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ABSTRACT
Asmachine learning models becomemore widely used in important

decision-making processes, the need for identifying and mitigating

potential sources of bias has increased substantially. Using two-

distribution (specified complexity) hypothesis tests, we identify

biases in training data with respect to proposed distributions and

without the need to train a model, distinguishing our methods from

common output-based fairness tests. Furthermore, our methods

allow us to return a “closest plausible explanation” for a given

dataset, potentially revealing underlying biases in the processes

that generated them. We also show that a binomial variation of this

hypothesis test could be used to identify bias in certain directions,

or towards certain outcomes, and again return a closest plausible

explanation. The benefits of this binomial variation are compared

with other hypothesis tests, including the exact binomial. Lastly,

potential industrial applications of our methods are shown using

two real-world datasets.

CCS CONCEPTS
•Mathematics of computing→ Hypothesis testing and con-
fidence interval computation; Computing most probable ex-
planation; • Information systems→ Data analytics; • Social
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1 INTRODUCTION
Not every deviation from expectation is meaningful. As the head

of human resources for a national organization, you stare at a sum-

mary of recent hires and wonder: is the deviation from the expected

proportion of hired female applicants merely a sampling fluctuation,

or might the company’s hiring practices be biased against women?

How could you test whether a fair process might have plausibly

generated the data in front of you?

Machine learning (ML) algorithms have become increasingly

prevalent in a variety of applications with real-world implications

for millions of people [3, 17]. The fairness of these algorithms has

become an issue of utmost importance, especially in classification

tasks. It is well known that such algorithms can produce prejudicial

outcomes against certain groups of people if they are trained on

biased data [1]. Throughout this manuscript, we take bias to be

over- or under-representation of a specific value (e.g., women) of a

protected attribute (e.g., gender) within a given dataset, relative to

some expected outcome.

Identifying biases in training data and mitigating their impact in

classification tasks has become a central issue in the ML community

[7]. In this manuscript, we propose a new method of bias identifi-

cation using the two-distribution (specified complexity) hypothesis

tests of Montañez [20], which distinguish themselves in their ability

to statistically rule out whole sets of unbiased possible hypotheses,

leaving only biased hypotheses as plausible explanations for the

data. As such, they can identify whether an unbiased process is a

likely explanation for the data without having to train or exam-

ine the results of a model, allowing us to narrow down potential

sources of bias in the ML workflow.

Additionally, if it was concluded that a proposed process could

not have plausibly produced the data, our methods allow us to

return a “closest plausible explanation” which is the explanation

closest to the original that is not rejected by our test. This gives the

results of our test a unique degree of clarity, since this new expla-

nation acts as a better representation of the process that generated

the data than the original proposition.

The remainder of the paper is structured as follows. In Section 2,

we discuss other relevant work that has been done in the areas of

machine learning bias and hypothesis testing. Section 3 introduces
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the necessary background for our novel hypothesis test. Section 4

explains how we use this hypothesis test to identify bias in data. A

binomial variation of this test is introduced and discussed in Section

5. Our experimental setup, including details regarding the datasets

we tested, is given in Section 6. Section 7 presents our experimental

results. Lastly, Section 8 concludes the paper with discussion on

the broader impact of our hypothesis tests.
1

2 RELATEDWORK
Much work has been done to identify bias in training data [4, 19].

In recent years, a wide array of methods have been developed that

identify bias within a given dataset by analyzing outcomes gener-

ated by models trained on those data. Notable examples include AI

Fairness 360 [6] and Aequitas [22]. Other work has been done in

the area of natural language processing to examine the location of

bias in algorithms by altering individual neurons within a neural

network [26].

A few papers use hypothesis testing to detect discriminatory

behavior of an algorithm. One such paper, inspired by ideas from

optimal transport theory, uses a test statistic based on Wasserstein

distance [23]. Others use modified permutation tests based on vari-

ations of Pearson’s correlation statistic [11, 24]. Whether relating

to hypothesis testing or not, the above methods focus on analyz-

ing the output of a trained algorithm for bias. However, since the

root cause of the problem is the training dataset itself, evaluating a

dataset before training is the most logical way to address the root

of the problem [4].

There are methods that do not train or analyze any model at all

and instead evaluate the training data itself. For the task of recog-

nizing textual entailments, biased data can be identified beforehand,

and it has been shown that there are tangible performance deficits

for models trained on these data [25]. In the realm of classification,

most of the relevant work comes from the field of data manage-

ment. Many papers construct casual networks between attributes

(e.g., gender) and outcomes or labels (e.g., hired or not hired) in or-

der to discover discriminatory relationships between them [27, 28].

However, it has also been noted that such methods are often not eas-

ily accessible by everyday practitioners and may require in-depth

knowledge of causality-based fairness [4].

Methods for combating bias include re-weighting data after ex-

amining the output of a biased classifier [16]; altering the dataset

itself for parity [12]; using Lagrangian constraints in algorithms to

enforce fairness [9]; attempting to remove the causal path between

sensitive attributes and decisions [21]; or using maximum entropy

principles to modify the statistical rates of protected groups while

remaining close to the original distribution [8].

While these methods can remove a certain degree of bias from

ML models, the importance of analyzing training data still holds

since such options invariably produce less accurate models. In

fact, the more unbiased a model is forced to be, the less correct its

predictions become [12]. This is because all measures of correctness

are tied directly to the training data used. Thus, attention must be
paid to the data.

1
See source code, experimental notebooks, and relevant datasets at https://github.com/

AMISTAD-lab/bias-in-data-source

Our methods primarily build on previous work dealing with

two-distribution (specified complexity) hypothesis tests [20]. Such

hypothesis tests have recently been used in several applications

including the provision of intention perception to artificial agents,

which was shown to provide survival advantages [15]. Other recent

work has used similar methods to analyze the hypothesis that a

search algorithm’s probability of reaching its target is equivalent

to blind chance [10].

3 BACKGROUND
Objects that are both improbable and structurally organized are

said to have high specified complexity [20]. Such objects are both

unlikely to occur under a given probability distribution (complex)

and fit a predetermined notion of form or functionality (specific). A

specified complexity model can capture this combination of unlike-

liness and conformity. Such models are functions of 𝑋 which can

take on values in the space X according to probability distribution

𝑃 (denoted as 𝑋 ∼ 𝑃 ) with probability function 𝑝 (𝑥), which is the

component of unlikeliness (complexity) in our specified complexity

model. The other component is a specification function 𝜈 (𝑥) which
captures how well an observation conforms to a predetermined

notion of structure. Following Montañez [20], we formalize these

ideas with the following definitions.

Definition 1 (𝜈 (X), Montañez 2018). For any integrable, nonneg-

ative specification function 𝜈 : X → R≥0,

𝜈 (X) B


∫
X 𝜈 (𝑥) 𝑑𝑥 if continuous,∑
𝑥 ∈X 𝜈 (𝑥) if discrete,∫
X 𝑑𝜈 (𝑥) in general.

(1)

Definition 2 (Common Form and Kardis, Montañez 2018). For

any probability distribution 𝑃 with probability function 𝑝 (𝑥) on
space X, any strictly positive scaling constant 𝑟 ∈ R>0 and any

nonnegative function 𝜈 : X → R≥0, we define a common form
model as

𝑆𝐶 (𝑥) B − log
2
𝑟
𝑝 (𝑥)
𝜈 (𝑥)

with specified complexity kardis

𝜅 (𝑥) = 𝑟 (𝑝 (𝑥)/𝜈 (𝑥)) .

Definition 3 (Canonical Specified Complexity Model, Montañez

2018). Any common form model constrained such that 𝜈 (X) ≤ 𝑟

is a canonical specified complexity model.

In our work, we primarily focus on canonical specified com-

plexity models and their corresponding kardis values because they

possess useful properties and share a close relationship with tra-

ditional p-value statistical hypothesis tests [10, 20]. Namely, these

models posses level-𝛼 properties that allow for hypothesis testing

using the kardis as the test statistic. This is formalized in Theorem

1 from Montañez [20].

Theorem 1 (Level-𝛼 Property for Canonical Specified Complexity

Models, Montañez 2018). Given 𝑋 ∼ 𝑃 and significance level 𝛼 ∈
[0, 1], let 𝜅 (𝑥) be the kardis from any canonical specified complexity
model. Then Pr(𝜅 (𝑋 ) ≤ 𝛼) ≤ 𝛼.
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Figure 1: FSC Hypothesis Test Workflow.

If a hypothesis 𝑃 has a sufficiently large 𝜅 (𝑥) to avoid rejection

under a given hypothesis test, we call it a plausible explanation.
This should not be confounded with other meanings of plausibility

such as having a high probability, and users of these hypothesis

tests should carefully consider how they interpret the results.

These hypothesis tests based on specified complexity models not

only allow us to reject, or fail to reject, a singular proposed hypoth-

esis, but also form rejection regions for whole sets of hypotheses

(see Section 4.2).

While there are many canonical specified complexity models that

could be used for such hypothesis tests, the Functional Specified

Complexity (FSC) model proposed by Montañez [20], based on

functional information [13], is particularly useful because it works

with finite, discrete data, representative of the datasets nearly all

learning algorithms train on, and eliminates the need to estimate the

specification normalization factor 𝑟 [20]. We begin our discussion of

FSC by first defining 𝑔 : X → R≥0 as some function that increases

with increasing degrees of extremity for an observation 𝑥 and 𝐹𝑔 (𝑥)
as the proportion of events in space X that exhibit at least the same

degree of extremity as the observation. We expand this discussion

and formalize extremity in Section 4.1. Following Montañez [20],

we define 𝑀𝑔 (𝑥) B |{𝑥 ′ ∈ X : 𝑔(𝑥 ′) ≥ 𝑔(𝑥)}|, which gives the

functional specificity

𝐹𝑔 (𝑥) =
𝑀𝑔 (𝑥)
|X| .

With this in mind, FSC is formally defined as follows.

Definition 4 (Functional Specified Complexity, Montañez 2018).
For function𝑔, functional specificity 𝐹𝑔 (𝑥), and probability function
𝑝 : X → [0, 1], the functional specified complexity kardis is

𝜅 (𝑥) B |X|(1 + ln |X|) 𝑝 (𝑥)
𝐹𝑔 (𝑥)−1

.

where we have defined 𝑟 = |X|(1 + ln |X|) and 𝜈 (𝑥) = 𝐹𝑔 (𝑥)−1.

Since FSC gives concrete formulas for 𝑟 and 𝜈 (𝑥), it is useful
for conducting hypothesis tests using the level-𝛼 properties of

specified complexity from Theorem 1. We describe our method for

conducting these tests in the following section.

4 METHODOLOGY
The workflow for our hypothesis test is visualized in Figure 1.

Computing the FSC kardis requires a definition for X. There are
many definitions that could be used. Our methodology definesX as

the space of count vectors—representations of the frequency of each
possible outcome of a random variable. Under this definition, if we

rolled a die 10 times and observed the outcome 𝑥 of 4 ones, 3 twos,

2 threes, 1 four, 𝑥 would be represented by the count vector X =

[4, 3, 2, 1, 0, 0] . This lets us calculate 𝑀𝑔 (𝑥) without enumerating

every possible sequence, which would become costly as event size

increases.

4.1 𝑀𝑔 (𝑥) Calculator
Consider a discrete random variable 𝑋 which follows a categorical

distribution, with𝑚 mutually exclusive outcomes and correspond-

ing probabilities 𝑝1, 𝑝2, . . . , 𝑝𝑚 . If we observe𝑋 over 𝑛 trials, and𝑋𝑖
represents the number of times the outcome 𝑖 was observed, then

the count vector

X = [𝑋1, 𝑋2, . . . , 𝑋𝑚]
will follow a multinomial distribution. The mean for this distribu-

tion will be

E[X] = [E[𝑋1],E[𝑋2], . . . ,E[𝑋𝑚]]
where each E[𝑋𝑖 ] = 𝑛𝑝𝑖 . Let the distance vector D of X from E[X]
be defined by

D = [𝐷1, 𝐷2, . . . , 𝐷𝑚] (2)

where each 𝐷𝑖 = 𝑋𝑖 −E[𝑋𝑖 ]. Note that a bijection exists between X
and D, such that each count vector maps to unique distance vector

and vice versa.

Now, we must determine how the function 𝑔 : X −→ R≥0 mea-

sures the degree to which the count vector X diverges from the

mean count vector E[X], or its extremity. Our method of quantify-

ing extremity is the 𝐿1 taxicab distance metric:

𝐿1 (X,E[X]) =
𝑚∑︁
𝑖=1

|𝑋𝑖 − E[𝑋𝑖 ] |.

Using this measure of extremity, 𝑔 can be formally computed as

𝑔(𝑥) =
𝑚∑︁
𝑖=1

|𝑋𝑖 − E[𝑋𝑖 ] | =
𝑚∑︁
𝑖=1

|𝐷𝑖 |. (3)

While other notions of extremity could be used, such as the 𝐿2-norm,

this measure is the key for calculating 𝑀𝑔 (𝑥), the number of count

vectors at least as extreme than the observation X. Specifically, it
allows for use of combinatorics to count events for𝑀𝑔 (𝑥), without
the need to enumerate those events. The details of this computation

are given in Section A of the Appendix.
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4.2 FSC Test and Constructing 𝑠 Lower Bound
Alongside 𝑀𝑔 (𝑥), we also need |X| to compute the 𝜈 (𝑥) and 𝑟

components of our FSC model as per Definition 4. Letting𝑚 denote

the number of possible categories, X is the space of all possible

count vectors X = [𝑋1, 𝑋2, . . . , 𝑋𝑚], on which there are certain

helpful constraints. Namely,

𝑚∑︁
𝑖=1

𝑋𝑖 = 𝑛

where 𝑋𝑖 is the frequency of event 𝑖 and 𝑛 is the length of the

observation 𝑥 . Thus, |X| is the number of ways 𝑚 non-negative

integers can sum to 𝑛 which is given by Lemma 2 in Section A of

the Appendix,

|X| =
(
𝑛 +𝑚 − 1
𝑚 − 1

)
. (4)

Once |X| is used to calculate 𝜈 (𝑥) and 𝑟 , the last component we

need to compute 𝜅 (𝑥) is 𝑝 (𝑥). As stated in the previous subsec-

tion, the count vectors X follow a multinomial distribution. Thus,

the probability of seeing event 𝑥 is given by the probability mass

function (PMF) of a multinomial distribution,

𝑝 (𝑥) = 𝑛!

𝑋1! · · ·𝑋𝑚!

𝑝
𝑋1

1
· · · 𝑝𝑋𝑚

𝑚 (5)

where each 𝑝𝑖 is the probability of observing outcome 𝑖 under

distribution 𝑃 . These values can now be used to compute the kardis

𝜅 (𝑥) = 𝑟 (𝑝 (𝑥)/𝜈 (𝑥)). If 𝜅 (𝑥) ≤ 𝛼 , we can reject the null hypothesis.

We then follow the method of Montañez [20] to construct a lower

bound on how much an explanation needs to boost the probability

of observing 𝑥 in order to be considered a plausible explanation.

Any plausible explanation must boost the probability of observing

𝑥 by a factor of

𝑠 ≥ 𝛼𝜈 (𝑥)
𝑟𝑝 (𝑥) (6)

over the proposed explanation given by 𝑃 [20]. Let

𝑠𝑚𝑖𝑛 =
𝛼𝜈 (𝑥)
𝑟𝑝 (𝑥) . (7)

In order to even be considered as a plausible explanation for the

data, a new distribution 𝑄 which confers 𝑞(𝑥) probability on event

𝑥 must satisfy the condition

𝑞(𝑥) ≥ 𝑠𝑚𝑖𝑛 · 𝑝 (𝑥) . (8)

This lower bound allows us to rule out whole sets of explanations

which do not sufficiently increase the chance of observing 𝑥 . In

practice, this may allow users to eliminate unbiased hypotheses as

a whole, leaving only biased hypotheses as plausible explanations.

4.3 𝑄 Finder
If a proposed hypothesis 𝑃 is rejected, onemaywish to find plausible
explanations. The methods discussed previously allow us to return

the closest possible explanation to the proposed one which is not
rejected by the hypothesis test, and thus is a plausible explanation
relative to that test. Denote this explanation as 𝑄 . Since 𝑄 is a

probability distribution which gives 𝑞1, . . . , 𝑞𝑚 probability to each

possible value 𝑖 = 1, . . . ,𝑚 of random variable 𝑋 , we must have

𝑚∑︁
𝑖=1

𝑞𝑖 = 1. (9)

Furthermore,𝑄 must satisfy the lower bound condition of Equation

6. If 𝑞(𝑥) is the probability of observing 𝑥 under distribution 𝑄

defined similarly to 𝑝 (𝑥) as

𝑞(𝑥) = 𝑛!

𝑋1! · · ·𝑋𝑛!
𝑞
𝑋1

1
· · ·𝑞𝑋𝑛

𝑛 ,

then we must also have

𝑞(𝑥) ≥ 𝑠𝑚𝑖𝑛 · 𝑝 (𝑥) (10)

We can define the “closeness” of 𝑄 to 𝑃 using KL-divergence,

𝐷KL (𝑄 ∥𝑃) =
𝑚∑︁
𝑖=1

𝑞𝑖 log

(
𝑞𝑖

𝑝𝑖

)
. (11)

However, the choice of KL-divergence is not mandatory; other

measures of distance, such as Jensen-Shannon divergence or earth

mover’s distance, could be used with similar results. With Equation

11 in mind, the task of finding the closest distribution 𝑄 to 𝑃 such

that our hypothesis test fails to reject 𝑄 is simply a constrained

optimization problem, with Equation 11 as the cost function subject

to the constraints defined by Equations 9 and 10. To solve this

problem, we use the sequential quadratic programming method

of Kraft [18]. We provide illustrative examples of closest plausible

distributions for a real-world dataset in Section 7. It should be noted

that the fairness of the closest plausible distribution 𝑄 should be

evaluated by the user in the exact same way the fairness of the

proposed hypothesis 𝑃 is, and that this method for determining the

fairness of a distribution should be determined beforehand by the

user. Otherwise, there is potential for misinterpretation of the test’s

results.

5 BINARY HYPOTHESIS TESTING
While specified complexity hypothesis tests may have been previ-

ously unknown to the reader, many have already used themwithout

realizing it. Montañez has pointed out that every p-value hypothe-

sis test corresponds to a specified complexity hypothesis test [20],

and we now show that a binomial probability mass function itself

is a specified complexity kardis. Thus, a binomial probability mass

function can be used to perform a specified complexity hypothesis

test, without having to compute an exact tail probability. We then

illustrate how this new binomial specified complexity test could be

used to detect bias in binary scenarios and return a closest possible

explanation akin to that of the previous section. Lastly, we compare

the statistical power of the traditional FSC test, binomial specified

complexity test, and exact binomial test, giving examples of when

each may be useful for identifying bias in data.

5.1 Binomial Specified Complexity Test
If 𝑋 is a binomially distributed random variable (denoted 𝑋 ∼
Bin(𝑛, 𝑝)) with parameters 𝑛 (the number of trials) and probability
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of success 𝑝 ∈ [0, 1], then its probability mass function (PMF) is

𝑓 (𝑘𝑥 , 𝑛, 𝑝) = Pr(𝑋 = 𝑘𝑥 ) =
(
𝑛

𝑘𝑥

)
𝑝𝑘𝑥 (1 − 𝑝)𝑛−𝑘𝑥

where 𝑘𝑥 is the number of successes in observation 𝑥 . We can see

that certain components of this function parallel that of a specified

complexity model. Namely, 𝑝𝑘𝑥 (1 − 𝑝)𝑛−𝑘𝑥 mirrors the probability

distribution component of a specified complexity model, 𝑝 (𝑥), and
the

( 𝑛
𝑘𝑥

)
component appears to capture some amount of specificity

of a sequence. These parallels are formalized in Proposition 1.

Proposition 1. The PMF of a random variable 𝑋 ∼ Bin(𝑛, 𝑝) is a
common form kardis with

𝜅 (𝑥) = Pr(𝑋 = 𝑘𝑥 ) =
(
𝑛

𝑘𝑥

)
𝑝𝑘𝑥 (1 − 𝑝)𝑛−𝑘𝑥 = 𝑟

𝑝 (𝑥)
𝜈 (𝑥) ,

with 𝑝 (𝑥) = 𝑝𝑘𝑥 (1−𝑝)𝑛−𝑘𝑥 , 𝑟 = 1, and 𝜈 (𝑥) =
( 𝑛
𝑘𝑥

)−1
. Furthermore,

the Shannon surprisal of the PMF is a common form specified

complexity model, namely,

𝑆𝐶 (𝑥) = − log
2
Pr(𝑋 = 𝑘𝑥 ) = − log2 𝑟

𝑝 (𝑥)
𝜈 (𝑥) .

The proposition follows directly from the definitions of the bi-

nomial PMF and the common form (Definition 2). It is important

to note that this model is not canonical in general, since 𝜈 (X) may

exceed 𝑟 . However, we can define 𝑟 such that 𝜈 (X) ≤ 𝑟 , turning our

model into a canonical one with useful level-𝛼 properties. Since 𝜈

is discrete, by Definition 1,

𝜈 (X) =
∑︁
𝑥 ∈X

𝜈 (𝑥) =
∑︁
𝑥 ∈X

(
𝑛

𝑘𝑥

)−1
,

the formula for which is given by Lemma 1 with proof in Section C

of the Appendix.

Lemma 1. IfX is the space of all possible outcomes of𝑋 ∼ Bin(𝑛, 𝑝),
then ∑︁

𝑥 ∈X

(
𝑛

𝑘𝑥

)−1
= 𝑛 + 1.

where 𝑘𝑥 is the number of successes in event 𝑥 .

Thus, if we define 𝑟 = 𝑛 + 1, then 𝜈 (X) ≤ 𝑟 , and we can form a

new canonical specified complexity model for binary scenarios.

Definition 5 (Binomial Specified Complexity (BSC)). For a random
variable 𝑋 ∼ Bin(𝑛, 𝑝), and number of successes 𝑘𝑥 , the binomial
specified complexity kardis is

𝜅 (𝑥) B (𝑛 + 1) Pr(𝑋 = 𝑘𝑥 )

= (𝑛 + 1)
(
𝑛

𝑘𝑥

)
𝑝𝑘𝑥 (1 − 𝑝)𝑛−𝑘𝑥

where we have defined 𝑟 = 𝑛 + 1, 𝑝 (𝑥) = 𝑝𝑘𝑥 (1 − 𝑝)𝑛−𝑘𝑥 , and
𝜈 (𝑥) =

( 𝑛
𝑘𝑥

)−1
.

Since BSC is a canonical model, we can use the level-𝛼 of Theo-

rem 1 to conduct a hypothesis test similar to the FSC test of Section

4, the workflow for which is shown in Figure 2. Specifically, we

reject a proposed hypothesis 𝑃 , which has probability of success

𝑝 ∈ [0, 1], at a given 𝛼 value if, for 𝑋 ∼ 𝑃 ,

𝜅 (𝑋 ) = (𝑛 + 1) Pr(𝑋 = 𝑘𝑥 ) ≤ 𝛼.

Further paralleling the FSC test of Section 4, we can also form

rejection regions for proposed hypotheses, providing a lower bound

for the probability mass an explanation𝑄 must give to the observed

event in order for it to be considered plausible. By Equation 7, Q

must boost the probability of observing 𝑥 by at least

𝑠𝑚𝑖𝑛 =
𝛼𝜈 (𝑥)
𝑟𝑝 (𝑥) =

𝛼
( 𝑛
𝑘𝑥

)−1
(𝑛 + 1) (𝑝𝑘𝑥 (1 − 𝑝)𝑛−𝑘𝑥 )

=
𝛼

(𝑛 + 1) Pr(𝑋 = 𝑘𝑥 )
.

Thus, by Equation 10 in order for an explanation𝑄 to be considered

plausible, it must impart

𝑞(𝑥) ≥ 𝑠𝑚𝑖𝑛 · 𝑝 (𝑥)

=
𝛼

(𝑛 + 1) Pr(𝑋 = 𝑘𝑥 )
𝑝 (𝑥)

=
𝛼

(𝑛 + 1)
( 𝑛
𝑘𝑥

)
probability mass on event 𝑥 . However, by Definition 5, 𝑞(𝑥) =

𝑞𝑘𝑥 (1 − 𝑞)𝑛−𝑘𝑥 where 𝑞 ∈ [0, 1] is the probability of success under

𝑄 . Thus, we must have

𝑞(𝑥) ≥ 𝛼

(𝑛 + 1)
( 𝑛
𝑘𝑥

)
𝑞𝑘𝑥 (1 − 𝑞)𝑛−𝑘𝑥 ≥ 𝛼

(𝑛 + 1)
( 𝑛
𝑘𝑥

) .
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This formulation allows us optimize for 𝑞 similarly to the method

Section 4.3 and return 𝑄 , the closest plausible distribution to 𝑃

which is not rejected by the BSC test.

5.2 Exact Binomial Test
The main BSC test sacrifices exact values for speed. In contrast,

one could use an exact binomial test to compute the tail probability

explicitly, trading speed for precision. Our method for doing so

is as follows. First we binarize the data, then perform a one-sided

(greater) binomial test using the following equation:

𝑛∑︁
𝑘=𝑖

(
𝑛

𝑘

)
𝑝𝑘
𝑏
(1 − 𝑝𝑏 )𝑛−𝑘

where 𝑛 is the length of the dataset, 𝑖 is the count of selected val-

ues, and 𝑝𝑏 is the user-given baseline probability of obtaining a

selected value. In order to accommodate realistically-sized datasets

in reasonable amounts of time, we use Stirling’s approximation to

calculate 𝑛𝐶𝑘 , namely,

𝑛! ≈
√
2𝜋𝑛

(𝑛
𝑒

)𝑛
yielding(

𝑛

𝑘

)
=

𝑛!

𝑘!(𝑛 − 𝑘)! ≈
√
𝑛 × 𝑛𝑛√︁

2𝜋𝑘 (𝑛 − 𝑘) × 𝑘𝑘 (𝑛 − 𝑘) (𝑛−𝑘)
.

Once we calculate the tail probability, it is compared to the given 𝛼

value. If the probability is smaller than 𝛼 , the hypothesis is naturally

rejected. However, the algorithm also considers the case in which

the tail probability is greater than 1 − 𝛼 : a situation in which the

dataset is likely biased against the selected values. If this is the case,
𝑖 and 𝑝𝑏 are redefined to be the count and probability of the non-

selected values. For either of these rejection cases, the algorithm

then calculates the coefficient closest to one on 𝑝𝑏 that is necessary

to produce a valid hypothesis. This coefficient is called 𝑠 ′: like 𝑠 , it is
a scalar value that raises probability. However, 𝑠 is a coefficient on a

probability mass function, not on the probability of specific values.

The upper bound on 𝑠 ′ may easily be calculated as 1/𝑝𝑏 . The 𝑠 ′
value is lowered from there so that the binomial tail constructed

using the probability of 𝑠 ′ · 𝑝𝑏 is as close to 𝛼 as possible while still

being a valid explanation. This is done by manipulating one power

of ten at a time - first subtracting 10
0
until going further would

drop the tail probability below 𝛼 . This process is then repeated for

10
−1
, then 10

−2
, until a user-defined number of significant figures

have been optimized. The 𝑠 ′ value is multiplied by the relevant

probability, and the resulting distribution is returned to the user

alongside a boolean value representing whether the hypothesis was

rejected.

5.3 FSC for Binary Scenarios
It should be noted that the FSC hypothesis test of Section 4 could

still be used for the binary scenarios described in this section. Since

there are only two possible outcomes, by Equation 4 we have

|X| =
(
𝑛 + 2 − 1
2 − 1

)
= 𝑛 + 1

giving

𝑟 = |X|(1 + ln |X|) = (𝑛 + 1) (1 + ln(𝑛 + 1)) .

Additionally, by Equation 5

𝑝 (𝑥) = 𝑛!

𝑋1! · · ·𝑋𝑚!

𝑝
𝑋1

1
· · · 𝑝𝑋𝑚

𝑚

=
𝑛!

𝑘𝑥 !(𝑛 − 𝑘𝑥 )!
𝑝𝑘𝑥 (1 − 𝑝)1−𝑘𝑥

=

(
𝑛

𝑘𝑥

)
𝑝𝑘𝑥 (1 − 𝑝)1−𝑘𝑥

= Pr(𝑋 = 𝑘𝑥 ),
where 𝑘𝑥 is the number of successes in observation 𝑥 , 𝑛 is the total

number of trials, and 𝑝 is the probability of success.

𝑀𝑔 (𝑥) can also be easily calculated for a binary scenario, since

any event whose number of successes is farther from the mean

(above or below) than the observation is at least as extreme as that

observation. The number of events less extreme than the observa-

tion is

2|𝑘𝑥 − 𝑛𝑝 | − 1.
For example, if 𝑘 = 60, 𝑛 = 100, and 𝑝 = 0.5, then there would

be 2|60 − 50| − 1 = 19 events less extreme than the observation,

corresponding to the events with 41 to 59 successes, inclusive. It

follows that the number of sequences at least as extreme as the

observation is

𝑀𝑔 (𝑥) = |X| − (2|𝑘𝑥 − 𝑛𝑝 | − 1)
= (𝑛 + 1) − (2|𝑘𝑥 − 𝑛𝑝 | − 1)
= 𝑛 − 2|𝑘𝑥 − 𝑛𝑝 | + 2.

Thus,

𝜈 (𝑥) = 𝐹𝑔 (𝑥)−1

=
|X|

𝑀𝑔 (𝑥)

=
𝑛 + 1

𝑛 − 2|𝑘𝑥 − 𝑛𝑝 | + 2
,

and we have an FSC kardis of

𝜅FSC (𝑥) = 𝑟
𝑝 (𝑥)
𝜈 (𝑥) (12)

= (𝑛 + 1) (1 + ln(𝑛 + 1)) Pr(𝑋 = 𝑘𝑥 )
( 𝑛+1
𝑛−2 |𝑘−𝑛𝑝 |+2 )

(13)

= (𝑛 − 2|𝑘𝑥 − 𝑛𝑝 | + 2) (1 + ln(𝑛 + 1)) Pr(𝑋 = 𝑘𝑥 ). (14)

5.4 Comparing Hypothesis Tests for Binary
Cases

While the exact binomial test has the most statistical power of the

three hypothesis tests for binary scenarios presented thus far, it

poses performance challenges for large datasets, especially when

one seeks to find the next best explanation using the method of

Subsection 5.2. As such, the FSC and BSC tests, while statistically

less powerful (namely, they return larger tail probabilities for the

same observations), become more applicable in such scenarios.

Comparing the strengths of these two tests, we see that for an

observation of 𝑛 trials and 𝑘𝑥 successes, the BSC test returns a

smaller tail probability bound than the FSC test until 𝑘𝑥 reaches

some extreme value far away from the mean. This is formalized in

Theorem 2, with proof in Section C of the Appendix.
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Figure 3: Exact Binomial Test Workflow.

Theorem 2. For a random variable 𝑋 ∼ Bin(𝑛, 𝑝) and number of
successes𝑘𝑥 , a BSC hypothesis test will return a smaller tail probability
bound than an FSC hypothesis test for all

𝑛𝑝 − 𝑐 < 𝑘𝑥 < 𝑛𝑝 + 𝑐
where

𝑐 =
𝑛

2

− 𝑛 + 1
2 + 2 ln(𝑛 + 1)) + 1.

These “flipping points” for when the FSC test becomes stronger

than the BSC test are typically quite close to 0 and 𝑛 when 𝑝 = 0.5.

For example, if 𝑛 = 100, Theorem 2 gives the bound

7.99 < 𝑘𝑥 < 92.01,

and when 𝑛 = 1000 the bound is

62.28 < 𝑘𝑥 < 937.72.

Another important distinction to make between the three tests

presented is the 𝑘𝑥 values for a given 𝑛 at which they begin to reject

a proposed hypothesis. These values for 𝑛 = 100 and 𝑛 = 1000

are shown in Table 1. Lastly, we compare the closest plausible

distributions that each test returns for an observed percentage of

successes. The returned probabilities of success are shown in Table

2.

Table 1: Minimum 𝑘𝑥 successes out of 𝑛 = 100 trials and 𝑛 =

1000 trials required for rejection of fair hypothesis (𝑝 = 0.5)
at various 𝛼 levels.

n 𝛼 Exact Binomial BSC FSC

100

0.1 57 65 67

0.05 59 66 68

0.01 63 69 70

0.001 66 71 73

0.0001 69 74 75

1000

0.1 521 553 562

0.05 527 556 564

0.01 538 563 570

0.001 550 572 578

0.0001 560 579 585

Table 2: The returned closest plausible probability of success
for different observed success rates with 𝛼 = 0.05 and original
hypothesis 𝑝 = 0.5.

% Successes Exact Binomial BSC FSC

60 0.574 0.545 0.537

65 0.625 0.595 0.588

70 0.675 0.647 0.641

75 0.727 0.699 0.694

80 0.778 0.752 0.748

6 EXPERIMENTAL SETUP
To validate the usability of our method, we applied our FSC hypoth-

esis test to two real-world datasets. The first was the UCI Adult

dataset [2], which is used to train algorithms that predict whether

a U.S. adult will make more than $50,000 in annual income. For

48,842 adults, it contains a variety of information such as gender,

race, education level, and marital status, as well as a binary label

(𝑚 = 2) of “≤ 50K” or “> 50K”. It is known that algorithms trained

on this dataset exhibit bias against women compared to men [6],

disproportionately assigning women to the lower income bracket.

As such, we sought to test the process that generated the dataset

for bias as defined in Section 1. Does this process disproportion-

ately assign labels in a way that deviates from a fair hypothesis? To

implement this, we used the proportions of men assigned to each

of the two labels as our null hypothesis and used all female entries

(𝑛 = 16,192) as our data for our FSC test. This gave us a null hypoth-

esis of 𝑃 = [0.696, 0.304] and a count vector of 𝑋 = [14423, 1769].
The chosen significance level was 𝛼 = 0.05. Since we are testing a

proposed explanation, our null hypothesis tests whether the same

process that generated the male income labels (as represented by

the sample) could plausibly explain the female income labels. In

the real world, this process includes a multitude of societal factors.

The second dataset we tested was the well-known COMPAS (Cor-

rectional Offender Management Profiling for Alternative Sanctions)

dataset [1]. This dataset was produced by the COMPAS algorithm,

which attempts to accurately estimate potential risks associated

with an offender: the risk of violence, risk of recidivism, and risk of

failure to appear in court. For each risk, an offender was given a
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low, medium, or high rating. While the dataset was produced by an

algorithm itself, it is often used to train other models to highlight

the original algorithm’s unfair behavior [6]. Most analyses in the

literature use a filtered version of the dataset with 6,172 entries that

contains true labels for whether a given person recidivated or not

[6, 11, 23]. However, this filtered dataset is known to contain errors

accrued during preprocessing by its original publishers, ProPublica

[5]. Furthermore, we are interested in testing for bias in the dataset

without training a model and determining whether a proposed

explanation (i.e., that the original algorithm and everything else up-

stream was fair) could plausibly explain those data. As such, we use

the original, unfiltered dataset, which contains 11,757 entries, since

we have no need for the true labels of whether a person recidivated

or not.

To illustrate the impact of choosing different null hypotheses,

we conducted several tests on different subsets of the COMPAS

dataset, all of which used the significance level 𝛼 = 0.05. First,

we analyzed the recidivism risk scores in isolation, and tested the

African-American subset for bias using two different null hypothe-

ses:

(1) The proportion of Caucasians assigned to each of the
three risk categories. This choice of hypothesis and data

allows us to test if the process that produced the Caucasian

recidivism scores could also be a reasonable explanation for

the African-American scores.

(2) A uniform distribution which gives 1/3 probability to
each of the three risk categories. This is equivalent to test-
ing whether a completely random assignment process could

have plausibly generated the African-American recidivism

risk scores.

Secondly, to test for bias in more specific subsets of the dataset,

we broke the data down based on charge type. We binarized the

categories of charges for our testing into Battery and Possession of
Contraband. Possession of Contraband included COMPAS charge

descriptions that denoted possession of an illegal item or substance

without the intent to sell (e.g., Possession of Cocaine). For each charge
category, we tested the recidivism scores of the corresponding

African-American subset using the score proportions of Caucasians

charged with the same crime as the null hypothesis.

7 MAIN RESULTS
All of the following tests were conducted on a 16-core AMD Ryzen

9 5900HS CPU, with run times under 5 seconds.

7.1 UCI Adult
Our test returns a kardis value of 2.47×10−755 which is far less than
our significance level of 𝛼 = 0.05. As such, we reject the null hypoth-

esis that the same process that generated the male income labels

could plausibly explain the female income labels, if the male sample

is representative of its distribution. Furthermore, using Equation 7,

we find that in order for an explanation to be considered plausible,

it must boost the probability of the observing the data by at least

𝑠𝑚𝑖𝑛 = 2.02 × 10753. The closest plausible distribution constructed

from this 𝑠𝑚𝑖𝑛 , as well as the hypothesis distribution are shown in

Figure 4. The colors of the “lollipop” bars representing the closest

plausible distribution are colored according to their proximity to the
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Figure 4: Closest plausible income label distribution for fe-
males in UCI Adult, compared to male proportion.

null hypothesis distribution, with a heatmap included at the right

side of the figure. In the context of this dataset, the null hypothesis

distribution shown in the Figure 4 represents the proportion of

males assigned to each income label group and the closest plausible

distribution represents the closest distribution of female income

labels to the null that could explain the actual proportions of female

income labels. These results are consistent with the existence of

known biases in the dataset [24] while additionally providing an

extra degree of interpretability with a numerical 𝑠𝑚𝑖𝑛 value and a

closest plausible distribution.

7.2 COMPAS
The first test for African-American recidivism scores using Cau-

casian proportions as the null returns a kardis value of 8.99×10−392.
This is far below our 𝛼 level of 0.05, so we reject the null hypothesis.

The 𝑠𝑚𝑖𝑛 value associated with this kardis is 5.57 × 10389, requir-
ing any plausible explanation to boost probability by almost three

hundred and ninety orders of magnitude. Shown in Figure 5 is the

closest distribution that can plausibly explain the African-American

data—could it also explain the Caucasian data, being closest to its

proportions? Reversing directions, we test the Caucasian scores

against the distribution from Figure 5, and find that it is also re-

jected with a kardis value of 9.19×10−184. As such, we can conclude
that the process that generated the Caucasian recidivism score dis-

tribution could not plausibly explain the African-American scores,

and vice versa.

This test result is consistent with the existence of known biases

in the COMPAS dataset [1] while also providing additional useful

results with 𝑠𝑚𝑖𝑛 and the closest plausible distribution. As seen

in the graph, the closest plausible distribution requires lowering

the proportion of Low scores while increasing those of Medium

and High. This is consistent with the view that the data contains

bias against African-Americans, as less favorable outcomes are

associated to them with greater frequency than in our conjecture.

Somewhat less interestingly, the test for African-American re-

cidivism scores using uniform proportions as the null returns a

kardis value of 2.47 × 10−44 and an 𝑠𝑚𝑖𝑛 value of 2.03 × 1042. This
implies that a completely random uniform process cannot plausibly
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Figure 5: Closest plausible COMPAS recidivism score distri-
bution for African-Americans, compared to Caucasian pro-
portion.
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Figure 6: Closest plausible COMPAS recidivism score distri-
bution for African-Americans, compared to a uniform pro-
portion.

explain the African-American recidivism scores. A graph repre-

senting the closest plausible distribution in this case is shown in

Figure 6, which, as a reminder, gives a distribution that would not
be rejected under the same hypothesis test.

Upon seeing that the favorable outcome of ‘Low’ is given to

African-Americans with greater frequency than in the null hypoth-

esis, one might be tempted to conclude that the data are slightly bi-

ased towards African-Americans. This illustrates how bias is always

assessed relative to one’s original proposed explanation. Further-

more, these statistical tests can pinpoint the location and direction of
biases in data, but further investigation is necessary to determine if

the frequential biases identified are actually the result of prejudicial

biases, or if they have some other explanation.

The test for recidivism scores of African-Americans charged

with Battery returns a kardis value of 9.23 × 10−34, and the test for

recidivism scores of African-Americans charged with Possession of

Contraband returns a kardis value of 4.91 × 10−44. Both of these

kardis values are far smaller than our 𝛼 value of 0.05. As such,

we reject both null hypotheses and conclude that the process that

generated the recidivism scores for Caucasians charged with a

given crime does not plausibly explain the recidivism scores for

African-Americans charged with the same crime.

It is interesting to note that our tests found bias in the African-

American recidivism scores both in general and when broken down

by charge type. While we offer no conjecture regarding any under-

lying sociological or causal explanation for the results of our tests,

a rejected hypothesis identifies a point in the machine learning

workflow where a user should pause to further investigate the data

and its generating process, taking greater caution when using the

data to train any model.

7.3 Contributions and Comparison with
Previous Work

The methods forwarded in this paper are primarily extensions of

Montañez [20] but provide some significant, novel contributions.

First, while Montañez formalized a specified complexity hypothesis

test, we specifically implement this test so it can be applied to

machine learning training data. We also define each abstract term

used in the hypothesis test (e.g., 𝑀𝑔 (𝑥)) so that they can be used

for actual calculations. Second, we uniquely forward a method to

identify the closest plausible distribution beyond the trivial binary

case. Lastly, we demonstrate how the tests of Montañez can be

applied to real-world datasets such as the UCI Adult and COMPAS

datasets.

Our work is most similar in nature to Taskesen et al. [23] in

that we both forward statistical hypothesis tests for identifying

bias or unfairness in classification tasks. We both compute some

form of a closest plausible distribution (which they call the “most

favorable distribution”), making both of our approaches distinct

from other hypothesis testing frameworks such as those of DiCiccio

et al. [11] and Tramer et al. [24]. However, one key difference

between the two approaches is that their returned distribution

is the closest distribution to the null hypothesis under which a

classifier is considered fair, while ours is the closest distribution to

the null which could plausibly explain the data. This gives the user a

unique degree of interpretability as they are able to directly compare

their null distribution, which could not plausibly explain the data,

to the closest distribution which could. Furthermore, this ability

to return a closest plausible distribution on top of providing an

assessment of fairness within a dataset differentiates our method’s

from other hypothesis testing frameworks or simple correlation

analyses which can only accomplish the latter.

In addition, we believe that our work provides some specific

advantages over that of Taskesen et al.. First, their Wasserstein

test analyzes the output of a trained model. This means that the

test may not be able to isolate a specific source of bias, which is

more often than not the training dataset itself [4]. In contrast, our

hypothesis tests analyze the data directly, removing the need to

train a classifier and eliminating some potential sources of bias in

the MLworkflow. This ensures that our methods avoid confounding

bias in the training data and bias introduced by a specific learning

algorithm. However, it should be noted that our test could still be
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applied to the output of a trained model, since we would still be

able to set fairness standards for its behavior. This is a subject for

future work. Second, since we are able to form rejection regions for

possible hypotheses using the 𝑠 lower bound condition of Equation

8, we allow for relaxed notions of fairness, or compound hypotheses,

where a user might find a certain amount of bias acceptable, which

theWasserstein test is unable to do. To the authors’ best knowledge,

ours is the first hypothesis testing framework that can handle such

hypotheses.

Our methods have other general advantages as well. First, no as-

sumptions concerning the distribution of the sample points within

the dataset are required to use our tests. Furthermore, the test

statistic, 𝜅 (𝑥), does not need to fit any specific distribution (e.g.,

Student’s 𝑡 or chi-square). Second, unlike other tests which assume

that the individual observations within a dataset are independently

and identically distributed (i.i.d.), our methods can be straightfor-

wardly adapted to test the probabilistic feasibility of explanations

for non-i.i.d. data. Third, our tests are fast and efficient enough

to run on consumer-grade personal computers. To illustrate this,

we extrapolated the COMPAS dataset to 100,000 entries based on

proportions in the original dataset, then tested the run time of our

whole workflow for various numbers of outcome labels for a pro-

tected group on a 16-core AMD Ryzen 9 5900HS CPU. The binary

label scenario ran in just over one second, and the worst-case sce-

nario of 10 possible categories took about 20 minutes. Furthermore,

when we extrapolated the COMPAS dataset to one million records

and conducted our test using three categories (as per Section 6),

the resulting run time was less than three minutes. Additional de-

tails and results can be found in the Appendix. Lastly, our methods

greatly reduce the burden placed on a practitioner seeking to un-

cover bias in data. A user only needs to specify a significance level 𝛼

and a distribution they deem to be roughly fair. In practice, this dis-

tribution would likely be simple for someone to provide as they are

naturally generated when asking questions about bias in datasets

and may be already evident based on certain social and political

circumstances. For example, in the COMPAS dataset discussed in

Section 7.2, if a practitioner was analyzing for biases in recidivism

scores along racial lines, then they would probably choose the Cau-

casian distribution as the null hypothesis, wary that discriminatory

policing may be reflected in models trained on the dataset. While

the need to specify a roughly fair distribution may present a tough

choice for the user in some cases, in general it provides a degree

of freedom and removes the need for everyday users to possess

in-depth knowledge about various inference models or fairness

notions.

8 CONCLUSIONS
We forward a set of statistical hypothesis tests that use the specified
complexity kardis and its level-𝛼 property to identify bias in ML

training data, extending the work of Montañez [20]. Our tests allow

us to construct probabilistic lower bounds, rule out whole sets of

hypotheses, and return a closest plausible distribution giving clarity

for users analyzing test results. Lastly, we demonstrate potential

real-world applications of our methods by analyzing the UCI Adult

and COMPAS datasets.

The authors acknowledge that any user of our tests must have

their data in a convenient format, where protected attribute(s) are

available and every entry has discrete attributes and labels. The

datasets tested in Section 7 fit this mold, but many others do not. For

example, our method as presented would be poorly suited to handle

the task of identifying bias in training data for image classification

tasks. It should also be noted that our 𝜈 (𝑥) in Definition 4 explores

frequential structure, but it could be validly defined to account

for other or multiple notions of structure (e.g., ordinal). Extending
our tests to other types of structure (such as ordinal structure, or

structure in image data) is the subject of future work.

Furthermore, the authors emphasize that our tests should not

be used to draw any societal or casual conclusions based on their

results. A rejected test does not mean the process that generated the

data was malicious but rather that it should be further investigated

before any models are trained.

Lastly, just as traditional hypothesis tests are subject to manipu-

lation of results via “p-hacking” [14], our tests are not immune to

malicious intent. One could “SC-hack” by defining 𝜈 (𝑥) such that

it imparts a high specification value to the given observations. As

such, it is essential that 𝜈 (𝑥) be defined prior to observing 𝑥 or at

least not be conditioned on the observation 𝑥 [20]. With this in

mind, we note that the provided tools are powerful and therefore

must be used with caution, as should all power tools.
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A CALCULATING𝑀𝑔 (𝑥)
Recall that by Equation 2, for any event 𝑥 with count vector X and

mean count vector E[X], its corresponding distance vectors is

D = [𝐷1, 𝐷2, . . . , 𝐷𝑚]

where each 𝐷𝑖 = 𝑋𝑖 − E[𝑋𝑖 ]. Furthermore, by Equation 3, its ex-

tremity is

𝑔(𝑥) =
𝑚∑︁
𝑖=1

|𝑋𝑖 − E[𝑋𝑖 ] | =
𝑚∑︁
𝑖=1

|𝐷𝑖 |.

There are a few key points to note aboutD and𝑔. The first is that the

components of Dmust sum to 0 because any positive distance from

the mean in one component must be “balanced out” by negative

distance in another. A consequence of this is that 𝑔 can only take

on non-negative, even values, since it is the sum of absolute values

of the components of D. Furthermore, this means that the sum

of the non-negative and strictly negative components of D are

equal in magnitude. Specifically, their magnitudes are both half the

value of 𝑔. With these points in mind, there is a systematic way

to compute𝑀𝑔 (𝑥), the number of sequences in the space X which

are at least as extreme as 𝑥 . Since each count vector matches to a

unique distance vector (and vice versa), we can do so by finding

the number of distance vectors D with corresponding 𝑔 values

greater than or equal to some initial value 𝑔(𝑥), the extremity of

the initial observation. Clearly, there are many possible values for

D. Its components can be positive or negative, and each component

can take on a variety of values. For now, we will focus on all the

count vectors with values of 𝑔 = 𝑔(𝑥), or all the count vectors

equally as surprising as the initial observation X.
As noted previously, the sum of the non-negative components of

D must be 𝑔(𝑥)/2, meaning that these components can range from

0 to 𝑔(𝑥)/2. Similarly, the sum of the strictly negative components

must be −𝑔(𝑥)/2. Unlike the positive components, however, the

negative components have restrictions on their ranges. Since each

𝐷𝑖 = 𝑋𝑖 − E[𝑋𝑖 ], the non-negativity of each 𝑋𝑖 ensures that the

largest negative value each 𝐷𝑖 can take on is −E[𝑋𝑖 ].
Treat the strictly negative distances in D as 𝑔(𝑥)/2 indistinguish-

able red balls and the non-negative entries as 𝑔(𝑥)/2 indistinguish-
able black balls. We need to place these balls into𝑚 distinct bins,

corresponding to the𝑚 components of D. We cannot have both

red and black balls in the same bin. Note that any bin dedicated

to red balls must have at least 1 ball while bins dedicated to black

balls are allowed to be empty - zero is included in the set of non-

negative options, and therefore is excluded as an option for the

strictly negative bins.

First, we compute S, the set of all possible bin combinations to

allocate for red balls. S will be all combinations of bins where the

number of bins can be 1 through𝑚 − 1 inclusive. We exclude bin

combinations of all𝑚 bins because we must leave at least one bin

for black balls. We then filter out the combinations in S whose

total maximum capacity is less than 𝑔(𝑥)/2, since any valid bin

combinations for red balls must be able to hold the required number

of balls. What remains is S′, the set of all valid bin combinations

to allocate for red balls. For each combination 𝑠 ∈ S′, we need to

know how many ways there are to distribute the 𝑔(𝑥)/2 red balls

between them. The general formula for this is given by Theorem 3

Theorem 3. Let 𝑇 := P({1, . . . , 𝑛}) for some positive integer 𝑛,
where P(·) denotes the powerset operation. The number of combina-
tions of𝑛 strictly positive integers𝑎1, . . . , 𝑎𝑛 such that𝑎1+. . .+𝑎𝑛 = 𝑁
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and 𝑎𝑖 ≤ 𝑟𝑖 for each 𝑖 = 1, . . . , 𝑛 is given by

𝑛∑︁
𝑘=0

©­«
∑︁

𝑆 ∈𝑇 : |𝑆 |=𝑘
(−1)𝑘

(
𝑁 −∑𝑖∈𝑆 𝑟𝑖 − 1

𝑛 − 1

)ª®¬ .
We make use of this theorem by letting 𝑁 be the number of

balls, 𝑛 be the number of bins, and 𝑟𝑖 be the maximum negative

value for 𝐷𝑖 , corresponding to the maximum capacity of the bin.

For each combination of bins dedicated to red balls 𝑠 ∈ S′, there is a
corresponding set of bins which wemust distribute the𝑔(𝑥)/2 black
balls between. The general formula for this, colloquially known as

the “Stars and Bars” formula, is given by Lemma 2

Lemma 2. The number of combinations of 𝑛 non-negative integers
𝑎1, . . . , 𝑎𝑛 such that 𝑎1 + . . . + 𝑎𝑛 = 𝑁 is given by(

𝑁 + 𝑛 − 1
𝑛 − 1

)
.

We make use of the lemma by letting 𝑁 be the number of black

balls and 𝑛 be the number of bins for black balls. Multiplying the

results of Theorem 3 and Lemma 2 for a given 𝑠 ∈ S′ and summing

over S′ gives us the number of count vectors with 𝑔 = 𝑔(𝑥). Repeat-
ing this process and summing for all possible

2 𝑔 ≥ 𝑔(𝑥) will give us
𝑀𝑔 (𝑥), the number of count vectors which are at least as surprising

as the observation X. Note that the maximum 𝑔 is obtained when

the least likely possible outcome 𝑖 is the only observed outcome.

That is, 𝑋𝑖 = 𝑛 and all other 𝑋 𝑗 = 0. The pseudocode for the entire

𝑀𝑔 (𝑥) calculator is shown in Algorithm 1.

Algorithm 1𝑀𝑔 (𝑥) Calculator
1: Initialize𝑀𝑔 (𝑥) ← 0

2: for all 𝑖 = 𝑔 (𝑥), 𝑔 (𝑥) + 2, . . . ,max(𝑔) do
3: if 𝑖 = 0 then
4: 𝑀𝑔 (𝑥) ← 𝑀𝑔 (𝑥) + 1
5: else
6: for all 𝑠 ∈ S′ do
7: 𝑟 ← result from Theorem 3

8: 𝑏 ← result from Lemma 2

9: 𝑀𝑔 (𝑥) ← 𝑀𝑔 (𝑥) + 𝑟 · 𝑏
10: end for
11: end if
12: end for

B RUN TIME EXPERIMENTS
The COMPAS dataset contains decile risk scores for each entry,

with higher scores indicating that a person is more likely to re-

cidivate. We used different groupings of these scores to artificially

create a desired amount of labels for our tests. For example, for

the three label tests, we grouped scores 1-3, 4-6, and 7-10 together.

Our first step was taking the proportion of each decile score for

African-Americans in the original dataset and using those to gen-

erate a dataset with 100,000 entries by uniformly sampling with

replacement. Then, for a desired number of labels 𝑘 , we relabeled

the decile scores based on which score group they belonged to. This

2
Note that if 𝑔 (𝑥) = 0, there is only one count vector corresponding to it, the obser-

vation X itself. Thus, the process described above is not necessary for this singular 𝑔

value.

transformed the 100,000 entry dataset with 10 labels, into one with

𝑘 labels. Lastly, using the same 𝑘 labels, we took the proportion of

Caucasians in the original dataset belonging to each score group

and used it to construct a null hypothesis and run our FSC test 10

times. We repeated this process for 𝑘 = 2, . . . , 10 labels and con-

structed 95% confidence intervals for run time, which are shown in

Table 3.

Table 3: FSC hypothesis test 95% confidence intervals across
10 trials for extrapolated COMPAS dataset

Number of Labels Run Time 95% CI

2 (1.31, 1.41) s

3 (1.39, 1.43) s

4 (2.00, 2.10) s

5 (4.34, 4.46) s

6 (12.20, 12.54) s

7 (37.94, 39.42) s

8 (2.05, 2.12) m

9 (6.09, 7.27) m

10 (19.69, 25.96) m

We also used the proportion of each score text category for

African-Americans provided in the original COMPAS dataset (high,

medium, and low) to similarly generate a dataset with 1,000,000

entries. Using the proportions of each score text category for Cau-

casians in the original dataset as our null hypothesis, we conducted

a test on the extrapolated dataset. This is similar to the first COM-

PAS experiment described in Section 6. Recording the run time for

this test and repeating for 10 trials resulted in a 95% confidence

interval of (2.33, 3.27) minutes.

C PROOFS
Lemma 1. IfX is the space of all possible outcomes of𝑋 ∼ Bin(𝑛, 𝑝),
then ∑︁

𝑥 ∈X

(
𝑛

𝑘𝑥

)−1
= 𝑛 + 1

where 𝑘𝑥 is the number of successes in event 𝑥 .

Proof. ∑︁
𝑥 ∈X

(
𝑛

𝑘𝑥

)−1
=

𝑛∑︁
𝑘=0

©­«
∑︁

𝑥 :𝑘𝑥=𝑘

(
𝑛

𝑘

)−1ª®¬
=

𝑛∑︁
𝑘=0

(
𝑛

𝑘

)−1 ©­«
∑︁

𝑥 :𝑘𝑥=𝑘

1
ª®¬ .
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For a given number of successes 𝑘 , there are 𝑛 choose 𝑘 events 𝑥

with 𝑘𝑥 = 𝑘 successes. Thus,

𝑛∑︁
𝑘=0

(
𝑛

𝑘

)−1 ©­«
∑︁

𝑥 :𝑘𝑥=𝑘

1
ª®¬ =

𝑛∑︁
𝑘=0

(
𝑛

𝑘

)−1 (
𝑛

𝑘

)
=

𝑛∑︁
𝑘=0

1

= 𝑛 + 1.
It follows that, ∑︁

𝑥 ∈X

(
𝑛

𝑘𝑥

)−1
= 𝑛 + 1,

as desired. □

Lemma 2. The number of combinations of 𝑛 non-negative integers
𝑎1, . . . , 𝑎𝑛 such that 𝑎1 + . . . + 𝑎𝑛 = 𝑁 is given by(

𝑁 + 𝑛 − 1
𝑛 − 1

)
.

Proof. This problem is colloquially known as “Stars and Bars”

because we imagine it as laying out 𝑁 stars on a table in a line and

using 𝑛 − 1 bars to divide them into 𝑛 groups. If two bars are placed

next to each other, then the group represented by the area between

them is considered to be empty. If a bar is placed on the very left

edge of the line of stars, the empty area to its left represents and

empty group, and similarly for the right edge. As such, there are

𝑁 + 𝑛 − 1 spots for us to place our 𝑛 − 1 bars. The number of ways

to place the bars is therefore(
𝑁 + 𝑛 − 1
𝑛 − 1

)
.

□

Theorem 2. For a random variable 𝑋 ∼ Bin(𝑛, 𝑝) and number of
successes𝑘𝑥 , a BSC hypothesis test will return a smaller tail probability
bound than an FSC hypothesis test for all

𝑛𝑝 − 𝑐 < 𝑘𝑥 < 𝑛𝑝 + 𝑐
where

𝑐 =
𝑛

2

− 𝑛 + 1
2 + 2 ln(𝑛 + 1)) + 1.

Proof. From Definition 5, we have

𝜅𝐵𝑆𝐶 (𝑥) = (𝑛 + 1) Pr(𝑋 = 𝑘𝑥 ),
and from Equation 14,

𝜅𝐹𝑆𝐶 (𝑥) = (𝑛 − 2|𝑘𝑥 − 𝑛𝑝 | + 2) (1 + ln(𝑛 + 1)) Pr(𝑋 = 𝑘𝑥 ).
We can now construct the inequality 𝜅𝐵𝑆𝐶 (𝑥) < 𝜅𝐹𝑆𝐶 (𝑥), fix 𝑛 and

𝑝 and solve for 𝑘𝑥 :

𝜅𝐵𝑆𝐶 (𝑥) < 𝜅𝐹𝑆𝐶 (𝑥)
(𝑛 + 1) Pr(𝑋 = 𝑘𝑥 ) < (𝑛 − 2|𝑘𝑥 − 𝑛𝑝 | + 2) (1 + ln(𝑛 + 1)) Pr(𝑋 = 𝑘𝑥 )

𝑛 + 1 < (𝑛 − 2|𝑘𝑥 − 𝑛𝑝 | + 2) (1 + ln(𝑛 + 1))
𝑛 + 1

1 + ln(𝑛 + 1) < 𝑛 − 2|𝑘𝑥 − 𝑛𝑝 | + 2

|𝑘𝑥 − 𝑛𝑝 | <
𝑛

2

− 𝑛 + 1
2 + 2 ln(𝑛 + 1) + 1.

For succinctness, let

𝑐 B
𝑛

2

− 𝑛 + 1
2 + 2 ln(𝑛 + 1) + 1.

Then,

|𝑘𝑥 − 𝑛𝑝 | < 𝑐 ⇒ 𝑛𝑝 − 𝑐 < 𝑘𝑥 < 𝑛𝑝 + 𝑐.
□

Theorem 3. Let 𝑇 := P({1, . . . , 𝑛}) for some positive integer 𝑛,
where P(·) denotes the powerset operation. The number of combina-
tions of𝑛 strictly positive integers𝑎1, . . . , 𝑎𝑛 such that𝑎1+. . .+𝑎𝑛 = 𝑁

and 𝑎𝑖 ≤ 𝑟𝑖 for each 𝑖 = 1, . . . , 𝑛 is given by

𝑛∑︁
𝑘=0

©­«
∑︁

𝑆 ∈𝑇 : |𝑆 |=𝑘
(−1)𝑘

(
𝑁 −∑𝑖∈𝑆 𝑟𝑖 − 1

𝑛 − 1

)ª®¬ .
Proof. This problem is the same as asking howmanyways there

are to sort 𝑁 indistinguishable balls into 𝑛 distinct bins, where each

bin 𝑖 = 1, . . . , 𝑛 can hold at most 𝑟𝑖 balls and no empty bins are

allowed. To ensure no empty bins, we put 1 ball into each bin,

leaving us with 𝑁 − 𝑛 balls to sort into 𝑛 bins. We will now use the

Inclusion-Exclusion principle to count our integer partitions. First,

we will count how many total ways there are to sort 𝑁 − 𝑛 balls

into 𝑛 bins, with no regards to the bins’ limits, which is given by

Lemma 2 (
(𝑁 − 𝑛) + 𝑛 − 1

𝑛 − 1

)
=

(
𝑁 − 1
𝑛 − 1

)
.

Next, we must subtract the cases where there is a size violation in

at least one bin. That is, we must subtract the cases where bin 𝑖 is

designated more balls than its specified capacity 𝑟𝑖 . To guarantee

a violation in bin 𝑖 , we will put 𝑟𝑖 balls in it, remembering that we

already put 1 ball in bin 𝑖 to guarantee it was not empty. Then, we

sort the remaining 𝑁 −𝑛 − 𝑟𝑖 balls into 𝑛 bins. The number of ways

to do so is given again by Lemma 2(
(𝑁 − 𝑛 − 𝑟𝑖 ) + 𝑛 − 1

𝑛 − 1

)
=

(
𝑁 − 𝑟𝑖 − 1
𝑛 − 1

)
.

For all possible choices of one bin 𝑖 , the total number of cases where

there is a violation in at least one bin is therefore

𝑛∑︁
𝑖=1

(
𝑁 − 𝑟𝑖 − 1
𝑛 − 1

)
.

Which can be conveniently rewritten as∑︁
𝑆 ∈𝑇 : |𝑆 |=1

(
𝑁 −∑𝑖∈𝑆 𝑟𝑖 − 1

𝑛 − 1

)
where𝑇 is the powerset of {1, . . . , 𝑛}. This notation change is valid

since each element 𝑆 ∈ 𝑇 whose cardinality is 1 represents a unique

choice of one bin 𝑖 . While this notation may seem unnecessary, it

will become useful in constructing our final formula. At this point,

the total number of “good” cases is(
𝑁 − 1
𝑛 − 1

)
−

∑︁
𝑆 ∈𝑇 : |𝑆 |=1

(
𝑁 −∑𝑖∈𝑆 𝑟𝑖 − 1

𝑛 − 1

)
.

However, since we have subtracted the number of cases where there

is a violation in at least one bin, a case where there was a violation
in bin 𝑖 and bin 𝑗 would have subtracted out twice by the above
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summation. Thus, we must add back all the cases where there is

a violation in at least two bins. For each pair of bins 𝑖, 𝑗 = 1, . . . , 𝑛

where 𝑖 ≠ 𝑗 , we place 𝑟𝑖 balls in 𝑖 and 𝑟 𝑗 balls in 𝑗 to guarantee

violations in both. Then, we sort the remaining 𝑁 −𝑛 − 𝑟𝑖 − 𝑟 𝑗 balls
into 𝑛 bins using Lemma 2(

(𝑁 − 𝑛 − 𝑟𝑖 − 𝑟 𝑗 ) + 𝑛 − 1
𝑛 − 1

)
=

(
𝑁 − 𝑟𝑖 − 𝑟 𝑗 − 1

𝑛 − 1

)
.

For all choices of 𝑖 and 𝑗 , the total number of cases where there is a

violation in at least two bins is∑︁
𝑆 ∈𝑇 : |𝑆 |=2

(
𝑁 −∑𝑖∈𝑆 𝑟𝑖 − 1

𝑛 − 1

)
which we must add back to our previous value. Thus, the new

number of good cases is(
𝑁 − 1
𝑛 − 1

)
−

∑︁
𝑆 ∈𝑇 : |𝑆 |=1

(
𝑁 −∑𝑖∈𝑆 𝑟𝑖 − 1

𝑛 − 1

)
+

∑︁
𝑆 ∈𝑇 : |𝑆 |=2

(
𝑁 −∑𝑖∈𝑆 𝑟𝑖 − 1

𝑛 − 1

)
.

A pattern is beginning to take shape, but for the sake of demonstra-

tion, we will continue for one more iteration. Consider the cases

where there is a size violation in 3 bins, 𝑖 , 𝑗 , and 𝑘 . These cases

would have been subtracted out 3 times when we considered all

cases with violations in 𝑖 , 𝑗 , and 𝑘 individually, but also added back

in 3 times when we considered all the cases with violations in 𝑖 and

𝑗 , 𝑖 and 𝑘 , and 𝑗 and 𝑘 . These cancel out, and we have therefore not

taken into account any of the cases where there are violations in

all three bins 𝑖 , 𝑗 , and 𝑘 . In order to count these, we will proceed as

before. To guarantee violations in all 3 bins, we place 𝑟𝑖 balls in 𝑖 ,

𝑟 𝑗 balls in 𝑗 , and 𝑟𝑘 balls in 𝑘 , leaving us 𝑁 − 𝑛 − 𝑟𝑖 − 𝑟 𝑗 − 𝑟𝑘 balls

to sort between 𝑛 bins. Lemma 2 yields(
(𝑁 − 𝑛 − 𝑟𝑖 − 𝑟 𝑗 − 𝑟𝑘 ) + 𝑛 − 1

𝑛 − 1

)
=

(
𝑁 − 𝑟𝑖 − 𝑟 𝑗 − 𝑟𝑘 − 1

𝑛 − 1

)
.

For all choices of 𝑖 , 𝑗 , and 𝑘 , the total number of cases where there

is a violation in at least three bins is∑︁
𝑆 ∈𝑇 : |𝑆 |=3

(
𝑁 −∑𝑖∈𝑆 𝑟𝑖 − 1

𝑛 − 1

)
which we subtract from the total number of possible cases so far(
𝑁 − 1
𝑛 − 1

)
−

∑︁
𝑆 ∈𝑇 : |𝑆 |=1

(
𝑁 −∑𝑖∈𝑆 𝑟𝑖 − 1

𝑛 − 1

)
+

∑︁
𝑆 ∈𝑇 : |𝑆 |=2

(
𝑁 −∑𝑖∈𝑆 𝑟𝑖 − 1

𝑛 − 1

)
−

∑︁
𝑆 ∈𝑇 : |𝑆 |=3

(
𝑁 −∑𝑖∈𝑆 𝑟𝑖 − 1

𝑛 − 1

)
.

We continue this pattern of adding and subtracting bad cases where

there are violations in 𝑥 bins for 𝑥 = 1, . . . , 𝑛, which will yield us

the final formula

𝑛∑︁
𝑘=0

©­«
∑︁

𝑆 ∈𝑇 : |𝑆 |=𝑘
(−1)𝑘

(
𝑁 −∑𝑖∈𝑆 𝑟𝑖 − 1

𝑛 − 1

)ª®¬ .
□
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