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Abstract—Using recent machine learning results that present
an information-theoretic perspective on underfitting and over-
fitting, we prove that deciding whether an encodable learning
algorithm will always underfit a dataset, even if given unlimited
training time, is undecidable. We discuss the importance of
this result and potential topics for further research, including
information-theoretic and probabilistic strategies for bounding
learning algorithm fit.
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I. INTRODUCTION

Overfitting and underfitting are often explained as symptoms
of the bias-variance trade-off [1], [2], where overfitting de-
scribes when a learning method has low training but high test
error, and underfitting occurs when a method has high training
and high test error. Seeking robust definitions of overfitting
and underfitting, we build on recent work in machine learning
looking at both phenomena from an information-theoretic
perspective [3].

Information-theoretic notions of overfitting reflect when
algorithms go beyond learning true regularities in data, in-
advertently capturing noise in their modeling processes. In
contrast, underfitting describes when an algorithm “fails to
capture enough” information to learn the true regularities
in data. Marrying this intuitive notion of underfitting with
existing definitions of underfitting can help us derive new
insights and define specific circumstances into when and how
algorithms underfit.

In this paper, we examine definitions of underfitting using
notions of algorithmic capacity and dataset complexity devel-
oped by Bashir et al. [3], and further, prove that determining
whether an arbitrary learning algorithm will always underfit a
particular dataset is formally undecidable. We will demonstrate
this by a reduction from the halting problem.

Our proof for the undecidability of the underfitting uses
definitions from Bashir et al. [3], building on that work while
focusing primarily on underfitting. In their aforementioned
paper, Bashir et al. proved the formal undecidability of the
overfitting problem, while leaving open the problem of es-
tablishing a similar proof for underfitting. Inspired by their
method, we accomplish that task here.

II. RELATED WORK

This paper builds on the larger algorithmic search frame-
work for machine learning developed by Montañez [4], on

which Bashir et al. also build [3]. Our notions of algorithm and
dataset complexity tie into an existing body of work developed
by Lauw et al. [5], while using a definition of underfitting most
closely related to that of Bashir et al. [3]. These papers build on
previous work characterizing the capacity of machine learn-
ing algorithms, such as the VC dimension [6], Rademacher
complexity [7], and Labeling Distribution Matrices [8].

There has been a large body of research into underfitting
in machine learning algorithms, and approaches that can be
taken to detect and avoid underfitting algorithms. Gavrilov
et al. studied causes of over- and underfitting, and methods
to prevent it, in Convolutional Neural Nets [9]. Li et al.
did similar work for decision trees [10], and Narayan et al.
did similar work for Multilayer Perceptrons [11]. Many other
examples could be given.

There has also been other recent work on decidability
for problems related to machine learning. Ben-David et al.
recently proved that the learnability problem is undecidable
[12]. Building on that work, Gandolfi proved that the sample
complexity of an algorithm, a measure of how many samples
are needed to solve a problem, is decidable in some circum-
stances [13].

A. Relation to Bashir et al. [3]

As we have already noted, this paper is largely built around
the definitions developed by Bashir et al. [3]. Our work
accomplishes three main goals: (1) it expands on the brief
description of underfitting presented in that paper, (2) gives a
new model-specific definition of underfitting, and (3) proves
the formal undecidability of underfitting under this definition.

While Bashir et al. introduced an information-theoretic
definition for underfitting, their analysis primarily focused on
overfitting rather than underfitting. Our paper analyzes their
definition of underfitting, creates a complementary model-
specific definition of underfitting, and finally presents rigorous
conclusions which can be drawn from that definition. In par-
ticular, we prove that underfitting, like overfitting, is formally
undecidable.

III. BACKGROUND

For completeness, we reproduce several of the definitions
developed by Bashir et al., and employ the same assumptions
regarding algorithms, datasets, and hypothesis spaces that are
used in that work.



We begin with Definition 4 from Bashir et al., a definition of
time-indexed capacity. Let G denote a finite hypothesis space
available to a learning algorithm A (or more generally, let G
be a finite search space sampled by a search algorithm A).

Definition III.1 (Time-indexed Capacity, from [3]). Let Pi

denote the (stochastic) probability distribution over G at time
i.A’s capacity at time i is the maximum amount of information
A may transfer from a dataset D ∼ D to Gi ∼ E[Pi|D],

Ci
A = sup

D
I(Gi;D),

where A is a learning algorithm and G is the algorithm’s
hypothesis space.

Definition III.1 gives us a limit on how much information
a learning algorithm is able to extract from a dataset at time
i in reference to a finite hypothesis space G. It does so by
making use of the information-theoretic quantity of mutual
information, which captures the level of dependence between
two random variables.

Next, we present Definitions 6 and 7 from Bashir et al.,
for Dataset Turing Complexity and Dataset Complexity. These
definitions allow us to characterize the (algorithmic) informa-
tion content of arbitrary datasets.

Definition III.2 (Dataset Turing Complexity, from [3]). Given
a fixed Turing Machine M that accepts a string p and feature
vector x as input and outputs a label y, the data complexity
of a dataset D is

CD,M = L(〈M〉) + L(p),

where L(p) = min{|p| : ∀(x, y) ∈ D,M(p, x) = y}. That
is, the data complexity CD,M is the length of the shortest
program that can correctly map every input in the dataset D
to its corresponding output.

Before we present the definition of Dataset Complexity from
Bashir et al., we need to introduce the quantity C ′D.

Definition III.3 (C ′D, from [3]).

C ′D =

n∑
i=1

b(zi),

where b(zi) is the number of bits required to encode the
feature-label pair zi from dataset D = (z1, . . . , zn), without
any compression.

As noted in Bashir et al., C ′D represents the amount of infor-
mation needed to memorize a dataset D without compression.
Now, we define Dataset Complexity, following Definition 7 of
Bashir et al.:

Definition III.4 (Dataset Complexity, from Bashir et al. [3]).
CD = min{CD,M , C ′D}.

Note that CD ≥ C ′D, allowing the dataset complexity CD

to be easily upper bounded, which is helpful since CD,M is
generally uncomputable.

Having provided some background definitions from Bashir
et al., we define underfitting and present several related defini-
tions. Note, we assume that D ∼ D whenever the distribution
of D is not stated explicitly in the definitions that follow.

First, Definition 9 of Bashir et al. defines underfitting at
iteration i as:

Definition III.5 (Underfitting, from Bashir et al. [3]). An
algorithm A underfits at iteration i if

Ci
A < ED[CD]

i.e., after training for i timesteps, A has time-indexed capacity
strictly less than ED[CD].

As noted in [3], underfitting “could be the result of insuffi-
cient capacity, insufficient training, or insufficient information
retention, all of which are captured by Ci

A.”
The pointwise information transfer from a single dataset to

a single model is also defined, which is useful in defining
overfitting and underfitting of a particular model (hypothesis)
g on a particular dataset d.

Definition III.6 (Pointwise Information Transfer [3]). For
a given dataset d and specific hypothesis g, the pointwise
information transfer by algorithm A from d to g is the
pointwise mutual information (lift),

CA(g, d) = log2
p(g, d)

p(g)p(d)
= log2

p(g|d)
p(g)

= log2
p(d|g)
p(d)

.

In the same way that Bashir et al. considered overfitting
for a single model and dataset, using pointwise information
transfer we can define model underfitting.

Definition III.7 (Model Underfit). A’s model g underfits d
if CA(g, d) < Cd.

These definitions will allow us to prove the formal unde-
cidability of the underfitting problem, which we turn to next.

IV. UNDECIDABILITY OF UNDERFITTING

We now demonstrate the undecidability of underfitting as
Bashir et al. did for overfitting. Whether an iteratively trained
learning algorithm underfits, fits, or overfits is often a matter
of just how much training has been allowed. Some algorithms
initially produce models that underfit, but with more training
eventually fit the data well. Other learning methods suffer from
such low representational capacity that they can never produce
a model that fits, even with unlimited training time. We prove
here that determining whether an algorithm will eventually
produce a model that does not underfit is formally undecidable.
Like Bashir and collaborators, we do so by a reduction from
the halting problem.

While we derive our proof using the model-specific notion
of underfitting from Definition III.7, without too much work
the proof can be modified to employ the expectation-centric
definition of underfitting from Definition III.5. This suggests
that even determining if an algorithm will always underfit rel-
ative to a distribution on datasets is also formally undecidable,
since we can always create an algorithm whose maximum



capacity changes whenever a Turing machine M halts on an
input w. Thus, it doesn’t matter if we’re comparing the point-
wise algorithm capacity against a fixed dataset complexity or
the maximum algorithm capacity against an expected dataset
complexity; it is the changing algorithm capacity in response
to algorithmic halting that does the work in the proof. We
present our main result next.

Theorem 1 (The Undecidability of Underfitting). Let S be the
set of all encodable learning algorithms and let 〈A〉 denote
the encoded form of algorithm A. Then, for any dataset d,

Lunderfit = {〈A〉, d|A ∈ S,A underfits d textatalliterations}

is undecidable.

Mhalt

〈M〉, w A′
Builder

Munderfit

No

Yes

〈A′〉, d
Yes

No

Fig. 1. Mhalt constructed using Munderfit.

Proof. We show that Lunderfit is undecidable using a reduction
from the halting problem. By way of contradiction, assume
that Lunderfit is decidable. There then exists a Turing machine,
denoted Munderfit, which halts for all inputs of the form 〈A〉,d
and determines whether A will always produce models that
underfit d, that is, which do not transfer enough information
from the dataset to the model to capture the relationship of
the training data. In formal terms, a model gi at iteration i
underfits dataset d whenever CA(g

i, d) < Cd, in accordance
with Definition III.7.

We now use Munderfit to construct a decider for Lhalt with
the given steps (this decider is also shown in Figure 1):

We create an auxiliary machine called A′ builder, which
takes as input a Turing machine encoding and input string,
〈M〉, w. A′ builder then creates an encoded algorithm A′ rep-
resenting an iterative learning method, exporting the encoded
algorithm together with a training dataset d. The dataset d
consists of a single training example with k−1 binary features
and a single binary label, for some positive integer k > 1.
We construct d = {(x1, y1)} as follows, where x1 denotes
features and y1 the label. The features are chosen uniformly
at random, as is the label; simply put, we generate a k-length
binary string by flipping a fair coin, and take the first k − 1
bits as the features x1, and the final bit as y1. This produces
one of 2k possible datasets with equal probability, where
C ′d = k for each one (since the k-length binary string fully
encodes the feature-label pair, without compression). Thus,
p(d) = 2−k = 2−C

′
d . Also note that Cd > 0 because d is

nonempty and so any encoded Turing machine that produces
it must consist of one or more bits.

A′ works as follows: On its initial iteration, it produces a
learning model that outputs a constant zero value for all labels,
independent of the data. We consider this point in time t1 and
let gt1 represent this initial constant model. Thus, A has a
pointwise information transfer of zero, CA(gt1 , d) = 0, since
p(gt1 |d) = p(gt1), as the algorithm will produce this initial
model with probability 1, independent of d. Therefore,

0 = CA(g
t1 , d) < Cd,

and we see that at time point t1 all of A’s models produced so
far (namely, the single model gt1 ) will underfit by Definition
III.7.

After this, A′ simulates M on w. If M halts on input w,
A′ then updates its internal model as follows. For any input
with features equal to x1 it predicts the label y1, effectively
memorizing the datapoint. For all other inputs, it produces the
label 1 − y1, that is, it negates the label y1. For example, if
y1 = 1 and x1 = (0, 0, 1, 1), then the model will have exactly
one response equal to 1, namely for input (0, 0, 1, 1), and all
other inputs will map to a response label of 0. If y1 = 0, we
would have exactly one response with value of 0, and all other
inputs would map to 1. Thus, at time point t2 we will have
one of 2k possible models. Note that a bijective mapping exists
between the model gt2 and the dataset d; changing a single
bit in the dataset d results in a different model. Therefore,
p(gt2 |d) = 1 (the algorithm’s choice is deterministic given d),
and

p(gt2) =
∑
d′

p(gt2 |d′)p(d′)

= 1 · p(d) +
∑
d′ 6=d

0 · p(d′)

= 2−C
′
d

by construction. Using Definition III.6 we obtain

CA(g
t2 , d) = log2 p(g

t2 |d)/p(gt2)
= log2 2

C′
d

= C ′d

≥ Cd

and A′ produces a model that does not underfit at time point
t2, according to Definition III.7.

If M does not halt on input w, then the algorithm only
completes a single iteration, leaving the original underfitting
model intact. Thus, A′ will underfit d at all iterations if and
only if machine M does not halt on input w.

Under the assumption that Munderfit exists, we can pass
the outputs of A′ builder to this machine and ask Munderfit
if A′ underfits d at all iterations. The way it answers will
tell us whether M halts on w, as it will always underfit
only in the case that M does not halt on input w. The
outputs from Munderfit are then swapped and routed to the
output of machine Mhalt, creating a decider for Lhalt, which
is a contradiction. Having reached a contradiction, our initial
assumption that Munderfit exists cannot hold, and Lunderfit is
therefore undecidable.



V. DISCUSSION

We have proven that, under a rigorous and reasonable
information-theoretic definition of underfitting, the problem
of determining whether an arbitrary learning algorithm will
eventually fit a dataset given enough training time is formally
undecidable. While a perfect algorithm cannot exist, this does
not rule out underfitting detection in special cases, such as for
fixed-capacity algorithms. However, our theorem guarantees
no underfitting predictor can be universally applicable: it will
either apply only to a subset of algorithms, will sometimes
produce incorrect results, or will fail to terminate when applied
to some algorithm and dataset pairs.

Opportunities for future work remain. Just as Bashir et al.
established bounds for algorithm capacity and distributional
algorithm capacity [3], it should be possible to create bounds
using time-indexed capacity. Creating such bounds may allow
for new insights on when algorithms might underfit. Research
into the special case of fixed-capacity learning algorithms
seems especially promising. Another direction to explore is
whether the degree to which an algorithm underfits, captured
by ED[CD]− Ci

A, can be used to bound a learning method’s
generalization error.

VI. CONCLUSION

Underfitting remains a problem when training iterative algo-
rithms. In trying to understand and describe this phenomenon,
we may be tempted to create a list of criteria to predict exactly
when an algorithm will underfit. While being able to determine
with certainty that an arbitrary algorithm will underfit would
be useful, we show that in general this cannot be done, for if
it could, we would also be able to decide the halting problem.

Although it is impossible to always determine whether an
algorithm will underfit, this does not rule out probabilistic
bounds on the likelihood of underfitting nor exact deter-
mination for specific classes of learning algorithms. Future
work may include bounding the probability of underfitting
given an algorithm and a dataset. Investigating these questions
may also lead to a better understanding of why common
solutions for underfitting work, by linking these strategies to
information-theoretic notions of algorithm capacity and mutual
information.
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