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Abstract—The AlphaZero algorithm has achieved remarkable
success in a variety of sequential, perfect information games
including Go, Shogi and chess. To better understand how Al-
phaZero works and leverage that understanding when deploying
the system, we study the properties of the α hyperparameter
that governs exploration noise in AlphaZero’s search, the only
hyperparameter the system’s creators modified when moving
among the three aforementioned games. First, we build a for-
mal intuition for its behavior on a simple example meant to
isolate the influence of the hyperparameter. Then, by comparing
performance of AlphaZero agents with different α values on the
game Connect 4, we show that the performance of AlphaZero
improves considerably with a good choice of α. This all highlights
the importance of α as an interpretable hyperparameter which
allows for cross-game tuning that more opaque hyperparameters
like model architecture may not.

Index Terms—AlphaZero, Hyperparameters, Bias

I. INTRODUCTION

AlphaZero is a general reinforcement learning algorithm
designed to play games like Go and chess [1]–[3]. It has
achieved superhuman performance on such games, without
explicitly learning from any human gameplay [1], [4]. Yet
AlphaZero still benefits from human insight for each of
those games, because knowledge of the properties of good
search coupled with an interpretable hyperparameter allows
AlphaZero to be tuned in such a way as to play many different
games well. Often hyperparameters come in the form of model
architecture choices that can be opaque and challenging to
optimize for a given problem. There is literature dedicated
entirely to finding the correct settings of hyperparameters of
AlphaZero [5], and stand-alone algorithms developed to tune
the hyperparameters of AlphaZero and similar algorithms [6].
This kind of tuning allows for improved performance, but
comes at a massive computational cost. Hyperparameters must
be tuned from problem-to-problem, and this process quickly
becomes prohibitively costly. As a result, researchers will often
reuse hyperparameters hoping that the problems are “close
enough” that changes are not necessary (e.g., [1]). The one
hyperparameter in AlphaZero that is changed from game to
game is the α value, since it can easily be adjusted to account
for differences in game branching factors. This allows one to

specify a trade-off between exploration and exploitation, which
requires tuning for optimal performance. To gain better under-
standing of AlphaZero’s workings, we investigate the influence
of this hyperparameter in the system’s search process, isolating
its effects and building intuition for how to choose appropriate
values without costly hyperparameter optimization.

This ability to tune based on intuition is powerful. In the
earlier AlphaGo, hyperparameter tuning was a powerful tool in
improving performance and achieving superhuman capability
[7]. It is likely that many hyperparameters, including model
architecture, are not optimal across the three different games
of Go, Shogi, and chess; yet because of our inability to build
intution around these hyperparameters, they are often left
untouched. Prior work has explored empirical rules in special
types of games, for example, a choice for different sizes of Go
boards or a heuristic based on branching factors in games [1],
[8]. In this paper we explore the intuition around the choice
of the search parameter, examine the empirical differences
in search with a Dirichlet prior, and finally perform a hy-
perparameter sweep that demonstrates that sufficient intuition
allows for a strong choice of hyperparameter. We show that
for searches with large enough branching factors, a Dirichlet
prior that is appropriately aligned with information about the
Monte Carlo Tree Search (MCTS) task could significantly
improve performance over a uniform prior. We demonstrate
the significant effect of α on search processes, increasing
the probability of success on a simple synthetic problem that
isolates its influence. This positive effect comes at the cost of
needing correct bias to work well, as deeper search becomes
more sensitive to the choice of α.

We are able to make an informed choice of α with intuition
about what kind of search behavior is likely to benefit an agent
on different types of games. This intuition acts as an implicit
source of inductive bias in choosing α, and AlphaZero’s
success reflects a well-aligned inductive bias, as is the case for
all successful learning and search processes [9]–[11]. While
AlphaZero may not have had its parameters tuned as a result
of human gameplay, the system still benefits from human
experience in the form of well-aligned inductive biases.



II. RELATED WORK

A. AlphaZero Overview

AlphaZero utilizes “self-play” and a variant on Monte Carlo
Tree Search to play discrete, symmetric, two-player games
[12]. One of the key pieces of the algorithm is the use of
Monte Carlo Tree Search (MCTS), a search technique that
has had success in Go going back to 2006 [13]. The key idea
of the algorithm is to perform random exploration of a game
while biasing exploration towards moves that are thought to
have a good outcome. As a move is made more often in this
exploration, the value of that node becomes more certain. At
the end of the exploration phase, the action that was taken the
most times during exploration is chosen as the move in the
game. There are many ways to determine what is meant by a
good outcome, and AlphaZero’s MCTS utilizes a multi-headed
neural network to predict values and future actions for different
states in the game tree. In its search, AlphaZero stores and
updates exploration probabilities at each node depending on
a combination of several factors including the neural network
policy output, results of simulated games, the number of visits
to a given node, and an additional prior distribution affecting
the root, controlled by the hyperparameter α. Like MCTS,
AlphaZero’s tree search is more likely to explore a less-
visited or higher-reward state as determined by experience
and the policy network [3]. The hyperparameter α influences
the balance between the depth and width of exploration.
Selection of α is an exploration vs. exploitation trade-off,
and empirical evidence suggests that the optimal exploration-
exploitation trade-off varies across different games [2]. This
suggests that changing α can contribute significantly to success
in AlphaZero.

B. Dirichlet Distributions

The parameter α is the parameter associated with a Dirichlet
distribution. A Dirichlet distribution is a continuous prob-
ability distribution over the space of possible categorical
distributions [14]. Generally, the Dirichlet distribution over β
categorical variables is parameterized by a β-element vector of
positive entries, α. In our case, the relevant family of Dirichlet
distributions are centered about the uniform distribution, and
thus every entry of α is equal. Thus, we will use α to denote
this scalar value in each entry. For this special case, the
probability density function is given by

f(x1, x2, . . . , xβ ;α) =
Γ(βα)

Γ(α)β

β∏
i=1

xα−1
i .

Intuitively, a large positive value of α indicates a high
probability of selecting the uniform categorical distribution,
α = 1 indicates a uniform probability of selecting any
categorical distribution, and a very small value of α indicates
a high probability of selecting a categorical distribution that
heavily favors a particular label.

C. Exploration in AlphaZero

Exploration in AlphaZero is partially driven by a Dirichlet
distribution. AlphaZero’s search is similar to that of Poly-
nomial Upper Confidence Tree (PUCT) [15]. This strategy
initially favors nodes with high prior probability and low visit
count and asymptotically prefers high-scoring moves. In this
algorithm, the action taken from each node is chosen by the
formula: at = argmaxa(Q(st, a) + U(st, a)), with

U(s, a) = cpuctP (s, a)

√
ΣbN(s, b)

1 +N(s, a)
.

In the above formula cpuct is a hyperparameter to weight the
trade-off between exploration and exploitation, N(s, a) is a
term that counts the number of times an action has been taken
from a given state, and

P (s, a) = (1− ε)pa + εηa,

where ε = 0.25 at the root, and 0 otherwise. We see ε is a
hyperparameter that tunes the weight given to the search prior,
and in AlphaZero the search prior was only used at the root
node of the search for each move. The variable pa denotes
the output of AlphaZero’s policy network and ηa is sampled
from a symmetric Dirichlet distribution parameterized by α. In
testing AlphaZero across different games, researchers changed
the parameter α of the symmetric Dirichlet distribution, as
shown in Table I along with each game’s estimated branching
factor β.

Game: Chess Shogi Go

α 0.30 0.15 0.03
Approx. β 35 80 250

TABLE I
CHOSEN α VALUES COMPARED AGAINST THE β VALUES OF RELEVANT
GAMES [3], [16]. THIS PARAMETER WAS THE ONLY MCTS PARAMETER

VARIED BETWEEN GAMES IN THE ALPHAZERO PAPER.

In adjusting these hyperparameters for each specific game,
the architects of AlphaZero were able to successfully inject
a significant amount of inductive bias into their program
based on an intuitive understanding of the parameter, and this
inductive bias has been shown by Mitchell [17] and Montañez
et al. [11] to be a necessary precondition for successful
learning. We will further explore what this intuitively means
in Section IV-A.

D. Hyperparameter Tuning in AlphaZero

There has been significant work in improving and updating
AlphaZero from many different angles, including by tuning the
parameters of the MCTS algorithm and the associated value
and policy neural network as mentioned previously [5], [6].
Some of the original creators of AlphaZero and collaborators
at Deepmind describe using Bayesian optimization techniques
to tune the parameters of MCTS after training. This work
is done on AlphaGo instead of AlphaZero, but the MCTS
portion is quite similar between the two applications and it



seems reasonable to apply these ideas to AlphaZero [18].
Recently, there have also been various improvements to the
AlphaZero algorithm, including modifying exploration incen-
tives for moves with Dirichlet noise so that incorrect negative
values for moves can more easily be overcome [19]. That said,
there has been little deep analysis of the Dirichlet noise in
AlphaZero, and the kinds of behaviors it may cause.

III. FAVORABLE BIAS THROUGH
HYPERPARAMETER TUNING

A. Bias of Dirichlet

Research into search problems has shown that achieving
better performance than uniform random sampling requires a
bias that aligns with the underlying structure of a problem
[10]. Without appropriate bias, search can do no better than
uniform random sampling [11]. Viewing Monte Carlo Tree
Search in this light, we can examine the bias in bits of a
sampled Dirichlet prior as compared to a uniform prior. This
bias caps the improvement a Dirichlet prior driven search can
give over uniform search, and determines the proportion of
problems this set of biases will do well on. The higher the
bias, the more the algorithm is tailored to the specific search
problem, and the less the general AlphaZero is with a fixed
α. Bias, measured in bits, with respect to the hyperparameter
α and the branching factor of the search tree β is given by

Bias(α, β) = H(U)− EX∼Dir(α)[H(X)]

where U is the uniform distribution, and H(·) is the differential
entropy. The expected entropy of a categorical distribution
drawn from a symmetric Dirichlet distribution is known to be
E[H(X)] = ψ(βα+ 1)− ψ(α+ 1), where ψ is the digamma
function [20]. Graphed over relevant branching factors and
values of α, we see from Figure 1 that as α decreases
the bias increases. Asymptotically, as α approaches zero,
EX∼Dir(α)[H(X)] approaches 0, so when α is sufficiently
small, the bias is equal to the entropy of the uniform dis-
tribution for a fixed branching factor, or log β. This means
that a smaller α value represents a greater bias injected in the
system, and so AlphaZero can only perform well on a small set
of games with a fixed small α. This makes tuning α important
to achieve good performance in a new application.

Fig. 1. Effect of β and α on Injected Bias. Notice for a fixed β, as α
decreases, the bias from uniform increases. In this context, this means adding
Dirchlet noise with low α represents significant information for how search
should be conducted.

IV. COMPUTATIONAL RESULTS

A. Abstract Game Case Study

Armed with these insights concerning injected bias, we
explore the how the choice of different priors can influence
search and improve performance for different games and
branching factors.

In order to try to isolate the influence of α on the search
of a tree, we created a simple simulation that highlights the
advantage of using a Dirichlet prior with specific α over a
uniform prior in some types of games. We focused on trees
that have sparse rewards several steps ahead in tree, which
would be analogous to playing a game with sparse positive
reward signals available only after several moves, which is
representative of the types of games for which AlphaZero has
had success. In this simulation, we assumed the game was
a full tree of a certain depth, and a player could explore up
to 200 nodes. At the specified depth, each node has a 5%
chance of having reward 1, and otherwise has reward 0. At
each non-leaf node, if the node is unexplored, a categorical
distribution is sampled from a symmetric Dirichlet distribution
with parameter α, and the next node choice is sampled from
that categorical distribution. After exploring a node, the agent
starts again from the root and chooses a path based on that
node’s categorical distribution, and continues recursively. If
the algorithm visits a leaf with reward 1, it is considered
successful. If the algorithm repeated a visit to a leaf, that was
also considered an expansion in order to penalize revisiting
parts of the game tree that do not represent reward. We
tested 30 logartihmically spaced α values between 0 and 2
on different branching factors to find which choices of α lend
themselves to successful searches for given branching factors
and depth of reward.

Fig. 2. Success Probability with Reward Depth 5 for different values of α.
In this simulation, we observe that as the branching factor increases, there is
a narrower band of α values that yield good results.

Figure 2 demonstrates the importance of aligning bias
appropriately with the problem. These results and trends match
intuition. For example, at small branching factors, we see that
larger α values lead to a higher probability of success in this
game. High α values correspond to a more uniform distribution
sampled from the Dirichlet, and so this means that there isn’t
a need for large bias to succeed in this type of task for small
branching factors. However, as the branching factor increases,



we see empirically that the range of α values that achieve
good results decrease, and the best results come at smaller
and smaller α. This indicates that at high branching factors the
problem becomes harder and requires more bias away from a
uniform distribution, making the selection of favorable α much
more critical.

Fig. 3. Successful α Across Different Depths. The colored bands represent the
inner 90% of 20 trials of exploration. This graph builds on intuition that as the
depth of exploration required to get a reward increases, the most successful α
decreases. In addition, as the branching factor increases there is a clear visual
trend in decreasing the size of the band of successful α values.

Repeating this experiment across several different branching
factors with rewards at several different depths, we found that
in general as the depth of reward increased, the α value that
led to the most successful search decreased (Figure 3), and
as a result the mode depth explored for the most successful
strategies increased. In Figure 3, the shaded regions around the
solid-line averages capture the inner 90% of 20 trials, where
each trial consists of 50 tree explorations across 30 α values
between 0.0025 and 1, with the final score of a trial being the
proportion of successful explorations to total explorations.

Fig. 4. Mode Depth Explored. As the depth of reward increases, we see
a corresponding increase in the mode depth of exploration for the most
successful α values. At high branching factors this depth of exploration is
highly sensitive to the α value, and so we can build intuition as to why more
precision in α is required for high branching factor games.

These results show that for similar games with high branch-
ing factor and sparser, deeper rewards, success is more sensi-
tive to choice of the appropriate small α value, and a smaller
α value corresponds to higher bias from uniform search.

Furthermore, as the average depth of the reward increased,
the mode depth of exploration increased (Figure 4), and the
corresponding successful α values were smaller (Figure 3) and
more sensitive to changes. Since a lower α means greater bias
(cf. Figure 1), higher branching factor problems and problems
that require a deeper search require more biased search that
is more sensitive to α values. While α values were more
sensitive, this data suggests the intuition of the AlphaZero
architects with respect to changing α to correspond with
branching factor was a reasonable approximation. This seems
to represent Silver et al.’s belief that occasional exploration to
a depth of one or two from an action that may initially have
the best prospect from the policy function is good policy [1].
In order to keep this property of AlphaZero across games, they
were able to adjust accordingly.

B. Employing AlphaZero

We have shown that an appropriate choice of α significantly
improves performance on a synthetic problem, and that it
was relatively simple to predict values of α that are close
to optimal. This was useful because it removed some of the
complexity of AlphaZero and allowed for more controlled
experiments, but does not fully resolve to what extent the
choice of α improves search performance for AlphaZero. To
show that these ideas transfer, we performed what amounts to
a hyperparameter sweep on AlphaZero trained on the game
Connect 4. If performance is improved by hyperparameter
tuning on a simple game like Connect 4, then it is highly
likely that α would be even more important in chess, Shogi
and Go, as suggested by the results in Section IV-A. For
training, we ran 200 descent steps for the main experiment,
and 800 for the extended trials, where at each step the agent
participated in 50 games of self play and loss was computed
on a batch of 512 states from a buffer of 20,000 states. If
this gradient step improved performance, the resulting agent
was replaced. An implementation of AlphaZero with the
configuration used to produce these results is available here:
https://github.com/eweiner/AlphaZeroUncertainty.

C. Connect 4 Results

To evaluate the performance of different parameter settings,
we sampled several different values of α, namely,

α = {0.01, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.2, 10, 100},

trained across ten network initializations per α, and played
the agents against each other for four games each in a round-
robin format. In these models, we explored 40 states in each
MCTS, a significant change from the 800 states explored by
AlphaZero in the paper, but not far off from the number of
states explored in Atari games by MuZero [1], [21]. The results
are included in Figure 5. These two plots represent the same
results, but have two different scales for α. On the y-axis,
we plot win rate. The alternatives are a draw or loss, but
we feel win rate is most informative, as it represents true
superiority over other models. As displayed in Figure 5, we
found a win rate of about 45% as compared to an effectively



uniform baseline win rate of 32% (α = 100). We also found
that the biggest advantage was only in a small window of
α values, which is consistent with the results of the abstract
game. Noting that the difference is not as strong as was
observed for the synthetic abstract game case, we attribute
this to the fact that the noise was not the only exploration or
exploitation signal in Connect 4, allowing agents to at least
partially overcome a suboptimal initialization of parameters.
These results support the conclusion that even though the root
is the only node that directly gets the Dirichlet bias in Monte
Carlo Tree Search, the performance of the algorithm changes
significantly with different choices of α.

Fig. 5. Win rates across different values of α. The confidence interval
represents the middle 50% of win rates. It should be noted that a significant
number of games ended in a tie, and so a 45% win-rate does not mean that the
agent lost 55% of games. In this graph we see a peak in performance around
α = 0. This supports the intuition that α would be an important parameter,
but more tests are required for statistically significant results.

Beyond reinforcing ideas from the abstract game, the suc-
cess of α = 1.0 demonstrates that this parameter setting
benefits from the intuition that a nonuniform exploration term
helps AlphaZero find new states that will locally help the
algorithm win a game, and at the same time increase training
speed with proper exploration.

We halted training for each of these networks after 200
iterations, which was empirically observed to be a point of
diminishing returns for the networks. That said, the loss value
of the networks does not directly correspond to success against
other agents, as exposure to new board configurations may
temporarily cause the loss to increase. To ensure this did not
significantly affect the results, two more tests were conducted.
In the first, uninitialized networks were played against each
other to ensure the effect of α did not start strong and then
taper over time. The results of this test showed the highest
performing α values were the smallest ones. This is likely
because uninitialized policy and value functions perform like
a uniform distribution in the synthetic abstract problem, where
there would be in this case benefit to exploring the tree more
deeply. In addition to the uninitialized network, ten networks
were trained four times longer, for 800 iterations. Five of these
networks had α = 0.7 and five for α = 100. These two settings

repeated the format of playing all of the trials in the other
setting for four games each. The α = 0.7 agent beat the α =
100 agent 45% of the time, while only losing 12% of the time
and drawing the remaining 43% of the time. This suggests the
trend identified by the larger study continues to hold, and in
fact potentially gets stronger as training continues.

V. DISCUSSION

Through these experiments we have shown that the the
choice of Dirichlet prior can lead to a much greater rate of
success, both in a reasonable, if simple, model of hard games
like Go and chess, and in an actual AlphaZero system playing
Connect 4. Even if one lacked an intuition for the proper
setting of α beforehand, the synthetic abstract game provides a
sense of ranges of α values that would be appropriate to elicit
different search behaviors. Furthermore, since α appears in the
exponent of the Dirichlet density function, we can surmise that
searching on a logarithmic scale will be more informative than
a more uniform search across α values. Experimentally, we see
at this scale results are more symmetric, and operating at this
scale we understand differences in the magnitude of α as more
natural transitions.

The influence of α in AlphaZero is more complex than in
our simple abstract game. For one, the noise is only applied
at the root of each move, and the noise is only part of the
exploration signal. We chose to add noise at each node of the
abstract game because while noise isn’t directly added to non-
root nodes, exploration choices are made partially based on
the policy network, which is trained from the final exploration
distribution of the root node. While this effect isn’t identical,
the choice of α still has a global impact on the tree search.

Our results also show that for games with high branching
factor, AlphaZero likely becomes more sensitive to the choice
of α. This highlights the benefit that intuition about its
behavior provides: for more complex games the number of
good α values becomes quite small, and hyperparameter search
becomes increasingly challenging.

AlphaZero is an impressive system, capable of learning
superhuman strategy across several different games. We have
shown ways in which the choice of a hyperparameter α can
contribute to its strength as a system. Analyzing a synthetic
abstract game, we demonstrate how to build intuition con-
cerning the effect that exploration noise (parameterized by
α) has on the search process, and suggest how one can
use that intuition to avoid an uninformed hyperparameter
sweep. Training AlphaZero systems is computationally costly;
therefore, avoiding massively parallel tuning while still being
able to tune the system from problem-to-problem can result
in significant time and dollar savings. This understanding
can lead to more custom-tailored deployments at reduced
deployment cost. Understanding the inner workings of the
system can also help us design new methods that leverage
the same performance-enhancing properties.



A. Future Research
Future research directions are many. In this study, we

investigate a way to find the expected effect of α choice
on exploration within the context of a simple game. A full
model could allow programmers to increase their intuition and
select an expected distribution over different states at each
level of search that they believe is targeted to the branching
factor and problem attributes they are looking at. This work
highlights the benefits of a more fundamental understanding
of hyperparameters in general, because the current inability to
easily tune systems from problem-to-problem may cause us
to forego significant performance improvements. In this vein,
a natural extension of this research is to build intuition and
theoretical understanding of some of the other hyperparameter
choices in AlphaZero, so that more general hyperparameter
sweeps can be avoided in favor of targeted tuning.
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