the fully synthetic data, explaining the
lower label recording scores for the former dataset variant. We also hypothesize that the
shuffled Digits dataset is more difficult to shatter than the real Digits dataset.

To verify this, we use t-SNE [5] to visualize the spatial distribution of the samples
of the real Digits dataset, the shuffled Digits dataset, and the uniform random (fully
synthetic) dataset, as shown in Figure 1, projecting the samples onto a two-dimensional
plane. In the resulting plots, we first notice the real digits dataset clusters samples of
similar labels (as expected) while shuffled digits dataset clusters samples of different
labels (due to randomization). In other words, shuffling the labels of the real Digits
dataset preserves the clustering of samples but makes it harder to assign the same label
to samples that are close to each other in feature space. Thus, it is more difficult for
a model to draw a good decision boundary on the shuffled Digits dataset than on the
real Digits dataset, which is expected as the former dataset has no correlation between
labels and features.

We can also compare the t-SNE visualizations of the shuffled Digits and fully syn-
thetic datasets. Note that the visualized synthetic dataset has the same number of sam-
ples and features as those of the shuffled Digits dataset. As shown in the Figure 1, while
both datasets have differently-labeled samples in close proximity, those of the shuffled
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Digits dataset are tightly clustered in groups while those of the fully synthetic dataset
are more spread out in a spherical shape, due to the uniform random sampling. Thus,
by the same logic as before, the shuffled Digits dataset is more difficult to shatter than
the fully synthetic dataset, matching our hypothesis and explaining the higher label
recording scores on the fully synthentic dataset.

We confirm our observations from the t-SNE visualization by quantifying the spread
of differently labeled samples of the examined datasets. For each dataset, we calculate
the average Euclidean distance from samples to their closest neighbors (ignoring la-
bels), as well as to their closest differently-labeled and closest same-labeled neighbors.
The results are in Table 2. As shown in the table, in both the full feature space and pro-
jected t-SNE space, the shuffled Digits dataset has smaller spread for differently labeled
data points than both the real Digits dataset and the fully synthetic dataset.

While the shuffled Digits dataset has lower label recording scores than the fully
synthetic dataset, we observe that their relative scores are similar. Specifically, when we
rank the models by their scores in Table 3 and Table 4 respectively, all but two models
(namely NB and QD) have the same rank. Also, preliminary experiments demonstrated
that the label recording score trends with respect to dataset (i.e., the shape of the vi-
sualized line charts) of the two variants resembled each other. Combined with the fact
that it easier to try different numbers of features and samples using the fully synthetic
variant, we use the fully synthetic data to investigate the effects of dataset and model
parameters on label recording score. We present these results in Sections 3.3-3.5.

Regular Digits Shuffled Digits
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Fig. 1. The results of t-SNE for regular/true Digits dataset and Digits dataset with shuffled labels,
as well as the fully synthetic uniform random dataset.
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Table 2. Average Euclidean distance between a point and its nearest neighbor with specified label
type in specified dataset.

Label Type Dataset  Avg. Feature Space Distance Avg. t-SNE Space Distance
Same Label Real Digits 16.47 0.728
Same Label Shuffled Digits 22.05 2.261
Same Label  Fully Synthetic 41.98 3.847
Different Label ~Real Digits 29.50 11.54
Different Label Shuffled Digits 16.62 0.638
Different Label Fully Synthetic 39.42 1.071
Any Label Real Digits 16.44 0.593
Any Label Shuffled Digits 16.44 0.593
Any Label Fully Synthetic 39.32 0.977

Table 3. Label recording scores for the shuf- Table 4. Label recording scores for fully syn-
fled Digits dataset. Maximum label recording thetic data.
scores (corresponding to perfect memorization)

are bolded. Rand. Random Random
Model Input Input Average

Model Digits Input Digits Input Avg. 95% Minus

Avg. Accuracy 95% Conf. Int. Acc. Conf. Int. Digits Avg.
NB 0.52 (0.52,0.52) NB 0.73 (0.72,0.73)  0.21
GPC 1.00 (1.00,1.000 GPC 1.00 (1.00,1.00)  0.00
AB 0.81 (0.80,0.81) AB 0.87 (0.87,0.88)  0.06
QD 0.63 (0.61,0.65) QD 1.00 (1.00,1.00)  0.37
KNN; 1.00 (1.00,1.000 KNN; 1.00 (1.00,1.00)  0.00
KNNg 0.65 (0.65,0.66) KNNg 0.66 (0.65,0.66)  0.01
KNNy 0.62 (0.62,0.63)  KNNj; 0.62 (0.61,0.63)  0.00
KNNj6 0.60 (0.59,0.60) KNNj¢ 0.60 (0.59,0.60)  0.00
KNN»; 0.59 (0.58,0.59) KNN»; 0.59 (0.58,0.59)  0.00
DT, 0.56 (0.56,0.57) DT, 0.58 (0.58,0.58)  0.02
DT 0.79 (0.78,0.81)  DTgq 0.87 (0.86,0.88)  0.08
DTy, 0.97 (0.97,098) DTy, 1.00 (1.00,1.00)  0.03
DT¢ 1.00 (1.00,1.000 DTy 1.00 (1.00,1.00)  0.00
DT, 1.00 (1.00,1.00) DT,y 1.00 (1.00,1.00)  0.00
RF; 0.62 (0.61,0.63) RF; 0.74 (0.74,0.75)  0.12
RF¢ 0.98 (0.97,098) RFgq 1.00 (1.00,1.00)  0.02
RF; 1.00 (1.00,1.00)  RFyy 1.00 (1.00,1.00)  0.00
RF ¢ 1.00 (1.00,1.000)0  RFyq 1.00 (1.00,1.00)  0.00
RF;, 1.00 (1.00,1.00)  RFy 1.00 (1.00,1.00)  0.00
LinearSVC 0.56 (0.55,0.57)  LinearSVC 0.59 (0.58,0.60)  0.03

LogReg 0.66 (0.66,0.67)  LogReg 0.70 (0.70,0.71)  0.04
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3.2 [Examining Labeled Recorder Scores

We begin by inspecting the label recording scores for the models trained on the shuffled
Digits dataset. Given the randomization of labels and the balance in the distribution
of the labels in the shuffled Digits dataset, one might guess that the result of training
would not be much better than random guessing. However, to the contrary, we observe
that many models perform significantly better than a uniform random guesser, with
some achieving perfect memorization. The baseline expected accuracy for a uniform
random guesser is 1/¢ where ¢ is the number of class labels. Table 3 gives the label
recording scores for the various methods, with an average standard deviation of 0.01.

All methods perform better than 0.5, which is the baseline for a random guesser
over two evenly distributed classes, and several methods achieve perfect accuracy. This
demonstrates that above average labeling recording capacity is not exclusive to neural
networks [16] or even limited to over-parameterized models [12]. Simple models such
as depth-limited decision trees and KNN also exhibit nontrivial memorization capac-
ity. While the dataset sizes are small for computational efficiency, our results provide
evidence that standard learning methods have above uniform average memorization ca-
pacity.

One might be curious about why some methods perform better than others. This
happens because of the some methods are able to carve out more complex decision
boundaries than others. For example, as its name suggests, a LinearSVC model has a
simple linear decision boundary. Thus it is a rigid model and no matter how the decision
boundary line is drawn, on a binary classification problem on uniform random data it
will perform close to a random guesser. But for tree-like classifiers (such as DT and
RF) each branch allows you to encode some decision, thus making the boundary which
can exclude or include points. This effectively operates as a way of storing information
(namely, label mappings) from a dataset. Zhang et al.’s experiments show that neural
networks can perfectly memorize random data [16]. Given many empirical instances
where neural networks perform better than standard machine learning models, a differ-
ence in label recording capacity serves as one possible explanation for this performance
difference.

3.3 Varying Dataset Size

To investigate the effect of dataset size on the label recording score, we conduct an addi-
tional set of uniform random data experiments, holding the number of classes, features,
and feature values constant, while varying the number of samples.

As seen in Figure 2, increasing dataset size reduces label recording score for all
but the KNN models. It makes intuitive sense that most methods will have lower label
recording scores as they try to memorize more random samples, since models with lim-
ited storage capacity cannot retain an unlimited number of arbitrary label assignments.
Note that the feature hyperspace is finite as it consists of a finite number of dimen-
sions and finite number of possible values for each dimension. As we increase the size
of the uniform random dataset, we uniformly sample this feature space more, which
makes it such that datasets of larger size are more dense in the feature space. However,
the labels of these samples are random; therefore, the samples with conflicting labels
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of larger datasets are more likely to be in close proximity (or overlap) in the feature
space. This makes it more difficult to draw decision boundaries that separate and thus
correctly label the uniform random samples. Thus, for most standard machine learn-
ing models, especially those whose decision boundaries are calculated using the entire
dataset, the label recording score decreases with more samples, and models with these
characteristics tend to approach random guessing asymptotically.

As the size of the datasets increase, Figure 2 shows that the average accuracies
approach steady rates of decline, which is expected once models saturate their memo-
rization capacity. Indeed, by computing the first and second pseudo-derivatives of the
average accuracy using the differences in consecutive terms, we find that for all models
the rates of change approach zero (results not shown).

In contrast to most models, the label recording scores of KNN models do not asymp-
totically decrease nor increase as the number of samples increases. Consider how KNN
creates its decision boundaries as it trains on more samples: the predictions of a KNN
model are only a function of the input sample’s k nearest points. While other methods
typically use the entire training set to generate a decision boundary, KNN draws its
decision boundaries locally by labeling a sample with the most common label among
the input sample’s k nearest points. Thus, the decision boundary of a KNN model is a
hyperdimensional polytope defined by the k closest samples to each point in the feature
space. As more samples fill the feature space, the polytopes of the decision boundaries
shrink.

Given that KNN predicts using local data points and the random nature of our data,
we can calculate the expected accuracy or label recording score for a KNN model of a
given k hyperparameter, and compare for agreement with our experimental results. For
example, for KNN, testing on its own training data, the querying point will consider
itself and its closet neighbor. Given that data points are randomly labeled, the neighbor-
ing point has equal probability of matching the querying point’s label, and thus of being
correct, assuming ties are broken randomly. For KNNg, we can find the probability that
two or more randomly labeled neighbors share the same label as the querying point to
produce a correct classification, again assuming randomly broken ties and binary labels.
There are 2> ways assigning binary labels to the 5 neighbors. We compute the proba-
bility of a correct classification as follows: there is 1 way to get all 5 other neighbors to
have the specified label; there are (Z) ways to have 4 neighbors with the specified label,;

and there are (g) ways to have 3 neighbors with the specified label. Assuming that KNN

breaks ties randomly, there is a 1 (3) /2° probability of having exactly 2 neighbors with
the specified label to get a plurality. The probability of getting a correct label is

1+ (+Q)+16
25

This agrees precisely with our observed results.
Besides the geometric interpretation, we can also think about the KNN results ana-
Iytically. For each new data point, KNN determines its labeling by collecting the votes
from its k-nearest neighbors. From another perspective, the model takes in the k-nearest
neighbors (the rest of the dataset actually does not matter) and forms a classifier; we
will call this a KNN-subclassifier. The larger a dataset, the more KNN-subclassifiers

)} ~ 0.656.
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there are. Hence KINN is an ensemble of n KNN-subclassifers, and this ensemble with-
out size limitation explains why KNN has a consistent capacity across different dataset
size. KNN is not displayed here as it has a 100% accuracy because it uses only one
data point, which is itself, and training and testing data is identical.
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Fig.2. Average Accuracy with 95% confidence intervals for varying dataset size, label dimen-
sion=2, and feature dimension=>5.

3.4 Varying the Number of Features

We next vary the number of feature dimensions. Here the dataset consists of data with
10 possible labels and 750 data points, drawn from a uniform distribution.

As shown in Figure 3, in most cases the label recording score increases as the feature
dimension increases. With fewer features, the feature space is smaller and we are more
likely to experience collisions, namely, the same or similar samples having different
labels. By the same logic, with few features each model (which maps features to labels)
will have less information to work with. Conversely, increasing the number of features
reduces these collisions. Note that weakly regularized tree-based models, e.g., Decision
Trees and Random Forests with large tree depths, have high label recording scores
irrespective of increasing feature dimension, because they are able to take advantage of
these features in a better way through encoding each individual feature as a level of the
tree. KNNs remain unaffected by changing feature dimensions because, as explained in
Section 3.3, they perform inference locally and not globally.
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Average Accuracy vs Feature Dimension Average Accuracy vs Feature Dimension
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Fig. 3. Average Accuracy with 95% confidence intervals for varying feature dimensions, label
dimension=2, and dataset size=1000.

3.5 The Effect of Regularization

To investigate the regularization effect on label recording scores, we compare the results
of the KNN, decision trees, and random forest models with varying regularization pa-
rameters. In particular, note that having a larger number of neighbors increases regular-
ization for the KNN model while a lower maximum tree depth increases regularization
for decision tree and random forest models.

In agreement with expectation, Figure 4 shows that the more regularized a model
is, the less it memorizes, highlighting how the label recording score is an intuitive mea-
sure of memorization capability. Because the data is random, this suggests the label
recording score can be a useful empirical proxy for representational capacity.

3.6 Using the Label Recording Score to Gain Insights on New Models

From our analysis, we see that the label recorder score intuitively responds to changes
in the parameters of the machine learning problem and model. For example, we’ve
demonstrated a correspondence between the increase of data complexity and size and
regularization of the model with the decrease of the label recording score—reflecting
the model’s memorization ability. It is a natural extension of this observation to use
the label recorder score to gain insight into new models. For example, if adjusting a
parameter of a model decreases the label recording score, we might speculate that the
parameter regularizes the model. As another example, if a model’s label recording score
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Average Accuracy vs Regularization
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Fig. 4. Average Accuracy with 95% confidence intervals for varying regularization parameters,
label dimension=2, feature dimension=5, and dataset size=1000.

does not change significantly as we increase the dataset size, we might surmise that the
model creates local decision boundaries similar to those of KNN. This could be an area
of further investigation.

As observed in the differences in label recording score between the two dataset
variants (keeping dataset size and number of features fixed), the label recording score is
distribution dependent. This might indicate that a model’s memorization ability depends
on the distribution from which the training data is sampled. From the perspective of
representational capacity, this tells us that models are better at representing some types
of data rather than others.

4 Theoretical Analysis

In this section we perform a preliminary theoretical analysis of some properties of the
label recorder method, showing how to probabilistically relate label recording scores to
model capacities, and work through an example using simple memorization models for
which exact capacities are known. A fuller theoretical treatment is the subject of future
work.

4.1 Rote Memorizer

As the name suggests, a Rote Memorizer memorizes some finite number of examples
and will uniformly randomly guess the label of any example not memorized. It is im-
plemented via a simple look-up table, with the features as keys and the labels as values.
Figure 5 shows the label recording performance for rote memorizers of varying capaci-
ties, as measured in the number of examples memorized. As expected, a rote memorizer
has perfect accuracy when the number of examples is fewer than its memorization ca-
pacity, and accuracy decreases once the dataset size exceeds its capacity.
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Expected Accuracy vs Dataset Size for Rote Models
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Fig. 5. Analytical plot for varying dataset size for Rote models, with varying number of exam-
ples memorized (i.e., Rote100 refers to a rote memorizer capable of storing 100 examples). The
label dimension of the dataset is 2, and feature dimension is 5. These analytical plots agree with
subsequent independent empirical validation (figure not shown).

Comparing Figures 5 and 2, which demonstrate the effects of varying dataset size
on the Rote Memorizer and other models, we see that both have similar asymptotic be-
havior of approaching 0.5, that is, they both turn into random guessers for large dataset
sizes. There is a corresponding decrease in accuracy after the models are saturated,
which for most models occurs with the smallest dataset tested (n = 100), suggesting
that their capacity is smaller than needed to perfectly memorize all examples. It may
additionally demonstrate a strong reliance on dependence between features and labels,
or between data points themselves, suggesting a strategy of generalization rather than
memorization [7]. Removing all dependence would hinder these methods accordingly.
Additionally, while Rote memorizers can store feature-label pairs independently of one
another, generalizing methods like Logistic Regression and Decision Trees store their
information in interacting ways, such that changing the classifier to correctly label one
point often affects the classification of other points. This further explains why Rote
Memorizers demonstrate a sharp “phase transition” after saturation, compared to the
more gradual reductions in capacity observed in the other methods.

One can qualitatively compare the curves from real models to those of Rote Memo-
rizers of different capacities. For example, seeing that Adaboost responds to increasing
dataset size in a way that closely mimics the Rote100 learner suggests that its memo-
rization capacity is close to 100 examples. Figure 5 can thus serve as a reference guide.

4.2 Expected Label Recording Scores

Let us consider expected accuracy of a Rote Memorizer. Let m be the number of entries
that can be memorized by a Rote Memorizer, d be the size of the data set and ¢ be
the label dimension. Furthermore, let m’ = min(m,d). The number of correct examples
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becomes the number of examples memorized plus the number correctly guessed. Thus,

/ d— /l / ’
]E[Accuracy]M(lé)’ZJrzl(lz) (1”;)

For binary classification case with ¢ = 2, this simplifies to

1 m' m’
E|A =1—-(1-= 1—— | =0. Sl—).
[Accuracy] ( 2)( d) 05+05(d)

When m’ < d, E[Accuracy] = 0.5, explaining the observed asymptotic behavior.
Similarly, for a general algorithm A4 and a dataset D of size d, we can decompose
E [Accuracy] into its two components: the accuracy on the memorized portion of the
dataset, m’/d, and the accuracy on the remaining, unmemorized portion, d’Tm/u 2(D),
where m’ is the number of data points that 4 can memorize from the dataset D, and
ug(D) is the expected accuracy of the algorithm 4 on unmemorized data. This yields
/ / /
E[Accuracy] = 2y d—m

m

e+ ua(D) = 1= (1 ua() (1- )
For the specific case of a Rote Memorizer on random data D with ¢ labels, we have
Urote (D) = 1/¢, since the Rote Memorizer performs uniform random guessing for all
unmemorized parts of the dataset. Because completely random data has no correlation
between features and responses, we conjecture ug (D) will be approximately 1/¢ for
all methods trained on such datasets, as no generalization is possible, leaving luck and
memorization as the only paths to correct label prediction.

4.3 Relating Label Recorder Score to Memorization Capacity

Let LR(M, D) denote the label recording score of model M trained on dataset D, which
is the observed accuracy of the model trained and tested on that same dataset. When M
is stochastic or D is random, this becomes a random variable Z = LR(M, D), and con-
sidering a collection of n random datasets, the label recording score for each dataset D;
is Z; = LR(M, D;). Because our datasets are independently and identically distributed,
we have E [Accuracy] = E[Z;].

We can reverse the relationship between E [Accuracy| and m’ to obtain

E [Accuracy] — ug(D)
1 —ua(D) .

Therefore, knowing u4(D) and having a bound on E [Accuracy] would allow us to
bound the memorization capacity of a learner.

Consider the average label recording score over n independent trials, Z = % Yz
By linearity of expectation, E[Z] = E[Z;] = E [Accuracy]. Since 0 < Z; < 1, we apply
Hoeffding’s inequality to obtain

m =d

P(|Z — E[Accuracy] | > &) =P(|Z—E[Z]| > ¢) < 2o 21

With this inequality and the average of n independent observations of the labeling
recorder score, we can obtain a probabilistic bound on E [Accuracy], and by extension,
on the memorization capacity of a learning method.
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Example For a Rote Memorizer, assume we have computed the label recording score
n = 1000 times, and found that average of the scores is Z =0.8. As such,

P(]0.8 — E[Accuracy]| > ¢€) < D¢~ 20006 . _ 5,

For example, with probability at least 1 —8 ~ 0.9, we have |0.8 — E [Accuracy] | < 0.04.
For our Rote Memorizer, this implies that with probability greater than 1 — & = 0.89,
we have 0.76 < E[Accuracy] < 0.84, and thus,

0.76 — ; o 084 ;

d
1-4 1-

1
L

More generally, we can say that for a learning method A4 with average label recorder
score of Z computed from n independent trials, we have

<m <

[ ua(D) I un(D) W

5 Conclusion

We investigate the label recorder method, a way of empirically assessing the (data-
dependent) memorization capacity of a model. To use the label recorder method, we
train and evaluate a model on the same set of random data, with the evaluation accu-
racy (i.e., training accuracy) serving as the label recording score. We investigate how
the label recording score is influenced by: the distribution of a dataset, the mechanics
of a model, the size of a dataset, the number of feature of a dataset, and the regular-
ization parameters of a model. We demonstrate that the label recording score can be
explained by reasoning about the decision boundary of each model, and we observe
that the relative magnitude of the label recording score matches our intuitions regarding
representational capacity. The method is fully empirical and can be applied to black-box
classification methods, allowing one to reason about representational and information
storage capacity independently from theoretical concerns.

We further suggest that running label recording experiments on black-box models
can help us to gain insights into their inner workings and hyperparameter effects on that
model. Future research directions include expanding the family of models considered,
using label recording scores to estimate the information storage capacity of concrete
models, and using estimated capacity to derive probabilistic generalization guarantees.
Estimating label recording scores directly from model hyperparameters and parameters
of datasets would be useful and desirable, but cannot be done perfectly for arbitrary
learning algorithms and datasets, since doing this would allow us to determine whether
an arbitrary algorithm will overfit a dataset, a problem recently shown to be formally
undecidable [1].

Running label recording on machine learning problems during hyperparameter op-
timization to compare different variations of models is another promising future appli-
cation. For example, one could compare the label recording score of stopping a model
at 20 epochs vs. 10 epochs. More work remains to investigate the correlations between
label recording scores, regularization, and algorithm information storage capacity.
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