r

sincila

vl

sincla

ZX Spectrun Nese T

Written and lllustrated by
Phoebus R. Dokos, BSc (Hons)

C
W
@
L
<
Q
S
c
=2

Edited by:

Mike Cadwallader, Uwe Geiken
Darren Grayson, Matt Langley
David Saphier, Paulo Silva
Julian Smith and Steve Smith

With invaluable contributions by:

Alvin Albrecht, Garry Lancaster, Sofia Zonidi

Romylos Dokos, Mike Dailly, Simon Brattel,

D. Rimron, Paul Land, Kev Brady and Simon N Goodwin

Copyright © 2020 SpecNext Ltd — London, United Kingdom

This work is licensed under a CC BY-NC-SA 4.0 International License.
http://creativecommons.org/licenses/by-nc-sa/4.0/

Cover lllustration: Jonathan M Betts (www.artstation.com/jonathanmbettsart)
Cover Layout: Phoebus R Dokos (www.dokos-gr.net)

Listings set in:
Z¥ Spectrum Mext HMono typeface
Copyright © 2017-2020 by Phoebus R Dokos

FIRST EDITION
ISBN: 978-1-5272-5496-1

Printed and Bound in Athens, Greece — EU by:
Heliotypo S.A. — Graphic Arts

6, Dionyssou str. GR10442

Tel. +30 (210) 515 2217 Fax. +30 (210) 515 3943
Email: iliotypo@otenet.gr

To my amazing children: Mikayla and Romylos

Copyrights

Sinclair and ZX Spectrum are copyright © Amstrad/Sky plc and are used under license
Spectrum Next and System/Next are copyright © SpecNext Ltd

+3e, ResiDOS, IDEDOS, NextZXOS and NextBASIC are copyright © Garry Lancaster
TBBLUE is © Victor Trucco and Fabio Belavenuto

Zeus is © Neil Mottershead and Simon Brattel

NextPiis © D. Rimron

ZX-UNO is © The ZX-UNO Team (Superfo,Avillena, McLeod, Quest, Hark0)

divMMC is © Mario Prato

CP/Mis © Lineo Inc.

esxDOS is © Miguel Guerreiro / Papaya Dezign

The ZX80/ZX81 emulators are © Paul Farrow

Gosh Wonderful and Looking Glass are © Geoff Wearmouth

ULAplus is © Andrew Owen

nxtp and NxTel are © Robin Verhagen-Guest

vDrive= is © Charlie Ingley

All other names and trademarks used herein are © of their respective authors

Dedication

You'd always hear him first. The highly-tuned roar from his
Triumph TR6 was the first thing that made you aware of
Rick’s arrival at the copy centre — where | worked after grad-
uating in industrial design —he’d turn up in these Levi cut-off
shorts. He was cool, a nice guy, interesting and treated you
like an equal. Everyone working at the copy centre loved
serving Rick. When the two of us talked, we just clicked —we
spoke the same language. From the design process to hu-
manity, we just seemed to agree on things. Soon, we started
to meet up at Rick’s local pub, the Free Press in Cambridge.
It was the 1990s, Rick had already left Sinclair and had set
up Dickinson Associates on his own. When visiting his office
in his house | saw his current project on his Alpia drawing
board. What impressed me most was how neat and profes-
sional his work and office was.

When Rick first employed me, | recall he asked if | fancied
leaving the copy centre and working with him. “No guaran-
tees” he said. It took me a nanosecond to answer “yes
please!” He didn'’t even ask to see my portfolio. Of course,
he eventually went through my work. He really liked a water-
colour set I'd done, it was simple and followed our philosophy of design. There were two people who
we both really admired — one was the grandfather of industrial design, Raymond Loewy and the other
the famous German designer, Dieter Rams. We moved into an office at Burwash Manor, in Barton,
and one of the first things we did was set up a Scalextric track to play on! That's what it was like
working with Rick.

Rick Dickinson
(1957 - 2018)

A typical day would start off at Coeur de France, a café on Burleigh Street in Cambridge at about
7.30am, then we’d go to the office and work. In the early days we’'d work late, often followed by pizzas
at 7A Jesus Lane. Or we'd go to the Granta pub for beer. We spent a lot of time together. He showed
me how to live a lifestyle, mixing work and pleasure — and that if you're going to have to work, then
make it as enjoyable as you can. It was very important to Rick to manage his own time, so he could live
by that philosophy. He always said about Cambridge that it's the kind of place where you can be on
holiday permanently. He continued that approach later in life by working from a ski lodge in the Alps
and a beach in Portugal. Managing your own time, but still getting the work done — he valued that
quality of life and made it work.

Rick taught me a lot, and it started with technical drawing. I'd got qualifications in technical drawing,
but mine compared to Rick’s at the time looked rubbish. Technical drawings then were made with
pencil on drafting film, which was very easy to smudge, and my drawings were really smudgy com-
pared to his. He showed me how to keep it clean, how to dimension and how to get everything looking
balanced. His drawings were aesthetically beautiful and just really worked out. And that's where |
started learning from Rick, big time. He could always see | was capable — he said | had a good feel for
materials, and that was something we’d discussed, he didn’t think you could necessarily teach it. He
thought you were at a huge disadvantage if you went on an industrial design course and you hadn’t a
feeling for materials and basic mechanics which we both gained during our childhoods by taking bi-
cycles apart and making things like models and go-carts. We'd both lived and breathed that all of our
lives.

There’s no denying Rick had natural, raw talent, but he almost got kicked off his university course.
There was a requirement you had to be quite particular with presentation techniques, which rubbed
him up the wrong way — he didn’t agree with it. So, for example, not only did you have to draw nice ma-
terial to show other people your ideas, you had to mount it on foam boards, which he just thought was
a complete waste of everybody’s time! You're still conveying the same idea whether it's a piece of pa-
per tacked to the wall or you've spent half a day mounting it nicely! And he nearly got chucked off his
course because he didn’t want to conform. That was Rick.

Rick and | were really close when | was looking to buy a house in Cambridge; we spoke about every-
thing. He said, “you need to buy now — if you don’t buy now, you'll never get on the housing market”.
We worked out the price for what | needed, and what a mortgage would be — and then he said, “so
that’s what you’re going to have to be paid then. | don’t see it as unreasonable that a product designer
of some skill and qualification should want to live in the middle of Cambridge”. That shows Rick to me,
and how we were. That was the level of our engagement and trust with each other. I also think it shows
friendship, like a brother looking out for me. | always felt that he was looking out for my interests. He

gave me a chance in the first place at product design, he showed me pretty much all the important
things | needed to know in order to practise, but also in other areas of life, and I'll never forget that.

He was a great product designer, but it was largely his approach to life — and the way he thought
about everything. His approach to designing a product was always well thought out, which is why
people like the products, because it's apparent that the thinking has gone in at every stage, with the
subtlety and detail and a clarity of thought. But he was the same if you asked him to build a wall — his
wall would be better than most professional brickies’, and he’d know more about it as well. It was the
same with plumbing, anything you like. He was what they would have called a Renaissance man in
the old days — a person with a thirst for knowledge who would do everything to the best of their ability.
And there are some people, like Rick, with considerable ability. There are photos of plumbing he’d
done at his house — it would put most plumbers to shame. It's astonishing, it's a work of art. All
self-taught. He applied that to his car restoration of course too — if he didn’t know about something,
he'd learn. But he’'d also know where to cut corners and where to put in most effort. So, when you look
at his BMW CSL, once a loved family car he'd drive his children Grace and Daisy about in, to some-
thing which sat as a shell for twenty years, to the restoration he did almost completely himself, and fin-
ished in 2017 — it’s just an embodiment of him and his personality. He wasn'’t a purist like a lot of
classic car people are — Rick was after improvement not originality. He was great at finding that nice
sweet spot between classic roots and modern performance.

The ZX Spectrum Next was a fascinating project for Rick, and one close to his heart. The opportunity
to revisit such iconic work, from some 30 years previous, is pretty unusual, and to a lot of people —him
included —it’s incredibly special. When | look back at the concept | can remember how we were work-
ing, and he was definitely leading it in a way he didn’t normally. He was very specific, methodical
— “let’s do this, let’s try that...” There was lots of toing and froing, getting it just right. The keyboard
looks very similar to the QL, and that's one of my favourite elements of it actually. It looks fantastic, but
uses modern operation methods, so will be a huge improvement on the original — and perhaps
temperamental — Spectrum keyboard!

Rick will be remembered for the Sinclair products because they were such a significant thing to so
many people. People started significant careers on these machines and he was a big part of making
them a success — so rightly he gets the credit for that. What made him and his designs so memora-
ble? Class. Taste. And just a feel for what's aesthetically right. They have the X factor — some unquan-
tifiable appeal. People are drawn to these machines, and that’s the black art of industrial design,
they’re more than the sum of their parts. There are many engineers who can create a good set of
parts, but to create products that have timeless appeal and that are loved — this is the difficulty of in-
dustrial design. You itemise all of the things you've got to think about — and there’s a lot of them; these
are complicated products. For that to result in something like the Spectrum or the ZX81, that is bloody
difficult. And there’s the skill — | don’t know what you call it, | haven't got a name for it. Rick had the in-
nate skill of a top product designer. | don’t know how you define it. You can’t do it with words.

In much the same way Rick probably remembered Clive Sinclair, I'll remember Rick as someone who
started my career. It was a significant, catalytic moment of giving me a chance when no one else
would. Rick for me is likely the same as Rick is for those coders who are so fond of their first ZX81
which started them on their path. I'm the same, but with industrial design. And it's probably much
more intense because | worked with him. We did everything together. So, all of the good qualities that
they can see in him, | got over a quarter of a lifetime, a third of a lifetime.

I've been privileged and lucky enough to have had the dream apprenticeship, and ultimately a career
with someone I'm proud to have called a friend. | learned a collection of things from Rick, but the need
for thoroughness was one of the most important. And all of the facets for product design. There’s no
single one that outweighs another —it's the juggling of all of them. That’s how you get the result. If you
prioritise one over the other, you haven’t done a very good job. It's the balance between all of them,
and making sure you've ticked all the boxes while doing it. He was humble, methodical, rational, and
thought things through; approachable, open, easily understood, a Renaissance man; funny, gener-
ous and gave praise and encouragement. He never thought his work was exceptional (it was). He just
wanted to do the best he could under the circumstances (he did). He was enthusiastic, passionate,
and balanced work and pleasure — but better still, made work pleasure.

Phil Candy
Cambridge, May 2018

The early days Foreword

Foreword

When the idea of the ZX Spectrum Next came about during a chat with my childhood friend Victor, nei-
ther of us could dream of the magnitude the project would ultimately reach, taking on a life of its own
and driven by a wonderful community who, more than three decades after the original Speccy came
about, remains as enamoured with it as at first sight.

Simply put, the Next wouldn’t be a “thing” without the Spectrum community. Every aspect of the
Next's making was marked by the fan’s hard work: from the successful crowdfunding on Kickstarter
(likely the largest retro-computing project ever on the platform), to its features requested and de-
signed by original Spectrum developers; from the new exclusive (and awesome) games to this very
manual, whose every page came about thanks to the persistence and dedication from a group of
hardcore collaborators.

It's impossible to frame the ZX Spectrum Next as anything other than a work of passion by many in-
credible people scattered across the globe and united by the love for all things Speccy. To do them all
justice, this introduction will tell the story of its making marked by each individual’s credit to the pro-
ject, hopefully wrapped in a narrative that upon reading, will make you even happier to have been a
part of the ZX Spectrum Next's effort.

And so it happened.

The early days

The Speccy was my first computer. Well, sort of... | grew up in Brazil, and there (like in Russia) existed
an unofficial clone named TK90X. It was the closest to the real thing one could hope for away from the
original cradle in the United Kingdom. Getting hold of games wasn'’t exactly an easy task, and a short-
fall of those drove me to write my own titles. | sold these through guerrilla-style adverts that | no-
tice-boarded across the neighbourhood.

One of these ads attracted Victor Trucco’s attention, and being another TK90X fan in the small town of
Petropolis, we soon got in touch and met at my headquarters (aka my bedroom). There | showed him
my early stab at games, all of them surely underwhelming, but enough to start a friendship that saw us
swapping tapes, talking hardware and generally being our nerdish selves for many, many seasons.

Victor has always been a wizard when it comes to hardware. Since his teenage years he has had a
grasp of electronics that is way beyond anything | could comprehend, made even more impressive by
the fact he is self-taught. I'll never forget an afternoon years later when he cobbled together an inter-
face connecting my Amiga 500 to a 68040 accelerator designed for the A2000 using spare parts | had
lying around... And it worked on the very first try, even though we had to solder hundreds of wires and
a few chips to bridge the two, using only the A500 manual and an A2000 expansion port diagram
phreaked out of a BBS thousands of miles away.

Our bond with the TK90X was such that, no matter what later computers we moved on to, we always
kept it running close by, ready to spring into action with our favourite games.

The precursor

At some point as life went on, our paths diverged. | followed my true calling for creating games, and
Victor his for designing hardware for all things retro. Chances are, if you are a gaming collector, you
have one of his designs around -- from his cartridge interfaces to all sorts of expansions and hacks for
the Speccy, MSX, ZX81, TRS80, arcade machines and consoles. To say he’s a prolific chap would be
an understatement.

One of his more recent projects was made in partnership with Fabio Bellavenuto, an MSX guru who,
like Victor, dedicates a lot of precious time keeping his beloved machines expanded and working well
past their expiration dates. Named TBBlue (a porte-manteau name cobbled together from Trucco,
Bellavenuto and the colour of the hardware itself), it was a replacement board for the Speccy that
added SD card support and RGB/VGA output. It quickly became a best-seller within the Brazilian
TKO0X community, particularly due to Victor and Fabio’s constant updates that kept expanding its
scope, rewarding its owners with a much larger feature set than what they originally bought.

The local success of the TBBIue led to an obvious idea: to take it to the United Kingdom, home to the
largest and savviest Speccy community on the planet.

By now | had followed (some would say stalked) my childhood idols featured in the likes of Your
Sinclair and Crash into the UK, and run a BAFTA-winning games studio in London. Thus Victor called
me on a cold December night in 2015 enquiring if | could help him and Fabio to manufacture the
TBBIue in the Land of Blighty, to get it into the hands of the British Speccy users.

ZX Spectrum Next — User Manual 7

Foreword The Next is born
The Next is born

As we talked about the details around the TBBIlue push, one of us joked it would be amazing if, instead
of a replacement board, we made an entirely new machine designed by Rick Dickinson and
crowdfunded it through Kickstarter. The more we laughed at it, the more it seemed like something we
should actually do, and a few days later | was interrupting Rick’s holidays in a Swiss ski resort trying to
convince him to join us.

It didn’t take much convincing at all.

We will probably never find out if Rick agreed so readily in order to get rid of us and resume his skiing,
certain that it was just a pipe dream from some weirdos that would never follow through with it, or if he
took us seriously from the start. Whatever the case, we couldn’t believe we scored his participation in
the project.

Rick is, as far as we are concerned, the best industrial designer of our generation. Personally, | think
he gives other world-famous designers a run for their money; Rick’s designs are practical, timeless,
simple yet never simplistic, and chock-full of personality. Someone once defined good product de-
sign as “the art of removing everything that you can possibly do without until you're left with the abso-
lute minimal”, but this definition lacks what makes Rick’s work special, a certain element that confers
to it the ability to be memorable from the first glance, able to resist superseding decades on. There’s
no computer from the Speccy’s time that comes closer to its visual appeal, save for the Plus, the 128
and the Sinclair QL -- all his creations. And there are very few computers since, that we can find more
Iconic.

While Victor and Fabio kept themselves busy working to expand the TBBlue specs into the Next,
packing it with all features we could possibly think of in order to create the ultimate Spectrum in a
case, Rick worked secretly on the project back in Cambridge. There was little left for me to do other
than put together a website and start reaching out to developers, enquiring about their interest in cre-
ating for the platform.

Then one day the case designs arrived in our inboxes providing much jaw-dropping. Rick had created
not one, but three ZX Spectrum Next concepts: a modern and tiny reimagination that drew more on
the original rubber key version, a Plus-inspired compact version, and a retro-expanded 128-nod ma-
chine that was the unanimous choice. It was modern and, at the same time, deeply rooted in the
Sinclair legacy. We couldn’t possibly imagine a better design, and were left dumbfounded with the
task of telling him it was simply perfect, there was literally no feedback to be given. The Next was cre-
ated in three brush strokes, and that was that.

The road to crowdfunding

All the work done up to this stage would be pointless unless a good strategy was in place to success-
fully take the project to its fans far and wide. This task fell squarely on my shoulders, but presented a
big challenge: | haven't been active within the Speccy community for years, thus there was a big risk
the initiative would sound illegitimate and opportunistic. Worse, | could only dedicate weekends to the
task, as my responsibilities at the games studio took precedence.

We were faced with the prospect of trying to build momentum for the Next employing a starv-
ing-for-time and unknown entity in the driver seat and, needless to say, this didn’t sound like a very
clever proposition.

The answer came through the wonderful book series by Sam Dyer, brains and muscles behind
Bitmap Books, the most stunning publications dedicated to retro computing one can lend their gaze
to. Sam had an uninterrupted track record of crowdfunding his creations through Kickstarter, and
looking closely enough there were references to GamesYouloved in their credits as the people co-re-
sponsible for the successful efforts.

A Twitter message later, Sam introduced Chris Hill from GamesYoulLoved, a guy that has since com-
prehensively destroyed my belief in thinking | knew a thing or two about retro gaming. Without hesita-
tion, Chris helped me navigate the best events and channels to reach out to the Speccy community,
and next thing | knew | was on my way to Blackpool to talk about the Next on a stage sandwiched be-
tween Steve Turner of Hewson fame and Jim Bagley, who needs no introduction.

Before stepping onto the stage, | managed to bag Steve's signed copy of Quazatron by correctly
naming its protagonist as Klepto even before he finished asking the question. Quazatron is my
all-time favourite game, and there are few happier moments in my memory banks than screaming the
character’s name to the top of my lungs to much of Steve’s surprise...

The Next was demoed live using a beefed-up TBBlue with a new unreleased firmware, soon after a
brief presentation of why a new version of the Spectrum was long due, justifying our efforts in bringing

8 ZX Spectrum Next — User Manual

It does indeed get serious Foreword

it into being. The live demonstration made all the difference: seeing it running demos and a few
games in the flesh, ad-hoc, and being able to touch it, trying first hand, presented the audience with a
tangible project that would not have been achieved in any other way.

Amongst the people expressing interest was Jim Bagley, the next lined-up speaker. Jim grilled me
with the most intricate questions, some of which | winged with answers that would surely make Victor
and Fabio cringe and roll into a ball, weeping. Nonetheless, Jim enquired when he could get a devkit,
and immediately one was produced from a bag: an Altera DE-1 development board with a Raspberry
PiZero as an accelerator badly soldered to its expansion pins, the one and only devkit used to test the
firmware Victor and Fabio profusely updated for compatibility validation.

An hour later | was busy on eBay trying to buy a new Altera board to replace the one | had just given to
Jim in order to have something to keep testing the firmware on... This new one also didn't last long
though: soon it was posted to Jas Austin, creator of mind-blowingly good-looking Rex. After this epi-
sode, as a team we decided it was time for the first Next prototype batch to be manufactured.

Thanks to Chris, Jim and Jas, the Next was now known to the Speccy fans, and it carried the legiti-
macy it required to be taken seriously.

It does indeed get serious

The TBBIlue and Altera kits had run their course, and thus it was time to find a partner that would be re-
sponsible for manufacturing the Next prototype. From the start the idea was to produce it in the UK
just like the original Sinclair, for two reasons: keep in line with the British heritage and use a local com-
pany that would put up with our ad-hoc approach to hardware development with minimal friction (ie.
not complaining about changing something yet again and again every time Victor and Fabio woke up
with a better idea, which to this day happens surprisingly often).

After much research and a few references, we landed at the doorstep of SMS at Nottingham, a cen-
tury-old British technology company that proved to be as smart as they're lovely. There we met Anita
Brown, whose warm heart can only be matched by her enthusiasm for getting things done well. With-
out a hitch the first batch of ten Spectrum Next boards were made, dubbed ‘Issue 0'.

Featuring the same Altera FPGA chip as the DE-1 kits that Jim and Jas got early on, the Issue 0
worked with just a couple of patches carefully soldered on my kitchen worktop, and were soon in the
hands of a few developers who, at once, started to work on Next projects such as Nextipede, by Jona-
than Cauldwell.

In the meantime, a new board emerged from the community using a Raspberry Pi to output HDMI
video from the Speccy called ZX-HD. We already had a RPi Zero working as a slave accelerator to the
Next's Z80, and at once started working on enabling its output video as well, as it made complete
sense: the VGA standard has run its course, and few had the capability to use the Next with a RGB
monitor, the two modes it supported up to this point.

Soon enough it became clear there would be limits to what a video output from the RPi would be ca-
pable of in terms of timings, breaking our main tenet of full compatibility with the original Speccy. Try
as we might, we couldn’t make it 100% compatible with some demos and games that exploited the
ULA in peculiar ways, thus quickly Victor and Fabio’s attention shifted to implementing digital output
straight from the Next's core and dropping the Raspberry Pi for such purpose.

This presented a huge dilemma: we wanted the Spectrum Next to be priced just like the original
Speccy at 175 British Pounds, but the Altera FPGA was already at its limit. In order to implement digital
output we would have to upgrade to a much more expensive Altera FPGA model, and exceed our
price ambitions.

The alternative was to switch the project to Altera’s competitor, Xilinx. This was the same brand that
powered the upcoming ZX-Uno, an incredible Spanish project by a talented group of developers,
amongst which was Antonio Villena. Xilinx's FPGA was just as good and much cheaper, but its intrica-
cies were alien to Fabio and Victor, who didn’t have access to a devkit based on its technology.

Antonio Villena kindly came to the rescue, and armed with a couple of early versions of the ZX-Uno,
Victor and Fabio managed to understand how the Xilinx FPGA behaved compared to the Altera. Soon
the Issue 1 design was born and shipped to SMS for production featuring an internal implementation
of an HDMI connector for our digital output. By now | shouldn’t be surprised by how quickly these
guys understood and migrated their designs to a brand new platform, but nonetheless | was coloured
impressed once again by their talent. It took them less than a month to nail it.

After much testing of the Issue 1 (and countless firmware versions) we felt confident about the capa-
bilities and stability of the Next hardware, and for the first time felt a cold shiver running through our
spines: it was finally time to crowdfund the project.

ZX Spectrum Next — User Manual 9

Foreword Kickstarter rollercoaster
Kickstarter rollercoaster

The crowdfunding campaign felt long due. By constantly updating the community with our progress
during 2016 and early 2017, we ended up hyping the project beyond a healthy point. The memes of
‘take my money’ came thick and fast, keeping the team buoyant and smiling, while always fearful at
the possibility of drowning in our distorted perception of the project’s appeal. What if we were only
hearing what we wanted to hear, and there was not even close to the amount of support required to
make it happen?

By now some of the people who were contributors became good friends, and Jim Bagley was the
most prominent of them. Jim has done so much to help the project it was high time he became cred-
ited as an integral part of the team, and so it was.

When it was time to get the campaign’s video done, Jim stepped forward once again to save the day
and brought with him Lee Bolton from Elerby Studios, who travelled from Manchester to London in a
few hours’ notice, managing to record the video that underpinned the Kickstarter. With a patience that
could only be compared with what’s required to deal with Skool Daze’s loader over a badly azimuthed
cassette player’s head. The amount of times me and Jim messed up each single take was. .. Let’s just
move on...

With the Kickstarter campaign uploaded and ready to go, all that was left to do was press the ‘Submit’
button, which we did without hesitation. But what followed were the most disappointing and distress-
ing moments of the entire project.

Our campaign got rejected by Kickstarter because we were breaching one of its core rules. We were-
n't allowed to use 3D rendered images of the product that looked realistic, lest we mislead the back-
ers into thinking the renders were real products. Rick’s designs were the beating heart of the project,
not being able to use them to showcase how the final version of the Next would look like felt like a kick
to the stomach.

We tried to reason with the Kickstarter team: how could they expect us to present a real product im-
age, whose mold would cost in excess of $80,000.00, which surely defeated the point of
crowdfunding anything in the first place. If we had eighty thousand dollars lying about surely we
wouldn’t need a crowdfunding platform to begin with.

But Kickstarter didn't budge. They sent us reference product campaigns links for us to use as a guide,
some of which turned out to feature precisely the same kind of 3D renders we were found in breach of.
To our amusement, when we pointed this out they replied that if that was the case, it was because
they couldn’t tell the difference between the renders and real pictures -- in other words, the renders on
those live campaigns were so good they looked real, thus Kickstarter couldn’t be sure if they were ren-
ders or not, so they allowed them to go live while blocking us.

Faced with a Kafka-esque situation, a Kafka-esque solution was required, and being game designers
we surely came up with a few: first, Rick rendered Next images in transparent material, showing be-
yond doubt they were not ‘real products’. These filled the gap of showcasing the Next's features such
as SD card and button placements. Meanwhile my trusty 3D printer engaged in days-long efforts to
extrude black plastic in thousands of layers that somewhat resembled the Next's case. The end result
posed for a photo featuring my bony hand. Then Jim added a subversive touch: he took a photograph
of a monitor showing the original 3D render of the Next. It was a tongue-in-cheek way of displaying the
Next design without any chances of someone mistaking it for a real image of the physical product.

This, it turned out, was OK. And there was much rejoicing.

Stretching beyond the goals

The Speccy’s 35th birthday was upon us, stars and planets aligned into a perfect storm. The cam-
paign went live with a 250,000 GBP goal, which we suspected had a good chance of not being at-
tained. The best case scenario would be a close call, breached during the last days of the campaign.
Yet we resisted the urge to set a lower goal as we knew anything less would land us in trouble during
production due to economies of scale: the Next was already sailing dangerously close to its budget,
being a project done at cost with no profit margin.

Our fears were, of course, unwarranted. Less than 36 hours into the live campaign, the project was
fully funded.

The absolute success of the Spectrum Next caused two side effects: Victor and Fabio went into over-
drive, coming up with all sorts of new features with renewed intent fueled by the resonance their cre-
ation had found with the community; and | had to come up with ever more loftier stretch goals we
never even bothered preparing for, as they seemed far-fetched.

10 ZX Spectrum Next — User Manual

Stretching beyond the goals Foreword

One might think that coming up with stretch goals is easy: just imagine what people will want and go
forit. Problem is, for each new goal, a huge amount of accounting, component pricing enquiries, pro-
duction adjustments and the likes had to take place to ensure they were affordable and viable. And all
this on the fly.

Thankfully, the immense success of the campaign brought forward very special people volunteering
help. The Oliver Twins came up with the unbelievable idea of creating a brand new Dizzy title just for
the Next; they added to it DreamWorld Pogie developed by Lyndon Sharp and Phoebus Dokos; Steve
Wetherill offered Nodes of Yesod; Jas Austin confirmed Rex Next; the team behind Castlevania led by
Mikhail Sudakov revealed their new game, No Fate; Garry Lancaster started porting and expanding
his incredible +3e OS for the Next; Alvin Albrech stepped in for Victor and took over the core, creating
the amazing machine you're holding in your hands; Juan Moreira offered his talent to design a special
box; and Phoebus Dokos, who started organising the manual effort, to finally becoming its author,
went on to manage the firmware releases and the push for the NextZXOS & NextBASIC by Garry...
Without Phoebus the Next would be a fraction of its launch form. Our debt to these incredible folks is
incalculable: they joined the project selflessly, with the one goal of making the Next a better computer
for all.

| owe a personal thanks to all these awesome people, and in particular Mike Cadwallader, who helped
me and the project in more ways than it's possible to count.

Now, more than ever, it was clear how much love there was for the Speccy: developers, makers, fans
and users... All coming together to make it happen at a level we couldn’t possibly have had imagined
beforehand without sounding out of our minds.

The Spectrum Next was surely bigger than anyone could have predicted, and it was made better by
its very community — just like what made the original Speccy such a huge success back in the day: the
incredible users that made its hardware something more, something magic.

Henrique Olifiers
August 2018

ZX Spectrum Next — User Manual 11

Acknowledgements

Phoebus Dokos: The Next User manual, firmware/boot logos, distribution, SD images, organising
more stuff than we can possibly track down to thank him for.

Mike Cadwallader: Organiser of all things Next, including production of keyboard, case, main
board... You name it.

Alvin Albrecht: Author of the final core and z88dk support for Next.

Garry Lancaster: Author of the beautiful NextZXOS, NextBASIC and tons of utilities that make the
Next tick. An unparalleled talent and a great person all around.

Phil Candy: Partner of Rick Dickinson at Dickinson Associates, who took the helm after Rick left us,
and delivered the Next in all its glory.

D. Rimron: author of NextPi, the accelerator OS, host of specnext.dev and all around great guy!
Mitja V. Iskric + Sarah Burroughs + Helga lliashenko + Matt Dolphin, Marcus Chiado: The won-
derful Admins who kept the community healthy, happy and on track!

Miguel Guerreiro: Author of esxDOS, which for a long time powered the Next and still does a great
job of running those Russian TRD images (which we cannot include sadly! But such is life!)
Darren Grayson, Julian Smith, Matt Langley, Steve Smith, Paulo Silva, Peter Hodges, David
Saphier, Uwe Geiken: The Manual Team! (You know, the stuff you're reading right now...)

Mark Smith: Core contributions.

Simon Brattel: Core contributions, Assembler tools, remote debugging for devs.

Tim Gilberts: For the UART, Mouse, RTC, i2¢, WiFi support and Internet Toolbox (and The Quill and
DAAD and... and...).

Mario Prato: Help and thanks for the divMMC.

Paul Farrow: For providing ZX80 and ZX81 support to the Next.

Djordje Mitic: SD Card support and procurement in China and Next board compatible cases.
ZX-Uno team: For providing an early Xilinx core testbed and external platform support.

Pokemon: For the “Cap Mod" hardware fix for revision 2A Next mainboards.

Geoff Wearmouth: The Gosh Wonderful and Looking Glass ZX Spectrum 48K ROMS.

Evgeniy Barskiy and Dimitri Ponomarjov: For the EnhancedULA idea that became the basis for the
extra colour modes of Layers 0 and 1.

Keith Tinman: The KS video music.

Jonathan M Betts: Manual Cover Art.

Alfredo Tato: Box artwork.

Anita Brown, Dimi & Everyone at SMS Electronics: For consistently going above and beyond!
Brian Kiep and his team at Panaseas: For stepping in at the last minute to create the Spectrum
Next moulds and cases.

Phil, Annie, Chris, Adam, Becky, James, Gill and Lyn: Pendragon Packaging, makers of all the Next
boxes.

Zeb Elwood: For providing ram chips to the community.

Richard Spencer: For helping secure the ESP module sourcing and early hardware add-on pro-
vider.

César Hernandez Bano / ZEsaruX: For the first complete Next Emulator

Mike Dailly: For #CSpect — First Next Development system / Emulator.

Manuel Fernandez Higueras: For the wonderful ZX Uno Go+ which served as an early testbed for
Next Core portability!

Matt Davies: For nx — Next Development system / Emulator and WAHH™

[/ Chapter
0N

Introduction

B o

DML DED
T

!

=
BEN B B

2

i s

CTUTITTUT T T TITe]

!

—

g

=)

([peLeve])
T

)

“

i
E

el

2

FETLR
P

Y

E
u

LoAD

|
1000

7

e &
[

RAND,
>

T
=
<

<

R
.J\
T
Fartn
conT,

7

C

FUN

4

FIG

T
ReEM
H
E
=
X

TR
i
=13

3

kil
na
2
(v

I

w
o
™

Q
il
" SAVE
i rat kS
S
drefo

COCICC]

L.
TR
5[0
= E H
C§ ’\
Lo =k \
N (HEDS]s
\\ o bt et et L e L e] | —
Right Pi0 USB port marked
with X is a POWER port
and should not be used!
| I i i - T ¥ f iu j
@@ eho]]
ATFUJW
Diagram Legend
Description # Description
1 Reset 10 Mic/Ear socket
2 divMMC NMI 11 | Pi Accel. USB (Use Left port)
3 SD Card slot 12 Stereo Audio out
4 NMI 13 RGB/VGA out
WARNING! WARNING! WARNING! WARNING! | 5 9V Power socket 14 PS/2 port
When plugging external interfaces or peripherals, make | 6 Expansion Port 15 Power indicator LED
sure all power is disconnected first!!! -
OTHERWISE IRREPARABLE DAMAGE MAY OCCUR | Collapsible Legs 16 Keyboard
8 Digital Video Debug 17 Left Joystick port
WARNING! WARNING! WARNING! WARNING! | 9 Digital Video out 18 Right Joystick port

The ZX Spectrum Next

ZX Spectrum Next Standard Chapter 1 — Introduction

Introduction

Welcome to the ZX Spectrum Next, the evolution of the Sinclair ZX Spectrum line of com-
puters. It brings new and amazing features while keeping full hardware and software com-
patibility with previous ZX Spectrum computers. In fact, you can seamlessly use existing
programs and devices with your Spectrum Next compulter.

What makes the ZX Spectrum Next an evolution is that it brings new hardware capabilities
not seen before in the ZX Spectrum line of computers. These new features allow for the
creation of a whole new level of games and applications that otherwise would be difficult,
or even impossible, to achieve in previous generations of Spectrums.

The most prominent of these new capabilities are:
® Z80n CPU with extended instruction set and additional turbo modes
* Hardware Sprite engine
* New, high resolution video modes with 9 bit colour and hardware scrolling
* Enhanced audio hardware
¢ DMA - Direct Memory Access
* Copper-like Hardware

* Enhanced ULA extending legacy Spectrum and Timex modes to 256 colours
out of a 512 colour palette

Beyond these amazing features, your new ZX Spectrum Next computer also incorporates
Timex Sinclair video modes, built-in Covox™ / Soundrive™ / SpecDrum™ compatible digi-
tal audio, Multiface™ compatible and divMMC interfaces, and Digital Video output,
amongst others. There are three different ZX Spectrum Next models: Standard, Plus and
Accelerated. Each one adds a few hardware components on top of the previous model.

ZX Spectrum Next Standard

This is the base model and has the following hardware specifications:
¢ Xilinx Spartan-6™ SLX16 FPGA (XC6SLX16) implementing:
» Enhanced Z80-compatible CPU (Z80n) @ 3.5 MHz with additional turbo modes
» divMMC interface with an external SD™ card slot (Expandable to two with a
secondary internal microSD™ slot, only via expert soldering at user’'s own
risk)

» NextSound™ hardware (3 x AY-3-89xx compatible PSGs and PCM digital au-
dio with stereo output)
Multiface™ compatible functionality’
ZXN (Z80 DMA compatible) DMA chip
Enhanced ULA with 9 bit colour capability
Amiga™-like Copper™ chip
Programmable UART chip
¢ Two DB9 joystick ports, compatible with Cursor, Kempston™ and ZX Interface 2

protocols
* PS/2 port, with support for Kempston™ compatible mouse mode emulation and
an external keyboard

* 1 MB of SRAM (expandable up to 2 MB)
* RGB/VGA and Digital (HDMI™/DVI compatible) video outputs
* Tape support, through joint Mic / Ear port
¢ Original external bus expansion port
* Internal accelerator expansion port

v v v v w

1 Multiface functionality requires you to own and provide the appropriate ROM file for the model being implemented.
For example for the standard +3e mode you will need to own a Multiface™ 3, extract its ROM image in a file and store
it in the c:/machines/next directory. This is not necessary when running in Next mode, which provides its own
replacement functionality in the form of the NMI menu.

ZX Spectrum Next — User Manual 15

Chapter 1 — Setting It Up ZX Spectrum Next Plus
ZX Spectrum Next Plus

This model has all the Standard'’s features, plus an I,C RTC (Real Time Clock) device
(DS-1307) and a Wi-Fi module, with a full TCP/IP stack (ESP8266).

ZX Spectrum Next Accelerated

This model has the same characteristics as the Plus version, but gets a Raspberry™ Pi
Zero connected into the accelerator expansion port, which gives you one micro-USB port
and an additional mini HDMI™ output. The Raspberry Pi Zero comes with a 1 GHz CPU, a
GPU and 512 MB of RAM, and brings yet more possibilities to your ZX Spectrum Next,
such as supporting a second display and even more advanced graphics processing
power.

Throughout this manual you will learn more about these amazing new features and how to
harness them, so you can make better use of your ZX Spectrum Next computer.

Setting It Up

For Full Machines

Unpacking the ZX Spectrum Next, you will have found:

1 This User Manual.

2 The computer. This has three jack sockets (marked 9V DC IN, Audio Out,
EAR/MIC), two display sockets (Digital Video and RGB/VGA), a PS/2 key-
board/mouse socket, an SD card socket, two joystick sockets, and an edge
connector on the back where you can plug in extra equipment. It has no on/off
switch —to turn it on, you just connect it to the power supply.

3 A power supply. This converts mains electricity into the form that the ZX Spec-
trum Next uses. If you want to use your own power supply, it should give 9 volts
DC at 2.1A with positive in the centre. DO NOT use an old ZX Spectrum power
supply, since that uses inverse polarity (negative in the centre) unlike the ZX Spec-
trum Next.

4 An SD Card preprogrammed with the system software.

For ZX Spectrum Next Board-Only
5 The board alone.

What you’ll need

For All Next Systems:

e Adisplay lead. You will need an HDMI™ or VGA display lead, which connects the computer
to a display (television or monitor). Unlike the original ZX Spectrum, the hardware of the ZX
Spectrum Next will work with any TV that has an HDMI or DVI2 socket wherever you are in the
world, including 50Hz and 60Hz models (the default selection is 60Hz, but you can change
to 50Hz in the boot menu if your TV/monitor accepts it). If you are using a monitor without an
HDMI™ or DVI socket, you should be able to use the VGA connection instead. If you're using
avintage television the VGA port can double-up as an RGB video out port which can be con-
nected using a special interface cable to a standard SCART connector. The ZX Spectrum
Next does not support displays connected via aerial/UHF.

Additionally For Next Board Only Systems:

e AnSD™ Card. You will need an SD card with system files in order to boot the computer. You
won't be able to boot the machine without an appropriate card inserted into the SD slot as it
carries the firmware, the core bitstream (this is the file that contains the instructions for the
FPGA to configure itself for every circuit the ZX Spectrum Next supports), the Operating Sys-
tem and various supporting programs and demos to get you started with your machine.
Therefore, head over to the distribution site on the Spectrum Next Web Portal

2 DVI sockets do not carry sound. If you use a DVI socket you will need an HDMI to DVI converter as well as a separate
lead to provide audio to your monitor via the Audio port.

16 ZX Spectrum Next — User Manual

What you'll need

Chapter 1 - Setting It Up

(http://www.specnext.com/latestdistro/) and get the most recent System/Next™ dis-
tribution package. Depending on what type of file you get, be it a disk image file or an ar-
chive, you should dump the disk image on a card or unpack the files directly into a
FAT16/FAT32 formatted SD card. Any size SD card suffices, as the size of the unpacked
distribution files fits into even the smallest one available on the market.

Power Supply Unit. You will need a standard 9V PSU, centre positive, with at least 2.1
Amps of current. Please note that an original ZX Spectrum, ZX Spectrum+, ZX Spectrum
128K and/or Timex Sinclair TS2068 or TC2048 Power Supplies are unsuitable for the ZX
Spectrum Next as their polarity is reversed. If you attempt to power your ZX Spectrum
Next with such a power supply you may damage your machine.

PS/2 Keyboard -or- Spectrum Compatible Case. If you use a board only, or if you are
more comfortable with a larger keyboard, then you will need a keyboard compatible with
the PS/2 standard. Alternatively you can place your ZX Spectrum Next mainboard into
any ZX Spectrum, ZX Spectrum+, ZX Spectrum 128K or compatible keyboard (eg. a
Saga or DK'Tronics keyboard) as the board has been engineered to fit in a standard ZX
Spectrum case. Minor cutting is required in the case of standard Spectrum cases.

The components of the system should now be interconnected like this:

Mains
Electricity

Power
Supply Unit

1
LT

Mains Lead 9 Lead

TV / Monitor

HOMITVIVGA'SCART
Lead Digital/RGE out Win

ZX Spectrum Next
Board / Computer

HOMI/DVINGA/SCART
input socket

Fig. 1 — Connecting your Next for the first time

Turn the power on and switch on the television or monitor. You now need to switch the television to
the appropriate input as per the lead you have selected to use (HDMI, DVI, VGA or SCART). If ev-
erything is connected properly and the proper input selected, upon first boot you will get a picture

like this:

W
Mode 7/S@Hz /scanx2

ENTER selects mode
N skips to next

Fig. 2 — ZX Spectrum Next Video Mode selection Test Screen

ZX Spectrum Next — User Manual

17

Chapter 1 - Setting It Up What you'll need

This is the Test Screen and it's there to guide you select the best possible video mode for your
display. For the first time, allow your computer to cycle through all the modes. Not everything
will be displayable and your display may lose sync during the process presenting you with a
blank screen. This is not cause for worry; not every display is capable of showing all frequen-
cies and the purpose of the Test Screen is to determine exactly what video mode your display
is best suited for. You'll want the Test Screen not to flicker, to appear centred on your screen
and — if possible — the chequered border to be completely visible and in that order of prefer-
ence. Note that if you care about compatibility with older software, the most timing-accurate
mode is mode 0 (VGA or RGB) so if you're satisfied with the quality of the display on that
mode, you should select that one if possible. Once you're satisfied with the display, press
ENTER on the keyboard. The computer will store your preference and booting will resume.
The screen will then change to:

sinclair //

ZX Spectrum Next

Fig. 3 — ZX Spectrum Next Booting progress
before finally displaying the NextZXOS welcome screen:

Llel Cofie to Ne

NeRtZ4035 15 an evolution_of the system sortware
present on the Sinclair 28 Spectrim 43K, +2
and +3 computers.

It has many new Features to take adnantage of the
capabilities of the 2% Spectrum Mext

The next few screens describe same of the avail able
features.

For full documentation. please read the manual
provided with your Mewt. and the additional
docl&mentahon in the ‘docs” directory on this 5D
car

test

stem

NT et P P=Preuious page
SPACE= Sl.art HertZH 035 D=DisablLe welcome

Fig. 4 — NextZXOS Welcome

Read the pages presented carefully; they introduce NextZXOS and your machine and give
you up-to-date information on how to do things. They also contain information about The
Browser, Dot Commands and NextBASIC that may not be included yet in this manual so
don't dismiss them as non-relevant. You navigate pages using your keyboard, by pressing
ENTER for Next page and P for Previous . Once you're done, you can press D to disable
the welcome screen or you can press SPACE to start.

18 ZX Spectrum Next — User Manual

What you'll need Chapter 1 - Setting It Up
Once you press SPACE you will be greeted by the NextZXOS startup screen:

Fig. 5 — NextZXOS Startup screen

By default, the ZX Spectrum Next will boot up in Next Native mode, one of the many
modes/personalities that your computer can be put into. The copyright message you see
in the Next Native Mode resembles the copyright message of a ZX Spectrum +3 en-
hanced with the +3e disk operating system, of which the ZX Spectrum Next is the logical
SUCCESSOr.

The following personalities are available in the System/Next™ distribution:
* 7ZX Spectrum 48K
* ZX Spectrum 48K with Gosh Wonderful® v.3.3 ROM
* ZX Spectrum 48K with Looking Glass* v.1.07 ROM
¢ Timex Sinclair TC2048
* ZX Spectrum 128K
* Investronica ZX Spectrum 128K
® ZX Spectrum 128K +2
® 7ZX Spectrum Next with LG v.1.07 48K Mode
* ZX Spectrum Next with original 48K Mode (default)
* 7X805
* 7X815

You can select any of these personalities by holding the SPACE key during the booting
process of the computer. Note, however, that the newly selected personality becomes the
system’s default, every time you make a new selection. This default selection can also be
changed by directly editing the configuration file config.ini found in the c:/machines/next/
folder and modifying the Default= entry to refer to the appropriate menu entry. Also note,
that menu entries count from 0.

Additionally the ZX Spectrum Next can behave as a number of Sinclair-inspired and
Sinclair compatible machines according to the ROM files that you will include in the c:/ma-
chines/next/ folder in your System/Next™ distribution's SD card and the configuration
changes you make to the standard boot configuration file config.ini. Especially for the
ZX80 and ZX81 personalities, regardless of if entries for these machines exist in your boot

3 Gosh Wonderful is a full text entry ZX Spectrum 48K ROM written and kindly provided by Geoff Wearmouth.

4 Looking Glass is also a full text entry ZX Spectrum 48K ROM written and kindly provided by Geoff Wearmouth.

5 ZX80 and ZX81 personalities include ZX Spectrum 128K emulation software written and kindly provided by Paul
Farrow.

ZX Spectrum Next — User Manual 19

Chapter 1 — Setting It Up The Keyboard

menu, while in Next Native mode, software for the ZX80 and ZX81 is supported directly
from within the Browser and via the SPECTRUM command. However for this functionality
to work, the special set of ZX80 and ZX81 modified ROM images as provided in the Sys-
tem/Next™ distribution, need to be present inside the c:/machines/next/ folder.

When you turn the ZX Spectrum Next off, all the information in its memory is lost, unless
you save it first. Your ZX Spectrum Next uses modern SD memory cards to load and save
data, including taking a full snapshot of standard 128K and 48K memory maps which,
when loaded, will return you right back to what you were doing (even in the middle of a
game). Note here, that the snapshot capability doesn’t cover the Sprite, Palette or Layer2
memories nor the extended Spectrum Next memory map and/or Copper instruction list
and as such is not suitable for ZX Spectrum Next-specific games and software, but only
for traditional software or software that’s specially written with the snapshot functionality in
mind.

When used in a compatible personality mode, you also have the choice of using one the
following storage solutions:

* ZXInterface 1 with Microdrives or vDrive,8

* Rotronics Wafadrives

* Floppy Disk Interfaces
* Hard Disk Interfaces
* (Cassette’

For cassette operation, you will need a cassette recorder (preferably monophonic) to
load and save data from tape, just like the original ZX Spectrum. You can even use an
MP3 player or a specialised device such as the TZXduino as a replacement for a
cassette player. To use a cassette recorder you'll also need a mono to stereo splitter
cable with a single 3.5 mm stereo jack plug at one and two 3.5 mm mono jack plugs at
the other end.

For older storage solutions to work, you may need to disable on-board peripherals and
features like the divMMC, NextSound etc as they may clash with your chosen storage
solution. You will also need to select a personality for which the storage solution chosen
was designed for. For example you cannot select the Spectrum +2 personality and
expect a ZX Interface 1 to work as it was never compatible with that machine anyway.

Now that you have set up the computer, you will want to use it. The rest of this book tells
you how to do that; in your impatience you will probably already have started pressing
keys on the keyboard, and discovered that things have started happening on the screen. If
you have pressed ENTER by any chance, you have already seen that the copyright mes-
sage and the original startup menu have disappeared and gave way to some other
screen. This is good; you cannot harm the computer in this way. Be bold. Experiment. If
you get stuck, remember that you can always reset the computer to the original picture
with the copyright message by pressing the reset button on the left side of the Spectrum
Next or by hitting the F1 key (if you have an external keyboard). This should be the last re-
sort because you lose all the information in the computer's memory (but not what's stored
in your SD card).

The Keyboard

By now, you have noticed that your keyboard doesn't only have characters and symbols
like other computers but also complete words and commands. This stems from the origi-
nal ZX Spectrum characters which comprise not only the single symbols (letters, digits,
etc), but also the compound tokens (keywords, function names, etc) which you can see

6 vDrive?* made by Charlie Ingley, is a modern replacement for microdrives, fully compatible with all ZX Spectrums that
can use the ZX Interface 1.
7 Cassette is always available regardless of the personality you've chosen.

20 ZX Spectrum Next — User Manual

Special keys and buttons Chapter 1 - Setting It Up

printed on the Spectrum Next keyboard. Especially the Keywords are there because al-
though the ZX Spectrum Next doesn't use them in Next Native mode, when using one of
the other personalities available and/or the original 48K Mode or even the special USRO
mode (used if you select esxDOS8 instead of NextZXOS) you must use them in order to be
able to give commands.

The Spectrum 128, +2, +3e and Native Next modes all have an advanced editor to cre-
ate, modify and run BASIC programs. Additionally the alternative Native Next Mode has
full keyboard entry in 48K mode thanks to the Looking Glass 48K BASIC. In the case you're
using a board-only ZX Spectrum Next with a PS/2 keyboard that lacks the Keyword leg-
ends, on-screen keyboard help is provided in the form of a menu in the Next Multiface re-
placement and as the .keyhelp dot command.

With the exception of the Investronica Spectrum 128K machine personality, all the 128K
modes have a menu. This manual, however only deals with the Native Next modes so it
uses only the menu options available there. For complete coverage of the differences and
to avoid confusion, refer to Appendix D and the respective manuals of each specific
model.

Special keys and buttons

Throughout this manual, you'll see mentions of function keys F1 through F10. These are only
available as physical keys on PS/2 (external) keyboards. This functionality is available on the
standard keyboard by pressing AND holding the NMI button on the left side of your computer
and one of the numeric keys (1 through 0). Below, you will find a table explaining each key's
function.

Function Key Used for Notes

1 Hard Reset Resets CPU and Peripherals, reloads the FW and loads the hardware
settings anew but doesn't clear the RAM.
Doubles the output resolution. Must be off for older monitors and SCART

F2 Scandoubler
cables

50Hz/60Hz Vertical
F3 AL Changes the display's vertical frequency from 50 to 60Hz and vice-versa
Frequency

Resets CPU and Peripherals and reloads the Operating System.

F4 Soft Reset Used with Caps Shift it forces a rescan of drives and a reload of the boot
screen under esxDOS

F5 Not Used N/A

F6 Not Used N/A

) Cyclically toggles scan line emulation in 4 steps/intensities:

F7 SIS 0%, 25%, 50%, 75%. This emulates the older CRT monitors

F8 Turbo modes Cyclically toggles CPU speed (3.5MHz, 7MHz, 14MHz, 28Mhz)

F9 NMI (Multiface) Simulates pressing the NMI button
Simulates pressing the Drive button (divMMC NMI — used with esxDOS)

F10 divMMC NMI (Drive) Used with Caps Shift it forces a rescan of drives and a reload of the boot

screen under esxDOS

Table 1- Function Keys and their use

It's noteworthy also that the Reset button on the left side, operates differently according to
how it's pressed. A short press (<1 sec) does a Soft Reset while a long press does a Hard
Reset. The NMI button is similar as a single press will launch the NMI menu (or multiface
menu if you're in the right personality and own the appropriate ROM file) while a long press
is used to simulate the function keys).

8 esxDOS is an alternative Operating System for the ZX Spectrum, ZX Spectrum Next and compatible machines such
as the ZX UNO, originally written by Miguel Guerreiro for the divMMC interface. The ZX Spectrum Next requires
esxDOS v.0.8.6beta or higher to operate. NextZXOS provides an esxDOS compatibility layer so programs reliant
upon it do not need its installation to work.

ZX Spectrum Next — User Manual 21

Chapter 1 — Setting It Up The Startup Menu
The Startup Menu

Upon startup you will be presented with the menu as displayed in Fig. 5 above and if you're a
bit adventurous and navigate around it you'll discover a submenu like the one in Fig. 6 below.

nEx T
CPAH
ROM Cart 438K
ROM Cart 128K
48K BRSIC
EBack...

1792k

Fig. 6 — NextZXOS Startup Menu

On the bottom of the screen you will notice the copyright information which also includes
the current version of NextZXOS (at the time of writing v.2.04). Immediately below you see
information on the logical drives available upon boot. Drive letters A: and B: (B: is not visi-
ble on the screen displayed above) default to physical floppy disks or unprotected images
(see Chapter 20 as well as Appendix D), drive C: refers to the first FAT partition on the SD
Card and drive M: to the RAMdisk. There’s also a special drive letter T: that's reserved for
tape loading. All drives with the exception of T: and C: can be reassigned, as these are
needed for the proper operation of the machine.

The top of the menu includes information about the current CPU speed® and the bottom of
the menu the available RAM which is 768K for an unexpanded ZX Spectrum Next out of
the total 1024K.

The main menu as seen in Fig. 5, contains the following items:
* Browser
* Command Line
* NextBASIC
* Calculator
* More...

More... upon selection will open a submenu (Fig. 6) with the following items:
* Tape Loader
e CPM
* ROM Cart 48K
* ROM Cart 128K
* 48K BASIC

and finally an entry which when selected will take you back to the previous menu:
* Back...

9 The speed displayed, refers always to the execution of NextBASIC programs as the menu itself and the browser
always operate at the maximum available speed, dropping down to the selected speed whenever you execute a
NextBASIC program or code. While in the Menu system, it can be changed by using the left and right cursor keys

22 ZX Spectrum Next — User Manual

Menu ltems Chapter 1 — Setting It Up
Menu ltems

Browser — This option allows an easy way to select and execute files from the SD card.

Command Line — This is the same as the NextBASIC option that follows, except that any
currently resident BASIC program is not listed (and can'’t be directly edited, although you
can still RUN the program, enter new lines, or delete them by just entering the line num-
ber). The main purpose is for using disk-related commands such as CAT so that the out-
put can be seen without being continually replaced by the program listing.

NextBASIC — This option enters the NextBASIC editor in order to program your machine.
Calculator — This option makes your ZX Spectrum Next work as a calculator (See Appendix E).
Tape Loader — This will start loading from cassette.

CP/M —This option starts the CP/M 3 (CP/M Plus) operating system. The first time you se-
lect it, you will be taken through an automated setup procedure. Further documentation
about CP/M can be found under c:/docs/cpm in your System/Next™ distribution as well
as in Chapter 20.

ROM Cart 48K — This option allows you to load 48K-mode ROM cartridges plugged in an
ZX Interface 2, RAM Turbo or Dandanator expansion.

ROM Cart 128K — This option allows you to load special 128K-mode ROM cartridges
plugged in an ZX Interface 2, RAM Turbo or Dandanator expansion.

48K BASIC — This option turns your ZX Spectrum Next into a classic ZX Spectrum/+ which
also requires you to use the keyboard in the traditional, single-key (tokenised) way. In case
you need a slightly updated version of the 48K system software there is an alternative in
the guise of Geoff Wearmouth's Looking Glass. This is bug fixed to a great degree, does
not require single-key (tokenised) command entry and has enhanced compatibility with
older software titles. This is selectable upon boot by pressing SPACE. For further details
regarding the 48K mode, refer to Appendix D and the ZX Spectrum/+ Manual.

Entering and using the NextBASIC Editor

To enter the editor, select the option NextBASIC from the Startup menu, using the cursor
keys and ENTER.

Differences from previous versions

The NextBASIC editor largely operates as the classic Spectrum 128K models did with the
notable exception that it now supports apart from the standard 32 columns, 64 and 85 col-
umn modes and additionally has colour-coded cursors (as described below) to denote
the mode the editor is in. The 64 and 85 column modes, use the Layer 1,2 (HiRes)° screen
mode and are thus monochrome. For these modes the cursor cannot be colour-coded so
it changes shape. These are also described below.

When not in 48K mode, all BASIC commands, functions and operators are typed letter by
letter. Unlike in older versions, NextBASIC's cursor shape and colour indicate input mode.

There are three things to notice about the screen.

The cursor — The cursor (position of text entry) is a flashing blue and white rectangle in the
top left-hand comner. If you type any letters at the keyboard, then they will appear on the
screen at the position of the cursor. As mentioned above, it has five modes, indicated by
the cursor colour (which flashes alternately with white) or by the different shape according
to the screen mode your Next is in:

10 Layers 1,2 and 1,3 otherwise known as Timex HiRes (and HiColour) refer to screen modes originally realised in the US
designed Timex Sinclair, ZX Spectrum derivatives which were later adopted by Timex Portugal in their TC line of
computers. All Timex screen modes are fully implemented in the ZX Spectrum Next.

ZX Spectrum Next — User Manual 23

Chapter 1 — Setting It Up Other editing keys and special combinations

32 columns = 64/85 columns Function

(Colour) (Shape)

Blue Horizontal Bar in lower half of character Normal Text Entry

Cyan Horizontal Bar in upper half of character CAPS LOCK on (Toggle with CAPS LOCK key)

Magenta Vertical Bar GRAPHICS mode (Toggle with GRAPHICS key)

Green Horizontal Stripes EXTEND mode (Toggle with EXTEND key)

Red Rectangular Outline Error Marker: There's an error in the line that needs correcting

Table 2 — NextBASIC cursor colours/shapes and their meaning

Footer bar — Secondly, there is a black bar towards the bottom of the screen. This is called
the footer bar, and tells you which part of the computer’s built-in software you are using. At
the moment, it says NextBASIC because that is the name of the editor.

Status Area — The last item of note is the small lower portion of the screen. This fits between
the footer bar and the bottom of the screen, and is currently blank. It only has room for two
lines of text, and is most often used by the ZX Spectrum Next when it detects an error and
needs to print a report to say so. It does have other uses, however, and these will be de-
scribed later.

Other editing keys and special combinations

Aside from the cursor keys for navigation and ENTER for selection, there is also the EDIT
key and a series of special combinations that are specific to NextBASIC.
These are:

* EXTEND,EDIT - Switch between full/lower screen editor (same as choosing
Screen from the edit menu)

e EXTEND,CURSOR LEFT — Move to start of BASIC line
e EXTEND,CURSOR RIGHT - Move to end of BASIC line
* EXTEND,CURSOR UP - Move up 10 screen lines

e EXTEND,CURSOR DOWN - Move down 10 screen lines
* EXTEND,CAPS LOCK - Move to start of program

* EXTEND,GRAPHICS — Move to end of program

* TRUE VIDEO - Move left one word

¢ INVERSE VIDEO - Move right one word

* EXTEND,TRUE VIDEO - Delete word left

* EXTEND,INVERSE VIDEO - Delete word right

* EXTEND,DELETE - Delete character right

e EXTEND,9 - Delete to start of BASIC line

e EXTEND,O - Delete to end of BASIC line

EXTEND key means press and release the EXTEND key (to enter EXTEND mode —
denoted by a Green or Horizontally Striped cursor depending on the screen mode—- and
then press the required key)

Additionally, extended mode symbols shown below the keys (ie. = 1~ £1 €3) can be
entered either by entering EXTEND mode and then pressing SYMBOL-SHIFT plus the
key, or by just pressing SYMBOL-SHIFT plus the key in normal/CAPS modes.

Armed with all this information, you’re ready to experiment; now press the EDIT key. You
will notice two things happen — the cursor vanishes, and a new menu appears. This is
called the Edit/Options menu.

24 ZX Spectrum Next — User Manual

NextBASIC Options Menu Chapter 1 — Setting It Up
NextBASIC Options Menu

The Edit/Options menu’s individual options are selected in the same way as for the Startup
menu (by using the cursor keys and ENTER).

=0 SUE 9008
=3 CLOSE # 4: CLOSE 8 S5: STOP!

Fig. 7 - The NextBASIC Options Menu

NextBASIC — This option cancels the Edit menu and restores the cursor. On the face of it —
not very useful; however, if EDIT is pressed accidentally, then this option allows you to re-
turn to your program with no damage done.

Command Line — This option hides the NextBASIC program currently being worked on —if
any- clears the screen and allows you to use the entire screen as a command line inter-
face to access the file commands of NextZXOS.

32/64/85 — cycles between the number of text columns available in editing mode (with
Layer 1,3 HiRes mode being used for 64 or 85 columns).

The editor screen mode is independent of the mode used by NextBASIC. Therefore,
even if you have switched to HiRes mode in the editor, when a NextBASIC command or
program is executed, the mode is changed to whatever was last set by the LAYER
command (or to standard Spectrum mode if no LAYER commands have been issued)
When the command/program has finished, the mode will switch back to what it's set at.
You can set the editor mode with the SPECTRUM CHR$ command (see Chapter 20).

Renumber — NextBASIC programs use line numbers to determine the order of the instruc-
tions to be carried out. You enter these numbers (which can be any whole-number from 1
t0 9999) at the beginning of each program line you type in. Selecting the Renumber option
causes the NextBASIC program’s line numbers to start at line 10 and go up in steps of 10.
NextBASIC commands which include references to line numbers (such as GO TO, GO
SUB, LINE, RESTORE, RUN and LIST) also have these references renumbered accord-
ingly. If for any reason it’s not possible to renumber, perhaps because there’s no program
entered, or because Renumber would generate line numbers greater than 9999, then the
computer makes a low-pitched bleep and the menu goes away. You can however use the
new specialised command LINE to renumber your program in different steps.

Screen —This option moves the cursor into the smaller (bottom) part of the screen, and al-
lows NextBASIC commands to be entered and edited there. This is most useful for work-
ing with graphics, as any editing in the bottom screen does not disturb the top screen. To

ZX Spectrum Next — User Manual 25

Chapter 1 — Setting It Up The Screen

switch back to the top screen (which you can do at any time whilst editing), select the Edit
menu option Screen again.

Exit — This option returns you to the opening menu — the computer retains any program
that you were working on in the memory. If you wish to go back to the program again, se-
lect the option NextBASIC from the opening menu.

If you select the opening menu option 48 BASIC (or if you switch off or reset), then any pro-
gram in the memory will be lost. (You may, however, use the opening menu option Calcu-
Jator without losing a program in the memory.)

The Screen

Unlike the original Spectrum, for program editing or operating system use, the screen can
operate in three different column modes when in Next Native Mode. Like the original ZX
Spectrum this has 24 lines, but with a choice of 32, 64 or 85 characters wide (with the latter
only being monochrome), and is divided into two parts. The top part is at most 23 lines
and displays either a program listing or output. When printing in the top part has reached
the bottom, it all scrolls up one line; if this would involve losing a line that you have not had
a chance to see yet, then the computer stops with the message scroll?. If you're in Layer O
(the default), pressing the keys N, SPACE or CAPS SHIFT + SPACE or BREAK (the latter
two are the same thing), will make the program stop with report D BREAK - CONT re-
peats; any other key will let the scrolling continue. In 64 and 85 column modes this is im-
plemented differently: A flashing square in bottom right denotes you can press any key to
continue scrolling; only CAPS SHIFT + SPACE / BREAK will stop the scrolling there,
therefore it's the preferred way in all modes. The bottom part is used for inputting com-
mands, program lines, and input data, and also for displaying reports.

The NextBASIC language

You can immediately program your ZX Spectrum Next computer using the BASIC'! lan-
guage, which comes in three flavours: The original 1982 48K, the 1985 128K or the spe-
cialised NextBASIC one, depending on the personality of the machine you choose to use.

At maximum two of these flavours can be present at any time.

If you use the machine as an original ZX Spectrum or ZX Spectrum +, you will not get a
boot menu and you will get the 48K BASIC only. If you use the machine as an Investronica
ZX Spectrum 128K then you will boot directly to 128K BASIC.

128K models (including models up to the +3e) will give you 48K and 128K Basic and Next
Native mode will give you 48K (Standard or Looking Glass) and NextBASIC.

Notice that unless you have disabled the functionality from the firmware or the config.ini
file, all of the ZX Spectrum Next's new features (with some exceptions covered later on)
are available to you by either using the specialised NextBASIC commands, or by using the
mechanism of issuing IN and OUT commands to a set of given //O ports (see more de-
tailed information in the Machine Code and IN, OUT and the Next Registers Chapters of
this manual).

When using the NextBASIC interpreter'2, you should be aware that commands are obeyed
straight away, and instructions begin with a line number and are stored away for later. You
should also be aware of the commands: PRINT, LET, and INPUT (which can be used on

11 BASIC (acronym which stands for Beginner's All-purpose Symbolic Instruction Code) is a computer language that
makes computer programming easier. The ZX Spectrum Next uses a flavour of BASIC called NextBASIC, written by
Garry Lancaster.

12 An Interpreter in Computer Science denotes a method of execution of a program whereby each command is
"translated" from the language it was written in (in our case NextBASIC) to the machine language the computer
understands in sequential order per command as opposed to a Compiler in which the complete program is first
translated into the machine language and then executed as a whole. Interpreted languages like NextBASIC are easier
to "debug" (that is to correct any potential mistake in our code) but they execute much slower than their compiled
counterparts.

26 ZX Spectrum Next — User Manual

The NextBASIC language Chapter 1 - Setting It Up

all machines that use BASIC), and BORDER, PAPER and BEEP (which are most com-
monly used on Sinclair flavours of it).

This manual details how to program in NextBASIC, telling you exactly what you can and
cannot do.

You will also find some exercises at the end of each chapter. Don’t ignore these; many, il-
lustrate points that are hinted at in the text. Look through them, and do any that interest
you, or that seem to cover ground that you don’t understand properly.

Whatever else you do, keep using the computer. If you have the question "what does it do if
I tell it such and such?" then the answer is easy: type it in and see. Whenever the manual
tells you to type something in, always ask yourself, "what could | type instead?", and try out
your replies. The more of your own programs you write, the better you will understand the
compulter.

Most of the NextBASIC programming references and examples in this manual, also work
with previous versions of Sinclair BASIC, unless noted otherwise or discussing specific ZX
Spectrum Next features.

At the end of this manual, there are some appendices. These include sections on the way
the memory is organised, how the computer manipulates numbers and a detailed de-
scription of some of the ZX Spectrum Next features.

Reset the computer and select NextBASIC from the startup menu. Now type in the line be-
low. As you type itin, the characters will appear on the screen (a character is a letter, num-
ber, space, etc.). Note that to type in the equals sign = you should hold down the
SYMBOL SHIFT key, then press the L key once. Try typing in the line:

1d for =1 to 1@@ =tep 1@

... then press ENTER. Providing you have spelled everything correctly, the computer
should have reprinted the line with the words FOR, TO and STEP in capital letters, like this:

18 FOR f=1 TO 1@@a STEFR 1@

The computer should have also emitted a short high-pitched bleep, and moved the cursor
to the start of the next line.

Ifthe line remains in small letters and you hear a low-pitched bleep, then this indicates that
you have typed in something wrong. Note also that the colour of the cursor changes to red
when a mistake is detected, and you must correct the line before it will be accepted. To do
this, use the cursor keys to move to the part of the line that you wish to correct, then type in
any characters you wish to insert (or use the DELETE key to remove any characters you
wish to get rid of). When you have finally corrected the line, press ENTER.

Now type in the line below (The colon : is obtained by SYMBOL SHIFT and Z, and the mi-
nus sign - is obtained by SYMBOL SHIFT and J):
2@ plLot@,d@:draw f,175:plot 255,
@:drawm -f,175
... then press ENTER. On the screen you will see:
1&d FOR =1 TO 18a STERFP 1@

z&@ FPLOT @,8: [DRAW fF,175: FPLOT
255.,8: DRALW -¥f ,17S

Don’t worry about line 20 spilling over onto the next line of the screen — the computer will
take care of this and align the text so that it is easier to read. There is no need for you to do

ZX Spectrum Next — User Manual 27

Chapter 1 — Setting It Up The NextBASIC language

anything when you approach the end of a screen line because the computer detects this
automatically and moves the cursor to the beginning of a new line.

The final line of this program to type in is:

S@ next
... again, press ENTER.

The numbers at the beginning of each line are called /ine numbers and are used to identify
each line. The line you just typed in'is line 30, and the cursor should be positioned just be-
low it. As an exercise, we will now edit line 10 (to change the number 100 to 255). Press the
{rkey until the cursor has moved up to line 10. Now press the = key until the cursor has
moved to the right of 100. Press DELETE three times and you will see the 100 disappear.
Now type in 255 and press ENTER. Line 10 of the program has now been edited:

18 FOR f=1 TO 255 STEFR 1@

The computer has opened up a new line in preparation for some new text. Type:

ruan

Press ENTER and watch what happens. Firstly, the footer bar and the program lines are
cleared off the screen as the NextBASIC editor prepares to hand over control to the pro-
gram you've just typed in. Then the program starts, draws a pattern, and stops with the
report:

@ oK, S8:1
Don’t worry about what this report means.

Press ENTER. The screen will clear and the footer bar will come back, as will the program
listing. This takes about a second or so, during which time the computer won't be taking
input from the keyboard, so don’t try and type anything while it’s all happening.

You've just done most of the major operations necessary to program and use a computer!
First, you've given the computer a list of instructions. Instructions tell the computer what to
do (like the instruction 30 NEXT f). Instructions have a line number and are stored away
rather than used when typed in. Then you gave the computer the command RUN to exe-
cute the stored program.

Commands are just like instructions, only they don’t have line numbers and the computer
carries them out immediately (as soon as ENTER is pressed). In general, any instruction
can be used as a command, and vice versa — it all depends on the circumstances. Every
instruction or command must have at least one keyword. Keywords make up the vocabu-
lary of the computer, and many of them require parameters. In the command DRAW
40,200 for example, DRAW is the keyword, while 40 and 200 are the parameters (telling
the computer exactly where to do the drawing). Everything the computer does in
NextBASIC will follow these rules.

Now press EDIT and select the Screen option. The editor moves the program down into
the bottom screen, and gets rid of the footer bar. You can only see line 10 of the program
as the rest is hiding off-screen (you can prove this by moving the cursor up and down).

Press ENTER then type...
run

Press ENTER again, and the program will run exactly the same as before. But this time, if
you press ENTER afterwards, the screen doesn'’t clear, and you can move up and down
the program listing (using the cursor keys) without disturbing the top screen. If you press
EDIT to get the Edit Menu, you might think that this would mess up the top screen. How-

28 ZX Spectrum Next — User Manual

Startup Sequence Chapter 1 — Setting It Up

ever, the computer remembers whatever’'s behind the Edit menu and restores it when the
menu is removed.

To prove that the editor really is working in the bottom screen, press ENTER and change
line 10 to:

18 FOR f=1 TO 255 STER 7

... by moving the cursor to the end of line 10 (just to the right of STEP 10), then pressing
DELETE twice, and typing 7 (press ENTER).

Now type:
go to 1@

(Press ENTER.) The keywords GO TO tell the computer not to clear the screen before
starting the program. The modified program draws a slightly different pattern on top of the
old one. You may continue editing the program to add further patterns, if you wish.

One thing you may notice while you're typing away is that CAPS SHIFT and the number
keys used together do strange things. CAPS SHIFT with 5, 6, 7 and 8 move the cursor
about, CAPS SHIFT with 1 calls up the Edit Menu, CAPS SHIFT with 0 deletes a charac-
ter, CAPS SHIFT and 2 is equivalent to CAPS LOCK, and finally CAPS SHIFT with 9 se-
lects Graphics Mode. All of these functions are available using the dedicated keys on the
Spectrum Next, and so there is no reason why you should ever want to use the above
CAPS SHIFT and number key alternatives. They do act however in such manner because
of the way the keyboard is read by the computer in order to retain compatibility with the
older ZX Spectrum models.

Finally (and to round off a perfect introductory chapter), in time-honoured tradition ,we
need at least a “Hello World” program. This particular one was contributed by ZX Spec-
trum Next backer, Mr. Simon Mesure of London, UK.

First type:
MEL

(Press ENTER). You will find yourself in the boot screen again. This basically instructs the
computer to start fresh in order to let you type in a new program. Select NextBASIC and
then type:

18 PRIWMT AT 11,1&8; "HelLlo World®
Press ENTER then type:
ran

followed by another ENTER. This will make the ZX Spectrum Next known to the world with
a happy message located approximately in the centre of the screen vertically and horizon-
tally. We'll examine closer the PRINT command that makes this possible in Chapter 15.

Startup Sequence

Earlier, we examined the very first time your ZX Spectrum Next starts but we didn't see
what happens every subsequent time. A few things change: First the Test Screen doesn't

ZX Spectrum Next — User Manual 29

Chapter 1 - Setting It Up Startup Sequence

appear automatically; instead you get a few seconds to invoke it as well as the Personali-
ties and Configuration menu as seen in the figure below:

sinclair //
ZX Spectrum Next

Fig. 8 — The Boot Screen

Pressing A, D, V or R will relaunch the Test Screen (latter three selections are screen
type-specific while A will cycle you through all possible screen modes) while SPACE wiill
launch the Personalities and Configuration which we will examine in Appendix D.

Note here that the R (for RGB) selection, requires a specially-made SCART cable as it's
specifically tailored to use on Television sets. All Test Screen modes emit a beeping
sound to verify sound output from the display you have chosen. If you can hear sound but
cannot see anything during the Test Screen video mode selection, this means that your
display is not capable of displaying the mode.

If you do not press anything, the firmware (TBBLUE.FW located in ¢:/) will read the config-
uration file config.ini located in c:/machines/next, examine all the hardware device op-
tions for the personality you've selected, apply all valid ones to that personality and finally
launch it as seen in Figure 3 earlier. The booting process is also giving you information re-
garding what software is being loaded from the ROM files and will mark these as OK to
signify that booting is proceeding normally. In the case you receive an error prompt, refer
to the Troubleshooting section of this manual.

WARNING! WARNING! WARNING! WARNING! WARNING!

This manual contains references to commands and features that were NOT available at
the time of manufacture. You're therefore strongly advised to update the core and
system software to the latest versions available free of charge from:

www.specnext.com/latestdistro/

WARNING! WARNING! WARNING! WARNING! WARNING!
. |

30 ZX Spectrum Next — User Manual

[/ Chapter

02

Basic Programming
Concepts

This page intentionally left blank

Chapter 2 — Basic Programming Concepts PRINT, LET, programs and line numbers

Basic Programming Concepts
PRINT, LET, programs and line numbers

Type in these two lines of a computer program to print out the sum of two numbers:

2@ FPRIMT a
1@ LET a=1@

so that the screen looks like this:

1@ LET a=1l@

28 FRINT a

Fig. 9 — Entering program lines in NextBASIC

As you already know, because these lines began with numbers, they were not obeyed im-
mediately but stored away, as program lines. You will also have noticed here that the line
numbers govern the order of the lines within the program: this is most important when the
program is run, but it is also reflected in the order of the lines in the listing that you can see
on the screen now. So far you have only entered one number, so type:

15 LET b=15S

and press ENTER. It would have been impossible to insert this line between the first two if
they had been numbered 1 and 2 instead of 10 and 20 (line numbers must be whole num-
bers between 1 and 9999), so that is why, when first typing in a program, it is good prac-
tice to leave gaps between the line numbers.

Variables and Arrays

Before we continue further, it's useful to discuss what the letters a and b in the examples
above are called. We call these variables because they represent locations in the com-
puter's memory where we can temporarily store information to be recalled and used at any
time a program is being executed. NextBASIC can store two types of information in mem-
ory: numbers and text. Numbers are further separated — as we will see in length in Chapter
7 — into floating point and integers. Text variables are called strings and they will be dis-
cussed in Chapter 8. Furthermore, NextBASIC can group together variables of the same
type and refer to them collectively. These groupings are called arrays.

There are some restrictions in the naming and the quantity of available variables and ar-
rays as you can see in the following table according to their type. There are also certain ad-
vantages (mainly speed) which make the use of integer variables preferable over the
regular numeric variables despite their restrictions!.

1 Integer variables in NextBASIC are 16-bit (unsigned or signed). That means that they accept values from 0 to 65535
(or from -32768 to 32767)

ZX Spectrum Next — User Manual 33

Chapter 2 — Basic Programming Concepts Using LIST, RUN and cursors to edit and run programs

Integer variables Numeric variables String Variables
(@i Fixed 26 Limited only by memory Maximum 26
Single character Combination of characters and Single Character suffixed by the
Naming numbers. Single character for $ symbol
loop control
Fixed 26 with maximum 64 Maximum 26 Maximum 26
elements (0...63) (Indices are 7-based) (Indices are 7-based)

CYEVER Extensible size and dimensions (by
reducing the number of available
arrays)

Table 3 — Types of NextBasic variables

Note that integer variables can only be used within integer expressions as we will see in
Chapter 7 — Expressions. A single letter variable name appearing elsewhere is always a nu-
meric variable.

Using LIST, RUN and cursors to edit and run programs

Now you need to change line 20 to:
2@ FPRIMNT a+hb

You could type out the replacement in full, but it is easier to move the cursor (using the cur-
sor keys) to just after the a, and then type:

+b (without ENTER)

The line at the bottom should now read:

28 FPRIMT a+b

Press ENTER and it will replace the old line 20, so that the screen looks like this:

1@ LET z=1@
15 LET b=15
2@ FRINT a+b

Fig. 10 — Editing a program

Run this program using RUN and ENTER and the sum will be displayed (25). Run the pro-
gram again and then type:

FRIMNT a, b

The variables are still there, even though the program has finished. If you enter a line by
mistake, say:

12 LET b=35

it will go up into the program and you will realise your mistake. To delete this unnecessary
line, type:

34 ZX Spectrum Next — User Manual

REM, NEW, INPUT and GO TO Chapter 2 — Basic Programming Concepts

1= (with ENTER of course)
Line 12 will disappear, and the cursor will appear where line 12 used to be.
Now type:

@ (and ENTER)

This time, the program cursor will appear after the end of the program (having tried to find
line 30 and failed). If you enter any line number that does not exist, the Next will place the
cursor where it thinks the line would have been if it existed. This can be a useful way of
moving around large programs, but beware — it can be very dangerous because if the line
really did exist before you entered the number, it wouldn't exist afterwards (refer to the line
12 example above)!

To list a program on screen, type
LIST

and press ENTER. You may wish to list a program from a certain point onwards. This can
be achieved by typing an appropriate line number after the LIST command. Try

LIST 15 (and ENTER)

to see this in action. If, at some point, you find you haven'’t left enough space between line
numbers then you may use the edit menu to renumber a program. To do this, press the
EDIT key then select the Renumber option from the menu that appears; this sets the gap
between each line number to 10. Try this out and see how the line numbers change.

REM, NEW, INPUT and GO TO

The command NEW erases any old programs and variables in the computer and starts
the machine anew. Try it now; type:

HEL

and press ENTER. You'll see the Welcome Screen and then the Startup menu. With the
menu on screen, select again the NextBASIC option.

Carefully type in this program, which changes Fahrenheit temperatures to Celsius:

1@ REM Temperature Conwvwersion
2@ PRIWNT "deg F","deg C"

S@ PRIWNT

4@ IWMPUT "Enter d4deg F", F

5@ PRIWNT F, I(F-32)x5-9

E@ GO TO 4@

Now run it. You will see the headings printed on the screen by line 20, but what happened
to line 107 Apparently the computer has completely ignored it. Indeed, REM in line 10
stands for REMark and is there solely to remind you of what the program does. A REM
command consists of REM followed by anything you like, and the computer will ignore it
right up to the end of the line. You'll find more about REM at the end of Chapter 20.

Using STOP, BREAK and CONTINUE

By now, the computer has got to the INPUT command on line 40 and is waiting for you to
type in a value for the variable F — you can tell this because at the bottom of the screenis a
flashing cursor. Enter a number; remember ENTER. Now the computer has displayed the
result and is waiting for another number. This is because of line 60, GO TO 40, which
means exactly what it says. Instead of running out of program and stopping, the computer

ZX Spectrum Next — User Manual 35

Chapter 2 — Basic Programming Concepts Using STOP, BREAK and CONTINUE

jumps back to line 40 and starts again. So, enter another temperature. After a few more of
these you might be wondering if the machine will ever get bored with this, it won’t. Next
time it asks for another number, enter the word stop. The computer comes back with are-
port 2 Variable not found, 40:1, which tells you why it stopped, and where (in the first com-
mand of line 40). If you enter some symbol (for example #) you'll get a different report: C
Nonsense in Basic.

If you want to continue the program type:

COMT IMUE
and the computer will ask you for another number.

When CONTINUE is used the computer remembers the line number in the last report that
it sent you, as long as it was not 0 OK, and jumps back to that line; in our case, this in-
volves jumping to line 40, the INPUT command.

Replace line 60 by GO TO 31 — it will make no perceptible difference to the running of the
program. If the line number in a GO TO command refers to a non-existing line, then the jump
is to the next line after the given number. The same goes for RUN; in fact RUN on its own ac-
tually means RUN 0.

Now type in numbers until the screen starts getting full. When it is full, the computer will
move the whole of the top half of the screen up one line to make room, losing the heading
off the top. This is called scrolling.

When you are tired of this, stop the program as shown above and get the listing by pressing
ENTER. In a normal situation a user-triggered program termination happens after press-
ing the BREAK key, however since this is an input line and BREAK effectively is the same
as pressing CAPS SHIFT and SPACE, BREAK will not work. What, will work, is entering a
value that's not accepted by the variable we're inputting. In this case we're expecting a
number and we're entering a word which will be interpreted as a variable name (hence er-
ror code 2) whereas a symbol makes absolutely no sense to NextBASIC (therefore the er-
ror code C is produced).

Look at the PRINT statement on line 50. The punctuation in this —the comma (,) is very im-
portant, and you should remember that it follows much more definite rules than the punc-
tuation in English.

Commas are used to make the printing start either at the left hand margin, or in the middle
of the screen, depending on which comes next. Thus in line 50, the comma causes the
Celsius temperature to be printed in the middle of the line. With a semicolon (;), on the
other hand, the next number or string is printed immediately after the preceding one. You
can see this in line 50, if the comma is replaced by a semicolon.

Another punctuation mark you can use like this in PRINT commands is the apostrophe ().
This makes whatever is printed next appear at the beginning of the next line on the screen
but this happens anyway at the end of each PRINT command, so you will not need the
apostrophe very much. This is why the PRINT command in line 50 always starts its printing
on a new line, and it is also why the PRINT command in line 30 produces a blank line.

If you want to inhibit this, so that after one PRINT command the next one carries on on the
same line, you can put a comma or semicolon at the end of the first. To see how this
works, replace line 50 in turn by each of:

S@ PRINT F,
S@ FPRIMT F;

and:

S@ FRIMT F

36 ZX Spectrum Next — User Manual

Using STOP, BREAK and CONTINUE Chapter 2 — Basic Programming Concepts

and run each version — for good measure you could also try:

S@ PRIMWT F'

The one with the comma spreads everything out in two columns, that with the semicolon
crams everything together, that without either allows a line for each number and so does
that with the apostrophe — the apostrophe gives a new line of its own, but inhibits the
automatic one.

Remember the difference between commas and semicolons in PRINT commands; also,
do not confuse them with the colons (:) that are used to separate commands in a single
line. Now type in these extra lines:

1@ REM this polite program
remembers JouUur name

11@ IMFPUT n%

1z PRIWT "Hello “;n%;"!"

1Z@ GO0 TO 11@

This is a separate program from the last one, but you can keep them both in the computer
at the same time. To run the new one, type:

RUMN 16

Because this program inputs a string instead of a number, it prints out two string quotes —
this is a reminder to you, and it usually saves you some typing as well. Try it once with any
alias you care to make up for yourself.

Next time round, you will get two string quotes again, but you don’t have to use them if you
don’twantto. Try this, for example. Rub them out (with = and DELETE twice), and type:

N

Since there are no string quotes, the computer knows that it has to do some calculation:
the calculation in this case is to find the value of the string variable called n$, which is
whatever name you happen to have typed in last time round. Of course, the INPUT state-
ment acts like LET n$=n$, so the value of n$ is unchanged.

The next time round, for comparison, type:

n%

again, this time without rubbing out the string quotes. Now, just to confuse you, the vari-
able n$ has the value "n$".

If you want to stop string input, you must first move the cursor back to the beginning of the
line, using < and delete the first set of quotes. Pressing ENTER will produce the now fa-
miliar C Nonsense in Basic error report and the program will stop.

Now look back at that RUN 100 we had earlier on. That just jumps to line 100, so couldn’t
we have said GO TO 100 instead? In this case, it so happens that the answer is yes; but
there is a difference. RUN 100 first of all clears all the variables and the screen, and after
that works just like GO TO 100.

GO TO 100 doesn’t clear anything. There may well be occasions where you want to run a
program without clearing any variables; here GO TO would be necessary and RUN could
be disastrous, so it is better not to get into the habit of automatically typing RUN to run a
program.

Another difference is that you can type RUN without a line number, and it starts off at the
first line in the program. GO TO must always have a line number.

ZX Spectrum Next — User Manual 37

Chapter 2 — Basic Programming Concepts Using STOP, BREAK and CONTINUE

Both these programs stopped because you typed a non-acceptable value in the input
line; sometimes — by mistake — you write a program that you can’t stop and won't stop it-
self. Type:

ZBa GO TO Zad
RUMN zZ@@

This looks all set to go on for ever unless you pull the plug out; but there is a less drastic rem-
edy. Press the BREAK key. The program will stop, saying L BREAK into program.

At the end of every statement, the program looks to see if these keys are pressed; and if they
are, then it stops. The BREAK key can also be used when you are in the middle of using the
cassette recorder or the printer, or various other bits of machinery that you can attach to the
computer — just in case the computer is waiting for them to do something but they're not do-
ing it. In these cases there is a different report, D BREAK - CONT repeats. CONTINUE, in
this case (and in fact in most other cases t00), repeats the statement where the program
was stopped; but after the report L BREAK into program, CONTINUE carries straight on
with the next statement after allowing for any jumps to be made.

Run the name program again and when it asks you for input type:
n % (after removing the quotes)
n$ is an undefined variable and you get an error report 2: Variable not found.

If you now type:

LET n%="s=omething 4definite"
(which has its own report of 0 OK, 0:1) and:

COMTIMUE
you will find that you can use n$ as input data without any trouble.

In this case CONTINUE does a jump to the INPUT command in line 110. It disregards the re-
port from the LET statement because that said OK, and jumps to the command referred to in
the previous report, the first command in line 110. This is intended to be useful. If a program
stops over some error then you can do all sorts of things to fix it, and CONTINUE will still work
afterwards.

As we said before, the report L BREAK into program is special because after i,
CONTINUE does not repeat the command where the program stopped.

We've seen so far programs where execution jumps to the beginning with no graceful way
of ending the program. What we're producing are called never-ending loops and are some
of the great pitfalls a programmer can fall in. There are some cases where execution can-
not be stopped (if for example we have disabled error reporting) or the BREAK key is in-
hibited. In these cases we have to provide with either a clear exit path to the program, or
use a special keyword that ends a program prematurely and that keyword is STOP. Let's
modify our polite program to be as follows:

18@ REHM this polite program
remembers Jour name

11a@ IMPUT n$

1z PRIMT "HellLo ";n%;"!"

1=Z@a SToarR

and then give RUN. After we enter our name and the computer greets us, we'll get a 9
STOP statement, 130:1 report indicating we exited the program forcibly by the STOP
command on line 130. We could have left line 130 out entirely and the program would have

38 ZX Spectrum Next — User Manual

Error trapping Chapter 2 — Basic Programming Concepts

terminated with a 0 OK, 120:1 which would have indicated a proper program termination.
In general it's a good idea to provide exit paths in situations where the program may end
up in a never-ending loop; we will learn more techniques that can help us with such
decisions later on.

Error trapping

As we saw above, NextBASIC can occasionally generate error reports whether we have in-
advertently caused them ourselves or because something went wrong. Sometimes we
need our program to stop execution and other times we want it to recover from the error
and continue (as it is the case above where we gave the CONTINUE command). For
these cases, NextBASIC provides us with the ON ERROR command.

This can intercept (trap) any error report (except 0 OK which is not considered an error)
thus allowing your programs to recover from expected error conditions.

Turning on error trapping is as simple as:

ON ERROR statementlist

This will cause the statements contained in statementlist after the ON ERROR command
to be executed whenever an error report would normally have been displayed. Note that
this command must be part of a program and cannot be entered as a direct command.

To turn off error-trapping again, just use ON ERROR on its own without parameters

This is required if you wish to generate errors again (and you may wish to do so if you need
to know what went wrong). The following example will display There was an error! and ter-
minate with the 9 STOP statement error when line 20 is executed:

18 oW ERROR PRIWT "There was
an error!":0d ERROR: STOPRP
28 PRINT S8

To generate the last error that actually occurred (this does not need error-trapping to be
turned off), just type the command:

ERROR

followed by ENTER. Assuming the program above, the following amendment will print the
message but still give the correct Number too big report:

1@ 0OW ERROR PRIMT "There was
an error! " :ERROR
28 PRIMNT S-@

You can also obtain details of the last error using the following command:
ERROR TO codevar [[[, linevar], statementvar], bankvar]

This will store the error code in the numeric variable codevar, the line number in linevar, the
statement number in statementvar and the bank number in bankvar (do not worry about
what bank means for the moment). Note that you do not need to supply later variable
names if you do not need the information, so all of these are valid:

ERROR TO =

ERROR TO =, 1L
ERROR TO =.,L,=
ERROR TO 2,L,5.,b

For example, to get and store the error number into variable e and then print it but still stop
execution, we could modify the first program as follows:

ZX Spectrum Next — User Manual 39

Chapter 2 — Basic Programming Concepts Error trapping

1@ OM ERROR PRIMT "There was
an error!": ERROR TO &:
FRIMNT =: 0O ERROR:STOF

28 FPRIMT S-@

If we allow the program to finish and then use ERROR we would have gotten the 9 STOP
statement, 10:5 error report which would be the last error report in statement 5 of line 10
as STOP is considered an error. But by using ERROR TO, we'll get 6 printed on screen
which is the error code for the Number too big error

So far we have seen the statements PRINT, LET, INPUT, RUN, LIST, GO TO,
CONTINUE, STOP, ON ERROR, ERROR, ERROR TO, NEW and REM. Apart from ON
ERROR, you can also enter them as direct commands - this is true of almost all com-
mands in NextBAS/C. RUN, LIST, CONTINUE and NEW are not usually of much use in a
program, but they can be used regardless.

Exercises

1. Put a LIST statement in a program, so that when you run it, it lists itself.

2. Write a program to input prices and print out the tax due (at 20 per cent). Put in
PRINT statements so that the computer announces what it is going to do, and
asks for the input price with extravagant politeness. Modify the program so that
you can also input the tax rate (to allow for zero ratings or future changes).

3. Write a program to print a running total of numbers you input. (Suggestion: have
two variables called total — set to 0 to begin with — and item. Input item, add it to
total, print them both, and go round again.)

4. What would CONTINUE and NEW do in a program? Can you think of any uses
at all for this?

40 ZX Spectrum Next — User Manual

[/ Chapter

03

Decisions

This page intentionally left blank

Using IF/THEN to make decisions Chapter 3 — Decisions
Decisions
Using IF/THEN to make decisions

All the programs we have seen so far have been pretty predictable; they went straight
through the instructions, and then went back to the beginning again. This is not very use-
ful. In practice the computer would be expected to make decisions and act accordingly.

The instruction used has the form: IF something is true, or not true, THEN do something
different.

For example, use NEW to clear the previous program from the computer and type in and
run this program. (This is clearly meant for two people to play!)

18 REM Guess the number

28 IHMPUT "Enter the number to
gues=s", a: CLS

S@ IMPUT "Guess the number'™, b

4@ IF b=a THEW FRIMNT "That is
correct': STOR

S&@ IF b<a THEW FPRINT "That i=s
too s=mall, try again”

E@ IF bra THEW FPRIWKT "That is=s
too bkig, trg again”

Ta 0 TO 3@

You can see that an IF statement takes the form:
IF condition THEN ...

where the ... stands for a sequence of commands, separated by colons in the usual way.
The condition is something that is going to be worked out as either true or false; if it comes
out as true then the statements in the rest of the line after THEN are executed, but other-
wise they are skipped over, and the program executes the next instruction.

The simplest conditions compare two numbers or two strings: they can test whether two
numbers are equal or whether one is bigger than the other; and they can test whether two
strings are equal, or (roughly) one comes before the other in alphabetical order. They use
the relations =, <, >, <=, >=and <>.

= means equals. Although it is the same symbol as the = in a LET command, it is used in
quite a different sense.

< means is less than so that:
1 <2
2<-1
3< 1

are all true, but:
1<0
0 <-2

are false.

> means is greater than, and is just like < but the other way round. You can remember
which is which, because the thin end points to the number that is supposed to be smaller.

<= means is less than or equal to, so that it is like < except that it is true even if the two
numbers are equal: thus 2<=2 is true, but 2<2 is false.

>= means is greater than or equal to and is similarly like >.

ZX Spectrum Next — User Manual 43

Chapter 3 — Decisions ELSE

<> means is not equal to, the opposite in meaning to =.

Mathematicians usually write <=, >= and <> as <, > and =. They also write things like
2<3<4 to mean 2<3 and 3<4, but this is not possible in NextBASIC.

Line 40 compares a and b. If they are equal then the program is halted by the STOP com-
mand. The report at the bottom of the screen 9 STOP, statement, 30:3 shows that the
third statement, or command, in line 30 caused the program to halt, i.e. STOP.

Line 50 determines whether b is less than a, and line 60 whether b is greater than a. If one
of these conditions is true then the appropriate comment is printed, and the program
works its way to line 70 which tells the computer to go back to line 30 and start all over
again. The CLS command in line 20 clears the screen to stop the other person seeing what
you put in.

Note: in some versions of BASIC the IF statement can have the form:
IF condiition THEN line number

This means the same as:
IF condiition THEN GO TO line number

ELSE

Unlike earlier ZX Spectrum models' BASIC incarnations, NextBASIC allows for more com-
plex decisions to be made by introducing the ELSE keyword. This allows the computer to
run another set of commands if the IF...THEN test turns out to be false. It is important to
note, unlike some other implementations of BASIC, ELSE must follow a colon; for
instance:

IF number <@ THEWM PRIMNT "Megatiwve number':
ELSE PRIWT "Positive number'

In the example above, if the condition is true (that is, the number is less than zero) then
Negative number will be printed. If not, then Positive number will be printed on screen.
But what if you for example wanted a third option to tell if the number is zero? You could
use the ability to “nest” IF...THEN statements and use the ELSE keyword to do so. Lets'
rewrite the above:

IF number <@ THEM PRIMWT "Hegatiwe number':
ELSE IF number:@ THEM PRIWNT "Fozitiwe
number': ELSE PRIMT "The number is zZero

You should see in the above that it is possible to execute a further IF...THEN statement if
the condition in the original one was false. NextBASIC will work through the IF...THEN
statements until it finds a condition that is true, and will execute that. If no conditions are
true, then it will attempt to execute the final ELSE. More than one command can be exe-
cuted within each part of an IF...THEN...ELSE statement also, so:

IF number <@ THEM PRIMNT "Hegatiwve number':
G0 TO 1@@: ELSE IF number @ THEWM FPRIWNT
"Positiwe number": GO TO 2@@: ELSE FPRINT
"The number is zero'" : LET zZzero = Zero+l:
GO TO S9a

will allow you to jump to different parts of the program dependent on the results of the
IF..THEN...ELSE statements; in this case, whether the number is negative, positive or
zero (note that if the number is zero, one is added to the variable zero as well).

44 ZX Spectrum Next — User Manual

[/ Chapter

04

Looping

This page intentionally left blank

Using FOR, TO and NEXT Chapter 4 — Looping
Looping
Using FOR, TO and NEXT

Suppose you want to input five numbers and add them together. One way (don't type this
in unless you are feeling dutiful) is to write:

1@ LET total=@

28 IMNPUT a

S@ LET total=total+a
4@ IMNPUT a

S@ LET total=total+a
E@ IMPUT a

F@ LET total=total+a
S@ IMPUT a

9@ LET total=total+a
1a@ IMFUT a

11@ LET total=total+a
128 PRIRMNT total

This method is not good programming practice. It may be just about controllable for five
numbers, but you can imagine how tedious a program like this to add ten numbers would
be, and to add a hundred would be just impossible.

Much better is to set up a variable to count up to 5 and then stop the program, like this
(which you should type in):

18 LET total=@

28 LET count=1

S@ IMPUT a

4@ REM count=number of times
that a has been input =0
Far

S@ LET total=total+a

E@ LET count=count+1

Fa IF count<=5 THEW GO TO 3@

S8 PRIMNT total

Notice how easy it would be to change line 70 so that this program adds ten numbers, or
even a hundred.

This sort of counting is so useful that there are two special commands to make it easier:
the FOR command and the NEXT command. They are always used together. Using
these, the program you have just typed in does exactly the same as:

18 LET total=@

28 FOR c=1 TO S

S@ IMPUT a

4@ REM c=number of ftimes that
a4 has been input =0 Far

S@ LET total=total+a

E@ HEXT

S8 PRIMNT total

(To get this program from the previous one, you just have to edit lines 20, 40, 60, and de-
lete line 70).

ZX Spectrum Next — User Manual 47

Chapter 4 — Looping STEP

Note that we have changed count to ¢. The counting variable — or control variable — of a
FOR ... NEXT loop must have a single letter for its name.

The effect of this program is that ¢ runs through the values 1 (the initial value), 2, 3, 4 and 5
(the limit), and for each one, lines 30, 40 and 50 are executed. Then, when ¢ has finished
its five values, line 80 is executed.

STEP

An extra subtlety to this, is that the control variable does not have to go up by 1 each time;
you can change this 1to anything you like by using a STEP part in the FOR command. The
most general form for a FOR command is:

FOR control variable = initial value TO limit STEP step

where the control variable is a single letter, and the initial value, limit and step are all things
that the computer can calculate as numbers — like the actual numbers themselves, or
sums, or the names of numeric variables. So, if you replace line 20 in the program by:

28 FOR c=1 TO S STERP S-2

then c will run through the values 1, 2.5 and 4. Notice that you don't have to restrict yourself
to whole numbers, and also that the control value does not have to hit the limit exactly — it
carries on looping as long as it is less than or equal to the limit. Try this program, to print
out the numbers from 1 to 10 in reverse order.

1@ FOR nmn=1&@d TO 1 STEF -1
28 FRIMT n
@ HNEXT n

We have said before that the program carries on looping as long as the control variable is less
than or equal to the limit. If you work out what this would mean in this case, you will see that it
gives nonsense. The normal rule has to be modified; when the step is negative, the program
carries on looping as long as the control variable is greater than or equal to the limit.

You must be careful if you are running two FOR...NEXT loops together, one inside the other.
Try this program, which prints out the numbers for a complete set of six spot dominoes.

1@ FOR m=@ TO &

28 FOR n=@ TO m

@ PRIMNT m;":":;n;" "; }n—loop

4@ MEXT n m-loop
S8 PRIMNT

5@ HEXT m

You can see that the n-loop is entirely inside the m-loop — they are properly nested. What
must be avoided is having two FOR ... NEXT loops that overlap without either being en-
tirely inside the other, like this:

5 REM this program is wrondg
1@ FOR m=@ TO &

20 FOR n=@ TO m |
S@ PRINT m;":";n;" '; m-loop
4@ HME=T m n-loop

S@ PRIMT
E@ HMNEXT n

Two FOR ... NEXT loops must either be one inside the other, or be completely separate.

48 ZX Spectrum Next — User Manual

REPEAT ... REPEAT UNTIL loops Chapter 4 — Looping

Another thing to avoid is jumping into the middle of a FOR ... NEXT loop from the outside.
The control variable is only set up properly when its FOR statement is executed, and if you
miss this out the NEXT statement will confuse the computer. You will probably get an error
report saying NEXT without FOR or Variable not found.

There is nothing whatever to stop you using FOR and NEXT in a direct command. For ex-
ample, try:

FOR m=@ TO 1@: PRIMT m: HEXT m

You can sometimes use this as a (somewhat artificial) way of getting round the restriction
that you cannot GO TO anywhere inside a command — because a command has no line
number. For instance:

FOR m=a TO 1 STEF @: IMNPUT a: FPRIWNT a:
HEXT m

The step of zero here makes the command repeat itself forever.

This sort of thing is not really recommended, because if an error crops up then you have
lost the command and will have to type it in again —and CONTINUE will not work.

For additional speed and efficiency, NextBASIC also allows integer variables to be used as
the index in FOR ... NEXT, eg:

1 FOR Mi=x$gcs TO 220

28 PRIMT i

@ ME=T i

However, they can only be used as part of a program, and not on a direct command. Any
attempt to do this will result in a Direct command error. This restriction allows integer
loops to run much faster than loops using a standard floating point index variable, espe-
cially when loops are used towards the end of long programs. Integer FOR ... NEXT loops
run at the same speed regardless of where they are located within the program, but stan-
dard FOR ... NEXT loops become progressively slower, the further they are located in the
program listing.

REPEAT ... REPEAT UNTIL loops

NextBASIC has another way of looping: a set of commands (or rather a single command
block) called REPEAT ... REPEAT UNTIL. You will have noticed that FOR ... NEXT relies
on counting to control the loop however you can also use a condition to control a loop.
This type of loop begins with a REPEAT statement to indicate the beginning of the loop
and a REPEAT UNTIL statement at the end, which also contains the condition to exit the
loop. Try this:

18 REFEAT

2@ IMNPUOT "Enter a number, or
enter -1 to =top > YN

S8 PRIMT n

4@ REFEAT URTIL n=-1

S@ PRIMWT "“"Thank Jou!'

This program will keep accepting numbers and printing them, until you type -1 when it will
politely thank you for your numbers. In a REPEAT ... REPEAT UNTIL loop, everything be-
tween the REPEAT and the REPEAT UNTIL command will be executed (in this case, this
would be lines 20 and 30), until the condition in the REPEAT UNTIL statement proves to
be true (in this case, that the number you have entered is -1). Note that because the condi-
tion is checked at the end, the block of statements will always execute at least once.

ZX Spectrum Next — User Manual 49

Chapter 4 — Looping WHILE

The following, for example, would print an erroneous statement:

1@ LET ==1

28 REFERT

S@ PRIMT "x i=s ";=;" but it
izn°t 1."

4@ REFEART UWHTIL ==1

5@ PRIMWNT "x is= now 1."

Because line 30 is executed before the condition is checked at line 40, the message x is 1,
butitisn’t 1 will still be printed, which is clearly wrong. Like a FOR ... NEXT loop, you can
also nest REPEAT loops, if you need to. So:

1@ LET n=1

28 REFERT

@ FPRIMT "Counting to ";n

4@ LET c=1

S@ REFERT

5@ PRIMNT c;'"., '

F@ LET Cc=cCc+1

S@ REFEART UWTIL c:n

9@ PRIMT "ILL count a bit
higher"

1@@ LET n=n+1

11@ REFEART UWTIL n=1@

12@ PRIMNT "0OK, I'm done now'

will work fine — try it and see if you can see what is happening. You can also make a
REPEAT loop continue indefinitely, if you use a zero in the REPEAT UNTIL statement.
Type in this program:

1@ REFERT
28 PRIWNT "Hello world!®
@ REFEART UWTIL @

It will continue printing Hello world! to the screen, stopping only to ask if you want to scroll
(unless you press the BREAK key, of course). Why? Zero can be seen in NextBASIC as
false when used in this way, so the REPEAT UNTIL 0 statement will always give a false re-
sult; hence the loop will continue indefinitely.

WHILE

The WHILE command, used within a REPEAT loop, can provide an alternative way of
leaving the loop before reaching the REPEAT UNTIL statement. If the condition in the
WHILE statement is true, the loop continues. But if it is false, then the remaining state-
ments in the loop will be ignored, the loop will be exited and the program will resume with
the line after the REPEAT UNTIL statement. Try this:

18 REFEAT

2@ IMPUT "Enter a number, or
enter a negative number to
stop > an

S@ LWHILE n:=@

4@ PRIMT n

S8 REFPEAT UNTIL @

50 ZX Spectrum Next — User Manual

Error trapping within REPEAT ... REPEAT UNTIL loops Chapter 4 - Looping
E@ PRIMT "“"Thank Jouol!*

It is a different approach to the example seen earlier, this time using WHILE to check the
number entered (and also accepting any negative number to stop). WHILE can also be
used to exit a loop before any statements are executed, should you need to. Try:

18 LET 4Jd4=@

Z&@ REFEART : WHILE 4«22
S8 PRIWNT AT 4.,@;"This i=s Line
gt

4@ LET 4d=4d+1
S@ REFPEART URTIL @

You will note that when y reaches 22, the loop will exit before printing the line number. It
should also be pointed out that not only can you place a WHILE anywhere within the loop,
but you can also place more than one WHILE in the same loop, if you have different condi-
tions to check to leave the loop.

Error trapping within REPEAT ... REPEAT UNTIL loops

Error trapping within REPEAT ... REPEAT UNTIL loops as well as within subroutines and
procedures is localised. Refer to the last section of Chapter 5 — Localised Error Trapping
for a complete example that covers all cases of error trapping in these programming
structures.

Exercises

1. A control variable has not just a name and a value, like an ordinary variable, but
also a limit, a step, and a reference to the statement after the corresponding
FOR statement. Persuade yourself that when the FOR statement is executed all
this information is available (using the initial value as the first value the variable
takes), and also that this information is enough for the NEXT statement to know
by how much to increase the value, whether to jump back, and if so where to
jump back to. Run the third program above and then type:

FPRIMNT

Why is the answer 6, and not 57 (Answer: the NEXT command in line 60 is
executed five times, and each time 1 is added to c. The last time, ¢ becomes
6; and then the NEXT command decides not to loop back, but to carry on, ¢
being past its limit.)

2. What happens if you put STEP 2 in line 207

3. Change the third program so that instead of automatically adding five numbers,
it asks you to input how many numbers you want adding. When you run this
program, what happens if you input 0, meaning that you want no numbers add-
ing? Why might you expect this to cause problems for the computer, even
though it is clear what you mean? (The computer has to make a search for the
command NEXT ¢, which is not usually necessary.) In fact this has all been
taken care of.

4. Inline 10 of the fourth program above, change 10 to 100 and run the program. It
will print the numbers from 100 to 79 on the screen, and then say scroll? at the
bottom. This is to give you a chance to see the numbers that are about to be

ZX Spectrum Next — User Manual 51

Chapter 4 — Looping Error trapping within REPEAT ... REPEAT UNTIL loops

scrolled off the top. If you press n, BREAK or the space bar, the program will stop
with the report D BREAK - CONT repeats. If you press any other key, then it will
print another 22 lines and ask you again.

. Delete line 30 from the fourth program. When you run the new curtailed program, it

will print the first number and stop with the message 0 OK. If you type:
MEXT n

The program will go once round the loop, printing out the next number.

. Refer back to the example in the REPEAT UNTIL section, where the message x is

1, but it isn’t 1 was displayed incorrectly. Rewrite this using WHILE so that the
message does not appear when x is indeed 1. Change the value of x in line 10 to
check this works correctly.

52

ZX Spectrum Next — User Manual

[/ Chapter

S

Procedures
and Subroutines

This page intentionally left blank

Branching using GO SUB and RETURN Chapter 5 — Procedures and Subroutines

Procedures and Subroutines
Branching using GO SUB and RETURN

Sometimes different parts of the program will have rather similar jobs to do, and you will
find yourself typing in the same lines two or more times; however this is not necessary.
You can type in the lines once, in a form known as a subroutine, and then use — or call -
them anywhere else in the program without having to type them in again. To do this, you
use the statements GO SUB (GO to SUBroutine) and RETURN. This takes the form:

GO SUBn

where n is the line number of the first line in the subroutine. It is just like GO TO n except that
the computer remembers where the GO SUB statement was so that it can come back again
after doing the subroutine. It does this by putting the line number and the statement number
within the line (together these constitute the return address) on top of a pile of them (the
NextBASIC return stack — see Chapter 24 for details):

The command
RETURN

takes the top return address off the GO SUB stack, and goes to the statement after it. As
an example, let's look at the number guessing program again. Retype it as follows:

18 REM "A rearranged guessing
dame"’

2@ IMPUT a: CLS

S@ IMPUT "Suess the number Y, b

4@ IF a=b THEMN FRINT
“"Correct": STOPR

S8 IF a<b THEW G0 SUE 106

E@ IF a:b THEW G0 SUE 106

Ta 0 TO 3@

18@ PRIWT "“"Trd again®”

11a@ RETURHK

The GO TO statement in line 70 is very important because otherwise the program will run
on into the subroutine and cause an error (7 RETURN without GO SUB) when the
RETURN statement is reached.

Here is another rather silly program illustrating the use of GO SUB:

1l@a@ LET ==1@
l11a@ GO SUE Saa
12@ PRINT =
13@ LET =®=x+4
14@ GO SUE Sa@
15@ FPRIMNT =
15@ LET =®=x+2
17@ G0 SUE Saa
15@ PRINT =
19@ STOR

S@a LET ==@
Sl@ FOR Jd=1 TO =X
Sz2@ LET ===5+d

ZX Spectrum Next — User Manual 55

Chapter 5 — Procedures and Subroutines LOCAL keyword

S5@ MEXT 4
Sd4@ RETURH

When this program is run, see if you can work out what is happening. The subroutine starts at line
00.

A subroutine can happily call another, or even itself (a subroutine that calls itself is recur-
sive), so don't be afraid of having several layers.

LOCAL keyword

LOCAL is a special keyword reserved only for subroutines (see above) and procedures
(see below) and what it does, is to ensure that the variables that follow it, are independent
of the rest of the program and only valid for the duration of the execution of the subroutine
or procedure. The moment that branching back occurs, the variable is released. Consider
this silly example:

1@ LET ag% = "Test"

28 G0 SUE laa

S@ PRIMNT a%

4@ STOR

1@8@ LOCAL a%

11@ LET a$ = '"Different Ualuese
1z@ PRIMT a%

158 RETURH

This will print Different Value and Test on your screen thanks to the LOCAL keyword
which creates in a sense two versions of a$. The second one exists only until the RETURN
keyword is reached. LOCAL accepts up to 256 variables; regular numeric, integer and
string variables are accepted. There can be any number of LOCAL statements in a sub-
routine or procedure as long as there is enough memory for them.

Procedures (DEFPROC / ENDPROC / PROC)

Procedures are a special form of subroutines. Imagine them as a cross of subroutines and
functions (See Chapter 9 — Functions). Like subroutines and the GO TO keyword they
branch execution to a different segment of the program to better organise and reuse
code, however unlike subroutines but like functions, they can accept up to 8 variables as
parameters, can be named and when called they do not require a line number.

Procedure parameters can be regular numeric, integer and string variables which follow all
the naming conventions of the former (As seen in Chapters 2 — Basic Programming Con-
cepts and 7 — Expressions) but cannot accept arrays (See Chapter 12 — Arrays).

Unlike functions which can only accept a single letter for a name, procedures can carry
meaningful names following the naming conventions of numeric variables (See Chapter 7
— Expressions for valid numeric variable names).

Procedures are defined by the keywords DEFPROC which takes the form:
DEFPROC name ([parameter1],...[, parameter8]]])

and ENDPROC which takes one of two forms:

ENDPROC

or —optionally—

ENDPROC =result1],...,result8]

Anything that follows the keyword DEFPROC is the procedure itself, however there can be
multiple exit points for each procedure designated by separate ENDPROC statements.

56 ZX Spectrum Next — User Manual

Procedures (DEFPROC /| ENDPROC / PROC) Chapter 5 — Procedures and Subroutines

Parameters in brackets, denote that the syntax is optional. Procedures are called with the
keyword PROC (and BANK PROC in the case of a banked procedure). This, like
ENDPROC takes two forms:

[BANK n] PROC name ([parameter1],...[,parameter8]]])
which calls the procedure named name with optional parameters 1 through 8 —or—

[BANK n] PROC name ([parameterl],...[,parameter8]]]) TO variable1],...,variable8] which
is the same as above but assigns the values returned by the procedure to the optional
variables 1 through 8.

Consider the example below:

18 CLS

28 PROC Pdemo (11): PROC
Hellolorld i"He L Lo
Lorld! ™, 11

S@ FPROC HellLlolorld (V"He L Lo
Stop! " ,@)

d@ S0 TO 168

S8 CEFPROC Pdemo ()

E@ PRIMNT =; " rizen to the 2Z2nd
pPower is:'; HOEN

Ta ErDRPROC

S@ [DEFPROC HellolWorldiz$, nl

9@ LOCAL as%, L

1@ IF n=@ THEW FPRIWT =Z%:
EMNDFRROC

1z@d IF n=1 THE®M LET L=LEM =z %

1@ LET afs=z%(LlI+=ZHF+=zFI(L]

14@ PRIWNT zZz&%° IMUWERSE 1; a%

15@a E®RCPROC

15@ STOF

This will return the following:

%1 risen to the 2nd power i= 12
He LLo Lo Ld!

I He LLo Lorld!l

HeLLo Stop!

9 STOP =tatement, 160@:1

Fig. 11 - Screen output from the example procedures

As you can see, there are two separate exit points for procedure HelloWorld, one at line
100 and one at line 150. Line 40 is mandatory, or rather a condition to jump over the proce-
dures defined is mandatory as without it, after execution of both procedures the next avail-

ZX Spectrum Next — User Manual 57

Chapter 5 — Procedures and Subroutines Procedures (DEFPROC / ENDPROC / PROC)

able line would have been 50. DEFPROC can only appear in a program line. Attempting to
define a procedure interactively will result in the error Direct Command Error.

Supplying the wrong type of variable as a parameter (ie. a string instead of a number) will
result in the error: Q Parameter error.

As we saw in the definition of the DEFPROC, ENDPROC and PROC keywords, there are
optional parameters that can be passed to procedures when called with the results of the
procedures' execution being assigned to up to 8 variables at the time. Consider this exam-
ple that calculates the factorial of a number:

1@ IWMFPUT "Enter a nudmber
14: " ;%

28 IF x:33 THEW PRIWT "“our
Hext cCcannot handle this
number!": G0 TO 999

S@ PROC factorialix) TO F

4@ IF rF:@ THERM FRIMT "The

fFactorial of " ;=;'" is ", f:
ELSE GO TO 999
299 STOP

1@ CEFPROC factorialind

181@ IF n«<@ OR n<: INT n THEHR
FRIMNT "Factorial only
possible fFor @ or positiwe
integers": EMDFPROC =
-1:ELSE
IF (n = @8 0ORrR n=11]
THEM E®RHCFPROC =1

laz@ LOCAL partial

183@ PROC factorialin-1) TO
partial

184@ ERDPROC =n*partial

Apart from a good example of recursion (the ability of the code to call itself) we can see
how this procedure feeds itself the results of the previous iteration via the local variable
partial. Each iteration reduces the value by 1 as evidenced in line 1030. There's an obvious
extra iteration that could be skipped when n becomes 1 but it's not important for the
purpose of this example.

When calling a procedure with the PROC ... TO... version of the PROC keyword,
ENDPROC must use the optional form ENDPROC =result1... and have as many results
returned (separated by commas) as the calling PROC requested. PROC may be called
without a TO or with a partial list of the result variables returned by ENDPROC but the in-
verse cannot happen and will return error Q Parameter error. For example this program:

1@ LET product = @

28 FROC muolL (3) TO product
@ PRIMNT product

4@ STOR

S@ DEFFPROC mul (=)

5@ LOCAL a

S@ LET a=xx2

9@ EMDFROC =a

58 ZX Spectrum Next — User Manual

Localised error-trapping Chapter 5 — Procedures and Subroutines

will return 6 when run. When we change line 20 to read:

2@ PROC mul (3

it will return O as variable product hasn't been changed from its initial assignment, how-
ever if we return line 20 to its original form and change line 70 to:

7@ EMDFPROC

then execution of the program will produce a Q Parameter error.

If you're using the NextBASIC's memory bank management facilities to extend the size of
your programs, the following apply:

1. Any GO TO, PROC or GO SUB within a banked section will go to aline in the same
bank.

2. Any RETURN will always return to the calling bank.

Localised error-trapping

As well as (or instead of) having a global error-trapping routine for your program as exhib-
ited at the end of Chapter 2, each procedure, subroutine and repeat loop may have its own
local error-trapping routine, simply by using the ON ERROR command within it.

When an error occurs within a repeat loop, subroutine or procedure, it will be trapped by
its own ON ERROR routine if there is one. If not, the error will be passed out to the next
level and trapped by any ON ERROR routine there and so on. Only if there is no ON
ERROR at any level above the command that caused the error will a normal error report be
generated. For example:

1a oW ERROR PRIWT "Outer error
hRandler! " : ERROR

28 REFEAT

S8 PRIMNT "Starting...”

4@ oOr ERROR FPRIMNT "COops!':0OR
ERROR: STOPF

S@ =0 SUE 1ad

E@ PRIMNT "Iterating..."”

Ta oM ERROR

SB@ REFPEAT UNTIL @

9@ STOP
1@ OM ERROR FPRIMNT "EBad
pigs!": RETURHM

11@ PROC mdproc (]

1288 PRIMNT "“Pigs: ", pig=s

158 RETURHM

2 DEFFROC mdproc ()

21 LOCZAL m

22e oM ERROR PRIMT '"HMdproc
died...":EHDPROC

2538 PRIMNT "m=";m,"n=";n

24@ EMNDRPROC

ZX Spectrum Next — User Manual 59

Chapter 5 — Procedures and Subroutines Localised error-trapping

Note that in REPEAT loops it is important to turn off any local error handling for that loop
before the REPEAT UNTIL is executed. If not, the loop start cannot be found and a Loop
error would result (and be trapped by the loop's own error handler). Removing line 70 in
the example above would demonstrate this.

Also note that any LOCAL commands in a procedure or subroutine must come before a
local error handler (ie lines 210 and 220 in the example cannot be reversed).

60 ZX Spectrum Next — User Manual

[/ Chapter

U6

READ, DATA
RESTORE

This page intentionally left blank

READ, DATA and RESTORE Chapter 6 — READ, DATA, RESTORE

READ, DATA, RESTORE
READ, DATA and RESTORE

In some previous programs we saw that information, or data, can be entered directly into
the computer using the INPUT statement. Sometimes this can be very tedious, especially
if a lot of the data is repeated every time the program is run. You can save a lot of time by
using the READ, DATA and RESTORE commands. For example:

18 REAC a,b.,c
28 FPRIMT a,b.,cC
S@ LATA 18,28 ,3a

A READ statement consists of READ followed by a list of the names of variables, sepa-
rated by commas. It works rather like an INPUT statement, except that instead of getting
you to type in the values to give to the variables, the computer looks up the values in the
DATA statement.

Each DATA statement is a list of expressions — numeric or string expressions separated
by commas. You can put them anywhere you like in a program, because the computer ig-
nores them except when it is doing a READ. You must imagine the expressions from all
the DATA statements in the program as being put together to form one long list of expres-
sions, the DATA list. The first time the computer goes to READ a value, it takes the first ex-
pression from the DATA list; the next time, it takes the second; and thus as it meets
successive READ statements, it works its way through the DATA list. (If it tries to go past
the end of the DATA list, then it gives an error.)

Note that it's a waste of time putting DATA statements in a direct command, because
READ will not find them. DATA statements have to go in the program. Let's see how these
fit together in the program you've just typed in. Line 10 tells the computer to read three
pieces of data and give them the variables a, b and c. Line 20 then says PRINT these vari-
ables. The DATA statement in line 30 gives the values of a, b and c¢. To see the order in
which things work change line 20 to:

28 PRIMNT b.,cC.,a
The information in DATA can be part of a FOR...NEXT loop. Type in:

1@ FOR n=1 TO &

28 RERLC d

@ DATA 2.,4.,6,5,18,1=2
4@ FRIMNT 4

S@ HEXT n

When this program is RUN you can see the READ statement moving through the DATA
list. DATA statements can also contain string variables. For example:

1@ RERLD d%

2@ FPRIMT "The date is=",d%
S@ DATA “"Januvard 1=st, za@alse"
4@ STOF

This is the simple way of fetching expressions from the DATA list; start at the beginning
and work through until you reach the end. However, you can make the computer jump
about in the DATA list, using the RESTORE statement. This has RESTORE, followed by a
line number, and makes subsequent READ statements start getting their data from the

ZX Spectrum Next — User Manual 63

Chapter 6 — READ, DATA, RESTORE READ, DATA and RESTORE

first DATA statement at or after the given line number. (You can miss out the line number,
in which case itis as though you had typed the line number of the first line in the program.)

Try this program:

18 RERLD a.,b

28 FPRIMWT a.,b
S8 RESTORE 1@
4@ READ = ,4,=Z
S8 PRIMNT =.,4.,Z
E@ CDATAH 1.,.2.,3
Ta STOR

In this program the data required by line 10 made a=1 and b=2. The RESTORE 10 in-
struction reset the variables, and allowed x, y and z to be READ starting from the first num-
per in the DATA statement. RUN this program again, without line 30 and see what
happens.

You can store DATA statements in memory banks to take advantage of the expanded
memory available on the ZX Spectrum Next. Refer to Chapter 24 — The Memory, for
information on how to do this.

READ, DATA and RESTORE accept integer variables following the conventions set
forth in Chapter 7 — Expressions.

64 ZX Spectrum Next — User Manual

[/ Chapter
07

Expressions

Chapter 7 — Expressions Mathematical operations +, -, *, /, MOD

Expressions

Mathematical operations +, -, *, /, MOD

You have already seen some of the ways in which the ZX Spectrum Next can calculate with
numbers. It can perform the four arithmetic operations +, -, * and / (remember that * is
used for multiplication, and / is used for division), and it can find the value of a variable,
given its name. The example:

LET tax=sum*2Z@.-18a

gives just a hint of the very important fact that these calculations can be combined. Such a
combination, like sum*20/100, is called an expression; so an expression is just a short-
hand way of telling the computer to do several calculations, one after the other. In our ex-
ample, the expression sum*20/100 means look up the value of the variable called "sum",
multiply it by 20, and divide the result by 100.

There's also one more mathematical operation, the modulo which returns the remainder of
a division. It is used in the same way as the division operator but is denoted instead by
MOD. Modulo operators can only be used within an integer expression. As an example
the direct command:

FRIMT X1V HOD &

will return 5 which is the remainder of the division of 17 by 6; note the percent symbol (%)
that prefixes 17, this is what defines it as an Integer Expression — We will look at this in a
little bit.

To recap the order in which mathematical expressions are evaluated: multiplications and
divisions are done first. They have higher priority than addition and subtraction. Relative to
each other, multiplication and division have the same priority, which means that the multi-
plications and divisions are done in order from left to right. When they are dealt with, the
additions and subtractions come next; these again have the same priority as each other,
so we do them in order from left to right.

Specifically for Integer Expressions, the order of calculations is strictly left-to-right with
the exception of the use of parentheses. In the case of multiple sets of parentheses, their
contents are also evaluated from left-to-right

Although all you really need to know is whether one operation has a higher or lower priority
than another, the computer does this by having a number between 1 and 16 to represent
the priority of each operation: * and / have priority 8, and + and - have priority 6.

This order of calculation is absolutely rigid, but you can circumvent it by using parenthe-
ses; anything in parentheses is evaluated first and then treated as a single number.

Unary/Bitwise NOT (!)

In Integer expressions, NextBASIC provides one additional unary operator, which is an op-
erator that only requires one (integer) number alone. This is:

! bitwise NOT
Bitwise NOT inverts the bits of said number from 0 to 1 and vice-versa.
FRIMNT X! 15 returns 65520 as 15 (0000 00000000 1111)
gets inverted
to become 65520 (11111111 1111 0000)

66 ZX Spectrum Next — User Manual

Integer bitwise, relational and logical operators Chapter 7 — Expressions

FRIMT X!45592 returns 21845as 43690 (101010101010 1010)
gets inverted
to become 21845 (010101010101 0101)

Integer bitwise, relational and logical operators

Within integer expressions there's a number of bitwise, relational and logical operations
that can be performed. They're listed below according to their type.

Bitwise operators <<, >>, &, |, 1

NextBASIC, can also perform 5 bitwise operations (that is operations on the individual bi-
nary digits that make up a number) on integer variables and expressions. These are:

X <<y Shift each bit of x, y places left
X>>y Shift each bit of x, y places right
x&y Bitwise AND between x and y
x|y Bitwise OR between x and y
xTy Bitwise XOR between x and y

More information on Bitwise operations can be found in Integer Expressions below.

Integer logical operators

Standard logical operators can be used within integer expressions if prefixed by a %.
These are used in the same manner as their floating point counterparts.

x AND y Logical AND (gives 0 if y is zero, x if y is non-zero)
x ORy Logical OR (gives x if y is zero, 1 if y is non-zero)
NOT n Logical NOT (zero -> 1, non-zero -> 0)
Integer relational operators <, >, = ,<=, >=, <>

< less than
> greater than
= equal to

<= less than or equal to

>= greater than or equal to

<> not equal to

The six integer relational operators, work very much like their regular counterparts, but
only within integer expressions. Like their floating point counterpart, they too produce are-
sult of O for false and 1 for true.

Expressions

Expressions are useful because, whenever the computer is expecting a number from you,
you can give it an expression instead and it will work out the answer. The exceptions to this
rule are so few that they will be stated explicitly in every case.

You can add together as many strings (or string variables) as you like in a single expres-
sion, and if you want, you can even use parentheses. In the case of Integer Expressions
there are some further considerations and limitations as well as additional capabilities (ie.
Bitwise operations and modulus) so they warrant a separate examination below.

Variable names and limitations

We really ought to tell you what you can and cannot use as the names of variables. As we
have already said in Chapter 2, the name of a string variable has to be a single letter fol-
lowed by $; and the name of the control variable of a FOR...NEXT loop must be a single
letter; but the names of ordinary numeric variables are much freer. They can use any let-

ZX Spectrum Next — User Manual 67

Chapter 7 — Expressions Scientific notation

ters or digits as long as the first one is a letter. You can put spaces in as well to make it eas-
ierto read, but they won't count as part of the name. Also, it doesn't make any difference to
the name whether you type it in capitals or lowercase letters. There are some restrictions
about variable names which are the same as commands (keywords), however, in general,
if the variable contains a NextBASIC keyword in it (with spaces either side) then it won't be
accepted.

Integer variables are a bit different as they can only be a single letter Ato Z (or lower case a
to z) and they're assigned in an expression that begins with a % eg:

LET Xa = 1@

Additionally, all integer values are treated by default as unsigned 16-bit values except
when you use the special SGN {...} keyword (in which case they're signed 16-bit — see the
relevant section at the end of this chapter for details).

All operations are performed within the confines of 16 bits, meaning all results are trun-
cated to a max value of 65535, with no checks for overflow/underflow (except division by
zero, which results in error 6, Number too big). Integer variables are pre-allocated and
stored in a fixed location outside the normal memory used by NextBASIC. This gives a sig-
nificant speed advantage as well as memory savings compared to the use of ordinary
numeric variables.

Further of note is that if a line contains an integer expression, ALL variables and arrays
contained within the same expression are integer ones. In cases where there is more than
one integer expression within a line, each needs to be preceded with a %.

Here are some examples of the names of variables that are allowed:

X

t42

ItisWithAHeavyHeartThatIMustSay

nowWeAreSix

nOWWeaReSiX (these last two names are considered the same,

and refer to the same variable)

The following are not allowed to be the names of variables:

pi Pl is a keyword

2001 (it begins with a digit)

A new variable (contains the separated keyword NEW)
3 bears (begins with a digit)

M*A*S*H (* is not a letter nor a digit)

Fotherington-Thomas (- is not a letter nor a digit)

Integer variables can only use the letters A to Z (again, case does not matter, soato z are
also acceptable) — as you can see below, for a variable to be treated as integer, a % sym-
bol somewhere in the same expression must precede it.

Scientific notation

Numerical expressions can be represented by a number and exponent. Try the following
to prove the point:

FRIMNT 2.3534e@
FRIMNT 2.354el
FRIMNT 2.3534e2

and so on up to:

PRIMNT 2.34elS

68 ZX Spectrum Next — User Manual

Decimal, Binary and Hexadecimal numbers Chapter 7 — Expressions

You will see that after a while the computer also starts using scientific notation. Similarly,
try:

FPRIMNT 2.3534e-1
FRIMNT 2.54e-2

and so on.

PRINT gives only eight significant digits of a number. Try:

FRIMNT 4294957295 ,4294967295-429e7

This proves that the computer can hold the digits of 4294967295, even though it is not pre-
pared to display them all at once.

The ZX Spectrum Next, unless integer variables are expressly used (see above), uses
floating point arithmetic, which means that it keeps separate the digits of a number (its
mantissa) and the position of the point (the exponent). This is not always exact, even for
whole numbers.

Type:
FRIMT 121@2+1-121@,1el@d-1c1@+1

Numbers are held to about nine and a half digits accuracy, so 1e10 is too big to be held
exactly right. The inaccuracy (actually about 2) is more than 1, so the numbers 1€10 and
1e10+1 appear to the computer to be equal. For an even more peculiar example, type:

FPRIMNT Seg9+l-Se9

Here the inaccuracy in 5e9 is only about 1, and the 1 to be added on in fact gets rounded
up to 2. The numbers 5e9+1 and 5e9+2 appear to the computer to be equal.

The largest integer (whole number) that can be held completely accurately is 1 less than
32 2s multiplied together (or 4,294,967,295) — in other words: 232-1

The string "™ with no characters at all is called the empty or null string. Remember that
spaces are significant and an empty string is not the same as one containing nothing but
spaces. Try:

FRIWNT "Hawve dJou finished "Finne
9ans lWake'" Jet7F"

When you press ENTER, you will get the flashing red cursor mark that shows there is a
mistake somewhere in the line. When the computer finds the double quotes at the begin-
ning of "Finnegans Wake", it imagines that these mark the end of the string "Have you fin-
ished ", and it then can't work out what Finnegans Wake means.

There is a special device to get over this; whenever you want to write a string quote symbol
in the middle of a string, you must write it twice, like this:

FRIWNT "Hawve Jou finished ""Finn
egans Wake"'" get7"

As you can see from what is printed on the screen, each double quote is only really there
once; you just have to type it twice to get it recognised.

Decimal, Binary and Hexadecimal numbers

Number literals in NextBASIC can be expressed in Decimal (default), Binary (preceded by
@) and Hexadecimal (preceded by $). Only integers can be expressed in Binary and Hexa-
decimal notation. The same rule as any with other integer expression applies to binary and

ZX Spectrum Next — User Manual 69

Chapter 7 — Expressions More about Integer Expressions and Variables

hexadecimal literals; they need to be preceded by %, once per expression. Consider these
examples:

PRIMNT X4ES, @11108a@ll
PRIMNT X%ES, +ME@11l10@@ll
PRIMNT X$ES+E21118@a1l

The first example is invalid as there are two separate expressions following the PRINT key-
word with the second one not being expressly marked as an integer one. The second ex-
ample is valid as it contains two, properly marked (preceded by %) integer expressions.
The third example is also valid since the addition of the hexadecimal and binary numbers
is a single integer expression (and therefore it doesn't need a second %).

More about Integer Expressions and Variables

As previously mentioned, the main two reasons for the use of Integer Variables, Arrays
and Expressions, is memory efficiency and speed of execution. Furthermore, integer vari-
ables allow for simple bitwise operations that would otherwise require relatively complex
programs and calculations using standard floating point numbers.

Integer variables can be used in assignments (using keywords INPUT, LET, READ, FOR,
ENDPROC and PROC) by preceding their name with a % symbol.

Normally, it is not possible to access standard numeric variables or functions within an in-
teger expression, or to access integer variables or operations within a standard numeric
expression. In the following program:

18 LET a = =

Z&@ LET b = 4

S@ LET *xa = 2

4@ LET xb = S

S8 LET c = +Ma*b
E@ LET d = ¥b % a
Ta PRIMT cC,d

S&@ LET b = b

9@ LET ¢ =Xax*b
18@ PRIMNT c,d

you might expect line 70 to produce 8 and 15. Instead it returns 10 and 10 as the % in lines
50 and 60 indicates that the entire expression is an integer expression, and all the vari-
ables named in each line, are integer variables even though each name is not directly pre-
ceded by a % and only line 100 produces a different output; 8 and 10 respectively.

Itis, as apparent from the above example, possible therefore, to assign an integer expres-
sion to a standard normal numeric variable, or vice-versa, and the value will be converted
appropriately. This automatic conversion is called casting and it's best illustrated in line 80
above as well as the examples below which are all valid assignments:

LET *xA==2*PIxradius
assigns a truncated floating point calculation to integer variable A
LET =ME=xEB+(RL(7) <135

shifts integer array element A(7) left 3 bits and adds it to integer variable B

LET addr=Xx (1) <<5+x (@)

70 ZX Spectrum Next — User Manual

More about Integer Expressions and Variables Chapter 7 — Expressions

calculates standard numeric variable addr from low and high bytes in integer array X ele-
ments 0 and 1.

As we saw earlier it's not normally possible to use a floating point expression within an inte-
ger expression. But what if we needed to do so? Consider the following example:

LET *%a = 1: LET b = 1 : LET ¥c = 1:
FPRIMWNT *%a + PI + b + C

Looks simple enough, doesn't it? All we expect to happen is for casting to take over and
use just the integer portion of the value of PI, but it doesn't work that way. Instead the cur-
sor flashes next to Pl and the NextBASIC editor complains. To address this, NextBASIC in-
cludes the special INT {fo_expression} keyword (do not omit the braces) which converts
(casts) any floating point expression fo_expression into an integer. So even if the example
above wouldn't work, a small change:

LET *%a = 1: LET b = 1 : LET ¥c = 1:
FPRIMNT xa + IWNT <€ PI ¥ + b + C

and it works happily! As a matter of fact INT {...} will convert any expression that produces
a floating point value. Here are some examples:

LET te=st = 3.45: PRIWNT X IWNT {itestl

LET alpha = @: LET beta = 1: LET Xa =
AEF@2111 + IMT falpha OR betallk

LET X =¥z+IMNTLI(INMNKEY&%="F" OR
IMEEY$="p" 1 -INTL (INKEY$="0" 0OR
IMEEYS=""0"173F

Despite the presence of INT {...}, in order to avoid confusion and unexpected results that
can make debugging' very hard, it would be a good practice to not use one or more single
letter standard variables when there's a possibility of a similarly named variable existing in
its integer form and instead use a more easily identifiable name.

Bitwise operations on integer variables and arrays are pretty straightforward and involve
manipulations of the individual bits of an integer number as represented in the ZX Spec-
trum Next's memory.

Shifting left or right involves moving the binary content of an integer variable x places (bits)
to the left or right, padding from the right or left respectively with as many Os as the places
we shift the number for.

To illustrate bit shifting we can do the following example: Let's assign the decimal number
1201 to integer variable A, then manipulate its bits by shifting them left and right and print-
ing the result:

18@@a LET XA 1z@l
11a LET XA MAXS
12@ LET XA = XA<<3S
1Z@ PRIWT XA

This will return 1200 when run. To demonstrate what went on we could illustrate the ex-
pressions in two consecutive PRINT statements:

1@ PRIMNT X1z@@d: >3
11@ FPRIMT X15S@<<3

1 Debugging is the programming process where you first attempt to ascertain if a program has errors, then to identify
these errors and finally to remove them.

ZX Spectrum Next — User Manual 71

Chapter 7 — Expressions More about Integer Expressions and Variables

Once we see how the numbers are stored in memory as a series of bits we can easily un-
derstand what happened:

(1201) pielelelelLeleTelL T
clelllllele1el1eilee01’
===

Shift Right 3 bits, 3 rightmast bits disappear

(150) [ololololelelleeaelio)
“0000olelele1/ole1e[11/eleleld

Shift Left 3 bits, 3 leftmost bits disappear L= R Rem]

(1200)/QlolRlol1/el1le1eeR0)

Fig. 12 - Bit shifting

The remaining bitwise operations are very straightforward. Bitwise AND (&) is used to
quickly determine if a bit inside a number is set to 1 or not. The first operand is the number
we want to check and the second one is called the bitmask which is the number we check
against. Consider these two examples:

PRINT XE21@laldld & FaAlalaldal
FPRIMNT XE1L1186@11 & E1a

First example will return 0 while the second 2. The reason for this, is that the numbers in the
first example don't have coinciding 1 bits in the same positions while on the second exam-
ple the second bit will be 1 and as a consequence the bits that match will be the first and
second which make binary 10 which in decimal equals 2. To illustrate further:

170 1810121@
AND 85 (Bitmask) @1@1@1@1
Result PRERERRE

As you can see, no bit set to 1 in any position of the two numbers matches each other,
therefore the result returned is 0 whereas in the second example:

207 111@@@11
AND 2 (Bitmask) @@@@@@1@
Result PEEREE1E

Bit 2 of the mask, matches bit 2 of the number and it is 1 therefore 10 is returned (binary
equivalent of decimal 2)

Bitwise OR (|) will return 1 in any position if at least one bit of the two numbers is the same
position is 1 and 0 if both are set to 0. For example:

FRIMNT XELE1l2ldla | EFalleldall

will return 235 as only bits in positions 3 and 5 in both numbers are set to 0 making the re-
sulting number 11101011 in binary form (or 235 in decimal). To better illustrate:

170 12121218
OR 107 (Bitmask) @11@1@11
Result 111@1@11

Finally, bitwise XOR (1) will only return 1 in any position if either bit is set to 1 but not both.
So two Os and two 1s, both return 0 in a position. Using the same numbers as in the previ-

72 ZX Spectrum Next — User Manual

Signed vs Unsigned Integer Expressions Chapter 7 — Expressions

ous example:

PRINT XE2101018l1ld + E2a@ll@lall
will return 193 or binary 1100001 since:

170 1@1@1@1@
XOR 107 (Bitmask) P11@1A11
Result 11P@0@@1

Bitwise expressions are uniquely helpful in determining the condition of flags in several of
the ZX Spectrum Next ports (as we will see in Chapter 23), since these take the form of in-
dividual bits in a binary number and testing those with regular (floating point) arithmetic
can be cumbersome and slow.

Signed vs Unsigned Integer Expressions

As you saw in Chapter 2 and in the introduction to this chapter, integer variables in
NextBASIC are fixed to 16-bits wide unsigned, which means that they can display only
positive integers from 0 to 65535. To illustrate approximately what that means, try the
following:

PRIMNT *M-54445
The computer will respond with: 1088. Keep this result in mind for a moment and then try:

PRIMNT Xx-324485

This time the computer will display the number 33088 on screen. Are you confused yet?
Maybe seeing the numbers in binary will help. Let's start with the first response of 1088
and we'll work backwards.

Decimal Binary
1088 0000 0100 0100 0000
-64448 1 0000 0100 0100 0000
64447 1111 1011 1011 1111 Don't mind this for now!
Ahal Let's now see the second response:
Decimal Binary
33088 1000 0001 0100 0000
-32448 1000 0001 0100 0000
32447 0111 1110 1011 1111 Don't mind this for now!

Do you now see the pattern? Let's do one more thing that will illustrate how the computer
stores the data internally (We'll now jump a bit ahead and borrow a bit from Chapter 24).

Type the following program:

1@ LDRPOKE Seo@ad, X-32445
2@ FRIMT X DFEEEK Z@@@@: PRINT
FEEK So@@@, FEER SZ0@@1

Line 10 enters the entire 16 bits of the value -32448 into memory locations 30000 and
30001, while line 20 first prints what's stored in locations 30000 and 30001 as an unsigned
integer and then the individual bytes that make up that value. You will get:

SSassS
Sd 129

The second line just translates to 0100 0000 and 1000 0001 in binary which if we consider
that the smallest portion of the 16 bit number was stored first we can rebuild it as: (129 x
256) + 64 which equals... 33088!

ZX Spectrum Next — User Manual 73

Chapter 7 — Expressions Signed vs Unsigned Integer Expressions

Now let's first give some background so we can tie all this information together: A signed
integer is one with either a plus or minus sign in front indicated by one bit in the beginning
of the number. Since we have 16 bits assigned to integers and taking the one bit out for
the sign, that would leave us 15 bits to display a number with a sign (whereas this sign is
positive or negative). Thus a 16 bit signed integer will be able to display numbers to the
range of -32768 to +32767. This obviously, also means that unsigned integers can have a
value twice as high as signed integers. The most common way to represent signed num-
bers (and the one NextBASIC uses) is to use two's complement which works as follows:

On any given binary number representing a decimal x, its two's complement is a binary
number constituted by the first number with inverted digits from 0 to 1 and vice-versa and
then adding 1. The resulting binary number represents decimal -x. For example:

For decimal number 2 (represented in 8 bit binary as 00000010), -2 would be 00000010's
two's complement. To calculate it we'd have to invert the digits making it 11111101 and
then add 1 which would make the resulting number 11111110. The very first bit signifies
the sign (0 for positive and 1 for negative). The benefit of using two's complement is that
standard arithmetic works properly and any numbers that exceed the bit-width of the
numbers get discarded.

After discussing this, the pattern emerging from the previous examples becomes clear!

What happened in the examples above is that NextBASIC, in the first example (as men-
tioned in the beginning of this chapter) truncated the sign bit as it was located in the 17th
bit and left us with only the 16 bit unsigned integers of the negative number which is the
same as the 16 bit equivalent of the number we fed it. It then tried to interpret the sign bit
but since regular integers are unsigned it just returned the positive integer that's repre-
sented by the number. For the computer therefore in both cases, what we fed it and what it
printed were the exact same number

Afurther illustration of the above can be shown by using the unary not operator (!) which as
we discussed earlier in the chapter, inverts the number. Let's see:

FRIMNT X! 1l@3s, X! 33a3S

The computer returns:

Sddd47 S2447
And if we add these together by doing:

PRIMNT X1@55 + 54447, MNI3IIA33 + 52447
we will get in both cases 65535!

Integer arithmetic is extremely fast, so we should have at least a way of representing
signed integers in NextBASIC for both fast calculations as well as special cases, so
NextBASIC does provide the way to deal with these numbers with the special SGN {...}
keyword. What this does is, to treat any integer expression enclosed within it as a signed
integer value (ranging from -32768 to 32767). All expressions enclosed within an SGN
{...} block are called signed integer expressions. Signed integer expressions use all the
same operators and functions as standard unsigned ones, but the arithmetic operators
(+,-,* /,MOD) and the relational operators (<, <=, >, >=, =, <>) treat their operands
as signed values in the range -32768 to 32767. The other operators and functions can be
used within a signed integer expression, but still treat their operands as unsigned.

Based on how two's complement works, theoretically you can work with just the two's
complement numbers (which if regarded as unsigned integers, are also positive integers)
but in these cases that would be very cumbersome to have to remember the equivalents
instead of the actual number we want to involve in our calculation.

If say we need to do 1 + (-32300) - (-1) what would be easier to implement?

74 ZX Spectrum Next — User Manual

Signed vs Unsigned Integer Expressions Chapter 7 — Expressions
FRIMT X S3GH T1Fx+ SGH L-32388F - SGH L-17%F

or

FRIMNT X1+33235-55535

There are obvious benefits on usability; and also non obvious benefits such as in the fol-
lowing example:

18 LET XM=x=@
28 PRIMT X ix-11:>@,
“EGEHNAL (-1 >@%F

which will result in:

1 5

on screen as in unsigned expressions 0-1 equals 65535 (see also the previous example)
which is obviously larger than 0 while in signed expressions 0-1 equals -1 which is not
larger than 0!

SGN {...}, also affects multiplication, division and MODulo operations. Consider this ex-
ample (which also contains a pitfall!):

1@ PRIMNT Xlax-1

28 FPRIMNT Xl1léa% SGH 1-17

@ FPRIMT X SGHM fl@x SGM L-137F
4@ PRIMNT ¥ SGHN {l@x-17

If you RUN this, you will see the following on screen:

55526
55526
-1
-1@

What happened here is that -1 is as we discussed 65535 for unsigned integers. So on line
10, the computer multiplied 10 * 65535 which resulted to 655350 but as an integer num-
ber, this is larger than 16 bits. Then it gets truncated to 16 bits which results into 65526
which is obviously wrong as a result. Moving to line 20 we hit the first pitfall discussed in
the opening statement: The result of SGN {-1} which is -1 gets converted into an un-
signed integer itself so you end up with the exact same situation as with line 10; a multipli-
cation of 10 with 65535. The pitfall therefore here is that SGN{...} must apply to the
entirety of the integer expression, so if there are other non-signed expressions they must
be taken into consideration when writing each statement! Line 30 produces finally what we
were aiming for, but that also happens with line 40! So both are correct but which is the
right way to do it?

The answer to that question lies with what we discussed above regarding the "pitfall" with
integer expressions. The subexpression SGN {-1} will get evaluated to whatever is in the
enclosing expression. So if the enclosing expression is an unsigned expression, the result
of the subexpression will also become converted to unsigned; ergo since the entirety of
the integer expression of line 30 is a signed expression, the signed subexpression is un-
necessary and may even delay execution (especially in very complex calculations). The
right way therefore to do it, is the way defined in line 40. Obviously this also applied to our
initial example which is best written as:

FRIMT ¥ SGHM 11 -Z32Z@a@- (=117
which is much neater to write AND read!

ZX Spectrum Next — User Manual 75

Chapter 7 — Expressions NextBASIC functions within integer expressions
NextBASIC functions within integer expressions

We already discussed the usage of the INT {...} keyword which converts any floating point
expression into an integer expression, but in many cases this can be slow. In other cases
the values produced by a function are either plain 8 or 16 bit integers which means that in-
teger-only versions of said function would provide significant boost over their standard
counterparts. NextBASIC caters for these cases with special integer-only forms of the
following functions:

INn Read value from Hardware Port n — See Chapter 23

REG n Read value from Next Register n — See Chapter 23

PEEK a Read byte from address a in memory — See Chapter 24

DPEEK a Read word? from memory (double PEEK) — See
Chapter 24

USR a Execute Machine Code routine in address a and return
value left in BC — See Chapter 26

BIN n Synonym for @n, specifying binary values

RND n Generates pseudo-random value in range 0 to n—1
(equivalent to floating-point INT (RND*n))

BANK b PEEK o Read byte at offset o from bank b — See Chapter 24

BANK b DPEEK o Read word at offset o from bank b (double PEEK) —
See Chapter 24

BANK b USR o Execute Machine Code routine at offset o in bank b

and return value left in BC — See Chapters 24 and 26

These are written by including a % sign in front of them like all integer expressions. For ex-
ample to read from hardware port 254:

LET ¥a = X IMN 254

Or to check what speed your ZX Spectrum Next is running (masking the speed bits of
NextREG 7) you could give :

FRIMT X“REG 7 & EIN Q2@@@@11
Randomly read a byte from the ROM:

LET Xa=¥ RHD 16354 :FPRINT Xa.,Xx FEEEK a

Exercises

1. Using the discussion about the unary ! operator and 16 bit binary numbers, cal-
culate and print on screen the two's complement for the signed 32 bit integer:
650323

2 A word in standard computer terminology is a two-byte (ie. 16 bit) value. 32 bit values (two-word) are called Long
Words.

76 ZX Spectrum Next — User Manual

[/ Chapter

03

Strings

This page intentionally left blank

String slicing, using TO Chapter 8 — Strings
Strings
String slicing, using TO

Given a string, a substring of it consists of some consecutive characters from it, taken in
sequence. Thus “string” is a substring of “bigger string”, but “b sting” and “big reg” are
not.

There is a notation called slicing for describing substrings, and this can be applied to arbi-
trary string expressions. The general form is:

string expression (start TO finish)
so that, for instance:
"abcdef'(2 TO 5)="bcde"

If you omit the start, then 1 is assumed; if you omit the finish then the length of the string is
assumed. Thus:

"abcdef'(TO 5)="abcdef"'(1 TO 5)="abcde"
"abcdef'(2 TO)="abcdef"(2 TO 6)="bcdef"
"abcdef'(TO) ="abcdef'(1 TO 6)="abcdef"
(You can also write this last one as "abcdef'(), for what it's worth.)
A slightly different form misses out the TO and just has one number:
"abcdef"(3)="abcdef"(3 TO 3)="c"

Although normally both start and finish must refer to existing parts of the string, this rule is
overridden by another one: if the start is more than the finish, then the result is the empty
string. So:

"abcdef'(5 TO 7)

gives error 3 Subscript wrong because the string only contains 6 characters and 7 is too
many, but:

"abcdef'(8 TO 7)="" (an empty string)
and:
"abcdef'(1 TO 0)="" (again, an empty string)

The start and finish must not be negative, or you get error B integer out of range. This next
program is a simple one illustrating some of these rules.

18 LET afs="abCcdefr"
2@ FOR n=1 TO &

S8 PRINT afsin TO 51
4@ HEXT n

S@ STOFR

Type NEW when this program has been run and enter the next program:

1@ LET a%="AEBLE WAS I"

28 FOR n=1 TO 1@

S@ PRIMWT a%in TO 1@ ,a%i(i(ll-n1l
TO 1@)

4@ HEXT n

ZX Spectrum Next — User Manual 79

Chapter 8 — Strings Exercise

For string variables, we can not only extract substrings, but also assign to them. For in-
stance, type:

LET a%="I'm the Z& Spectrum HKNext'

and then:

LET a%iS TO Sl ="%xxxxx"
and:

PRINT at%

Notice how since the substring a$(5 TO 8) is only 4 characters long, only the first four stars
have been used. This is a characteristic of assigning to substrings: the substring has to be
exactly the same length afterwards as it was before. To make sure this happens, the string
that is being assigned to it is cut off on the right if it is too long, or filled out with spaces if it
is too short — this is called Procrustean assignment after the road bandit Procrustes who
used to make sure that his victims fitted the bed by either stretching them out on a rack or
cutting their feet off.

If you now try:

LET a%il="HelLLao there"
and:

PRIMNT a%;'"."

You will see that the same thing has happened again (this time with spaces put in) be-
cause a$() counts as a substring.

LET agf="HellLo there"
will do it properly.

Complicated string expressions will need parentheses around them before they can be
sliced. For example:

"abc"+"def'(1 TO 2)="abcde"
(‘abc"+"def")(1 TO 2)="ab"

Exercise

1. Try writing a program to print out the day of the week using string slicing. Hint:
let the string be SunMonTuesWedThursFriSat.

80 ZX Spectrum Next — User Manual

[/ Chapter

Functions

Chapter 9 — Functions String functions — LEN, STR$ and VAL

Functions

Consider the sausage machine. You put a lump of meat in at one end, turn a handle, and
out comes a sausage at the other end. A lump of pork gives a pork sausage, a lump of fish
gives a fish sausage, and a lump of beef a beef sausage.

Functions are practically indistinguishable from sausage machines but there is a differ-
ence: they work on numbers and strings instead of meat. You supply one value (called the
argument), mince it up by doing some calculations on it, and eventually get another value,
the result.

Mea“

Sausage Machine

ACME Corp

Function
Argument In { J

Fig. 13 — How functions work

Sausages

w—

Result Out

Different arguments give different results, and if the argument is completely inappropriate
the function will stop and give an error report.

Just as you can have different machines to make different products — one for sausages.
another for dish cloths, and a third for fish-fingers and so on, different functions will do dif-
ferent calculations. Each will have its own value to distinguish it from the others.

You use a function in expressions by typing its name followed by the argument, and when
the expression is evaluated the result of the function will be worked out.

String functions — LEN, STR$ and VAL

As an example, there is a function called LEN, which works out the length of a string. Its argu-
ment is the string whose length you want to find, and its result is the length, so that if you type

FRIMNT LEM "Zx Spectrum MNext"

the computer will write the answer 16, the number of characters in ZX Spectrum Next (spaces
are counted as a character).

If you mix functions and operations in a single expression, then the functions will be worked
out before the operations. Again, however, you can circumvent this rule by using parentheses.
For instance, here are two expressions which differ only in the parentheses, and yet the calcu-
lations are performed in an entirely different order in each case (although, as it happens, the
end results are the same).

LEN "Fred"+ LEN "Bloggs' LEN (‘Fred"+'Bloggs’)

4+LEN "Bloggs" LEN ("FredBloggs")
446 LEN "FredBloggs"
10 10

Here are some more functions:

82 ZX Spectrum Next — User Manual

String functions — LEN, STR$ and VAL Chapter 9 — Functions

STR$ converts numbers into strings; its argument is a number, and its result is the string
that would appear on the screen if the number were displayed by a PRINT statement.
Note how its name ends in a $ sign to show that its result is a string. For example, you
could say:

LET a%=5STR% 1l=2

which would have exactly the same effect as typing:

LET af="1a@"
Or you could say:

PRIMNT LEM STR% 108.884

and get the answer 3, because STR$ 100.0000="100".

VAL is like STR$ in reverse: it converts strings into numbers. For instance:
VAL "3.5"=3.5

In a sense, VAL is the reverse of STR$, because if you take any number, apply STR$ to it,
and then apply VAL to it, you get back to the number you first thought of.

However, if you take a string, apply VAL to it, and then apply STR$ to it, you do not always
get back to your original string.

VAL is an extremely powerful function, because the string which is its argument is not re-
stricted to looking like a plain number — it can be any numeric expression. Thus, for
instance:

VAL "2*3"=6
or even:

VAL ("2"+"*3") = 6
There are two processes at work here. In the first, the argument of VAL is evaluated as a
string: the string expression "2"+"*3" is evaluated to give the string "2*3". Then, the string

has its double quotes stripped off, and what is left is evaluated as a number; so 2*3 is
evaluated to give the number 6.

This can get pretty confusing if you don't keep your wits about you. Remember that inside
a string a string quote must be written twice. If you go down into further depths of strings,
then you find that string quotes need to be quadrupled or even octupled.

There is another function, rather similar to VAL, although probably less useful, called
VALS$. Its argument is still a string, but its result is also a string. To see how this works, re-
call how VAL goes in two steps: first its argument is evaluated as a string, then the double
quotes are stripped off this, and whatever is left is evaluated as a number. With VALS, the
first step is the same, but after the string quotes have been stripped off in the second step,
whatever is left is evaluated as another string. Thus:

VAL$ ""Fruit punch"™" = Fruit punch

(Notice how the string quotes proliferate again.) Do:

LET afs="99"

and print out all of the following: VAL a$, VAL "a$", VAL ""a$"", VAL$ a$, VALS$ "a$" and
VALS$ ""a$"". Some of these will work, and some of them won't; try to explain all the an-
swers. (Keep a cool head.)

ZX Spectrum Next — User Manual 83

Chapter 9 — Functions Number functions — SGN, ABS, INT and SQR
Number functions — SGN, ABS, INT and SQR

SGN is the sign function (sometimes called signum). It is the first function you have seen
that has nothing to do with strings, because both its argument and its result are numbers.
The resultis +1 if the argument is positive, 0 if the argument is zero, and -1 if the argument
is negative.

ABS is another function whose argument and result are both numbers. It converts the ar-
gument into a positive number (which is the result) by forgetting the sign, so that for
instance:

ABS-32=ABS32 =32

INT stands for integer part — an integer is a whole number, possibly negative. This function
converts a fractional number into an integer by throwing away the fractional part, so that
for instance:

INT 3.9=3

Be careful when you are applying it to negative numbers, because it always rounds down:
thus, for instance:

INT -3.9=-4

SQR calculates the square root of a number — the result that, when multiplied by itself,
gives the argument. For instance:

SQR 4 = 2 because 2*2=4
SQR 0.25 = 0.5 because 0.5*0.5=0.25
SQR 2 = 1.4142136 (approximately) because 1.4142136*1.4142136=2.0000001

If you multiply any number (even a negative one) by itself, the answer is always positive.
This means that negative numbers do not have square roots, so if you apply SQR to a
negative argument you get an error A Invalid Argument.

User defined functions using DEF and FN

You can also define functions of your own. Possible names for these are FN followed by a
letter (if the result is a number) or FN followed by a letter followed by $ (if the result is a
string). These are much stricter about parentheses; the argument must be enclosed in
parentheses.

You define a function by putting a DEF statement somewhere in the program. For in-
stance, here is the definition of a function FN s whose result is the square of the argument:

1a DEF FM = () =x%x: REM =quare of X

The s following the DEF FN is the name of the function. The x in parentheses is a name by
which you wish to refer to the argument of the function. You can use any single letter you
like for this (or, if the argument is a string, a single letter followed by $).

After the = sign comes the actual definition of the function. This can be any expression,
and it can also refer to the argument using the name you've given it (in this case, x) as
though it were an ordinary variable.

When you have entered this line, you can invoke the function just like one of the com-
puter's own functions, by typing its name, FN s, followed by the argument. Remember that
when you have defined a function yourself, the argument must be enclosed in parenthe-
ses. Try it out a few times:

FRIMNT FH = (2]

84 ZX Spectrum Next — User Manual

User defined functions using DEF and FN Chapter 9 — Functions

FRIMNT FMH = (3+4]
FRIMNT 1+IWHT FM = I(LEW "chicken"-2+3]

Once you have put the corresponding DEF statement into the program, you can use your
own functions in expressions just as freely as you can use the computer's.

Note: in some dialects of BASIC you must even enclose the argument of one of the com-
puter's functions in parentheses. This is not the case in NextBASIC.

INT always rounds down. To round to the nearest integer, add .5 first — you could write
your own function to do this:

28 LDEF FRMH (=] =INT (Z+@.51:
REH g9iwes = rounded to the
nearest integer.

You will then get, for instance:

FNr(2.9) =3 FNr(2.4) =2

FNr(-29) =-83 FNr(-2.4) =-2
Compare these with the answers you get when you use INT instead of FN r. Type in and
run the following:

18 LET ==@: LET 4u=@: LET a=1@
28 CEF FH plx,d]) =a+x %4

S8 CDEF FR Qi) =a+xxd

4@ PRIMNT FH p(2,3) ,FH g1

There are a lot of subtle points in this program.

First, a function is not restricted to just one argument: it can have more, or even none at all
— but you must still always keep the parentheses.

Second, it doesn't matter whereabouts in the program you put the DEF FN statements. Af-
ter the computer has executed line 10, it simply skips over lines 20 and 30 to get to line 40.
They do, however, have to be somewhere in the program. They can't be in a command.

Third, x andy are both the names of variables in the program as a whole, and the names of
arguments for the function FN p. FN p temporarily forgets about the variables called x and
y, but since it has no argument called a, it still remembers the variable a. Thus when FN
p(2,3) is being evaluated, a has the value 10 because it is the variable, x has the value 2
because it is the first argument, and y has the value 3 because it is the second argument.
The result is then, 10+2*3=16. When FN q() is being evaluated, on the other hand, there
are no arguments. So a, x and y all still refer to the variables and have values 10, 0 and 0
respectively. The answer in this case is 10+0*0=10.

Now change line 20 to:

2@ [DEF FR pilx,4d)=FKH 11

This time, FN p(2,3) will have the value 10 because FN g will still go back to the variables x
and y rather than using the arguments of FN p.

Some BASICs (not NextBASIC) have functions called LEFT$, RIGHT$, MID$ and TLS$.
LEFT$ (a$,n) gives the substring of a$ consisting of the first n characters.
RIGHT$ (a$,n) gives the substring of a$ consisting of the characters from nt on.

MID$ (a$, n,, n,) gives the substring of a$ consisting of n, characters starting at the n,.

ZX Spectrum Next — User Manual 85

Chapter 9 — Functions User defined functions using DEF and FN

TL$ (a$) gives the substring of a$ consisting of all its characters except the first.

You can write some user-defined functions to do the same: e.g.

1@ DEF FHW tHilafl=as(2 TO 1:
REM TL%

28 DEF FHW L%ia%s, nl=afli TO
n!: REM LEFTHS

Check that these work with strings of length 0 or 1.
Note that our FN I$ has two arguments, one a number and the other a string.

A function can have up to 26 numeric arguments (since the Latin alphabet has 26 letters)
and at the same time up to 26 siring arguments.

A function cannot have integer arguments, nor use integer expressions in its definitions.

Exercise
1. Use the function FN s(x)=x*x to test SQR. You should find that:
FN s(SQR x)=x
if you substitute any positive number for x, and:
SQR FN s(x)=ABS x
whether x is positive or negative (Why the ABS?)

2. Write functions FN r$ and FN m$ for RIGHT$ and MID$

86 ZX Spectrum Next — User Manual

[/ Chapter

10

Mathematical
Functions

This page intentionally left blank

T and EXP Chapter 10 — Mathematical Functions

Mathematical Functions

This chapter deals with the mathematics that the ZX Spectrum Next can handle. Quite pos-
sibly you will never have to use any of this at all, so if you find it too heavy going, don't be
afraid of skipping it. It covers the operation 1 (raising to a power), the functions EXP and
LN, and the trigonometrical functions SIN, COS, TAN and their inverses ASN, ACS, and
ATN.

tand EXP

You can raise one number to the power of another — that means: multiply the first number
by itself the second number of times. This is normally shown by writing the second number
just above and to the right of the first number like so 2%; but since this gets unnecessarily
complex to write and display on a computer, we use the symbol T instead. For example,
the powers of 2 are:

2M=2
212=2%2=4 (2 squared)
213=2*2*2=8 (2 cubed)

2T4=2%2*2*2=16 (2 to the fourth power)

Thus at its most elementary level, aTb means a multiplied by itself b times, but obviously
this only makes sense if b is a positive whole number. To find a definition that works for
other values of b, we consider the rule:

at(b+c) = aTb*alc

(Notice that we give T a higher priority than * and / so that when there are several opera-
tions in one expression, the Ts are evaluated before the *s and /s.) You should not need
much convincing that this works when b and ¢ are both positive whole numbers; but if we
decide that we want it to work even when they are not, then we find ourselves compelled to
accept that:

aTo = 1
al(-b) = 1/aTh
at(1/b) = the by, root of a, which is to say, the number that you have to
multiply by itself b times to get a.
and:
al(b*c) = (ath)Tc

If you have never seen any of this before then don't try to remember it straight away; just re-
member that:

at(-1)

1/a
and:
at(1/2) SQR a
and maybe when you are familiar with these the rest will begin to make sense.

Experiment with all this by trying this program:

18 IWMPUT a,b,cC
28 PRIMT ati(b+cC) ,atbxatc
S@ 0 TO 1@

Of course, if the rule we gave earlier is true, then each time round the two numbers that the
computer prints out will be equal. (Note — because of the way the computer works out T,
the number on the left — a in this case — must never be negative.)

ZX Spectrum Next — User Manual 89

Chapter 10 — Mathematical Functions LN

Arather typical example of what this function can be used for is that of compound interest.
Suppose you keep some of your money in a building society and they give 15% interest
per year. Then after one year you will have not just the 100% that you had anyway, but also
the 15% interest that the building society have given you, making altogether 115% of what
you had originally. To put it another way, you have multiplied your sum of money by 1.15,
and this is true however much you had there in the first place. After another year, the same
will have happened again, so that you will then have 1.15*1.15=1.1512=1.3225 times
your original sum of money. In general, after y years, you will have 1.15%y times what you
started out with.

If you try this command:

FOR =@ TO 1@@:FPRINT 4,1@%1l.151t4
THEXT dJ

you will see that even starting off from just £10, it all mounts up quite quickly, and what is
more, it gets faster and faster as time goes on. (Although even so, you might still find that it
doesn't keep up with inflation.)

This sort of behaviour, where after a fixed interval of time some quantity multiplies itself by
a fixed proportion, is called exponential growth, and it is calculated by raising a fixed num-
ber to the power of the time. Suppose you did this:

1@ CEF FH aixl=atx

Here, a is more or less fixed, by LET statements: its value will correspond to the interest
rate, which changes only every so often.

There is a certain value for a that makes the function FN a look especially pretty to the
trained eye of a mathematician and this value is called e. NextBASIC has a function called
EXP defined by:

EXP x=eTx

Unfortunately, e itself is not an especially pretty number: it is an infinite non-recurring deci-
mal. You can see its first few decimal places by doing:

FRIMNT ExF 1

because EXP 1 = eT1 = e. Of course, this is just an approximation. You can never write
down e exactly.

LN

The inverse of an exponential function is a logarithmic function: the logarithm (to base,) of
a number x is the power to which you have to raise a to get the number x, and it is written
log.x. Thus by definition atlogx=x; and it is also true that log(aTx)=x. You may well al-
ready know how to use base,, logarithms for doing multiplications; these are called com-
mon logarithms. NextBASIC has a function LN which calculates logarithms to the base,;
these are called natural logarithms. To calculate logarithms to any other base, you must di-
vide the natural logarithm by the natural logarithm of the base:

logx = LNx/LNa
Pl

Given any circle, you can find its perimeter (the distance round its edge; often called its cir-
cumference) by multiplying its diameter (width) by a number called =. (n is a Greek p, and
it is used because it stands for the Greek word perimeter. Unlike, what's commonly be-
lieved, its pronunciation is the same as in English.)

90 ZX Spectrum Next — User Manual

Trigonometry with SIN, COS, TAN, ASN, ACS and ATN Chapter 10 — Mathematical Functions

Like e, mis an infinite non-recurring decimal; it starts off as 3.141592653589.... The word Pl in
NextBASIC is taken as standing for this number — try PRINT PI.

Trigonometry with SIN, COS, TAN, ASN, ACS and ATN

The trigonometrical functions measure what happens when a point moves round a circle.
Here is a circle of radius 1 (1 what? It doesn't matter, as long as we keep to the same unit
all the way through. There is nothing to stop you inventing a new unit of your own for every
circle that you happen to be interested in) and a point moving round it. The point started at
the 3 o'clock position, and then moved round in an anti-clockwise direction.

Distance moved
around circle = a

™

Starting position

By
\ Yis
~J

Fig. 14 — Basics of trigonometrical measurements

We have also drawn in, two lines called axes through the centre of the circle. The one through
9 o'clock and 3 o'clock is called the x-axis, and the one through 6 o'clock and 72 o'clock is
called the y-axis. To specify where the point is, you say how far it has moved round the cir-
cle from its 3 o'clock starting position: let us call this distance a. We know that the circumfer-
ence of the circle is 2r (because its radius is 1 and its diameter is thus 2): so when it has
moved a quarter of the way round the circle, a= m/2; when it has moved halfway round, a= =;
and when it has moved the whole way round, a=2x.

Given the curved distance round the edge, a, two other distances you might like to know are
how far the point is to the right of the y-axis, and how far it is above the x-axis. These are called,
respectively, the cosine and sine of a. The functions COS and SIN on the computer will calcu-
late these.

Note that if the point goes to the left of the y-axis, then the cosine becomes negative; and if
the point goes below the x-axis, the sine becomes negative.

Another property is that once a has got up to 2=, the point is back where it started and the
sine and cosine start taking the same values all over again:

SIN (a+2*Pl) = SIN a
COS (a+2*Pl) = COS a

The tangent of a is defined to be the sine divided by the cosine; the corresponding func-
tion on the computer is called TAN.

Sometimes we need to work these functions out in reverse, finding the value of a that has
given sine, cosine or tangent. The functions to do this are called arcsine (ASN on the com-
puter), arccosine (ACS) and arctangent (ATN).

ZX Spectrum Next — User Manual 91

Chapter 10 — Mathematical Functions Trigonometry with SIN, COS, TAN, ASN, ACS and ATN

CD
0
0 g,
~e /?z[,,s

\\\\
Cosine of a
COS a

Fig. 15 — Graphical representation of trigonometrical functions

In the diagram of the point moving round the circle, ook at the radius joining the centre
to the point. You should be able to see that the distance we have called a, the distance
that the point has moved round the edge of the circle, is a way of measuring the angle
through which the radius has moved away from the x-axis.

When a=mn/2, the angle is 90° (degrees)
When a=nr, the angle is 180°; and so round to when a=2=, and the angle is 360°.

You might just as well forget about degrees, and measure the angle in terms of a alone: we
say then that we are measuring the angle in radians. Thus =/2 radians=90° and so on.

You must always remember that in NextBAS/C SIN, COS and so on use radians and not
degrees. To convert degrees to radians, divide by 180 and multiply by =; to convert back
from radians to degrees, you divide by © and multiply by 180.

Exercises

1. Using the knowledge you have gained from this chapter, define a function to
convert radians to degrees (this may prove very useful to you in the future).

2. In Fig. 15 above, the function COT appears while it's not part of NextBASIC's vo-
cabulary. Write a function that returns the value of the cotangent of a using TAN

92 ZX Spectrum Next — User Manual

(/] Chapter
Jath

Random Numbers

This page intentionally left blank

RANDOMIZE, RND and % RND Chapter 11 — Random Numbers

Random Numbers
RANDOMIZE, RND and % RND

This chapter deals with the functions RND and % RND and the keyword RANDOMIZE.
They are all used in connection with random numbers, so you must be careful not to get
them mixed up.

As far as normal functions go, RND is quite unusual: although it does calculations and
produces a result, it does not need an argument.

Each time you use it, its result is a new random floating point number between 0 and 1.
(Sometimes it can take the value 0, but never 1.)

Try:
1@ FRIMT RHD
28 GO TO 1@

to see how the answer varies. Can you detect any pattern? You shouldn't be able to; ran-
dom means that there is no pattern’.

% RND, which is — as seen on Chapter 7 — the version of RND available in integer expres-
sions, behaves slightly differently. It takes a single argument (e.g. n) and returns arandom
integer in the range 0 to n-1. For example, %RND 10 will return a random integer between
0and9.

While RND returns, as discussed above, arandom number between 0 and 1, you can easily
get random numbers in other ranges. For instance, 5*RND is between 0 and 5, and
1.3+0.7*RND is between 1.3 and 2. To get whole numbers with RND use INT (remember-
ing that INT always rounds down) as in 1+INT (RND*6). If however your desired random
values can stay within the range of 0 to 65534, it is better to use % RND which avoids the
unnecessary —and rather slow — floating point calculations involved. Let's use both in a pro-
gram to simulate dice throwing. RND*6 is in the range 0 to 6, but since it never actually
reaches 6, INT (RND*6) is 0,1,2,3,4 or 5.

Here is the program:

1@ REM dice throwing program

28 CLS
S@ FOR n=1 TO 2
4@ FPRIMT 1+IWMT (RRMHDx&1 ;" "

S8 HEXT n
E@ IMPUT ag%: GO TO zZ@

Press ENTER each time you want to throw the dice. To use % RND instead, change line
40 to read:

4@ FRIMT X1+ RMHD &;' "

Isn't that more readable? The RANDOMIZE statement, is used to make RND and % RND
start off at a definite place in its sequence of numbers, as you can see with this program:

18 RAMCOMIZE 1

2@ FOR n=1 TO S: PRIWNT X RHMHD
18@,: HEXT n

S8 PRIMNT: GO TO 1@

1 Actually, RND is not truly random, because it follows a fixed sequence of 65536 numbers. However, these are so
thoroughly jumbled up that there are at least no obvious patterns so we say that RND is pseudo-random.

ZX Spectrum Next — User Manual 95

Chapter 11 = Random Numbers RANDOMIZE, RND and % RND

After each execution of RANDOMIZE 1, the % RND sequence starts off again with 50 and
if you use RND instead of % RND 100, you'll get 0.0022735596. You can use other num-
bers between 1 and 65535 in the RANDOMIZE statement to start the RND sequence off
at different places.

If you had a program with RND or %RND in it and it also had some mistakes that you had
not found, then it would help to use RANDOMIZE like this so that the program behaved
the same way each time you ran it.

RANDOMIZE on its own (and RANDOMIZE 0 has the same effect) is different, because it
really does randomise RND and % RND — you can see this in the next program:

1@ RAMNDOMIZE
28 FPRIMT X RHD &5535: GO TO
1@

The sequence you get here is not very random, because RANDOMIZE uses the time
since the computer was switched on. Since this has gone up by the same amount each
time RANDOMIZE is executed, the next % RND does more or less the same. You would
get better randomness by replacing GO TO 10 by GO TO 20.

Here is a program to toss coins and count the numbers of heads and tails.

1@ LET heads=@: LET tails=0@

2@ LET coin=¥ RMHND 2

S@ IF coin=@ THEW LET
heads=heads +1

d@ IF coin=1 THEHM LET
tails=tail=s+1

5@ FPRIMNT heads;'",";tails,

E@ IF tails<:@8 THERM PRINT
heads ~tai Ls;

T PRIWNT: GO TO 2@

The ratio of heads to tails should become approximately 1 if you go on long enough, be-
cause in the long run you expect approximately equal numbers of heads and tails.

Exercises

1. (For mathematicians only.)

Let p be a (large) prime, and let a be a primitive root modulo p.
Then if b, is the residue of a;, modulo p (1 < b, <p-1), the sequence:

b-1

o-1
is a cyclical sequence of p-1 distinct numbers in the range 0 to 1 (excluding 1).
By choosing a suitably, these can be made to look fairly random.
65537 is a Fermat prime, 216+1. Because the multiplicative group of non-zero
residues modulo 65537 has a power of 2 as its order, a residue is a primitive
root if and only if it is not a quadratic residue. Use Gauss' law of quadratic reci-
procity to show that 75 is a primitive root modulo 65537 .
The ZX Spectrum Next uses p=65537 and a=75, and stores some b-1 in mem-
ory. RND entails replacing b,-1 in memory by b, -1, and yielding the result
Gi1) / (-1).
RANDOMIZE n (with 1 < n < 65535) makes b, equal to n+1.
RND is approximately uniformly distributed over the range 0 to 1.

96 ZX Spectrum Next — User Manual

[/ Chapter

Arrays

This page intentionally left blank

DIM Chapter 12 — Arrays

Arrays
DIM

Suppose you have a list of numbers, for instance the marks of ten people in a class. To
store them in the computer you could set up a single variable for each person, but you
would find them very awkward. You might decide to call the variable Bloggs 1, Bloggs 2,
and so on up to Bloggs 10, but the program to set up these ten numbers would be rather
long and boring to type in.

How much nicer it would be if you could type this:

S5 REHM tThis program will not
wo ik

1@ FOR n=1 TO 1@

28 REARLD ELogg:=s n

S@ HEXT n

4@ DATHAH
1a,2,5,19,15,3,11.,.1,8.,6

Well, you can't!

However, there is a mechanism by which you can apply this idea, and it uses arrays. An ar-
ray is a set of variables, its elements, all with the same name, and distinguished only by a
number (the subscript) written in parentheses after the name. In our example the name
could be b (like control variables of FOR ... NEXT loops, the name of an array must be a
single letter), and the ten variables would then be b(1), b(2), and so on up to b(10).

The elements of an array are called subscripted variables, as opposed to the simple vari-
ables that you are already familiar with.

Before you can use an array, you must reserve some space for it inside the computer, and
you do this using a DIM (for dimension) statement:

CIM Blla@)

sets up an array called b with dimension 10 (i.e. there are 10 subscripted variables
b(1),...,b(10)) and initialises the 10 values to 0. It also deletes any array called b that ex-
isted previously. (But not a simple variable. An array and a simple numerical variable with
the same name can coexist, and there shouldn't be any confusion between them because
the array variable always has a subscript). The subscript can be an arbitrary numerical
expression, SO now you can write:

S5 0LIM bBila@)

1@ FOR n=1 TO 1@

28 RERLD bin!

S@ HEXT n

4@ DATHAH
1@a,2,5,19,15,3,11.,.1,8.,6

to read in the elements from a DATA list, or:

18 FOR xn=1 TO 1@
2@ IMNFPUT Xmin)
S@ HEXT Xn

to INPUT the elements’ values by hand. Note, that in the second example there is no DIM
statement. That's because as discussed in Chapter 2, the second array is an integer array.

ZX Spectrum Next — User Manual 99

Chapter 12 — Arrays DIM

Integer arrays come predimensioned to a fixed 64 elements numbered 0 to 63. Attempting
to enter a DIM statement for %m will produce an audible tone and entering the statement
will not be successful.

If we need to use an integer array with more than 64 elements, it is possible although what
changes is the way we have to address them. Whereas in a normal integer array the sub-
script is written inside parentheses () for integer arrays larger-than-64-elements, the sub-
script is written within brackets []. Furthermore, larger-than-64-elements integer arrays
reduce the number of available integer arrays in the system as they take the entire array
that follows sequentially from the one we're using and attach it to the current one. What this
means is that if we want to use a 128 element integer array %al], this will take the space
from integer array %b(). If we want to use an 192 element integer array %c[], this will use
space from integer arrays %d() and %e() and so on.

The maximum integer array usable is 26 x 64 =1664 if using integer array %a[] with no
other arrays available. Note that subsequent arrays don't disappear; they're still accessi-
ble carrying data from the integer array that reserved them. Modifying them however may
have unexpected consequences. To illustrate this point, let's assume an integer array
%al] with a desired 128 elements. Write the following little program:

18 LET XalgSl = 43

28 PRIMT Xa 551

S8 PRIMT xb(1l): REM the &5Sth
element of arrad all is=s
(= A Ay

It's now obvious how this works!

You can also set up arrays with more than one dimension. This does also apply to Integer
Arrays, although they're normally predefined to have a single dimension; you'll see how be-
low. In a two-dimensional array you need two numbers to specify one of the elements —
rather like the line and column numbers to specify a character position on the television
screen — so it has the form of a table or matrix.

Alternatively, if you imagine the line and column numbers (two dimensions) as referring to
a printed page, you could have an extra dimension for the page numbers. Of course, we
are talking about numeric arrays; so the elements would not be printed characters as in a
book, but numbers. Think of the elements of a three-dimensional array v as being speci-
fied by v (page number, line number, column number).

For example, to set up a two-dimensional array ¢ with dimensions 3 and 6, you use a DIM
statement:

CIM cCci3,68)
This then gives you 3 x 6=18 subscripted variables:

2 3 4 5 6
) o
) o
)

o

o
o

1
) o
)

) ol

w o =
20

: 1, , 1,
, 2, , 2,
: 3 : 3
Table 4 — Representation of a two-dimensional array
The same principle works for any number of dimensions.

Although you can have a number and an array with the same name, you cannot have two
arrays with the same name, even if they have different numbers of dimensions except in the
case of normal numerical and integer arrays.

100 ZX Spectrum Next — User Manual

DIM Chapter 12 — Arrays

As we mentioned above integer arrays can have a second dimension as well. This follows
the discussion of extending integer arrays to larger than 64 elements. The technique is
similar; If a two-dimensional integer array is required, we enclose subscripts within brack-
ets []. The difference here is that subscripts need to be individually enclosed: For example
whereas we would address regular array ¢() defined with DIM ¢(4,64) with c(x,y) in the
case of its integer counterpart we would address it as %c[x][y]. Each x dimension takes
one entire array that follows the base array name. For example using %c [x][y] with x=0to
5 and y= 0 to 63 will use arrays %C(),%D(),%E(),%F(),%G() and %H)

There are also string arrays. The strings in an array differ from simple strings in that they are
of fixed length and assignment to them is always Procrustean — chopped off or padded
with spaces. Another way of thinking of them is as arrays (with one extra dimension) of sin-
gle characters. The name of a string array is a single letter followed by $, and a string array
and a simple string variable cannot have the same name (unlike the case for numbers).

Suppose then, that you want an array a$ of three strings. You must decide how long these
strings are to be —let us suppose that 10 characters each is long enough. You then say:

CIM ag(3,1@) (type this in)

This sets up a 3*10 array of characters, but you can also think of each row as being a
string:

1 2 3 4 5 6 7 8 9 10
1 a$(1)| a$(1,1)| a$(1,2)| a$(1,3)| a$(1,4)| a$(1,5)| a$(1,6)| a$(1,7)| a$(1,8)| a$(1,9)| a$(1,10)
2 a$(2)| a$(21)| a$(2,2)| a$(23)| a$(24)| a$(2,5)| a$(26)| a$(2,7)| a$(2,8)| a$(2,9)| a$(2,10)
8 a$(3)| a$(31)| a$(3,2)| a$(3,3)| a$(3.4)| a$(3,5)| a$(3,6)| a$(3,7)| a$(3,8)| a$(3,9)| a$(3,10)

Table 5 — Representation of a string array

If you give the same number of subscripts (two in this case) as there were dimensions in
the DIM statement, then you get a single character; but if you miss the last one out, then
you get afixed length string. So, for instance, a$(2,7) is the 7t character in the string a$(2);
using the slicing notation, we could also write this as a$(2)(7). Now type:

LET a%iz!="1234557539a@"
and:

FRIMT a%iz2! ,a%i2,7]
You get:

1253456573520 7

For the last subscript (the one you can miss out), you can also have a slicer, so that for in-
stance:

a$(2,4 TO 8) = a$(2)(4 TO 8) = "45678"

Remember: in a string array, all the strings have the same —fixed— length. The DIM state-
ment has an extra number (the last one) to specify this length. When you write down a
subscripted variable for a string array, you can put in an extra number, or a slicer, to corre-
spond with the extra number in the DIM statement. You can have string arrays with no di-
mensions. Type:

CIM a%ila)

and you will find that a$ behaves just like a string variable, except that it always has length
10, and assignment to it is always Procrustean.

ZX Spectrum Next — User Manual 101

Chapter 12 — Arrays DIM
Exercises

1. Use READ and DATA statements to set up an array m$ of twelve strings in which
m3$(n) is the name of the n"month. (Hint: the DIM statement will be DIM m$(12,9).
Test it by printing out all the m$(n) (use a loop)).

2. Type:
FRIMT "now i= the maoanth ofF
CSmEIS1;tingt; "t when
merrd Lads
are plaging"”

What can you do about all those spaces?

102 ZX Spectrum Next — User Manual

[/ Chapter

=

Conditions

Chapter 13 - Conditions AND, OR and NOT
Conditions

AND, OR and NOT

We saw in Chapter 3 how an IF statement takes the form:

IF condition THEN ...

The conditions there, were the relations (=, <, >, <=, >= and <>), which compare two
numbers or two strings. You can also combine several of these, using the logical opera-
tions, AND, OR and NOT.

One relation AND another relation is true whenever both relations are true, so you could
have a line like:

IF a%s="4desz" AMND =x:@ THEW PRIMNT x

in which x only gets printed if a$="yes" and x>0. The syntax here is so close to English
that it hardly seems worth spelling out the details. As in English, you can join lots of rela-
tions together with AND, and then the whole Iot is frue if all the individual relations are.

One relation OR another is true whenever at least one of the two relations is true. (Remem-
ber that it is still frue if both the relations are true; this is not always implied in English).

The NOT relationship turns things upside down. The NOT relation is true whenever the re-
lation is false, and false whenever it is true!

Logical expressions, can be made with relations and AND, OR and NOT, just as numerical
expressions can be made with numbers and +, - and so on; you can even put them in pa-
rentheses if necessary. They have priorities in the same way as the usual operations +, -,
* [and T do: OR has the lowest priority, then AND, then NOT, then the relations, and the
usual operations.

NOT is really a function, with an argument and a result, but its priority is much lower than
that of other functions. Therefore its argument does not need parentheses unless it con-
tains AND or OR (or both). NOT a=b means the same as NOT (a=b) (and the same as
a<>b, of course).

<> isthe negation of = inthe sense that itis true if, and only if, = is false. In other words:
a<>bis the same as NOT a=b

and also:
NOT a<>b is the same as a=b

Persuade yourself that >= and <= are the negations of < and > respectively: thus you
can always get rid of NOT from in front of a relation by changing the relation.

Also:

NOT (a first logical expression AND a second)
is the same as:

NOT (the first) OR NOT (the second)
and:

NOT (a first logical expression OR a second)
is the same as:

NOT (the first) AND NOT (the second)

104 ZX Spectrum Next — User Manual

AND, OR and NOT Chapter 13 — Condlitions

Using this, you can work NOTSs through parentheses until eventually they are all applied to
relations, and then you can get rid of them. Logically speaking, NOT is unnecessary, al-
though you might still find that using it makes a program clearer.

The following section is quite complicated, and can be skipped by the fainthearted!

Try:
FRIMNT 1=2,1<:2

which you might expect to give a syntax error. In fact, as far as the computer is concerned,
there is no such thing as a logical value: instead it uses ordinary numbers, subject to a few
rules.

1. =, <, >, <=, >=and <> all give numeric results: 1 for true, and 0 for false.
Thus the PRINT command above printed 0 for 1=2, which is false, and 1 for
1<>2, which is true.

2. In: IF condition THEN ... the condition can be actually any numeric expres-
sion. If its value is 0, then it counts as false, and any other value (including the
value of 1 that a true relation gives) counts as true. Thus the IF statement
means exactly the same as:

IF condition <>0THEN . ..
3. AND, OR and NOT are also number-valued operations.
x if y is frue (non-zero)

X AND y has the value 0 (faise), ify is false (zero)
% ORy has the value { 1 (Fru@ ity is true (non-zero)
X, it y is false (zero)
NOT x has th | { 0 (false), if x is true (non-zero)
x has the value
1 (frue), if x is false (zero)

(Notice that true means non-zero when we're checking a given value, but it means 1 when
we're producing a new one.)

Read through the chapter again in the light of this revelation, making sure that it all works.

In the expressions x AND y, x OR y and NOT x, x and y will usually take the values 0 and 1
for false and true. Work out the ten different combinations (four for AND, four for OR and
two for NOT) and check that they do what the chapter leads you to expect them to do.

Try this program:

18 IMFUT a

z&@ IMNPUT b

S@ PRIMT (a AMD a:=bl+ (b AHD
a<bl

d@a S0 TO 1@

Each time it prints the larger of the two numbers a and b.
Convince yourself that you can think of:

x ANDy as meaning: xify (else the result is 0)
and of:
x ORy as meaning: x unless y (in which case the result is 1)

An expression using AND or OR like this is called a conditional expression.

ZX Spectrum Next — User Manual 105

Chapter 13 — Conditions AND, OR and NOT

An example using OR could be:

LET price=sprice__less__tax+(1.15 OR
VEHE="Zero rated'l

Notice how AND tends to go with addition (because its default value is 0), and OR tends to
go with multiplication (because its default value is 1).

You can also make string valued conditional expressions, but only using AND.
<{x$ if y is non-zero

x$ AND y has the value L
ity is zero

So it means x$ if y (else the empty string).
Try this program, which inputs two strings and puts them in alphabetical order:

1@ IWMPUT "Tdpe in two
strings" "a%.,b%

28 IF a%:b% THEW LET cCcH=a%:
LET a$=b%: LET b%=CH

S@ PRIMT a%:;'" "; ("< ARND a%
b+ 0" =" AMNDE as=b%H);
o g

4@ G0 TO 1@

Exercise

1. NextBASIC can sometimes work along different lines from English. Consider, for
instance, the English clause If a doesn't equal b or ¢c. How would you write this in
NextBASIC? The answer is not:

IF a<*b OR C
nor is it
IF a<:b OR a<:cC

106 ZX Spectrum Next — User Manual

[/ Chapter

i

The Character
Set

Chapter 14 — The Character Set CHR$ and CODE

The Character Set

The letters, digits, punctuation marks and so on that can appear in strings are called char-
acters, and they make up the alphabet, or character set that the ZX Spectrum Next uses.
Most of these characters are single symbols, but there are some more, called tokens, that
represent whole words, such as PRINT, STOP, >=, <>, <= and so on.

CHR$ and CODE

There are 256 characters, and each one has a code between 0 and 255. There is a complete
list of them in Appendix A. To convert between codes and characters, there are two func-
tions, CODE and CHR$. CODE is applied to a string, and gives the code of the first charac-
terinthe string (or O if the string is empty). CHR$ is applied to a number, and gives the single
character string whose code is that number. This program prints out the entire character set:

1@ FOR a=32 TO 255: PRIWNT CHR% a;: HEXT a

At the top you can see a space, 15 symbols and punctuation marks, the ten digits, seven
more symbols, the capital letters, six more symbols, the lower case letters and five more
symbols. These are all (except £ and ©) taken from a widely-used set of characters known
as ASCII (standing for American Standard Codes for Information Interchange); ASCII also
assigns numeric codes to these characters, and these are the codes that the ZX Spectrum
Next uses.

The graphics symbols

The rest of the characters are not part of ASCI/, and are specific to the ZX Spectrum Next.
First amongst them are a space and 15 patterns of black and white blobs. These are
called the graphics symbols and can be used for drawing rudimentary pictures. You can
enter these from the keyboard, using what is called graphics mode. |

f you press GRAPHICS (CAPS SHIFT with 9) then the cursor will change to a flashing
white/magenta. Now the keys for the digits 1 to 8 will give the graphics symbols: on their
own they give the symbols drawn on the keys; and with either shift pressed they give the
same symbol but inverted, i.e. black becomes white, and vice versa.

Regardless of shifts, digit 9 takes you back to normal mode (blue cursor) and digit O is
DELETE. Here are the sixteen graphics symbols:

Sym- Cod Key Sym- Cod Key
bol e bol =

J 128 8 . 143 Shift+8
J 129 1 H 142 Shift+1
ﬂ 130 2 u 141 Shift+2
! 131 3 i 140 Shift+3
j 132 4 E 139 Shift+4
J 133 5 ” 138 Shift+5
!i 134 6 h! 137 Shift+6
ﬂ 135 7 .J 136 Shift+7

Table 6 — Graphics Symbols

108 ZX Spectrum Next — User Manual

BIN and USR Chapter 14 — The Character Set

BIN and USR

After the graphics symbols, you will see what appears to be another copy of the alphabet
from A to U. These are characters that you can redefine yourself, although when the ma-
chine is first switched on they are set as letters — they are called user-defined graphics.
You can type these in from the keyboard by going into graphics mode, and then using the
letters keys from A to U.

To define a new character for yourself, follow this recipe — it defines a character to show
the mathematical symbol X (Greek for Zuvoro=sum).

i. Work out what the character looks like. Each character has an 8x8 square of
dots, each of which can show either the paper colour or the ink colour (see
Chapter 16 regarding INK and PAPER). You'd draw a diagram something like
this, with black squares for the ink colour:

Wel've left a 1 square margin round the edge because the other letters all
have one (except for lower case letters with tails, where the tail goes right
down to the bottom of the square).

ii. Work out which user-defined graphic is to show - let's say the one corre-
sponding to S, so that if you press S in graphics mode you get X on your
screen.

iii. Store the new pattern. Each user-defined graphic has its pattern stored as
eight numbers, one for each row. You can write each of these numbers as
BIN followed by eight Os or 1s — 0 for paper, 1 for ink — so that the eight num-
bers for our character are:

EIM @2202a2aa
EIM @11111@@
EIM @@laa@ad@lad
EIM 2@a@ala@ad
EIM Q2@ladad
EIM @@2l@@ad@lad
EIM @111111&
EIM @@@@ad@aid

(If you know about binary numbers, then it should help you to know that BIN is used to
write @ number in binary instead of the usual decimal.)

ZX Spectrum Next — User Manual 109

Chapter 14 — The Character Set POKE and PEEK

These eight numbers are stored in memory, in eight places, each of which has an ad-
dress. The address of the first byte, or group of eight digits, is USR "S" (S because that is
what we chose in (i), that of the second is USR "S"+1, and so on up to the eighth, which
has address USR "S"+7.

USR here is a function to convert a string argument into the address of the first byte in
memory for the corresponding user-defined graphic. The string argument must be a sin-
gle character which can be either the user-defined graphic itself or the corresponding let-
ter (in upper or lower case). There is another use for USR, when its argument is a number,
which will be dealt with in subsequent chapters.

Even if you don't understand this, the following program will do it for you:

5 FOR n=@ TO 7
18 REACD row: FPOKE USSR
Y"SU+n,row

15 MEXT n

28 DATAH EIM Q200a00a
25 DATA EIM @111118@d
S@ DATA BEINM @2lad@ld
S5 DATA BEIM @@a@aladad
4@ CATA EIMN @@a@8lad@aid
4= DATA BEIHM @@la@@ld
S@ DATAH BEIM @111111@
E@ DATAH EINM Q200@a0a@

The above example can also be rewritten using integer variables without the use of BIN
while still expressing the graphic matrix in binary form. Can you restate it per what you've
learned?

POKE and PEEK

The POKE statement stores a number directly in a memory location, bypassing the mech-
anisms normally used by NextBASIC. The opposite of POKE is PEEK, and this allows us
to look at the contents of a memory location although it does not actually alter the contents
of that location. They will be dealt with properly in Chapter 24.

After the user-defined graphics come the tokens.

You will have noticed that we have not printed out the first 32 characters, with codes 0 to 31.
These are control characters or as commonly referred to: control codes. They either don't pro-
duce characters on screen, although they do have an effect on what's printed there, or, alter-
natively, they are used to control something other than the display itself, and the screen
displays ¥ to show that it doesn't understand them. They are described more fully in Appendix
A

Three that the screen output uses, are those with codes 6, 8 and 13; on the whole, CHR$ 8
is the one you are likely to find most useful.

CHR$ 6 prints spaces in exactly the same way as a comma does in a PRINT statement;
for instance:

FRIMT 1; CHR% &;2
does the same as:

FRIMNT 1,2
Obviously this is not a very clear way of using it. A more subtle way is to say:

110 ZX Spectrum Next — User Manual

POKE and PEEK Chapter 14 — The Character Set

LET a%="1"+CHR% &+"2"
FPRIMNT a%

CHRS$ 8 is backspace: it moves the print position back one place — try:

FRIMT "1234'";CHR% S; "S5
which prints up:

1235
As 5 takes the place of 4 from the string printed in the first part of the PRINT statement.
CHRS$ 13is carriage return: it moves the print position on to the beginning of the next line.
Effectively:

FRIMT "1234";CHR% 13; "S&75"
is the same as:

FPRIMNT "1234":PRIMT "S&7IS"

It may not be immediately apparent why you wouldn't do the latter but it's possible also to
do:

LET af%="1234"+CHR% 13+ "S&E7FSY
PRIMT a%

In which case you can see the usefulness of a single carriage return character.

The screen also uses those with codes 16 to 23; these are explained in Chapters 15 and
16. All the control codes are listed in Appendix A.

Using the codes for the characters we can extend the concept of alphabetical ordering to
cover strings containing any characters, not just letters. If instead of thinking in terms of
the usual alphabet of 26 letters we use the extended alphabet of 256 characters, in the
same order as their codes, then the principle is exactly the same. For instance, these
strings are in their ZX Spectrum Next alphabetical order: (Notice the rather odd feature
that lower case letters come after all the capitals: so a comes after Z; also, spaces matter.)

CHR$ 3+"ZOOLOGICAL GARDENS"
CHRS$ 8+"AARDVARK HUNTING"
" AAAARGH!"

"(Parenthetical remark)"

"100"

"129.95 inc. VAT"

"AASVOGEL"

"Aardvark"

"PRINT"

"Zoo"

"[interpolation]"

"aardvark"

"aasvogel"

"zoo"

"zoology"

Here is the rule for finding out which order two strings come in. First, compare the first
characters. If they are different, then one of them has its code less than the other, and the
string it came from is the earlier (lesser) of the two strings. If they are the same, then go on
to compare the next characters. If in this process one of the strings runs out before the
other, then that string is the earlier, otherwise they must be equal.

ZX Spectrum Next — User Manual 111

Chapter 14 — The Character Set POKE and PEEK

The relations =, <, >, <=, >= and <> are used for strings as well as for numbers: <
means comes before and > means comes after, so that:

"AA man"<"AARDVARK"
"AARDVARK">"AA man"

are both true.

<= and >= work the same way as they do for numbers, so that:
"The same string"<="The same string"

is true, but:
"The same string"<"The same string"

is false.

Experiment on all this using the program here, which inputs two strings and puts them in
order.

18 IMFPUT "Tdpe in two
string=s:", a%, b%

28 IF a%:b$% THER LET CcY$%=a%:
LET ag%s=b%: LET b%=C%

@ PRIMT a%;'" ';

4@ IF a%s<b$ THEM FPRIMNT '"<';:
SO TO &@

=@ PRIMKT "=';

E@ FPRIMKT " ", b%

TR GO TO 1@

Note how we have to introduce ¢$ in line 20 when we swap over a$ and b$, as
LET as=b%: LET bH=ai%

would not have the desired effect.

This program sets up user-defined graphics to show chess pieces:

P for pawn
R for rook

N for knight
B for bishop
K for king

Q for queen

Chess pieces

S LET b=EBIW @l1lllll@d: LET
Cc=EBIM B@11120&:
LET 4d=EIH 203188aa

1@ FOR nmn=1 TO &: RERD pP%: REH
E pieces=s

Z&@ FOR =@ TO 7: REM read
piece into S bdtes

S8 REARAD a: PORKE USSR pP%+f,a

4@ HEXT f

S8 MHEXT n

112 ZX Spectrum Next — User Manual

Alternative Character Sets Chapter 14 — The Character Set

188 REM bBiszhop

11a CATAH "b",@,d, BIHM
Rlalegd , BEIN @laddlad

1z@ DATA BIWM @118lléd,Cc,b.a

1@ REM king

14a CATAH "k ,@,d,c,d

1@ CATAH c, BIM @l10@@led,c,a

158 REHM rook

17@ DARATA "Y' ,@a, BIN
@lalalad, b, c

1@ DATA Cc.,b.,b.@

198 REHM Qqueen

2@ DATA "q4" .8, BIM 218l18l8d,
EIHM @@lalaad,d

218 DATAH BIWM 811811@d,b.,.b.,@

228 REH pawn

2538 DATA "p",@,@.,d,cC

24@ DATAH cCc,d.,b,@

258 REHM knight

2@ DATA "'n",&,d,c, BIHM
Bllllaa@

278 DATAH BIWN Q@a@lladd,c,b., @

Note that 0 can be used instead of BIN 00000000.

When you have run the program, look at the pieces by going into graphics mode.

Alternative Character Sets

As we are going to see in Chapter 21 — Channels, Streams and Windows the ZX Spectrum
Next provides via its windowing system, the ability to display alternative character sets. In
order to set up however an alternative character set, characters have to be defined some-
where in memory, very similarly to the way we did the chess pieces or the £ symbol above.
The characters redefined are limited to the 96 from code 32 until code 127 and should be
in that order. A successive series of 768 POKE statements incrementing the memory ad-
dress by one location at the time, will define them and then a last POKE altering the
CHARS system variable (See Chapter 25 — System Variables) will point NextBASIC to the
location of this new character set.

Character Graphics Mode

In the following chapter, we will be introduced to Layer 3 — the Character Graphics mode;
this is a hybrid graphics mode based around the notion of a character tile, that is to say an
8 x 8 pixel matrix very much like the ones we explored above with User Defined Graphics
with four very crucial differences:

* Each character tile can have up to sixteen colours and not only two.

¢ Al ASCII characters can be defined by tiles giving the user in effect a truly
multi-lingual character display.

* [ayer 3 displays can be either 80 columns by 32 rows or 40 columns by 32 rows
and not only 32 columns by 24 rows as the regular Spectrum display is.

* Layer 3 cannot be accessed from NextBASIC (at the time of writing) in the same,
straightforward way, other modes/layers are. You will need to write functions
and procedures that utilise the PEEK, POKE, IN, OUT and REG facilities as well
as the BANK commands at your disposal in order to make use of this powerful
mode.

ZX Spectrum Next — User Manual 113

Chapter 14 — The Character Set Character Graphics Mode

Layer 3 has other uses as well and we will be discussing those in the following 3 chapters.

Exercises

1. Imagine the space for one symbol divided up into four quarters like a Battenburg
cake. Then if each quarter can be either black or white, there are 2x2x2x2=16
possibilities. Find them all in the character set.

2. Run this program:

1@ IMFPUT a
28 FPRIWNT CHR% a;
S@ S0 TO 1@

If you experiment with it, you'll find that CHR$ a is rounded to the nearest whole
number; and if a is not in the range 0 to 255 then the program stops with error
report:

B integer out of range.

3. Which of these two is the lesser?

||EV|L||
llevilll

114 ZX Spectrum Next — User Manual

[/ Chapter

More about
PRINT and INPUT

Chapter 15 — More about PRINT and INPUT Coordinate Systems

More about PRINT and INPUT

Coordinate Systems

Before we go into more detail about how we can exercise a bit more control on PRINT and
INPUT it is useful to understand a little bit about the way NextBASIC views character posi-
tioning on the screen. Due to the requirements for backwards compatibility with previous
Sinclair computers, NextBASIC uses two distinct coordinate systems to keep track of
where text is input or outputted. The first —or legacy- system is based on a virtual matrix
that exists on screen and organises it in rigid rows and columns. The second, is more pre-
cise and allows for freely positioned columns and rows along the x and y-axes. Addition-
ally the legacy coordinate system has been extended to allow for direct manipulation of
the footer bar and status area for layers other than Layer O, which is not normally possible
in the legacy system.

Screen Modes and Pixel Coordinates

In order to make a concrete distinction between the two coordinate systems, we should
first discuss a little bit about the ZX Spectrum Next's display system. We will revisit this
again in Chapters 16 and 17 in more detail as these chapters deal with the full graphics ca-
pabilities of the computer rather than the subset dedicated to screen character manipula-
tion, but for now let's enumerate the screen modes in a simple fashion.

The ZX Spectrum Next has 8 distinct graphics modes broken into 4 groups —or layers—
with an additional Sprite Layer which, since it's an independent subsystem, we will not be
covering in this chapter . These modes are accessed using the LAYER command with the
exception of Layer 3 (Character Graphics) and they are the following:
* Layer0
» Layer 0 — Standard Spectrum (ULA) mode, 256 w x 192 h pixels, 8 colours
total (2 intensities), 32 x 24 cells, each capable of displaying 2 colours
* Layer1
» Layer 1, 0 — LoRes (Enhanced ULA) mode, 128 w x 96 h pixels, 256 colours
total, 1 colour per pixel
» Layer 1, 1 — Standard Res (Enhanced ULA) mode, 256 w x 192 h pixels,
256 colours total, 32 x 24 cells, each capable of displaying 2 colours
» Layer 1, 2 — Timex HiRes (Enhanced ULA) mode, 512 w x 192 h pixels,
256 colours total, only 2 colours on screen
» Layer 1, 3 —Timex HiColour (Enhanced ULA) mode, 256 w x 192 h pixels,
256 colours total, 32 x 192 cells, each capable of displaying 2 colours
* Layer?2
» Layer 2 -256 w x 192 h pixels, 256 colours total, one colour per pixel
* Layer3
» Layer 3,0 — Text mode, 320 w x 256 h pixels, 256 colours total,
40 x 32 cells each capable of displaying 2 colours
» Layer 3,7 — Text mode, 640 w x 256 h pixels, 256 colours total,
80 x 32 cells, each capable of displaying 2 colours
» Layer 3,2 — Graphics mode, 320 w x 256 h pixels, 256 colours total,
40 x 32 cells each capable of displaying 16 colours
» Layer 3,3 — Graphics mode, 640 w x 256 h pixels, 256 colours total,
80 x 32 cells, each capable of displaying 16 colours

Layer 3 is not currently available to PRINT and INPUT and therefore won't be discussed in
this chapter; it is mentioned here for completeness.

Technically speaking, Layer 1,7 is the same as Layer O with extra colour capabilities how-
ever NextBASIC treats them differently to maintain a consistent way of addressing the ex-

116 ZX Spectrum Next — User Manual

Changing the size of characters Chapter 15 — More about PRINT and INPUT

tra capabilities of the ZX Spectrum Next's Enhanced ULA. The legacy coordinate system
we discussed above applies only on Layer 0, whereas Layers 1 and 2 use the new system.

There are three major differences between Layer 0 and Layers 1 and 2 as far as character
positioning goes. There are more differences but we will examine these in turn in the spe-
cial graphics Chapters 16 — 18. These are:

1. Layer O is organised in a strict 32 columns by 24 rows matrix while the rest can
both position characters according to a similar matrix (according to character
size), or, if so desired, anywhere along the y and x axes.

2. The user cannot —normally— position characters on the two bottom rows of the
Layer O screen while this is possible in the other layers.

3. Layer 0 pixel coordinates begin at the bottom left corner and extend up and to
the right while for the rest of the layers, pixel coordinates begin at the top left
corner and extend down and to the right. This particular difference is not impor-
tant for character placement on Layer O but it is for the rest of the layers and defi-
nitely, as we are going to see further down this manual, extremely important for
positioning graphics.

Changing the size of characters

With the exception of Layer 0, which has, as we mentioned, a rigid organisation of charac-
ter positions on screen in a 32 x 24 character matrix, all other layers have the ability to posi-
tion characters either rigidly as above (ie. in arows x columns matrix) or freely according to
pixel position of each character matrix's top left corner.

Character size can be modified horizontally with the following sequence:

PRINT CHR$ 30; CHR$ n;

where n can be a number from 3 to 8, which sets the width of all characters displayed
on screen from a minimum of 3 to a maximum of 8 pixels wide. Character size is
modified vertically by issuing:

PRINT CHR$ 29; CHR$ n;

where n can be a number from 0 to 3, which sets the height of all characters displayed
on screen to the following predetermined heights in pixels:

Value of n Size (pixels) Description

0 8 Normal Size

1 16 Double Size

2 6 Reduced Size

3 12 Double Reduced Size

These sequences which are more appropriately called control codes, are character size
shortcuts for text windows. These can also be used on Layer 0 but you would need to open
a window first when in that mode. The rest of the layers have predefined and pre-opened
full-screen text windows and therefore these control codes work there by default. We will
discuss text windows at length in Chapter 21 — Channels, Streams and Windows so for now
keep these two control codes in mind as only working outside Layer 0. They are extremely
important to know, as they modify the behaviour of the AT and TAB modifiers we will
examine below.

Using AT to print to a certain location

You have already seen PRINT used quite a lot, so you will have a rough idea of how it is
used. Expressions whose values are printed are called PRINT items, and they are sepa-
rated by commas, semicolons and apostrophes, which are called PRINT separators. A
PRINT item can also be nothing at all, which is a way of explaining what happens when you
use two commas in a row.

ZX Spectrum Next — User Manual 117

Chapter 15 — More about PRINT and INPUT Using AT to print to a certain location

There are two more kinds of PRINT itemns, which are used to tell the computer not what, but
where to print. For example PRINT AT 11,16;"*" prints a star in the middle of the screen in
Layer 0. The modifier

AT vertical position, horizontal _position

moves the PRINT position (the place where the next item is to be printed) to the vertical
and horizontal position specified. Horizontal positions are measured in columns and verti-
cal positions in rows however for layers other than Layer 0, the number of columns and
rows varies according to the size of characters used (and for HiRes mode the horizontal
resolution as well). Character sizes are set according to the previous section, however for
AT usage purposes, we need to note that double-width and double-height character sizes
do not modify the maximum columns and rows AT will accept as parameters, so if for ex-
ample you use PRINT CHR$ 29; CHR$ 1 for characters that are 16 pixels high, you will still
get a maximum of 24 rows for AT purposes.

You may have noticed at the beginning of this chapter that we discussed Layer 0 as being
organised for character printing purposes, in a matrix of 24 rows by 32 columns. As you
will see however when in Layer 0, NextBASIC will not give you access to the last two rows
since, as we discussed in Chapter 1, the bottom two rows of the screen are reserved. This
is also true for bitmap graphics commands as you will see in Chapters 17 and 18. We will
expand further on the possible combinations for AT but for now give the command:

FRIMNT AT 22,31; " %"

and you will immediately receive error 5 Out of screen, 0:1. It's not difficult to understand
why that happened. As we will see in Fig. 76 below, for the purposes of printing via
NextBASIC?, your ZX Spectrum Next has a vertical resolution of 192 pixels. Now since, as
we learned in Chapter 14, each character is 8 pixels high, we can make a quick division
and see that 192 + 8 = 24. Knowing that the two last lines are reserved and not accessible
to us, we can reduce our available rows by a further 16 pixels (or 2 rows) so we get a total
22 rows. Now, because your computer starts counting from zero, 22 rows would go up to
21 as a value, which in turn explains why you received the error.

Rows on which we can place output using AT, are numbered therefore from 0 (at the top)
to 21, and columns from 0 (on the left) to 31.

This situation changes when we change layers and go to the other two groups (remember
that Layer 3 is excluded). As discussed previously, columns and rows on these are calcu-
lated according to the width of characters that we have selected with the control codes.
Before we illustrate graphically how the screen is organised, the following table will give
you the possible combinations in columns per character width. Remember that you can
also figure this out on your own by dividing the maximum resolution of the layer you're
using by the selected character width.

Number of columns per Layer
Character LoRes HiRes Standard Res
width Layer 1,0 Layer 1,2 Layers: 1,1-1,3 -2
(in px) (128 x 96) (512x192) (256 x 192)
3 42 170 85
4 32 128 64
5 25 102 51
6 21 85 42
7 18 73 36
8 16 64 32

Table 7 — Column positions for PRINT according to character size

Table 7 above, showed us that although we could pack our screen with 170 characters per

1 The maximum screen resolution of the ZX Spectrum Next is 320 x 256 pixels (or 640 x 256 half-width pixels), however
these resolutions are only available to Layer 3 and Sprite Layers as we will see in the following chapters.

118 ZX Spectrum Next — User Manual

Using AT to print to a certain location Chapter 15 — More about PRINT and INPUT

Absoiuts Pl Gooreingte Drighn (3,0)
\ Timex HiRes Coordinate System
CGolumns (Displayed width of font here is 6 px so 512+6 = 85 columns)
V-Pirel [l o ol oablob oalailals s bl alal dala bl el el el el 6 e bla a7 7 7 7 77 el
| Rows | Addres$,0l1 21345678901 21345161718 90/1 28455 7 81901 2134 6,718 9011 283 45 6l7 81901 23415 67 8 901112:3.45 67 B.9001(2.3415 67 81910 11234 .
0 0 0
1] 8 i
2l 16 |
3w THH i
4 a2 . ;
5 40 [|
6 48] |
7l &6 B e 1
8 64 ‘
9 1 =
10 80 g
1] 88 £
12 9 g
13 104 =
14 112 &
15 120 i
16] 128 1
7] 136 i
18] 144 ;
19 152 |
20] 160 |
21 168 |
2| 176 |
23] 184 191§
ul Pixel Coordinates (x) 1]

Fig. 16 — Layer O coordinate system for PRINT and INPUT

line, in practice 3 pixel wide fonts are almost unreadable, even at the highest available
resolution of Layer 1,2. In the example program that's meant to demonstrate character
cells for the AT modifier (but written using the POINT modifier strangely enough!) we're in-
cluding below, you can see all the possible combinations for all layers.

Absolute Pixel Coordinate Crigin (0,0)
ayer 2, Timex (Non HiRes), Enhanced ULA and LoRes Coordinate System
.| Columns {Default width of font is 8 px so 2568 = 32 columns —or— 1288 = 16 on LoRes) |
V-] 11111111112222‘2222!2‘2|33
Rows |Addressy 0 |12 [3[4|5/6(7(8/9(0(1]2/3|4|5]6(7|8/9(0|1|2[3/4|5/6/7|8/9|0|1
ol o0 [] Tt
1 8
2 BMex 1
3 24
4 32 1 I
5 40 1
6 48 1 |
7 56| | SN
8 64]
9] 72 =
108 £
11] 88| | | | | - | - I O T A
12 96 g
13 104] =
14112 &
15 120|
16 128
17 136
18] 144]
19 152
| 20 160/
|21 168
23 V') I S N O A A
23 1844 . PRLTH
4 Pixel Coorinates (x) 3
Standard Mode (256w > 192N pixels) -5,-
| LoRes Mode (128w x 9Gh picels)

Fig. 17 — LoRes and Standard Resolution coordinate system for PRINT and INPUT

The author's personal preference is the 128 column text of HiRes Layer 1,2 as it's clear
enough to read but not too big as to not be able to fit a lot of information onto your screen.

ZX Spectrum Next — User Manual 119

Chapter 15 — More about PRINT and INPUT Using POINT to print to a certain location

Using POINT to print to a certain location

In Fig. 16 above, we see the main difference between PRINT items on Layer O and the other
layers and that's none other than the previously mentioned ability to place them in any X
and Y coordinate we please. This diagram assumes a standard 8x8 character size but
where you only saw rows in Fig. 15, here you also see a pixel value. This corresponds to
the placement of each row and column in Layer O but in fact, it could be anything within the
boundaries of the horizontal and vertical resolution. Let's switch /ayers and try to do the
same thing:

LAYER 1,1:FRIMT FPOIWNT 24&5,176; """

Unlike before you'll will not get an 5 Out of screen, 0:1 error and you will get an asterisk at
the rightmost edge of the screen like we expected to get the first time we gave the PRINT
AT 22,31 command. The two values correspond to 22 times the character height and 31
times the character width (both of which are 8 pixels). You can see at the same time the
notion of the free placement of characters as the addressing of the location is now in pix-
els and not the fixed rows and columns. What's also immediately visible is that addressing
the location on screen in pixel coordinates is different as it reverses the order of the loca-
tion parameters from y,x to x,y and that's done to match the syntax of the rest of the
graphics commands that accept pixel coordinates as parameters . To replicate the behav-
iour of the first PRINT AT command on Layer 0 and get an error, we will need to place the
output of print, outside the boundaries of the screen like so:

LAYER 1,1: FPRIWNT FOIWNT Z25&,@; " %"

would produce the same exact error. To properly calculate where to print if you want to keep
your coordinates cell-based instead of pixel-based, a simple function could do that for you
quite easily. In Fig. 17 as well as Fig. 18 we've done that for you assuming a standard font,
but what about a shorter, or perhaps taller font? It's quite simple if you keep in mind that, if
you follow the heights defined earlier, you can find exactly how many rows and columns you
can fit in your screen. Note that POINT's arguments must not begin with a parenthesis be-
cause it will be evaluated as a function and attempting to store the line you're typing will fail.

0 (Standard) Coording

Laye
Columns

m_.
o
=
on
-
—
-
E=
ors
rors
cors
o
e
o
—irs
eors
o
—c

| Rows| 0 | 1

111
2 45673_9\0\1
oM e x |

*|eo
wors

1175 101

ro|—

|
1S Sl

Pixel Coordinates (y)

Pixel Coordinates for Graphics Commands ({y)

I ——1 -FaeterFﬂS:a i3-firea-fNanpritatie)

Pixel Coordinates (x)
* Graphics Commands Pixe| Coordinate Origin (0,0)

= Absolute Pixel Coardinate Origin (0,0)

Fig. 18 — High Resolution coordinate system for PRINT and INPUT

The following —very slow— program demonstrates exactly how things are positioned on
screen with every change in Layer and furthermore gives you some insight on how PRINT

120 ZX Spectrum Next — User Manual

Using POINT to print to a certain location Chapter 15 — More about PRINT and INPUT

POINT as well as —indirectly— PRINT AT is affected every time your screen mode changes.
Try to walk through the program to figure out how it operates:

1a

2@
Sa
4.
=1
Fa
S@
9@
1a@
11@
1z@
1=@
14@
1=5@

15@
1S@
19@
=gl
21a
=p=]r

258

255
248

25a

2@

27a

25a
29@
S@a
1@
Sz
S5a
S48
SS@

REHM Fir=t we diszable LAYER
2 and then we =t Standard
ULA CDiszplad Hode

LAYER 2.,@

LAYER @

LET HMaxx=125

LET Ha=xww =96

LET mul=1

LET diw=1

LET add=@

LET Cchszz=5

LET h=5
FOR m=@ TO S
LET n=@
LET d=1

IF m=@ THEW S0 TO 37@: REH
Lader @ not s=upported by
FRIMNT FPOIMNT

FOR a=3 TO &

FOR b=@ TO 3=

LET n=@

LET d=1

FROCZ LadChange (m,a,bl

FOR r=@ TO [(HMax“#*mull-1
STEF h

FOR c=@ TO [(HMaxxXx*mulL)-cCchsz
STEFP cCh=sz

LET row = (r+addl - diw

IF r=@ AMD C<:@ THERM FRIMNT
FOIMNT

c,row;d : LET d=d+1

IF c=@ AMD r=@8 THEW FRIMNT
FOIMNT

c,rom;n : LET n=n+1

IF Cc=@ AMD r<:@ THERM FRIMNT
FOIMNT

CL,roaw;n : LET n=n+1

IF Cc<:@ AND r<:@ THEWN PRINT
FOIMNT

C,row; """

IF n=1@ THERM LET n=@
IF d=1@ THERM LET d=@
HEXT <«

IF c=1 THEW LET n=@
HEXT

FRUSE @

IF m=@& THE®M GO TO I37@
HEXT b

ZX Spectrum Next — User Manual 121

Chapter 15 — More about PRINT and INPUT

Using POINT to print to a certain location

SE@
SVa
SSe
9
4@a
12@a

181@
1az2a
183a
184a
185a
1@
1a7 @
185a
189a
11@@
111&

11=2@

11=@

1146

115@

HEXT a

HEXT m

LAYER @

LAYER 2.8

STOR

CEFFROC

LadChange imode , ch ,hel
LET diw=1

LET add=@

LET maxx=125

LET ma=x“=96&

LET mulL=2

LET ch=zzZz=cCch

IF he=@ THE®W LET
IF he=1 THE®M LET
IF he=2 THEHM LET
IF he=3 THEM LET h=12

REH Lader @ i=s not covered
as PRINT

FOIMNT doesn "t work there
IF mode=1 THE®R LAYER 1,8:
CLS : LET mul=1l: PFPRIMNT
CHR% Z@; CHR% ch: PRIKNT
CHR% 29; CHR% he: PRIWNT AT

T T
nu

S
15
1=

@,a; "LoRezs" " ""CSIZIE (HxL
"ihi" o o® ", Chsz "PRESS ARMNY
FEY'": PRUSE @: CLS
EMDFPROC

IF mode=2 THEW LAYER 1,1:
cCLSs . PRIWNT CHR% S@; CHRS

ch: PRIMT CHRY$% 29; CHR%
he: PRIMT AT @,@; "Enhanced
ULA" " "CSIZE (HxL) ok
w ", Cchsz " V"PRESS ARNY EEW"
:PAUSE @: CLS : ERMDPROC

IF mode=3 THERK LAYER 1,2:
CLS : LET HMaxxX=25S&5: FRINT
CHRY% S@; CHR% ch: PRIMNT
CHRY% 29; CHR% he: PFPRIMT AT

B,a; "Timex HiRES"""CSIZE
[Hx L “shi" % "“,chsz“
“"FPRESS AMY EKEEY'": FPARAUSE O
CLS : EMDPROC

IF mode=4 THEM LAYER 1,35:
CLS : PRIWNT CHR% =S@; CHR%

ch: PRIWMT CHR%$% 29; CHR%
he: PRIMNT AT @,8;"Time:x

HiColour" ""CSIZE (HxLD
“"ihi" o® ", Cchsz "PRESS ARMNY
FEY'": FPARUSE @: CLS
EMDFPROC

122

ZX Spectrum Next — User Manual

SCREEN$ Chapter 15 — More about PRINT and INPUT

115@ IF mode=5 THERM LAYER 2,1:
cLS ¢ PRIWMT CHR% S@; CHRS
ch: FPRIMNT CHR% 29; CHRY% he:
FRIMNT AT
@,a; "Laderza" ""CSIZE (H=L
“"ihi" o ® ", cCchsz "PRESS ARNY
EEY'": FPARUSE @: CLS
EMDFROC

SCREENS$

SCREENS$ is the reverse function to PRINT AT, and will tell you (within limits) what charac-
ter is at a particular position on the screen. It uses line and column numbers in the same
way as the Layer O version of PRINT AT, but enclosed in parentheses. For instance:

PRINT SCREEM% (11,15)

will retrieve the star you printed in the first example of the previous section. SCREEN$ only
works on Layer 0 and will return everything printed there, even if you switch layers during
the process as long as the memory used (which is shared between Layers 0, 7 and 3 as
you will see in Chapter 24) has not been overwritten by another display related command.
Type:

18 LAYER @:FPRIMNT AT 11,11;'"*"

28 LAYER 1,8:PRIMNT AT

@,a8; SCREEMS (11,111

You will get a huge * on the upper left corner of your screen even if the original * is not visi-
ble anymore on screen. Changing line 10 to LAYER 1,0 from LAYER 0 will produce a null
string.

Characters taken from tokens print normally, as single characters, and spaces return as
spaces. Lines drawn by PLOT, DRAW or CIRCLE, user-defined characters and graphics
characters return as a null (empty) string, however. The same applies if OVER (See Chap-
ter 16) has been used to create a composite character. The way that SCREENS$ works is
that it matches the character in a screen location to the bitmapped image of the character
in the ROM of NextZXOS. If they match it will return it. If the picture in the location doesn't
match any known character it will return an empty string.

TAB

If you're familiar with word processing, other computers, or even typewriters, you may be
also familiar with the concept of a tab, or tabulating character. What this does in other
computers is to insert a special character which will move the cursor right by a predeter-
mined amount of locations in order to arrive to a specific column in your text. The ZX Spec-
trum Next, doesn't quite work like this although the ending result on your screen is pretty
much equivalent. The modifier:

TAB column

prints enough spaces to move the PRINT position to the column specified. It stays on the
same line, or, if this would involve backspacing, moves on to the next one. Note that the
computer reduces the column number modulo X with X being the maximum amount of col-
umns available per the width of character chosen for each Layer (meaning it divides by X
and takes the remainder); so for example for Layer 0, TAB 33 means the same as TAB 1.

The code:

FPRIWNT TRE Z@;1; TARAE 12;"Contents"; AT
S,1; "CHAPTER"; TRAE 24; '"page"

ZX Spectrum Next — User Manual 123

Chapter 15 — More about PRINT and INPUT CLS

demonstrates, how you might print out the heading of a contents page on page 1 of a
book (if that book was displayed using ZX Spectrum Next characters of course!)

Try running this:

1@ FOR n=@ TO zZ@
28 PRIMT TRE S*nin;
S@ HEXT n

This shows what is meant by the TAB numbers being reduced modulo X. For a more ele-
gant example, change the 8 in line 20 to a 6 or even try to implement this on a different
layer such as the HiRes one as it allows more room for demonstration of this functionality
by adding LAYER 1,2 before line 10.

As you'll see in Chapter 21, TAB accepts a two-byte parameter which means it accepts a
maximum column number of 65535! Not that you'd ever want to use that!

Some small points:

1. These new items are best terminated with semicolons, as we have done above.
You can use commas (or nothing, at the end of the statement), but this means
that after having carefully set up the PRINT position, you immediately move it on
again which wouldn't usually be terribly useful.

2. As a reminder, you cannot print on the bottom two rows (22 and 23) on the
Layer O screen because they are reserved for commands, INPUT data (see be-
low), reports/errors and so on. References to the bottorn line usually mean line
21 and only apply to Layer 0.

3. You can use AT to put the PRINT position even where there is already some-
thing printed; the old stuff will be obliterated when you print more.

CLS

Another statement that's connected with PRINT (although it's not only limited to it), is CLS.
This clears the whole screen, something that is also done by CLEAR and RUN. The
LAYER command does not clear the screen however, although it may switch to a new
screen that has nothing on it. Do not assume a Layer is free of stuff just because you have-
n't used a command that outputs something on screen. Always give CLS after switching
layers if you want to ensure a screen free of anything on it.

Scrolling

When the printing reaches the bottom of the screen, the latter moves its contents up-
wards, to clear room on the bottom for new content. You can see this if you go into the sta-
tus area by using the Edit menu option Screen and then type:

CLS: FOR n=1 TO 22: PRIWNT n:
HEXT n

and then do:

PRIMNT 99
a few times.

Depending on the layer you are on, the computer may pause its screen output for you to
review the content being printed and ask you a question or may simply display a block
cursor at the lower right corner and wait.

124 ZX Spectrum Next — User Manual

Expanding on INPUT Chapter 15 — More about PRINT and INPUT

On Layer 0, if the computer is printing out reams and reams of stuff on screen, it asks you
before continuing. You can see this happening if you type:

CLS: FOR n=1 TO 1@@: FPRIMNT n:
ME=T n

When it has printed a screenful, it will stop, writing scroll? at the bottom of the screen. You
can now inspect the first 22 numbers at your leisure. When you have finished with them,
press y (for yes) and the computer will give you another screen full of numbers. Actually,
any key will make the computer carry on except n (for no), SYMBOL SHIFT and A (for
STOP as you can see printed on your ZX Spectrum Next's keyboard?), SPACE, BREAK (or
CAPS SHIFT and SPACE) or Esc (the latter if you have a PS/2 type keyboard) . These will
make the computer stop running the program with a report D BREAK - CONT repeats. On
other layers, the scroll? message is replaced by a block cursor (called the scroll prompt
cursor) at the lower right corner. The only keys which will stop the scrolling in fayers other
than 0 are the Esc key if on a PS/2 keyboard or the BREAK key (CAPS SHIFT and
SPACE). Everything else will scroll the screen.

Expanding on INPUT

The INPUT statement can do much more than we have told you so far. You have already
seen INPUT statements like:

IMPUT "“How old are 4Jou®™', age

in which the computer prints the caption How old are you? at the bottom of the screen,
and then you have to type in your age.

In fact, an INPUT statement is made up of items and separators in exactly the same way
as a PRINT statement is, so How old are you? and age are both INPUT items. INPUT
items are generally the same as PRINT items, but there are some very important differ-
ences:

First, an obvious extra INPUT item is the variable whose value you are to type in —age in
our example above. The rule is that if an INPUT item begins with a letter, it must be a vari-
able whose value is to be input.

Second, this would seem to mean that you can't print out the values of variables as part of
a caption; however, you can get round this by putting parentheses around the variable.
Any expression that starts with a letter must be enclosed in parentheses if it is to be printed
as part of a caption.

Any kind of PRINT item that is not affected by these rules is also an INPUT item. Here is an
example to illustrate what's going on:

LET myage = IWNT (RHL % 1@@): IWMRPUT ("I am
“imdage; Y. M1 U"How old are gouT't,
Jourage

myage is contained in parentheses, so its value gets printed out. yourage is not con-
tained in parentheses, so you have to type its value in.

If you are in Layer O, everything that an INPUT statement writes goes to the bottom part of
the screen, which acts somewhat independently of the top half. In particular, its rows are
numbered relative to the top line of the bottom half, even if this has scrolled the actual
screen up (which it does if you type lots and lots of INPUT data).

To see how AT works in INPUT statements, try running this on Layer 0:

2 This functionality comes from the original ZX Spectrum single key (or tokenised) entry and it's retained for compatibility
reasons.

ZX Spectrum Next — User Manual 125

Chapter 15 — More about PRINT and INPUT LINE input

1@ IMFPUT "This is Line
1.",a%$; AT @,@; " "This i=s
Line @.",a%s; HAT 2.,@;
"This is Line 2.",a%; AT
1,@; "This i=s =till Line
1.",3a%

(Just press ENTER each time it stops.) When This is line 2. is printed, the lower part of the
screen moves up to make room for it; but the numbering moves up as well, so that the
rows of text keep their same numbers.

Now try this (again on Layer 0):

1@ FOR m=@ TO 19: PRINT AT
n.@;n;: MEXT n

2@ IMPUT AT @,@;a%; AT
1.@;a%; AT 2,0;a%; AT
Z,@;a%; AT 4.@;a%; AT
S, a%;

As the lower part of the screen scrolls up and up, the upper part is undisturbed until the
lower part threatens to write on the same line as the PRINT position. Then the upper part
starts scrolling up to avoid this.

The other layers work in the same manner as described for PRINT iterns, that is in both
rigid (cell matrix) and flexible (pixel coordinate) terms. To illustrate the difference, issue a
LAYER 1,1 direct command and then modify the first example by first copying line 10 to
line 20 and then changing all AT statements to POINT statements switching the x and y
positions around, thus making the latter two parameters 0,16 and 0,8 respectively to re-
flect the height of characters (remember that on layers other than 0 character matrices will
change according to character size and pixel positioning according to max resolution).
The first thing you'll notice is that INPUT takes place at the top left of the screen as would
with PRINT and the second one that the first INPUT itern is NOT printed at "line" 1 but rather
at'line" 0. Finally you can see from the modified first example that INPUT accepts a POINT
modifier for positioning exactly like PRINT does.

LINE input

Another refinement to the INPUT statement that we haven't seen yet is called LINE input
and is a different way of inputting string variables. If you write LINE before the name of a
string variable to be input, as in:

IMFUT LIME a%

then the computer will not give you the string quotes that it normally does for a string vari-
able, although it will pretend to itself that they are there. So if you type in:

Stewve

as the INPUT data, a$ will be given the value Steve. Because the string quotes do not ap-
pear on the string, you cannot delete them and type in a different sort of string expression
for the INPUT data. Remember that you cannot use LINE for numeric variables.

Using Expressions for INPUT

There's an interesting capability of INPUT. While typing into an INPUT request that's ex-
pecting a number variable, you can use numeric expressions which can include previ-

126 ZX Spectrum Next — User Manual

Using control codes with PRINT Chapter 15 — More about PRINT and INPUT
ously defined variables. Try running this program:

1@ LET a=14
2@ IMNFUT numbers
@ FPRIMT numbers
4@ GO TO 2@

Input a few numbers, and they'll be printed as expected on the screen. Now type a and if
you press ENTER, then 14 will appear! Try typing a+2 and 16 will appear. However, if you
type a variable name not previously defined then the computer will stop with the report 2
Variable not found, 20:1.

Using control codes with PRINT

In the beginning of this chapter, we saw the effect that control codes 29 and 30 had in ad-
justing the size of the font that's currently printed on screen. There are more control codes
that we can use with PRINT. CHR$ 22 and CHR$ 23 affect printing in the same manner as
AT and TAB. They are rather odd as control codes, because whenever one is sent to the
screen to be printed, it must be followed by two more characters that do not have their
usual effect: they are treated as numbers (their codes) to specify the y and x positions (for
AT) or the tab position (for TAB). You will almost always find it easier to use AT and TAB in
the usual way rather than the control codes, but they might be useful in some circum-
stances. The AT control character is CHR$ 22. The first character after it specifies the
y-position (be it a line number or y-pixel value according to the layer we're currently in) and
the second the column number, so that:

FPRIMNT CHR% 22+CHR% 1 +CHR% C;
has exactly the same effect as:

FPRINT AT 1,cC;

This is so even if CHR$ 1 or CHR$ ¢ would normally have a different meaning (for instance
if c=13); the CHR$ 22 before them overrides that.

The TAB control character is CHR$ 23 and the two characters after it are used to give a
number between 0 and 65535 specifying the number you would have in a TAB modifier:

FRIMNT CHR% 23+CHR% a+CHR% b
has the same effect as:

FRIMNT THE a+256%b;

As with the character size control codes, there are further control codes that only apply to
layers other than 0 and further modify their behaviour. One of those, is CHR$ 26 or the
Scroll-prompt inhibitor control code. Set by CHR$ 26; CHR$ n; where n is the number of
lines that can be scrolled off before the scroll prompt cursor appears (as discussed in the
Scrolling section above) but after the first full screen length has been printed. If n=0, the
scroll prompt function is inhibited for that fayer/window. Note that the n number of lines is
calculated based on an 8 pixel character height. That can lead to some very confusing re-
sults if your chosen character height is different. Some are easy to calculate like the stan-
dard or double height characters, with the latter in essence halving the amount of lines but
others not so easy as with the reduced height and double reduced height characters. In
the two last cases you have to calculate how many pixels your program outputs vertically
by getting the amount of actual lines times the height of the characters and then divide the
product by 8 (standard character height) in order to arrive to how many lines you need to
instruct the system via the Scroll-prompt inhibitor control code to allow.

ZX Spectrum Next — User Manual 127

Chapter 15 — More about PRINT and INPUT INKEY$

If this sounds unnecessarily complicated that's because it is! In most cases, the average
user will either need to disable scroll-prompting by setting n to 0 or just set it to a full
screen of data by setting n to 24 (for all screen modes except LAYER 1,0 which requires n
setto 12).

On Layer 0 you can duplicate that behaviour albeit in a less confusing way since the char-
acters are always 8 pixels high, by employing a bit of POKE trickery to inhibit the scroll?
prompt by doing:

FORE 23692,

where x is the amount of lines the scroll prompt should be inhibited for —or in other words,
every time the scroll counter has been reached. After this it will scroll up x number of times
before stopping again with scroll?. As an example, try:

1@ FOEKE 236892, 255
28 FOR n=1 TO 4@@
S@ FPRIMT "Line '":n
4@ HEXT n

and watch everything whizz off the screen up until line 277 before the prompt to scroll re-
appears! The technical explanation of what this POKE does, is that it modifies the System
Variable SCR CT. It's important to also note that the Editor resets this System Variable so
entering the POKE directly will have no appreciable effect on scrolling on Layer O until it's
entered in a program. We will examine all the possible combinations of PRINT control
codes on Chapter 21. You will find more information about System Variables in Chapter 25
and for POKE in Chapter 24 — The Memory.

INKEY$

There's an additional function related to keyboard entry called INKEY$. INKEY$ (which
takes no argument) reads the keyboard immediately when it's invoked. If you are pressing
exactly one key (or a SHIFT key and just one other key) then the result is the character that
that key gives in that typing mode; otherwise the result is the empty string.

Try this program, which works like a typewriter.

1@ IF IMEEY% <:"'" THEW =0 TO
1@

2@ IF IMEEY% = "' THERM GO TO
=ju)

S@ PRIMT IMEEY %
4@ =0 TO 1@

Here line 10 waits for you to lift your finger off the keyboard and line 20 waits for you to
press a new key.

Unlike INPUT, INKEY$ doesn’t wait for you. So you don’t type ENTER, but on the other
hand if you don’t type anything at all then you've missed your chance. This also explains
why the GO TO statements are needed in lines 10 and 20.

128 ZX Spectrum Next — User Manual

[/ Chapter

Colours

This page intentionally left blank

An introduction to colour on the ZX Spectrum Next Chapter 16 — Colours

Colours

An introduction to colour on the ZX Spectrum Next

Up until this point, we haven't really touched the subject of graphics manipulation on the
ZX Spectrum Next and that's because the subject —mainly due to its original models' his-
tory— can be rather daunting to a beginner. As we've seen in Chapters 17 and 15 where we
really started to get into the more intricate details of the graphics system, the ZX Spectrum
Next has some very interesting graphics capabilities that set it apart from its predeces-
sors. The first capability which we will examine in depth is colour.

Basics of computer colour

The first thing we need to remember, and that is important as it explains many of the de-
sign choices of the ZX Spectrum Next, is that at its heart beats an 8-bit' processor. This
means that it is at its best when manipulating integer numbers up to 255 which are repre-
sented as 2 to the power of 8 —or properly written: 28. Now taking a step back from that in-
formation we should concentrate on how colour can be represented. In reality there are
many methods but the most common for a computer — and the one used by the ZX Spec-
trum Next — is to break colour into three components: Red, Green and Blue (or RGB) and
to represent intensities of each of these components as numbers from 0O (for no intensity,
or dark) to whatever maximum value a computer can store easily. In the ZX Spectrum
Next's case each colour component can have 8 intensities making a total of 512 combined
intensities which translates to 512 colours in total.

Now from basic maths, we know that to represent the number 8 in binary form (which is
what computers understand) we can rewrite it as 23— or a binary number of 3 bits of length.
To represent the total combination of colours when we combine the colour components,
we can rewrite 512 as (2%)° which in turn can be rewritten as 29. This, given what we just
said about the 8-bit nature of the ZX Spectrum Next is presenting a problem as the num-
ber of colours we have is represented by a 9-bit number while the computer can best ma-
nipulate efficiently 8 bits at a time. Keep this in mind for the moment and lets discuss how
a colour could be represented in binary form.

Colour organisation and representation

RGB colour has many ways of being stored in memory and it's usually denoted by the or-
der of the bits. For example the BGR way stores first the bits for the Blue component, then
the bits for the Green component and finally the bits for the Red component. As a matter of
course, we usually add a number after every component (designated by a letter) to denote
the number of bits (ergo also the number of intensities) or a single number at the end of
the organisational acronym to denote that all components have equal number of intensi-
ties. For example R2G3B3 would mean an 8-bit colour organised as RGB with 2 bits (4 lev-
els of intensity) on the Red component and 3 bits (8 levels of intensity) on the Green and
Blue components.

The ZX Spectrum Next uses the GRB (for compatibility modes) and RGB methods of or-
ganisation and can store colour in three ways: G1R1B1, G3R3B2, R3G3B3 (or RGB3) and
R3G3B2. The latter is really a shortcut for an 8-bit subset of the RGB3 way as we will see
later but for now, let's assume it can manipulate 3-bit, 8-bit and 9-bit colours.

Spatial vs Colour Resolution

Thus far, you've seen references about resolution when it comes to graphics but what
does the word really mean? In short it means how much graphical information we can fit in
afinite space. This doesn't actually mean how many dots we can fit in our screen (to make

1 Bit is an acronym for Blnary digiT and is a term used to describe the tiniest amount of information that a computer can
hold, which is a single binary digit. Microprocessors are classified according to their ability to manipulate binary
numbers of a certain order in one go. For example the Z80N CPU which is inside the ZX Spectrum Next can
manipulate a number consisting of an 8 bit order in one go, so it is called an 8-bit microprocessor. By contrast the
CPU inside the ZX Spectrum Next's "big brother', the Sinclair QL is a 32bit microprocessor as it can manipulate
numbers consisting of 32-bits in one go.

ZX Spectrum Next — User Manual 131

Chapter 16 — Colours Spatial vs Colour Resolution

a gross simplification) but both how many dots and how many colours we can fit. The for-
mer is spatial resolution (it has one more component; density but this is not pertinent to this
discussion) and the latter, colour resolution. It's important to make the distinction as we will
see below because this informs not only a computer's design choices when it comes to
graphics but also the special trickery that may be involved to display both on screen.

It's easy to understand spatial resolution. We —as you already read here and probably else-
where— measure spatial resolution in pixels —or PICTure ELements—, in essence dots ar-
ranged in a Cartesian, two-dimensional coordinate system. Leaving colour information
aside for the moment we can assign one bit per pixel and we can project this in the com-
puter's memory in a linear fashion: Each horizontal line, follows the other so in the end we
have a series of bits with each line being w x n times away from the very first bit that started
our picture where w is our horizontal resolution and n is the line we're on. We need w x h bits
to represent our screen spatially, where w is as before the horizontal size and h is the verti-
cal size (both of them measured in pixels).

This is very straightforward and indeed the ZX Spectrum Next uses this way to store
graphic data on Layers 2 and Layer 1,0. However in all the older modes, it uses a variation
of linear storage called interleaved storage. The screen area is separated vertically into
three 64 pixel high strips (or 8 attribute cells) arranged in blocks of 32. Each complete line
(x) is stored linearly; in other words a pixel stored in horizontal coordinate 9 follows the
pixel stored in horizontal coordinate 8 however, when it comes to the vertical order, there is
a virtual hopscotch of sorts happening: The computer stores the first line of the first block
of attribute cells, then stores the first line of the second block until it reaches the first line of
the 8th block, then returns to the second line of the first block and the order continues with
all second lines, then thirds and so on, until each third of the screen is full. Fig.79 demon-
strates the order of storage for ZX Spectrum Next legacy modes in order to visualise it a lit-
tle better. We will get into more detail on why the graphic data is stored in that way later.

Horlzontal storage order ———=—
Byte 0 [Byte 1 Byte 2 [Byle 2| B

@
w

11(1)1
0/12/3/4|5/6(7,8/9/01/2/3

1

2|2 212
9/0[1

2
6|78

HON
[9206,1\¥}

D
o=
o=
Bt
00—
NN
wn
ESI\S)
(9]

O N0~ |WN[=O g;

o=
T

(0]
8
16
24
32
40
48
56
1
9
17
25
33
41
49
57
2
40
18

¢ ()
183| 190
191| 1921

Fig. 19 — Interleaved graphic data storage for ZX Spectrum Next standard resolution Legacy modes

It's perhaps easier to understand the way things are stored by executing the following pro-
gram:

1@ LAYER 1,2

132 ZX Spectrum Next — User Manual

Spatial vs Colour Resolution Chapter 16 — Colours

28 BAME S ERASE @,51l44.,@

S8 FOR Xm=@ TO 51435

4@ EBARE S POEE &m,xE@181@lald
S@ HEXT xm

This program will create vertical lines 1 pixel apart on your screen but will do so in the order
they are stored in memory. As we saw previously POKE (and BANK x POKE address,
value) writes a byte in memory at a specific address. The addresses we see starting with
line 30 is where the screen memory is located and writing anything there will produce an
image on your screen. The specific address 0 in BANK 5, marks a location called
DISPLAY FILE (or —alternatively— DISP_FILE1 but you'll see below why). It's important to
note here that DISPLAY FILE when dealing with legacy modes is always located at the
same address: Byte 0 (decimal) or 0x0000 (hexadecimal) in BANK 5 (See Chapter 24 —
The Memory for more details on the BANK command and its parameters).

Layer 3 differs even more on how it stores data in memory. If you recall from Chapter 14,
Layer 3 is a Character Graphics mode and that name describes rather descriptively how
it's arranged, in other words, very much like the screen is for regular PRINT commands as
we saw in Chapter 15. The screen area is broken down to rows and columns and each of
these locations, as marked by the unique row by column coordinate, points to a linearly
stored 8 x 8 pixel image in memory called a tife. You can have up to 572 individual tiles in
memory but you an also have as little as 1! Also the order of the tiles in memory is not im-
portant as each location can point to any tile from the ones available. In essence you can
have an entire image composed of the same tile repeated over and over again much like
you can fill a screen with "A" if you repeat a PRINT "A"; enough times. Layer 3 therefore is
an array of pointers to the tile locations in memory. One would ask, why is this complicated
mechanism necessary? The answer is quite simple and you will see it repeated further
down: By using pointers (in effect indices), we can translate much larger memory struc-
tures and requirements into simpler ones, ones that an 8-bit computer like the ZX Spec-
trum Next can manipulate easily. We will examine Layer 3's memory organisation and
usage separately and more in depth, at the end of this chapter and in the following two.

For all layers except Layer 3 and the Sprites Layer, the ZX Spectrum Next has a maximum
horizontal resolution of 512 pixels? and a vertical resolution of 192 pixels which gives us:
512 x 192 = 98304 pixels — or bits — in total or 12288 bytes. In order to store that, the ZX
Spectrum Next defines a second DISPLAY _FILE area called DISP_FILE2 which is located
at byte 8192 (decimal) or 2000h (hexadecimal) in BANK 5. This secondary area has the
same organisation as the first DISPLAY_FILE but when in use it holds the display of all
odd-numbered horizontal resolution addresses letting DISP_FILE1 handle the even ones.

To demonstrate this visually you will need to edit the program above as follows:

1@ LAYER 1,2

28 EBAME S ERASE @,51l44 ,@

S@ EBAME S ERASE S192.,.6144 ,@
4@ FOR Xm=@ TO &1473

S8 BAME S POEKE Xm,X<2108@018a8a
E@ MHEXT Xm

Ta FOR Xxx=5192 TO S192+651473
S@ EBARE S POEE Wx ,XE@A00108@l1la
9@ MHEXT M

1@ LAYER @

then execute the program. The two LAYER statements first enable HiRes mode and then
disable it. The two BANK 5 ERASE statements make sure there are no left over data in the
DISP_FILE areas by filling them with Os. You will see first the DISP_FILE1 area filling up

2 The max horizontal resolution of 512 pixels is achieved by using half-width pixels which occupy the same area as the
normal horizontal 256 full-width pixels.

ZX Spectrum Next — User Manual 133

Chapter 16 — Colours Colour attribute display

and once the entire height of the screen is ran through, the DISP_FILE2 area doing the
same. If you want to see this in a more dramatic way, convert line 10 to read LAYER 1,1
and then insert a line:

55 LAYER 1,2

This will illustrate even more vividly how the display is changed to handle odd and even
horizontal coordinates from different areas of the memory.

So far, we learned that bits can have two states; 0 and 1; we are ready therefore to make
the logical jump and assign two colour states for the image we just created. With 0 being
black and 1 being white, we just defined a monochrome picture. But what about more
colours?

We saw that we can display at least two colours on screen using a single bit. To display
more (and store this information somewhere) we need to store more bits of information,
with this information dealing exclusively with colour. In the beginning of this chapter we
discussed how the ZX Spectrum Next generates and stores colour in 9 bits. The immedi-
ately obvious way to do that, would be to expand on the model displayed on Fig. 18 by
adding bits in the order the ZX Spectrum Next stores them and have a linear map of 9 bits
per pixel. This is a good idea but unfortunately incorrect, and the reason for that goes back
to our initial discussion of the ZX Spectrum Next being an 8-bit computer making access-
ing 9 bits of information at a time, extremely slow and therefore impractical in terms of
design, both from software and hardware standpoints.

Instead the ZX Spectrum Next uses three systems of storing and displaying colour infor-
mation additionally to the HiRes mode (Layer 1,2) which we just demonstrated as the latter
is monochrome so no additional colour information is needed. These are:

1. Colour attribute display
2. Extended colour attribute display
3. Palette-based hybrid linear bitmapped colour display

Colour attribute display

This system dates from the early ZX Spectrum models and was mainly conceived to both
display colour and save on memory which at the time came at a premium. The graphic
display is separated in 2 areas. The first which we already showed in the previous section
(DISPLAY_FILE) only holds the actual 1-bit graphic data. Size-wise and for the standard
resolution of Layer O and Layer 1,1, this works out to: 256 x 192 = 49152 pixels — or — bits
which divided by 8 gives us 6144 bytes which in turn divided by 1024 gives the 6 Kbytes
figure). The second area, to which we shall introduce you now, is a smaller-sized memory
block, known as COLOUR_FILE (or, alternatively, COL_FILE1) which resides immediately
after DISPLAY_FILE in memory. Itis 768 bytes long, and breaks down the colour informa-
tion in blocks of 8 by 8 pixels (therefore dividing the screen in 32 x 24 blocks) or attribute
cells where every cell can have two possible colours out of a total of 8 simultaneously. This
colour information is stored in two consecutive GRB blocks of three bits each, preambled
by two additional bits that can make the colours flashing and/or brighter. Fig. 20, shows
how colour information is stored in each byte in the COLOUR_FILE area.

4FLBRLGLRLBL.G.R.B B

Paper Colour Ink Colour

Fig. 20 - Attribute byte organisation

The two colours stored within are named INK and PAPER mainly to reference the printed
characters we explored in the previous chapter since INK is the colour of the character it-

134 ZX Spectrum Next — User Manual

Colour attribute display Chapter 16 — Colours

self and PAPER is the rest of the background, in a sense a form of virtual paper we write
ond. That way Layer 0 graphics can display up to 16 colours on screen using very little
memory but with the tradeoff of colour clash. This term simply describes the fact that the
colour resolution is much lower than the spatial one.

Like its DISPLAY FILE counterpart, COLOUR_FILE can have a secondary area which,
when enabled, is called COL FILE2 and resides right after DISP_FILE2.

Unlike the DISPLAY FILE areas, COLOUR_FILE areas are normally straightforward in how
they are stored and that is simply in order of cells from top leftmost to right bottommost.

The secondary DISPLAY FILE area, other than the HiRes (Layer 1,2) area for even display
addresses can also function as a shadow screen which is a non-visible screen, identical in
organisation to the first one, that holds a visual we may want to project quickly thus creat-
ing animation effects as we'll see in Chapter 18— Motion later on. In that usage the second-
ary COLOUR FILE area functions exactly the same way as the primary one. In HiColour
mode however (Layer 1,3), DISP_FILE2 becomes itself a COLOUR FILE and the normal
COL _FILE1 and COL_FILE2 are not used. It's also noteworthy, that HiRes mode also does
not use the COLOUR_FILE areas but for a different reason

HiColour mode (Layer 1,3) reduces the amount of colour clash by reducing the size of at-
tribute cells thereby extending the colour resolution to 32x192 cells of 8x1 pixels in size.

As the colour resolution increases, the memory requirements are increased as well and
that is why the entire memory of DISPLAY FILE2 is used in lieu of a COLOUR_FILE. It's
easy to figure out why this happens: The original COLOUR_FILE area of 768 bytes is ex-
tended (therefore multiplied) by 8 times to make the vertical colour resolution equal to the
spatial resolution. If you make the multiplication 768 x 8 you see that a further 6.144 bytes
are needed to increase the colour resolution. COLOUR_FILE1 and COLOUR_FILE2 areas
are unused in this mode. The organisation however of this enlarged COLOUR_FILE since
the colour resolution has grown follows the one of the DISPLAY FILE meaning that it uses
the same interleaved storage as the graphic data.

We can therefore modify our original program to also display colour attributes so we can
get a visual idea of the two modes' differences:

18 LAYER 1,1
2@ EBAME S ERASE @,5912.4
S@ EBAME S ERASE Sl9z2.,.6912.,4
4@ FOR Xm=@ TO &1435
S8 EBAME S POKE Xm,X<218181@1a
5@ MHEXT Xm
Y@ FOR Ma=51l4d4d TO &51l444+7E7
S&@ EBAME S FPOEKE
a8, INT ((RHD*1) +@ .21 125 +
IMNT (RHD*125)
98 MHEXT Xa
1@a LAYER 1.3
11ad FOR Xx=5192 TO S192+5145
1z2@ EBEARMNE S FPOEE
A, INT OIRMHE 1) +@ .20 125
+ IMNT IRHD*¥125)
158 HEXT M
148 LAYER 1.1
15@ PRUSE @

3 This distinction is purely arbitrary but it helps distinguish these two colours from one another in a more
human-readable way. They could have been easily called COLOUR A and COLOUR B.

ZX Spectrum Next — User Manual 135

Chapter 16 — Colours Extended colour attribute display

Lines 20 and 30 clear the DISP_FILE1 and DISP_FILE2 memory, Lines 70 to 90 fill the
COL_FILE1 area with random colour information. The LAYER 1,3 command in Line 100
switches to HiColour mode and subsequently random colour information is written in each
attribute cell with lines 110 to 130. As you can see, attribute cells in HiColour mode are
much smaller in size and written in an interleaved manner as opposed to the linear manner
demonstrated by lines 70 to 90. Finally line 140 switches back to Layer 7,7. To increase the
variety of colour combinations and reduce the times of flashing being introduced the
FLASH bit is randomised independently.

Extended colour attribute display

The creation of the ZX Spectrum Next brought forth Layer 2 and its extended colours.
However the need for colourisation of older software arose. What could be done to give a
part of the new features to older software without breaking compatibility or having to re-
write from scratch? There have been many solutions offered since the inception of the
original ZX Spectrum, each with its own strengths and drawbacks but all had been diffi-
cult, and most non-accessible in a straight forward manner from BASIC. A solution in the
form of an Enhanced ULA was conceived therefore that would give access to the entirety
of the ZX Spectrum Next's colour capability without sacrificing compatibility or ease of use.

This is achieved by retaining the DISPLAY FILE and COLOUR_FILE memory areas but re-
arranging COLOUR_FILE byte organisation by repurposing the FLASH and BRIGHT bits
and increasing the amount of INK and PAPER bits which become pointers to palette
colours (see the following sections for more information on palettes). This way, simple
commands allow recolouring of older software which is not aware of the ZX Spectrum
Next's colour 'abilities' without sacrificing compatibility. Colour clash remains (as do the at-
tribute cell sizes) however the colour capabilities extend to a maximum of 256 colours out
of the 512 the ZX Spectrum Next can display. To demonstrate (without getting into too
much detail) how you can use more colours using the Extended colour attributes display of
the Enhanced ULA type the following program:

1@ EBAMNE HEW ba

28 FOR Xa=@ TO 255

S@ EBEARME ba FOEKE Xa,Xxa

4@ HEXT Xa

S@ LAYER 1,1

5@ PALETTE DIM &

7@ LAYER FALETTE @ EARRMNEKE ba, @
S@ FPRLETTE FORMAT 255

9@ EBARAME S ERRASE @,591z2,25%5
18@ LET XL=5144

11@ REFERT: WHILE XL<5912
1z@ IF Xxc:>255 THER LET Xxc=@
138 BAME S FPOKE XL ,XcC

14@ LET XL=XL+1

158 LET Xo=Xc+1l

15@ REFERT URMTIL @

178 PARUSE @

Don't worry about the unknown commands yet. What the program does is to create an
8-bit palette for Layer 1,1, then enable the Enhanced ULA and switch it to Full Ink Mode
then cycle through all 256 colours of that palette by writing in the COLOUR_FILE area the
specific attribute. We'll go into more detail on how that works when we examine IN and
OUT and the ZX Spectrum Next Ports System in Chapter 23.

136 ZX Spectrum Next — User Manual

Palette-based hybrid linear bitmapped colour display Chapter 16 — Colours
Palette-based hybrid linear bitmapped colour display

This system of colour organisation, storage and display is applicable to Layer 1,0, Layer 2,
Layer 3 and partly applicable to the Sprite System. Before we explain why it's hybrid, we'll
point you back to the beginning of this chapter and especially the Colour organisation and
representation section. As you recall, we said there that the ZX Spectrum Next can handle
both 9 bit and 8 bit colour. This is technically inaccurate as we have a broader spectrum of
colours that a single byte can display.

We'll take a small detour here and explain the concept of a palette. A palette is a subset of
colours where each colour displayed on screen, is not actually stored as the colour com-
ponent information it's made up of, but rather as a pointer (or index) of the actual colour
that's stored somewhere else. This subset in the ZX Spectrum Next's case is comprised of
either 256 pointers (therefore we require only an 8 bit number to store each pointer) or 16
pointers plus one offset (therefore we require only a 4 bit number to store each pointer with
an additional 4 bit number to point us to one of 16 groups of colours) to the actual colours
which are represented by 16 bit numbers (therefore a set of two 8 bit consecutive numbers
which have 6 bits* unused, give the 9 bits of the actual colour stored, albeit rather
inefficiently).

There are 8 palettes in the ZX Spectrum Next. Two for each graphics system:
* Layers 0 and 1 use two
* Layer 2 uses two more
* Layer 3 also uses two —and-
® The Sprite System uses the last two

With two palettes, all 512 possible colours of the ZX Spectrum Next can be recalled, rear-
ranged and stored and therefore assigned to pixels, character tiles or attribute cells ac-
cording to the layer in use, on screen. That doesn't mean all can be displayed
simultaneously without some clever NextBASIC tricks. Normally only 256 can be shown
on a particular layer at one time.

The ZX Spectrum Next palette system has a special mode where if one were to use an
8-bit colour in the R3G3B2 format and assign one palette in sequence to the value that
equals the pointer value (for example set palette location 15 to be of a value 15) then we
could treat the entire display of Layers 2 and Layer 1,0 (LoRes) as 8-bit, treating from then
on the display instead of a palette-based one, as a bitmapped one. This is exactly why we
can call it hybrid.

In reality, each R3G3B2 colour is translated internally by the ZX Spectrum Next into a full
RGB3 colour by performing a binary OR of the first bit (MSB) of the blue component with 0
so for example colour 10111110 (8-bit) will become internally 101111101 as a full 9-bit
colour.

LoRes (Layer 1,0) and Layer 2 are very straightforward in how they store both colour as well
as graphic data. Unlike the other modes, there's no separate area for colour and there is
no interleaving in the order of storage or separate pointers to the area the data is stored.
Each byte of memory represents one pixel on screen from the top left to the bottom right.
The only two differences between them are the memory location where the screen con-
tents are stored and their resolution. The former uses the standard DISP_FILE1 and
DISP_FILE2 areas (each holding one half of the screen) and is usually stored in BANK 5,
having a maximum resolution of 128 w x 96 h pixels (thus making it a total of 12 Kbytes in
size) while the latter takes up 3 banks (by default BANKS 9,10 and 11 but is relocatabled),
having a maximum resolution of 256 w x 192 h pixels (making it a total of 48 Kbytes in size).

4 Obviously 16 positions minus 9 positions should equal 7 unused positions, however there's one more bit used called
the ‘priority bit' which although unused in the case of other layers, is used in Layer 2 palettes as we'll see in the next
section.

5 By relocatable, we mean that although the ZX Spectrum Next initially reserves BANKS 9 through 12 for Layer 2 graphic
data, this can change either automatically or by the user. One should not assume the aforementioned banks of
memory always hold Layer 2 graphic data. Check Chapters 23 and 24 for more information regarding the actual Layer
2 location.

ZX Spectrum Next — User Manual 137

Chapter 16 — Colours Layer 3 colour storage

As a consequence of graphic and colour data being stored together LoRes and Layer 2
modes do not suffer from colour clash. An additional side-effect of the linear nature of
these modes, is that the concepts of FLASH and BRIGHT do not exist there. BRIGHT was
just a way to squeeze more colours out of a very limited selection and FLASH can be re-
produced by quickly inverting the contents of an area using a number of programming
techniques available via NextBASIC.

Layer 3 colour storage

Layer 3 is special as it allows for complete usage of the full Spectrum Next screen area,
therefore the entirety of the 320 w x 256 h pixels resolution is available (combining the
standard graphic area with the width and height of the border) and uses either (like the
Sprite system we will examine in Chapter 18) a palette offset + 4-bit index combination to
store colour for each tile or a monochrome mode specifically suited to display text. The
first method, achieves significant memory space savings without sacrificing colour capa-
bilities (although at first it may look a bit restrictive): Each tile being 8 x 8 has 64 possible
pixel locations; by using a 4-bit colour index number we can only have 24 = 16 combina-
tions/colours instead of 64 we theoretically could have. With a bit of prior arrangement of
our image data however, we can achieve spectacular results and display very complex
images (colour-wise) even with that restriction in place. The monochrome mode has obvi-
ous memory benefits we have explored with the HiRes mode (Layer 1,2) as well as
increased speed.

Layer 2 priority colours

As we will see in length on the following section, since the ZX Spectrum Next display is lay-
ered, there is away to rearrange the layer display priority, or rather the order in which these
layers are stacked one on top of another. This provides unique flexibility however there are
cases that you'd want to mesh the layers in a more complex way as for example in the
case of a game where you would want the player's sprite to weave in-and-out the environ-
ment in order to get the impression of depth. Usually this is achieved by employing an al-
gorithm that performs environmental masking; hiding in other words things that we don't
want to display on the top layer. This process, especially where it involves moving
graphics, is very processor-intensive and can slow down the computer, resulting in a
not-so-fluid experience of movement. The ZX Spectrum Next addresses this very specific
issue with the introduction of priority colours. These apply only to Layer 2 palettes and are
defined by setting the 8th bit of the secondary byte of each palette entry to 1. Setting any
palette entry's priority bit will ensure that this colour will always print on top of everything
else. In case you would need the same colour to exist in a layer below the topmost you will
need to define the same colour again but on a different index using the LAYER PALETTE
command. We will revisit this topic further below, when we reach the palette manipulation
commands.

More on the LAYER command

In Chapter 15 as well as in the previous sections of this chapter we saw repeated mentions
and usage of the LAYER command. By now, you should have enough grasp of the me-
chanics behind the ZX Spectrum Next's colour and graphic system to examine it in a little
more detail. We will further expand on its usage every time a functionality we haven't yet
discussed is introduced (as in the PALETTE section that follows shortly) but for now let's
head back to the beginning of Chapter 15 and re-iterate the possible graphic modes in
conjunction with LAYER which is used to change between them.

First of all and given what we've learned in terms of colour, it's helpful to conceptualise the
graphic system in a slightly different manner than what the LAYER command organises
them in. These layers are grouped together in terms of functionality and memory ad-
dresses they use, namely: The ULA modes (Layer O and all Layer 1 modes), Layer 2 and the
Sprite System (which we will examine in more detail in Chapter 18 — Time and Motion). This
can get a bit confusing as LoRes (Layer 1,0) and Layer 2 use the same colour storage and
display system so it's better to completely disregard this and instead imagine four different

138 ZX Spectrum Next — User Manual

More on the LAYER command Chapter 16 — Colours

screens laying on top of one another with programmable priorities and potential transpar-
ency. In simple words that means that you can select whichever screen you want to ap-
pear on top and in which order. This means putting a priority onto the memory space that
holds the data for the graphics and displaying this above everything else. This is achieved
with the

LAYER OVER order

command, where order is one of the following:
0 Sprites over Layer 2 over ULA (Layer 1) — the default
Layer 2 over Sprites over ULA (Layer 1)
Sprites over ULA (Layer 1) over Layer 2
Layer 2 over ULA (Layer 1) over Sprites
ULA (Layer 1) over Sprites over Layer 2
ULA (Layer 1) over Layer 2 over Sprites
Sprites over (Layer 2 + ULA combined) — colours clamped to 7
Sprites over (Layer 2 + ULA combined) — colours clamped to (0,7)

~NO O~ WwN =

The last two ordinals enable one of the two colour blending modes allowing for some very
interesting lighting/shading effects.

This (as we will see in Chapter 23 — IN, OUT and the Next Registers) directly affects the

Sprite and Layer System Register (Register 21) and in the same order as the LAYER OVER
command.

LAYER OVER, like the regular LAYER command, does not currently cover Layer 3.
Instead, access to Layer 3 facilities and/or priorities has to be performed by using the IN
and OUT commands covered in Chapter 23.

Fig. 21 below visualises the way layers compound, to form the ZX Spectrum Next display.

ZX Spectrum Next Display Layers

Fig. 21 — Display Layers
(Graphics courtesy of Lampros Potamianos from: The Hollow Earth Hypothesis)

You will notice a few odd things about the diagram above. First, it is out of order with the
sprites appearing below Layers 0 — 2. That brings us to the second thing (don't worry the
dots will be connected shortly) which is that the Sprite Layer as well as Layer 3 have a
higher usable resolution than Layers 0 through 2. The order was changed to group the like
resolutions ranges together and better visualise that Layer 3 as well as the Sprite System

ZX Spectrum Next — User Manual 139

Chapter 16 — Colours BORDER, PAPER, INK, BRIGHT and FLASH

have a maximum of 320 pixel horizontal by 256 pixels vertical resolution as opposed to the
256 pixel by 192 pixel standard pixel size resolution of the other layers. As for the order as
seen in the LAYER OVER command, it really doesn't matter, as it can be rearranged in the
way we see fit. In the specific example above we can see how one can mix-and-match
several Layers to construct a more complex final visual; Layer 3 is used for the back-
ground, the extended sprite area for relatively static information about the game (Lives
and score), LoRes (Layer 1,0) for basic parallax animation (clouds) and Layer 2 for the
remaining more complex and colourful graphics.

It's also noteworthy, that although we spoke about memory organisation in regards to col-
our for all layers, we did not do so for the Sprite System. That is because sprites do not oc-
cupy normal memory but instead, use their own dedicated memory that's located within
the Next Sprite Engine hardware. The LAYER command other than to set priorities of dis-
play does not affect, nor addresses the Sprite Engine directly therefore in the following
commands, the latter is not referenced anywhere.

There are more LAYER compound commands that are more pertinent to graphics rather
than colour and others that deal with motion in some fashion or other. We will revisit there-
fore LAYER in more detail in the following sections and chapters. The main functionality of
the LAYER command which is none other than changing graphic modes.

LAYER number, parameter

will change the layer to the one specified by number with an optional parameter according
to the list below:

LAYERO Select legacy ZX Spectrum Mode

LAYER 1,0 Select Layer 1, LoRes mode

LAYER 1,1 Select Layer 1, standard resolution mode
LAYER 1,2 Select Layer 1, HiRes mode®

LAYER 1,3 Select Layer 1, HiColour mode

LAYER 2 Select Layer 2 mode

LAYER 2,0 Select Layer 2 mode and disable its display
LAYER 2,1 Select Layer 2 mode and enable its display

Attempting to enter a layer number or parameter that's not supported according to this list,
will result to a B Integer out of range error.

There's one more command of note and this is:
LAYER CLEAR

which will reset all layer information, including banks, mode, the Layer 2 display enable,
layer offsets (see Chapter 17) and ordering to defaults. This is also done by NEW.

BORDER, PAPER, INK, BRIGHT and FLASH
Run this program:

S LAYER @

18 FOR m=@ TO 1: EBRIGHT m

2@ FOR n=1 TO 1@

S8 FOR c=8 TO 7

4@ FPAFPER cCc: PRIMNT * “;: REH 4
Spaces=s

S@ MEXT c©: REXT n: HEXT m

E@ FOR m=&a TO 1: BRIGHT m: PRAFPER 7

Y@ FOR c=@ TO =

6 HiColour and HiRes modes are also called Timex modes as they were originally introduced in the Timex Sinclair
TS2068 advanced ZX Spectrum compatible computer which was released primarily for the US market in 1983.

140 ZX Spectrum Next — User Manual

BORDER, PAPER, INK, BRIGHT and FLASH Chapter 16 — Colours

S@ IMEKE c: PRIMNT c;* Y. REM S
Spaces=s

9@ MEXT c©: FPHFPER @

18@ FOR c=4 TO 7

11@ IMEKE C: PRIWNT oC; " i REM S
Spaces=s

128 HEXT c: HEXT m

158 PAFPER 7: IMHE @: BRIGHT @

This shows the fifteen colours (including white and black and the BRIGHT variants) that
the ZX Spectrum Next can produce on the screen if switched to Layer O (or standard reso-
lution modes of Layer 1) without the Enhanced ULA functions enabled. Here is a list of the
basic eight for reference; they are also written over the appropriate number keys on your
ZX Spectrum Next's keyboard:

black

blue

red

purple —or magenta—
green

cyan —or pale blue—
yellow

white

NOoO ok~ wWN 2O

If you're thinking to yourself that the total colours (taking account of brightness turned on)
should be 16, you'd be technically right however there cannot be a BRIGHT black so the total
amount of colours is indeed 15. As you've noticed, the program introduces three commands:
PAPER, INK and BRIGHT. If you look back to the Colour attribute display section you will rec-
ognize the terms immediately. These commands are the primary way of applying colour to
objects on screen in NextBASIC. There is a number of supporting colour commands as well
which will examine further in the following sections.

Before we delve a bit deeper into what each does and how, it's very important to understand
that the commands operate differently according to the layer we're on and this points back to
the different way the ZX Spectrum Next stores colour. When we're dealing with modes that
make use of attribute cells, we need to think in terms of those cells. PAPER there affects the
background or, in other words, the place in the cell where graphic data is non existent (set to
0) whereas INK does the exact opposite and affects areas within the same cell where graphic
datais existent (set to 1). Moreover these commands affect the entire attribute cell and not just
one singular pixel within the cell. In other words, it doesn't matter how many times you set the
INK or PAPER within a particular cell, only the last command will be the one that has the per-
manent effect for that cell. BRIGHT similarly affects the entire cell as we already saw, however
it does absolutely nothing if Enhanced ULA is enabled or if we are on modes that do not sup-
port attributes like HiRes, LoRes and Layer 2.

On LoRes and Layer2, since attribute cells do not exist, the entire notion of PAPER and INK
should be irrelevant. It is easier, however, for the user to understand them in similar terms as
the attribute display modes i.e. in terms of a character-based display. Indeed, there's nothing
stopping us from having an 8 x 8 character drawn on screen (say a 2) with every single pixe/
around the character having a different colour, something that's impossible on attribute dis-
play modes. This however would be very difficult to do in terms of a singular colour command
and for that reason PAPER and INK commands were simply extended to work in a similar
manner as their attribute cell modes' counterparts even where their underlying mechanics are
different. On the other hand, in HiRes mode, PAPER and INK commands only serve the pur-
pose of selecting a colour scheme as we will see below. The following table shows all primary
colour commands functionality according to the graphics mode we're in.

ZX Spectrum Next — User Manual 141

Chapter 16 — Colours BORDER

Attribute Modes Non-Attribute Modes
Standard ULA Enhanced ULA

Layer 0 Layer 1,1 HiColour Layer 1,1, HiColour HiRes LoRes Layer?

INK| 0-97 0-7 0-255 0-7° 0-255 0-255

PAPER| 0-9° 0-7 0-255 0-7° 0-255 0-255
BORDER 0-7 0-7 0-7 0-7 0-7
FLASH| 0-1,8 0-1 N/A N/A N/A N/A
BRIGHT | 0-1,8"" 0-1 N/A N/A N/A N/A
Palette in use ULA ULA ULA ULA L2

* INKin HiRes is complimentary to PAPER i.e. when INK is 0 then PAPER is 7 and if INK is 3 then PAPER is 4 and so on.

** BORDER has no effect but it's set by the PAPER setting

*** INK/PAPER/BRIGHT/FLASH 8 mean Transparent, ergo it preserves the colour setting that was there previously and INK/PAPER 9 mean Contrast, ie. the complimentary
colour of the other statement (something similar to PAPER/INK settings for HiRes modes)

Table 8 — Colour commands' functionality according to Graphics Mode/Layer

There is another way of using INK, PAPER etc, which you will probably find more useful
than having them as statements. You can put them as items in a PRINT statement (fol-
lowed by ;), and they then do exactly the same as they would have done if they had been
used as statements on their own, except that their effect is only temporary: it lasts as far as
the end of the PRINT statement that contains them. Thus if you type:

FRIMNT FPARAFER &; "x'";: PRIWT "4
then only the x will be on a yellow background.

When used as statements in Layer 0, INK, PAPER, BRIGHT and FLASH, do not affect the
colours of the lower part of the screen, where commands and INPUT data are typed in.
The lower part of the screen uses the colour of the BORDER as its PAPER colour, value 9
for contrast as its INK colour, has FLASH turned off, and everything is set at normal
BRIGHT.

BORDER

Undoubtedly, you have noticed thus far, that there is an area you cannot write —normally—
to, surrounding the area where you can print or draw graphics over. This area is called the
BORDER and using standard NextBASIC statements you can only change its colour. The
statement:

BORDER colour

changes the border colour to any of the eight normal colours (not 8 or 9) or colours
changed by the PALETTE statement we shall explore below in length.

INVERSE and OVER

There are two more statements, INVERSE and OVER, which, when in an attribute mode,
control not the attributes, but the actual graphic data that is printed on the screen. They
use the numbers 0 for off and 1 for on in the same way as FLASH and BRIGHT do, but
those are the only possibilities. If you do INVERSE 1, then the graphic data printed will be
the inverse of their usual form: paper pixels will be replaced by ink pixels and vice versa.

The statement:
OVER 1

sets into action a particular sort of overprinting. Normally when something is written into a
character position it completely obliterates what was there before; but now the new char-
acter will simply be added in on top of the old one (but see Exercise 7). Note that if the
character you're overprinting with has a pixel in the same position with the character you're
printing OVER, the result will be a blank pixel. In other words, OVER is a XOR operation.

142 ZX Spectrum Next — User Manual

Using colour control codes Chapter 16 — Colours

This can be particularly useful for writing composite characters, like letters with accents on
them, as in this program to print out German letters — an o with an umlaut above it:

1@ QOUER 1

2@ FOR n=1 TO 32

@ PRIWNT "o'; CHRS &S 'Y
4@ HEXT n

(notice the control character CHR$ 8 which backs up one space.)
Using colour control codes

The previous example, reminded us of the PRINT positioning control codes. We can do
exactly the same with colours by using the special colour control codes in a similar man-
ner like the one we explored in Chapter 15.

The colour control codes are:

CHR$ 16 corresponds to INK
CHRS$ 17 corresponds to PAPER
CHR$ 18 corresponds to FLASH
CHRS$ 19 corresponds to BRIGHT
CHR$ 20 corresponds to INVERSE
CHR$ 21 corresponds to OVER

These are each followed by one character that shows a colour by its code: so (for in-
stance):

FPRIMNT CHR% 15 + CHR%$ 9

has the same effect as:

FRIMT IMNK 9; ...
ATTR
The ATTR function has the form:
ATTR (line, column)

Its two arguments are the line and column numbers that you would use in an AT item, and
its result is a number that shows the colours and so on at the corresponding character po-
sition on the screen. You can use this as freely in expressions as you can any other func-
tion.

The number that is the result is the sum of four other numbers as follows:

128 if the character position is flashing, 0 if it is steady
64 if the character position is bright, 0 if it is normal

8 times the code for the paper colour —and finally—
the code for the ink colour

Forinstance, if the character position is flashing and normal with yellow paper and blue ink
then the four numbers that we have to add together are 128,0,8*6=48 and 1, making 177
altogether. Test this with:

PRINT AT @,&; FLASH 1; PAFER &; I®KE 1;
oMy, ATTR O (@,@)

ATTR works only on Layer 0 and that is because it works by reading each COLOUR_FILE
location. On different modes where the memory organisation and usage differs it will re-
turn a number that corresponds to the original COLOUR_FILE memory location, which
could be for all purposes nonsense. That being said, you can get information on the ex-

ZX Spectrum Next — User Manual 143

Chapter 16 — Colours PALETTE

tended colour attribute display if the Enhanced ULA functions are enabled presuming the
screen area hasn't moved. That number will correspond to the indices in use and it
changes according to which PALETTE FORMAT command is in effect as we'll see below.
For other modes it's safer to use the POINT TO command which we will examine in Chap-
ter 17.

PALETTE

In previous sections of this chapter we got introduced to the subject of palettes and how
they affect colour display and manipulation in each of the colour modes. We also got
briefly introduced to the PALETTE keyword and a few of its uses. We can now expand a bit
more on the subject, as PALETTE not only affects printing of the characters on screen but
also all aspects of graphics including the ZX Spectrum Next's Sprite Engine.

The PALETTE keyword can be used as a primary statement or as a modifier to the LAYER
and SPRITE statements to perform a variety of functions that pertain to colour manipula-
tion.

As we saw, colour on the ZX Spectrum Next when using extended colour attribute display
or any mode that doesn't use attributes, can be defined using 9 bits or 8 bits per colour.
The default is 9; when 8 bits are chosen, as we have already seen previously, non attribute
modes can emulate a straight-up bitmapped linear display (with the side-effect that only 4
levels of blue are available). In the latter case you can basically ignore all PALETTE state-
ments as non-applicable for Layer 2 —and this whole section for that matter— however you
need to use them if you want to manipulate LoRes or any of the Layer 1 and Layer O modes
and/or change the default colours anywhere in your system, or even to recolour an old
game. In order to do that and to have access to the broadest gamut of colour you will need
to change the bit-depth of your palette(s). You can do so with the PALETTE DIM
statement in the form:

PALETTE DIM bits
where bits can be 8 or 9.

The default colour mode of Layer 1T modes (except LoRes and HiRes) is the standard col-
our attribute display one. In order to enable the extended colour attribute display mode we
need to enable the Enhanced ULA functionality. For this you must use the PALETTE
FORMAT which takes the form:

PALETTE FORMAT ink_count

where ink_count is a numerical expression specifying the number of inks to be in the pal-
ette (0,1,3,7,15,31,63,127 or 255). When the Enhanced ULA is enabled, BRIGHT and
FLASH are ignored, and INK and PAPER accept the appropriate new range of values.
Note here that although you can specify INK and PAPER values up to 255 when writing a
program, attempting to execute the program in Layer O will result into a K Invalid Colour
error when the Enhanced ULA is not enabled. To disable the Enhanced ULA functionality
you will need to specify an ink count of 0. The standard attributes with 8 inks, 8 papers,
bright and flash are then once again supported.

As we saw in Fig. 17 there is an order of display of different layers on screen. Although it is
not immediately apparent this means that it's also possible to mix display output from
more than one graphical layers. That is achieved by assigning a global transparency mask
for the regular layers or, in the case of the Sprites layer, a transparency index, and then
colouring the areas or sprites we want to be transparent with the specific colour.

You can set the transparency colour mask or transparency colour index using the following
statement:

PALETTE OVER value

144 ZX Spectrum Next — User Manual

PALETTE Chapter 16 — Colours

where value is an 8-bit numeric expression which identifies a colour either in R3G3B2 8-bit
format (in the case of regular graphics layers) or the index to the 9bit colour value we want
to be transparent (in the case of the Sprites layer). The default global transparency mask
and transparency colour index is light magenta / 227 (11100011 in binary).

The global transparency colour being 8-bit follows the exact same conventions as the
internal 8-bit to 9-bit conversion for any other colour in the ZX Spectrum Next's gamut.

More over, the global transparency is an 8-bit MSB mask meaning that both 111000110
and 111000111 will be transparent if selected to fill an area.

In however the case of Sprites, transparency is only limited to the single colour pointed
to by the index referenced by the PALETTE OVER keyword. So if index 227 is set to red
(111000000 in binary) leaving the PALETTE OVER keyword the same for two palettes
only the red colour will be transparent and not the magenta as on the previous example.

. |
To reset all palette data and settings to default, use the PALETTE CLEAR statement.

In the Palette-based hybrid linear bitmapped colour display section, we first discussed the
existence of two palettes per display layer (note here that in this case layer is meant in the
memory usage paradigm displayed in Fig. 17 so ULA layers get grouped together).

We can switch between palettes using the compound keyword:
LAYER PALETTE n

where n is the palette to use (0 or 1) for the current memory usage layer (ie. if you're in any
ULA Jayer all of it gets affected but not Layer 2 etc).

You can point a palette for the current layer to palette data you have previously stored in
memory using the following compound command:

LAYER PALETTE number BANK bank, offset

where number is the palette to update (0 or 1) for the current memory usage layer, bank is
the memory bank to point to, and offset is the offset within that memory bank (For more in-
formation about BANK see Chapter 24 — The Memory).

Palette data should be either 256 double byte colour entries (for 9-bit), or 256 single byte
entries (for 8-bit). As per what we discussed earlier in the chapter we need to encode the
colour information in an R3G3B2 (for 8-bit) or RGB3 (for 9-bit) with every colour compo-
nent value describing 8 intensities per colour.

In the double-byte entry method, the second byte in each sequence only has one bit de-
fined for colour: the 3rd blue bit as well as one bit for priority (which only applies to palettes
used for Layer?). It may seem to be a bit inefficient as it stands, because it appears to be
wasting memory but that's only if we store our palette in memory before we load it, other-
wise palettes do not use memory at all and they only need to be set once and the memory
used by the BANK method can be immediately released to the system.

You have already seen an example of this method in the Extended Colour Attribute Display
System section where a palette is set up first as colours and then assigned into the chosen
layer palette. Could you change it to accept double-byte colour values?

The tables that follow, show the proper format for single and double-byte palette entries.
The integer values are included for a better understanding of the conversion process. In
actuality, you can use either the BIN keyword or the %@ qualifier to enter binary numbers
directly.

ZX Spectrum Next — User Manual 145

Chapter 16 — Colours PALETTE

First Byte Second Byte
Ry | R, | Ry | G | G |G | B |B |[P2] 0| 0| 0] 0| O] 0| B
128 64 | 32 | 16 | 8 | 4 | 2 1 0|00]O0O|O0O|0]0O 1
412 |1 4 | 2 1 2 1 0000|000 1
706154132 1 0|7]6 5] 4]13]2 1 0
Table 9 — Double byte colour entry
First Byte

R1 RZ RS G1 GZ GS B1 BZ

128 | 64 | 32 | 16| 8 | 4 | 2 1

4 2 1 4 2 1 2 1

716 51413121 0

Table 10 — Single byte colour entry

Writing the entire palette into memory is not the only option available to the user in order to
program a palette. It is also possible to specify individual colours within the palette using
the following compound command (as with the rest of the examples in this section layer
here implies a memory space organisational unit):

LAYER PALETTE number, index, value

where number is the current layer palette we wish to update (0 or 1), index is the index of
the palette entry to be updated (0 to 255), and value is the colour components value ex-
pressed in binary using either the BIN keyword or the %@ qualifier in RGB3 format. That
means that the colour in that case is ALWAYS 9-bit For example:

LAYER FALETTE @,@,EIM 118018611l
that sets colour index 0 in palette 0 to a nice pink is exactly the same as:

LAYER FALETTE @,@,X21l1l0@l@d@ll

Exercises

1. Try:
PRIMNT "EB'; CHR% S; OUER 1; ".~"
Where the / has cut through the B, it has left a white dot. This is the way overprinting
works on the ZX Spectrum: two papers or two inks give a paper, one of each gives
an ink. This has the interesting property that if you overprint with the same thing
twice you get back what you started off with. If you now type:
FRIMT CHR% &S; OQOUWER 1; "oV
Why do you recover an unblemished B?

2. Type:

FARAFER @: IME @

Isn'tit just as well that these don't affect the lower part of the screen?
Now type:

EORCER @

146 ZX Spectrum Next — User Manual

PALETTE Chapter 16 — Colours

and see how well the computer looks after you!
But what will happen if you do the same after giving:

LAYER 1,35
3. Run this program:

1@ FOKE 22527 +RMND+x7@4, RHD %127
2@ 0 TO 1@

Never mind how this works; it is changing the colours of squares on the screen
and the RNDs should ensure that this happens randomly. The diagonal stripes
that you eventually see are a manifestation of the hidden pattern in RND — the
pattern that makes it pseudorandom instead of truly random.

4. Type in the chess piece characters in Chapter 14, and then type in this program
which draws a diagram of chess positions using them:

= REM draw blLank board

1@ LET bbk=1: LET bw==2: REHM red and
bBlLue for board

1% PAFER bw: IME bBb: CLS

Z2@a FPLOT 79.,125: REMW border

Z@ CRAL &65,8: CRAL @, -565

4@ CRAL -55,8: CRALW @,65

S8 PAFER bb

5@ REHM board

T FOR n=@ TO 3: FOR m=@ TO 3

S@ PRIMNT AT &+2%n, 1l+2%m; " "

9@ PRIWT AT 7+2%*n, 1l@+2xm; " "

18@ MNEXT m: RNEXT n

11&@ FPAFER &

12@ LET pw=5: LET pb=S: REM colours of

Wwhite and black pieces

2@ 0IM b%(35,5): REM positions oOof pieces

285 REHM =t up initial positions

21@ LET b$i(l)="rnbqkbnr”

22@ LET bf(2)="PPPFPPFFFP"

238 LET b%(7) ="FPPFFFFFF"

24@ LET b%(3) ="RHEQKEHR"

S@@ REM displad board

1@ FOR n=1 TO &: FOR m=1 TO &

Z2@ LET boc=COCE b&in,.m): IME puw

2% IF boc=COCE " " THEW GO TO 35

REH Space

3@ IF bc:CODE "Z2" THEW IMK pPb:
LET bc=bc-32: REM Lowercase for
bBLack

4@ LET bCc=bc+79: REM conwvert fto
graphics

I5@ PRIMT AT S+n. 9+m; CHR% bc

SE@ MEXT m: HEXT n

4@@ FPARAFPER 7: IHE @

ZX Spectrum Next — User Manual 147

Chapter 16 — Colours PALETTE

5. The program in p. 722 has a non-apparent flaw. Can you improve on it so it be-
comes faster?

6. Write a version of ATTR using a PROCedure that will work always, no matter the
mode. You can peek ahead if you so wish!

7. Using the global transparency colour, palettes and layers can you write a program
that will display ALL 512 colours of the ZX Spectrum Next on screen? (It's easier
than you think)

148 ZX Spectrum Next — User Manual

[/ Chapter

17

Graphics

Chapter 17 — Graphics PLOT
Graphics

In this chapter, we shall see how to draw pictures on your ZX Spectrum Next's screen. As
we learned in Chapters 15 and 16, Layer O can only use 175 pixels out of its maximum 192
pixel vertical resolution while the other layers accept the maximum height defined by the
layer as their vertical resolution. Moreover, if you recall Fig. 15 and 76, Layer O has a differ-
ent graphics coordinate origin from the rest of the layers/modes located at the bottom
leftmost of the screen instead of the top leftmost. All basic graphics commands that we
will explore (PLOT, DRAW, CIRCLE and POINT) accept both coordinate origins while the
LAYER and TILE commands (as well as the SPRITE command we'll explore in the follow-
ing chapter) accept only the top leftmost corner as the coordinate origin. The side-effect of
these inverted coordinate systems is that most graphics you will program will appear in-
verted on the y-axis if you do not account for that difference. We'll illustrate this fact shortly.

PLOT

The statement:

PLOT x_coordinate, y coordinate
inks in the pixel with these coordinates, so this measly program:

18 FPLOT IMT IRMD*125)1, IMT
(RHD*95) : IMNPUT a%: S0 TO
1@

plots a random point each time you press ENTER. This will work on all layers', although it
will not use the entire area of the screen in all modes. Can you figure out why?

Here is arather more interesting program. It plots a graph of the function SIN (a sine wave)
for values between 0 and 2

1a FOR n=@ TO 25%: REM cCchange
to 127 for LORe=s

2@ PLOT n,SS+S@xSIMNIN-125xFPI)

S@ HEXT n

This next program plots a graph of SQR (part of a parabola) between 0 and 4:

1@ FOR n=@ TO 255
28 PLOT n,S@xsaR (n~s54]
S@ HEXT n

Notice that when in Layer 0, pixel coordinates are rather different from the line and column in
an AT item. You may find the diagrams in Chapter 15 useful when working out pixel coordi-
nates and line and column numbers for Layer 0. The other layers as we've already discussed
are pretty straightforward. To illustrate, switch to HiRes and try again. What you see when en-
tering:

5 LAYER 1,2

1@ FOR n=@ TO 255

28 FPLOT n,S@xS0R (n-s54)
@ HNMEXT n

and run the program is exactly what we were talking about earlier. Our part of parabola has
changed both orientation and stops at the middle of the screen's width. To make the out-
put similar to the the first iteration of the program you will need to change the FOR loop

1 All layers, EXCEPT Layer 3 as it's not directly supported by NextBASIC.

150 ZX Spectrum Next — User Manual

DRAW and CIRCLE Chapter 17 — Graphics

and PLOT commands to:

1@ FOR n= @ TO S11
28 PLOT n,S@*%xS0RI(S11-n) 21250

This will invert the coordinates to simulate the Layer O display, by drawing inverted, extend the
PLOT x coordinate to 512 pixels and make sure the PLOT doesn't get out of bounds (that's why
we divide by 128 instead of 64). In reality, you do not need to check if you PLOT out of bounds
for layers other than Layer 0, as graphics commands for these accept locations outside the
screen's pixel boundaries, however it's good practice to do so if you want your program to work
across layers.

DRAW and CIRCLE

To help you with your pictures, the computer will draw straight lines, circles and parts of
circles for you, using the DRAW and CIRCLE statements.

The statement DRAW to draw a straight line takes the form:
DRAW x_coordinate, y_coordinate

The starting place of the line is the pixel where the last PLOT, DRAW or CIRCLE statement
left off (this is called the PLOT position; RUN, CLEAR, CLS and NEW reset it to the coordi-
nate 0 of the selected Layer (bottom left hand corner, at (0,0) for Layer 0, top left hand cor-
ner for all other layers), and the finishing place is x pixels to the RIGHT of that and y pixels
UP or DOWN depending on which layer you're on. This would be UP for Layer 0 and DOWN
for all other layers. The DRAW statement on its own determines the length and direction of
the line, but not its starting point.

Experiment with a few PLOT and DRAW commands, for instance:

FPLOT @,l1la@aa: DRAL S8, -35
FLOT 9@,15S@: [CRAL S8, -35

Notice that the numbers in a DRAW statement can be negative, although those in a PLOT
statement can't. Remember always, that the display direction of the DRAW statement
changes according to the coordinate system used, ergo which layer you choose is very
important. You can also plot and draw in colour, although you have to bear in mind all that
were discussed in Chapter 16. Depending on the chosen layer, colours may cover the
whole of an attribute position instead of individual pixels. Only LoRes and Layer 2 modes
offer full individual colour pixel control whereas other layers rely on the attribute used. The
following program demonstrates this:

1a LAYER 2,8: REHM diszable Lader =2

2@ FOR m=@a TO S

S@ PROC LadChange (m)

4@ EBORDER @: PARAFPER @: IME 7F: CZLS: REH
BLack out =creen

S@ LET ®1=@: LET Jul=&: REH Line =tart

5@ LET c©c=1: REHM ink, =tarts with bLue

TA FOR ¢ = @ TO 9:REHM 18 repetitions

@ LET =2=IWNT I[(RHD*2S5)1: LET 42=IMT
[(RHCD*125) : REM random Line end

9@ D[DRALK IME Cc;,x2-x1,4d2-41

182@d LET =®=1=x=2: LET 4l=4d2: REH ne=xt Line
starts where Laszt one finished

11&@ LET c=c+1l: IF c=5 THE®R LET cCc=1

12z@ HEXT

158 PFPAUSE @: REM Displad inspection

ZX Spectrum Next — User Manual 151

Chapter 17 — Graphics DRAW and CIRCLE

14@ HMHEXT m

1@ STOR
18@@d CDEFFROC LadChange (mode)
18l1ad IF mode = THER LAYER
l1az@d IF mode = THER LAYER
1@3@ IF mode THEM LAYER
1@4@ IF mode THEM LAYER
1@5s@ IF mode THEM LAYER
185@ IF mode = THER LAYER
1a7a@a ERHDFRROC

nn
mene

-

-

NMeERrpPREa
I I |

-

In layers other than LoRes and Layer 2, you can see how the lines seem to get broader as
the program goes on, and this is because a line changes the colours of all the inked-in
pixels of all the attribute positions that it passes through. You may also be temporarily
perplexed about how the program doesn't crash on LoRes given that the selected values
can exceed these of the physical resolution (see line 80). This would definitely be true for
compatibility reasons on Layer 0, however on other layers, graphics output off screen is
permitted for x and y values up to 65535. Note that you can embed PAPER, INK, FLASH
(only on layers that this is available or not turmned off by enabling the Enhanced ULA
functionality), BRIGHT (idem), INVERSE and OVER items in a PLOT or DRAW statement
just as you could with PRINT and INPUT. They go between the keyword and the
coordinates, and are terminated by either semicolons or commas.

An extra frill with DRAW is that you can use it to draw parts of circles instead of straight
lines, by using an extra number to specify an angle to be turned through; the form is:

DRAW x_coordinate, y_coordinate, arc_turn

x_coordinate andy_coordinate are used to specify the finishing point of the line just as be-
fore andarc_turn is the number of radians that it must turn through as it goes; ifarc_turn is
apositive it turns to the left, while ifarc_turn is a negative it turns to the right. Another way of
seeing arc_turn is as showing the fraction of a complete circle that will be drawn: a com-
plete circle is 2r radians, so if a=m it will draw a semicircle, if a=0.5*r a quarter of a circle,
and so on.

For instance suppose a=n . Then whatever values x and y take, a semicircle will be drawn.
Run:

1@ PLOT 1@a@,laéaa: [CRAW Sa,5a, PRI

which will draw this:

@ OK, 1@::=2

Fig. 22 - Arc drawn with DRAW statement

When run on Layer 0, the drawing starts off in a south-easterly direction, but by the time it
stops itis going north-west: in between it has turned round through 180 degrees, or n radi-

152 ZX Spectrum Next — User Manual

POINT, POINT TO Chapter 17 — Graphics

ans (the value of a). Obviously, when run on other layers, the vertical part of the drawing is
inverted in line with everything we have discussed.

Run the program several times, with Pl replaced by various other expressions e.g. -Pl,
Pl1/2, 3*P1/2, Pl/4, 1,0.

Due to the way values are calculated, it's not advisable to use values exceeding = for the
arc_turn parameter as they may not perform in the way you would intend. That being
said there are various values that produce very interesting results. Try:

PLOT 75.,75: DRAW Sa, 24, =

where x is 400, 600 or 800. Experiment further to see what other effects you can
generate.

The last statement in this section is the CIRCLE statement, which draws an entire circle.
You specify the coordinates of the centre and the radius of the circle using:

CIRCLE x_coordinate, y_coordinate, radius

Just as with PLOT and DRAW, you can put the various sorts of colour items in at the be-
ginning of a CIRCLE statement. As with its PLOT and DRAW counterparts, CIRCLE, when
used in Layer O will produce an error for circles drawn out of bounds but the remaining lay-
ers will happily draw off-screen.

POINT, POINT TO

The POINT function informs you of the contents of a pixel on screen. It accepts two pa-
rameters enclosed in parentheses, x_coordinate and y coordinate. POINT on its own
works only on Layer 0 and returns 1 if the pixel is set or 0 if not set. Whilst in Layer O try:

CLS: PRIMT POIWNT (@,8@): FPLOT @,@
PRIMT POIWNT (@,8)]

There's an extended variant of POINT utilising the TO modifier which works on all layers,
that takes the output of POINT and stores it in variable var. This returns 1 if the pixel is set
or 0if not setin all layers except LoRes and Layer 2 just as the plain POINT does. In LoRes
and Layer 2 however, it returns a value from 0 to 255 which is the actual palette index entry
that the pixel with these coordinates is set to. To illustrate this rewrite the previous example
as:

CLS: POIWT @,@ TO t: PRIMT t: FPLOT
@,8:POINT @,@8 TO t: PRINT t

Although this may not be the best example for the benefits of using POINT TO instead of
the simple POINT, you can save a lot of typing by foregoing a lot of LET statements whilst,
at the same time, making your code a lot easier to read and working in every graphics
mode. It's important to mention that POINT TO does not return the contents of a sprite
that's currently on the given coordinates on screen and instead will return the contents of
the layer it's run on.

‘ POINT here is afunction and not a PRINT modifier. Note the distinction as it's important.

Using OVER and INVERSE with graphics commands

Enter screen mode (EDIT for NextBASIC Menu and then the Screen option) in the editor
and then type:

ZX Spectrum Next — User Manual 153

Chapter 17 — Graphics Using stippling patterns to generate additional colours

FAFER 7: IHME @

and let us investigate how INVERSE and OVER work inside a standard graphics state-
ment. These two affect just the relevant pixel, and not the rest of the character positions.
They are normally off (0) in a graphics statement, so you only need to mention them to turn
themon (1).

Here is a list of the possibilities for reference:

* PLOT: This is the usual form. It plots an ink dot, i.e. sets the pixel to show the
ink colour.

* PLOT INVERSE 1: This plots a dot of ink eradicator, i.e. it sets the pixel to show
the paper colour.

* PLOT OVER 1: This changes the pixel over from whatever it was before: so if it
was ink colour it becomes paper colour, and vice versa.

* PLOT INVERSE 1; OVER 1: This leaves the pixel exactly as it was before; but
note that it also changes the PLOT position, so you might use it simply to do
that.

As another example of using the OVER statement fill the screen up with writing using black
on white, and then type:

FLOT @,@: [DRALW OUER 1;255,175

This will draw a fairly decent line, even though it has gaps in it wherever it hits some writing.
Now do exactly the same command again. The line will vanish without leaving any traces
whatsoever. This is the great advantage of OVER 1. If you had drawn the line using:

FLOT @.,8: DRAL 255,175
and erased it using:

FLOT @,8: [DRALW IMUVERSE 1; 255,175

then you would also have erased some of the writing. Now try:

FLOT @.,8: DRAL OQUER 1; 258,175
and try to undraw it by:

DRAL OUER 1; -25@,-175

This doesn't quite work, because the pixels the line uses on the way back are not quite the
same as the ones that it used on the way down. You must undraw a line in exactly the
same direction as you drew it.

Note, that being in screen mode in the editor is required for the examples above, other-
wise the screen will be reset after each command and you will not get to see the results of
the OVER and INVERSE modifiers.

Using stippling patterns to generate additional colours

One way to get unusual colours is to mix two normal ones together in a single square, us-
ing a user-defined graphic. These patterns are called stipples and work reasonably well in
lower layers other than LoRes (where the pixels are too big) and exceptionally well in Layer
2 where both the available colours and resolution combine to make the results quite be-
lievable. Run this program:

l@@@ FOR n=@ TO & STEFR 2
1@l@a POKE USSR "a'+n, BEIH
glala@alal: FOKE USSR
"a'+n+l, BEIMN l@lala@la
1l@az@ HMEXT n

154 ZX Spectrum Next — User Manual

Quick erase and fill using LAYER ERASE Chapter 17 — Graphics

which gives the user-defined graphic corresponding to a chessboard pattern. If you print
this character (Graphics mode, then A) in red ink on yellow paper, you will find it gives a
reasonably acceptable orange. You can obviously simulate the same behaviour with
PLOT statements. This is slower than UDGs but it's much more flexible in the diversity of
patterns that you can create.

Quick erase and fill using LAYER ERASE

NextBASIC lacks a dedicated fill command, however large rectangular areas on screen
can be filled (or emptied) in LoRes and Layer 2 using the compound LAYER ERASE state-
ment with 4 coordinate parameters (4 1 optional fill parameter). The command:

LAYER ERASE x1,y7,x2,y2,c

will fill the rectangular area delineated by (x1,y1) and (x2,y2) with the global transparency
colour (if the optional ¢ parameter is not specified) or with the colour index contained in the
c parameter taken from the active palette for the selected layer.

Clipping windows

One of the nicer features that come as a result of the layer system is the ability to superim-
pose/combine graphics that exist in separate memory spaces. This is possible on the one
hand due to the existence of the transparency colour and on the other hand due to the
ability to order the layer superimposition order. The latter is controllable via the LAYER
OVER compound command as we saw in the More about the LAYER command section in
Chapter 16.

This can be further enhanced with the creation of clipping windows which are basically
smaller areas of a certain layer where all display in this layer goes and leaves the layers un-
derneath visible (without having to set the entire area to be visible to a transparent colour).
If you wish to visualise this, imagine a glass window with a rectangular section painted so
you cannot see what's behind. That rectangular section is the clipping window, in essence
the opposite of a regular window. The compound command:

LAYER DIM x17,y1 x2y2

sets the clip window for the current layer from (x7,y7) to (x2,y2). Areas of the layer outside
this window are not visible. Note that all Layer 7 modes and Layer O share the same clip
window; Layer 2, Layer 3 and the Sprite System have their own separate clip windows. Re-
fer to Chapter 23 for more information on how clipping windows are defined using the Next
Registers. The compound command:

LAYER CLEAR

will reset all layer information to defaults. This is also done by NEW. It resets banks, mode,
Layer 2 enable status, layer offsets / clipping windows and layer ordering.

Tiling

Since straight graphics commands can be slow, NextBASIC provides a set of commands
that can help recreate parts of, or entire Layer 2 and LoRes screens, very quickly; some-
thing that can be very useful especially when a lot of screen elements are being repeated.
These screen elements are called tiles and much like their real-word counterparts, they are

a self-contained graphical rectangular pattern. Tiles can be repeated as many times as we
need them to or be completely independent.

Each tile can be 8x8 pixels or 16x16 pixels in size. This allows a 16K bank to hold 256 8x8
tiles or 64 16x16 tiles. Tiles are numbered 0...255. Therefore, a complete set of 8x8 tiles oc-
cupies a single 16K bank, and a complete set of 16x16 tiles occupies 4 16K banks. If you
use 16x16 tiles, you can restrict the tile number used and therefore reduce the memory re-
quirements (e.g. if you need 64 or fewer different tiles, only 7 16K bank is required). Addi-

ZX Spectrum Next — User Manual 155

Chapter 17 — Graphics Tiling
tionally for tiles to be recalled, a special linear map, called a tilemap?, of 8-bit tile numbers

is needed. The user can specify any width up to 2048 tiles; each row of files follows directly
after the previous one.

The tilemap must be fully contained inside a single 16K bank. This gives a maximum
tilemap size of 256x64, 128x128, 2048x8 etc.

Any pixels in a tile which are the same colour as the current global transparency colour will
not be written to the screen. If you want to draw pixels containing the global transparency
colour you can temporarily change it to another colour (not used in your tiles) using the
PALETTE OVER command before using TILE. Alternatively, you can use the LAYER
ERASE command (see the Quick erase and fill section above) to clear regions of the
screen to the global transparency colour before drawing tiles on top.

Layer 2 and LoRes tilemaps are stored separately, so you can use both simultaneously.
The TILE commands affect the currently selected layer/mode. These are:

TILE BANK n
which defines bank n as containing the tiles (up to 4 banks n...n+3 if 16x16 tiles).
TILE DIM n,offset,w tilesize

defines bank n as containing the tilernap, starting at offset offset in the bank. The tilemap is
width w (1-2048) and uses 8x8 (tilesize=8) or 16x76 (tilesize=16) tiles.

TILE
TILE AT xy

Draws an entire screen from tilemap, from tile offset x,y in the tilemap (0,0 if not specified).

TILE w,h

TILE w,h AT x,y

TILE w,h TO x2,y2

TILE w,h AT x,y TO x2,y2

The above draw a section of screen from a tilemap. Number of tiles to draw is width w,
height h. The AT draws from tile offset x,y in the tilemap (or 0,0 if not specified as in the pre-
vious example), and the TO draws to the tile offset x2,y2 on the screen (or 0,0 if not speci-
fied).

Exercises

1. Play about with PAPER, INK, FLASH and BRIGHT items in a PLOT statement.
These are the parts that affect the whole of the character position containing the
pixel. Normally it is as though the PLOT statement had started off:

FLOT PAFER &; FLASH &; BRIGHT &5

and only the ink colour of a character position is altered when something is plotted
there, but you can change this if you want. Be especially careful when using
colours with INVERSE 1, because this sets the pixel to show the paper colour, but
changes the ink colour and this might not be what you expect.

2. Try:
CIRCLE 1@@,57,5@: DRAL S&,5a
You can see from this that the CIRCLE statement leaves the PLOT position at a
rather indeterminate place - it is always somewhere about halfway up the right
hand side of the circle. You will usually need to follow the CIRCLE statement with a
PLOT statement before you do any more drawing.

2 You may remember that we spoke of tiles before, when initially discussing Layer 3 in Chapter 15. The principle is the
same (a repeated rectangular pattern) but the specifics change (9-bit colour vs. 4-bit or 1-bit colour and 16x16 -or-
8x8 pixel tiles vs. ONLY 8x8 pixel tiles).

156 ZX Spectrum Next — User Manual

[/ Chapter

8

Time and Motion

This page intentionally left blank

PAUSE Chapter 18 — Time and Motion
Time and Motion

One of the most important features of the ZX Spectrum Next is the ability to move things
on screen fast, either via the usage of sprites or by quickly interchanging full screens to
create animations and general visual effects. Motion (and animation) however, as on real
life, is a function of time. In other words we need to precisely count time in order to display
things and for this purpose this chapter will deal with these two seemingly unrelated sub-
jects in one unit. We will begin with the whole idea of timekeeping on the computer and all
the facilities the ZX Spectrum Next has in order for us to measure time.

Timekeeping is essential in computing as all devices work on the basis of a unit of time (in
our case Hertz —or— Hz) but much of this happens behind the scenes. Here we will exam-
ine commands related to time together with the optional timing hardware, before we move
into animation, scrolling, the Sprite Engine and eventually to the Copper.

PAUSE

While the general attitude in programming is to make things execute as fast as possible,
we often find ourselves in need of making our program wait for a specific length of time or
even indefinitely. There is a number of reasons why that would be the case; expecting user
interaction is one; displaying warnings is another, timing precisely something is a third
and for all the above and more you will find the PAUSE statement useful.

PAUSE n
stops computing and displays the picture for n frames of the selected display mode.

In 50Hz mode, there are 50 frames-per-second (fps), so setting n to 50 would result in 1
sec. pause. Respectively in 60Hz mode which runs at 60 fps this figure would be 60 for 1
Sec. pause.

These modes are set these at the Configuration boot menu or via the config.ini file which
is located in the c:/machines/next/ folder. Generally speaking, almost all modern HDMI™
and VGA displays operate at 60Hz, while many also have 50Hz modes.

n can be up to 65535, which gives you just a little over 21 minutes at 50Hz and just under
19 minutes at 60Hz respectively; if n is set to 0 then it means PAUSE indefinitely.

A pause of any length (including the indefinite ones) can always be cut short by pressing a
key (note that CAPS SHIFT + Space will cause a break as well). You have to press the
key down after the pause has started.

This program works the second hand of a clock:

18 REM First we s=elect the
appropriate pauszse

28 LET wait=52:REH S@H=zZ ~S@=1 =ecC.

@ REM First we draw the cCclLock face

4@ FOR n=1 ToO 12

S@ FPRIMNT AT 1@-1@xCOsSin~s&5*PI1,
15+1@*SIM N 5P I ;n

E@ HMEXT n

Y@ REM HMow we start the clock

S@ FOR 1= TO Z@@@@d: REHM t i= the
time in seconds

9@ LET a=t-3@xPI : REM a i= the
angle of the zecond hkhand in rad.

18@ LET ==x=5S@%*5IM a: LET =4=S@xxC035 3

2@a PLOT 125,35: DRAL OUER 1;
=x®,s2d: REHM draw 2nd hand

ZX Spectrum Next — User Manual 159

Chapter 18 — Time and Motion Using POKE and PEEK at the System Variables

218 FPARAUSE wait

22 FPLOT 125,85 : DRAW OVER 1;
SX ,EY: REHM =rasze 2nd hand

4@a MNEXT t

This clock will run down after about 55.5 hours because of line 60, but you can easily make
it run longer. Note how the timing is controlled by line 20. When running in 50Hz mode, you
might expect PAUSE 50 to make it tick one a second, but the computing takes a bit of time
as well and has to be allowed for. This is best done by trial and error, timing the computer
clock against a real one, and adjusting line 20 until they agree. (You can’t do this very ac-
curately; an adjustment of one frame in one second is 1.67% or less than half an hour in a
day.)

Using POKE and PEEK at the System Variables

There is a much more accurate way of measuring time. This uses the contents of certain
memory locations. The data stored is retrieved by using PEEK. Chapter 25 — The System
Variables, explains what we're looking at in detail. The expression used is:

(65536*PEEK 23674 +256*PEEK 23673+ PEEK 23672)/50

which gives the number of seconds since the computer was turned on (up to about 3 days
and 21 hours, when it goes back to 0). Here is a revised clock program to make use of
this:

1@ REM Fir=t we draw the clock face

28 FOR n=1 TO 1=

S@ PRIMT AT l@-l@xCos(nsSxPL],
16+1@xSIM N8P L)Y ;n

4@ HEXT n

S8 CEF FH t (1 =INT (I(65S5356*PEEK
25674 +2556xPEEK 23675 + PEER
23672 ~ S@)l: REM number oOfF
seconds s=ince =tart

18 REHM How we =tart the cCclocCk

11@ LET t1=FH t 11

1z2@ LET a=tls3@x*PI: REHM a i= the
angle of the second hand in
radians

1Z@ LET =2=x=72+%53IM a: LET =s4=72%C05 a

14@d FPLOT 131.,.91: CRALW OQUER 1;:=5x,=54:
REHM draw hand

ZEE LET t=FH t 1]

21@ IF t«<=t1 THEW GO TO 2@@: REM wait
until time for next hand

228 PLOT 131.,91: DRAW OUER 1;:=x,s54:
REHM rub out old hand

238 LET til=t: GO TO 1z@

The internal clock that this method uses should be accurate to about .01% as long as the
computer is just running its program, or 10 seconds per day; but it stops temporarily
whenever you do BEEP, or a storage device operation, or use the printer or any of the
other extra pieces of equipment you can use with the computer. All these will make it lose
time.

160 ZX Spectrum Next — User Manual

Retrieving information from the RTC Chapter 18 — Time and Motion

The numbers PEEK 23674, PEEK 23673 and PEEK 23672 are held inside the computer
and used for counting in 50™s' of a second. Each is between 0 and 255, and they gradually
increase through all the numbers from 0 to 255; after 255 they drop straight back to 0.

The one that increases most often is PEEK 23672. Every '/;, second it increases by 1.
When it is at 255, the next increase takes it to 0, and at the same time it nudges PEEK
23673 by up to 1. When (every 2%/, seconds) PEEK 23673 is nudged from 255 to 0, it in
turn nudges PEEK 23674 up by 1. This should be enough to explain why the expression
above works.

Now, consider carefully: suppose our three numbers are 0 (for PEEK 23674). 255 (for
PEEK 23673) and 255 (for PEEK 23672). This means that it is about 21 minutes after
switch-on — our expression ought to yield:

(65536 * 0 + 256 * 255 + 255)/50=1310.7

But there is a hidden danger. The next time there is a /5, second count, the three numbers
will change to 1,0 and 0. Every so often, this will happen when you are halfway through
evaluating the expression: the computer would evaluate PEEK 23674 as 0, but then
change the other two to 0 before it can PEEK them. The answer would then be:

(65536*0 + 256*0 + 0)/50 = 0
which is hopelessly wrong.

A simple rule to avoid this problem is evaluate the expression twice in succession and take
the larger answer.

If you look carefully at the program above you can see that it does this implicitly. Here is a
trick to apply the rule.

Define functions:

1@ DEF FMH mix,d) =(x+d+AEBES (x-a1 1 ~2:
REHM the Larger of x and 4

2@ DEF FMH u i) =(E55S36xPEEK 23574 +256 %
FEEE 23673 +PEEEK 23672) ~S@: REH
time, mad be wrong

@ DEF FM T () =FM mi(FMH i), FH woil1:
REHM time, right

You can change the three counter numbers so that they give the real time instead of the
time since the computer was switched on. For instance, to set the time at 10:00am, you
work out that this is 10*60*60*50= 180000 fiftieths of a second and that:

1800000 = 65536 * 27 + 256 * 119 + 64
To set the three numbers to 27, 119 and 64, you have to:

FPORE 235674 ,27: POKE 236873,119:
FPOEE 23&5872,6564

If you have chosen to run your ZX Spectrum Next in 60Hz mode then these programs must
replace 50 by 60 where appropriate.

Retrieving information from the RTC

If your ZX Spectrum Next has the optional DS1307 Real Time Clock (RTC) option installed
or you have installed it yourselves (See Chapter 22 for details), then you're able to use a
more accurate way of retrieving timekeeping data; one that doesn't involve any calcula-
tions as described above; nor one that can be affected by clock speed changes.

1 60"s of a second if we're using a 60 Hz display.

ZX Spectrum Next — User Manual 161

Chapter 18 — Time and Motion INKEY$

The way to retrieve time (or date) information from the RTC is not very straightforward own-
ing to the fact that it's triggered via a dot command. For that we need to use the NextZXOS
facilities of Channels and Streams (which we will explore in Chapter 21) and specifically,
Channel v (which opens a stream to a fixed sized variable t$)

OIM tH(1l@@) : OFEN #2,"w:t$": . TIHE
(CLOSE HZ:FPRIWNT t%

then by string slicing t$ as seen in depth in Chapter 8, we can extract the information we
need to use .time (or .date) in our programs.

INKEY$

The function INKEY$ (which has no argument) reads the keyboard. If you are pressing ex-
actly one key (or a SHIFT key and just one other key) then the result is the character that
that key gives in |l mode; otherwise the result is the empty string.

Try this program, which works like a typewriter:

1@ IF IMEEY% «<:"" THEM GO TO 1@
2@ IF IMKEEY% = "' THERM GO TO zZ@
@ PRIMNT IMEEY%;

4@ G0 TO 1@

Here line 10 waits for you to lift your finger off the keyboard and line 20 waits for you to
press a new key.

Remember that unlike INPUT, INKEY$ doesn’t wait for you. So you don't type ENTER, but
on the other hand if you don't type anything at all then you've missed your chance.

INKEY$ is very useful for a control loop where you can set objects on the screen to move
according to which key you're pressing (for example the cursor keys). As you will also see
from Chapter 21, one more option for you is to use the NEXT #...TO keyword that works in
a very similar manner. Finally it's also possible to query the keyboard hardware directly as
well as the optional mouse as you will see in Chapter 23.

Animation: a quick primer

Animation is defined as any process with which static objects or pictures are manipulated
to appear as moving. The word itself comes from the Latin anima which means life. In es-
sence, itis to convey the appearance of life and movement to otherwise static constructs.

In computers, this is achievable using the rapid succession of images faster than the eye
can perceive. On the ZX Spectrum Next specifically, there are basically five methods of
animation; one using mass storage frame playback, the other using memory based frame
playback, the third using sprites, the fourth using scrolling and the fifth is to use a combina-
tion of all the above. Let's examine them in turn.

Mass Storage Frame Playback

This technique deals with restoring partial or complete frames of screens stored on your
SD card to or RAMdisk to the screen memory in rapid succession at the maximum possi-
ble speed. Consider this example using the RAMdisk:

1@ IMK S: FPAFER @: EBORDER @: CLS

28 FOR =1 TO 1@

@ CIRCLE fx2@,15@,r

4@ SAVE '"m:ball"+ STR$ () CODE
15554 , 2045

S@ CLS

5@ MHEXT f

162 ZX Spectrum Next — User Manual

Mass Storage Frame Playback

Chapter 18 — Time and Motion

Fa
S@
9@
1a@@
11@
1z@
15@
14@
1=5@

FOR f=1 TO 1@

LORD "m:ball"+ STR% (f) COCDE
HEXT F

EEEF @.81, @8.81

FOR f=9 TO 2 STEFP -1

LOARAD "m:ball"+ STR% (f) COCDE
HEXT f

EEEF @.81, @2.81

GO TO 7@

The example above works only on Layer 0 and leverages the RAMdisk without getting into
BANK management territory. It can do that because the frames we're saving are very
small. If you remember from Chapters 15 through 17 how the Layer O memory is organ-
ised in thirds, you'll soon figure out that although small it's not necessarily the faster way of

doing things.

The RAMdisk is good to replay things but our SD card is also quite good. Let's try the fol-
lowing example with something more complicated based on a program contributed by
mathematician Uwe Geiken from the NextBASIC forum.

1

1@
=3
Sa
4.8
=7
=)
Fa

Sa

=l

11@

1z@
1=@
14@
1=@
1@
17@
1S@

19@

=l
21a
Zza
25a

REM EBaszed on Rotating ELLipszes by
Uwe Geiken © 2819

RUM AT =

LAYER 2.,1: FAFPER @: CLS

LET ==12&: LET “=&&S

LET A=2@: LET E=@2

LET ITER = Z@: LET CURITER=2

FOR &= TO 2% PI STEF PI ~ITER
IME 245: LET A=Z@: LET E=1&: LET
F=: PROCZ eLlip:se (=, ,A,B,FP]

IKE 15%5: LET A=19: LET EBE= 1&8: LET
FP=2% PI -@: PROC elLLipze

(=, ,A,B,FP]

IF CURITER +«+=ITER THE®R SAUVE
“"AMNIH" +5TR% (CURITER +" ,5L2"

LAYER: LET CURITER = CURITER+1
PRIMNT AT 23.,@; "“"Frame:';
CURITER-1;" =zawed";:CLS: IF

CURITER : ITER THER GO TO z22@
HEXT @: GO TO ZzZa

CEFFROCZ ellipse (X ,¥,RA,BE,P]
LOZCAL c,d.i,d.k.,=

LET c= C05 P: LET d= SIH P

FOR k= @& TO 2.85% FPI STEFP FI 2@
LET i=RA% CO3 k: LET .=EB% S5IM k
IF k=@ THEW FLOT =®+ixC-jxd,.
J+ixd+jxc: =0 TO zZa

CRAL xX+i+%Cc-j%xd- PEEER 23425,
J+ixd+.jixc—- FPEEEK 2343@

HEXT kK

EMDFROC

FOR XI = @ TO 5

FOR J= @ TO ITER

ZX Spectrum Next — User Manual

163

Chapter 18 — Time and Motion Memory Based Frame Playback

24@ LOACDC "AMIHMY+ STR% (J) +".5L2"
LAYER

258 MNEXT J

28 HNEXT XI

SER LAYER 2,@: LAYER @

The program generates ellipses that rotate counter to one another and after drawing each
frame, saves the entire screen on the SD card. Once it's done generating (when CURITER
reaches ITER), it uses LOAD ... LAYER (which we will look at in depth in Chapter 20) to
load and display the Layer 2 screens the previous part generated. Unlike the previous ex-
ample using Layer O which only moved 2K at a time, this loads and displays 48K at a time.

Compared to the previous example using the RAMdisk, this appears much smoother and
the reason is simple; there are many more frames generated by the program than what the
previous one did. The question is can it be made smoother and if at all possible, faster?

Memory Based Frame Playback

It's time to delegate frame playback to RAM. Replace line 90 with this, longer, version:

9@ IF CURITER «<=ITER THEHK SARUE
"AMIM" +5TR$s (CURITERI +" ,53L2"
LAYER: EBARRMNE 9 COPy TO
111 - (CURITER=*3S) : BAMKE 1@ COPY TO
11@-(CURITER=*3) : BARMKE 11 COPY TO
189- (CURITER*3S): LET CURITER =
CURITER+1

and then add the following lines at the end:

278 PRIWNT AT 22.@; "Done Loading
From SD. Press and ked to
Load from memord*”

258 FPARUSE @

298 FOR XxI=a TO 5

S@a FOR xJd=@ TO ¥ INT <LITERYT

Sl BAME X1l1ll-(3xJ) COPY TO X9

S2@ EBAMNE X118-0(3xJ) COPY TO Xl1@

S3@ EBARMNE X189-0(3%xJ) COPY TO
i B

Sd@a MNEXT XdJd

S58 MEXT XI

SER LAYER 2,@: LAYER @

Run the program again and now compare the playback using the SD card, with the play-
back of all the screens using the memory.

You can see that the playback is even smoother AND faster than the SD card and the rea-
son is simple and that is because memory is a much faster medium than your SD card.
Now there are several things of note here. First of all, this is not very efficient code, memory
wise; Layer 2 uses 3 banks of 16K each making an entire screen 48K long. For the 20 itera-
tions we made, that's 20 * 3 * 16K = 960K making this program unlikely to work on a
non-expanded ZX Spectrum Next?2. Secondly, not the entire screen is moving. Only a small
window does and that makes saving the remainder of each screen wasteful in memory
and speed. If we modify the program to confine the ellipses in one third of the screen (ver-

2 If you modify variable ITER however to a value around 10 it will work since we already know that banks 0 to 12 are
being used by the system and 10*3*16 gives us a figure of 480K which is a memory size available on an unexpanded
Next.

164 ZX Spectrum Next — User Manual

Animation with the Sprite System Chapter 18 — Time and Motion

tically speaking), we we can only use 16K at a time making the program playback much
faster. This is essentially the same thing the first program did using the RAMdisk. That one
however appears jerky because there are not enough frames of animation to make our
eyes be fooled by the illusion of smooth movement.

We can do that using BANK LAYER which is used to quickly copy data from a memory
bank to the screen or vice versa. The syntax is as follows:

BANK n LAYER x,y,w,h |offset TO [raster_op] offset|x,y,w,h

which can copy any rectangular “window” of the current layer defined by x,y,w and h into a
memory bank and back. BANK LAYER also supports effects defined by raster_op which
can further enhance the display of the “window” you're copying making animation transi-
tions even more interesting. More information regarding BANK ... LAYER can be found in
Chapter 24 — The Memory.

Animation with the Sprite System

The third way of animating things in NextBASIC is via the use of the Sprite System. Sprites
are visual objects of a rectangular shape that can be placed anywhere in the screen and
animated by moving them about but also perform animation within the object by rapidly
replacing the object's bitmap (the image —or pattern— it displays). There are two kinds of
sprites on the ZX Spectrum Next, 8-bit and 4-bit. The first can display 256 colours at once
while the second 16.

There is a maximum of 64 sprites in 8-bit mode and 128 in 4-bit mode. NextBASIC only
supports the 8-bit mode sprites so we'll only discuss these. For more information regard-
ing the use of 4-bit sprites, refer to Chapter 23 and online at specnext.com. Information on
4-bit sprites is also included in the second volume of this manual.

Sprites are 16 x 16 pixels in size and can be mirrored and rotated. They can also be an-
chored together to make a bigger sprite (although this last feature, is not supported in
NextBASIC).

The Sprite System has it's own RAM, located inside the FPGA that's at the core of the com-
puter, which not accessible from the outside via standard PEEK and POKE; one can only
write to it via REG commands and the special sprite ports (See Chapter 23 for details), so
we need to keep a copy of our sprites in memory if we want to modify and send them to be
displayed anew.

Creating Sprites
Sprites are created very similar to the way UDGs are created as we saw in Chapter 14.

There are three major differeces however:
* UDGs are 1-bit only while sprites (for NextBASIC) are 8-bit
* UDGs are 8 x 8 while sprites are 16 x 16 pixels

* UDGs are manipulated within the main memory map while sprites need to be
stored in a bank in order to be used.

The similarities however are obvious. Sprites can be easily made with DATA statements
which —if using one of the wider display modes— can even be seen visually via the
numbers.

So where for a UDG you wrote 8 DATA statements of 8 bits each, for a sprite you write 16
DATA statements of 16 bytes each; the same essential thing but scaled up.

ZX Spectrum Next — User Manual 165

Chapter 18 — Time and Motion Creating Sprites

This is best demonstrated visually so, let's try to implement the following sprite via DATA
statements:

Since colours in the figure above are only visible if you have the colour edition of the User
Manual, let's describe the larger area about the sprite and that's the transparency part.

This is set to index 227 (as we've seen in Chapter 16), the Global Transparency Colour —
which for the purposes of our example has been left the default. The rest displays a little
spaceship in brown and grey while the cockpit is demonstrated in blue and white.

Let's start with the DATA statements. Some line numbers are omitted as we'll be adding
them in the course of our animation example

1@ ; Sprite: Romdlos Dokos £ 2819

@ RESTORE

4@ EBAMNE HEW a

S8 FOR F=@ TO 255

&8 READ n: BARAMNKE a POEKE f.,n

e HEXT F

S@ SAHVE Yspaceship.spr” BARKE a,d,z256

218 REM Sprite Pattern @

228 DATA &5, &3, &5, BS, 227V, 227,
227, =227, 227, =227, 227, 227, B85,
55, 65, 65

238 DATA &5, 152, 219, &5, 227, 227,
227, 65, &5, 227, 227, 227, B,
219, 15z, &5

248 DATAHA &5, &3, &5, &S, 227V, 227,
227, 55, 55, 227, 227, 227, B,
55, 65, 65

25a LATA 152, 1852, &5, 227, 227.
227, 22v¥v, 55, 55, =227, 227, 227,
227, 865, 1l1lsz, 1s2

268 DATAH &3, &5, &5, 227, 227, 227,
55, 65, 65, 65, 227, 227, 227,
55, 65, 65

278 DATA 248, &35, &5, 227, 227, 227,
&3, 255, 127, &5, 227, 227, 227,
55, 63, 24

258 DATA 227, B85, &5, @&, 227V, 227,
55, 127, 127, &5, 227, 227, @,
55, 65, 227

166 ZX Spectrum Next — User Manual

Putting Sprites on Screen Chapter 18 — Time and Motion

298 DATA =227, 1sz2, 219, 72, a, 227,
1s=z2, @, &5, &5, 227, @, 72, 219,
152, 227

@@ oDARTA 227, 1s2, 219, 72, 1lsz, @,
a, &, &3, 1lsz2, 227, 1lsz, 72, 219,
1Sz, 227

Zli&@ DATA 227, 1lsz2, 219, 72, 1lsz, &4,
&e5, @, &5, &5, &3, 1Sz, 7z, 219,
152, 227

Zze DATA 227, 248, &5, 72, 1Sz, B,
55, @, 85, B85, B3, 152, 72, B85,
248, 227

5@ DRATRA 227, 227, 227, 72, 1lsz, &g,
255, 1lsz, 182, 255, B, 152, 7&,
227, 227, 227

Z4@ DATAR 227, 227, 227, 227, B35, BT,
255, &5, BS, 255, B3, BS, 227,
227, 227, 227

5@ DRATRA 227, 227, 227, 227, 227, B4,
255, 15z, 152, 255, &S, 227, 227,
227, 227, =227

@ DATA 227, 227, 227, 227, 227,
227, 2358, 224, 236, 224, 227,
227, 227, =227, 227, 227

V@ DRATRA 227, 227, 227, 227, 227.
227, 227, 252, 252, 227, 227.
227, 227, =227, 227, 227

If you use the 64 or 85 column modes (Via the Edit/Options menu) you'll be able to discern
the pattern in a similar manner as you did for the UDGs in Chapter 14. Value 227 is obvi-
ously the transparency as we discussed above.

Line 40 is a new command for us (which we will examine in length in Chapter 24) but what it
does, is to reserve the first free memory bank and assign its identification number to vari-
able a. This way we don't need to remember —or hard code— an arbitrary number as that
number could be in use if this is loaded on another machine.

Next, line 60 reads each value in succession and then writes (with BANK POKE) each
value in a progressively increasing offset in bank a. Once the READ process is done, we
SAVE the stored values in a file for later use. This particular version of SAVE (SAVE ...
BANK) will be explained in length in chapters 20 and 24.

Putting Sprites on Screen

The sprite (or rather a pattern that can be assigned to a sprite) is now safely stored in bank
a. So how do we display it?

For that we need a few commands. SPRITE CLEAR, SPRITE BANK, SPRITE PRINT,
SPRITE BORDER and finally SPRITE.

Let's follow them one by one:
SPRITE CLEAR

clears all sprite assignments and starts fresh. It's a good idea to start any program dealing
with sprites with that command so let's insert it into our program immediately with:

2B SFRITE CLEAR
ZX Spectrum Next — User Manual 167

Chapter 18 — Time and Motion Putting Sprites on Screen

We now have let NextBASIC know that we have no sprites assigned with the previous
command, but now we need to assign new ones. This is done with:

SPRITE BANK b [0, p,]

which lets NextBASIC know in which bank b, are the sprite patterns located. Optionally you
can define a number n of sprite patterns beginning with pattern p, located at bank offset o.

In the case above, we already know the bank and we do not need any more identification
factors so let's tell NextBASIC where we put the sprites by adding:

9@ SPRITE EBEAME a

All'is now left to do, is show our sprite. For this we need two commands. First we need to
enable sprites with:

SPRITE PRINT n

where n can be 0 or 1 enables sprites (1) or disables (0) them. This is actually showing the
sprites, but freshly initialised sprites contain no image (pattern), nor display information.
We need to assign at least one pattern to one sprite “slot” and tell the Sprite System that
the particular sprite “slot” is visible for that to happen.

In our example so far (that will soon change), we only have one pattern so that's not partic-
ularly difficult. We also need to place the sprite somewhere on the screen AND possibly
rotate it. If you go back to our sprite design, you'll see it's a spaceship facing upwards; we
may need to make it turn to the left or right. All of the above (and one more thing) can be
achieved with a single command:

SPRITEs, x, v, p, f

which in one go: sets sprite number s, to pattern number p, then update its position to lo-
cation x, y with flags 7. Flags is a bitmask (we've covered bitmasks before in Chapter 7 so
that should be easy already) that sets the following:

Bit 0 is the visibility flag. 0 is for invisible and 1 is for visible

Bit 1 is the rotate flag. 0 for standard, 1 for a 90° clockwise rotation

Bit 2 is the Y-mirror flag. 0 is for non-mirrored vertically while 1 is for mirrored

Bit 3 is the X-mirror flag. Again it's 0 for non-mirrored horizontally while 1 is for mirrored

while

Bits 4 through 7 define a 4-bit palette offset (or 0). We'll explain in a little bit the part about
the palette offset (and provide examples for the rest of the flags) but for now, let's add a
non-mirrored, non-rotated sprite 0 with the pattern 0 we defined, put it at approximately
the centre of our screen and make it visible. Let's add the appropriate commands now to
our program:

1@@ SPRITE FRIMNT 1
1538 SPRITE @,152,1192.,@8,1

to make sure that our sprite will stay on screen (as the NextBASIC editor will make it invisi-
ble temporarily when invoked), we should add one more line:

158 PRUSE @

which will ensure the computer is waiting on our keypress before returning to NextBASIC.
Now RUN the program.

Presto! Our Spaceship is sitting idle, doing nothing, in the middle of our screen. But wait a
second? 152 and 119 don't look anywhere like the middle of the screen. We know our res-
olution in Layer O can be expressed in values between 0 and 255 for x and 0 and 191 for y
correct? Well wrong! It's time now to refer back to Chapter 16 and also examine Fig. 27 one
more time where we will see that the Sprite System has a resolution of 320 w x 256 h pixels.

168 ZX Spectrum Next — User Manual

Animating Sprites Chapter 18 — Time and Motion

This gives us 32 more pixels on every side than our standard resolution Layer 0 and Layer 2
screens. Now placement of the sprite begins with the upper left corner and a sprite is 16 x
16 soin order to be placed at the centre of the screen you divide the horizontal and vertical
in half and then subtract a further 8 pixels to center the sprite. Normally the border hides
the sprites so setting an x,y set of 0,0 would leave the sprite invisible. There is something
we can do about that however and that's use:

SPRITE BORDER n

which sets the sprites to print over the border if nis setto 1 or under it if n is set to 0. Let's
try it by adding the command and changing line 140 to show the sprite at that coordinate
with:

185 SPRITE EBORCDER 1
1@ SPRITE @,8,8,a8,1

To execute with the latest changes, do not RUN the program again, as this will repeat the
process and commit one more bank to the sprite DATA we entered originally. Instead type
GO TO 100. You may even want to test this without line 105 to see the difference.

Animating Sprites

This chapter however is called Time and Motion and with sprites so far we haven't seen
motion at alll Well, let's change that; as we spoke in the introduction a sprite can be ani-
mated by moving it about the screen or by changing its bitmap to something different and
most of the time, both at the same time. In order however to animate the bitmap of a sprite,
a new pattern has to be defined. Let's do that by adding a few lines to our program and
modifying some existing ones. First remove lines 140 and 150, then modify these:

S@ FOR F=a TO S11

S@ SAVE Yspaceship.spr" BARAMK a,@,512

and then add these:

1as FOR Xa= 1 TO Sa@

139 LET X=s=1-=

14@ SPRITE @,152,119,%:=s,1

145 MHEXT Xa

15@ PRAUSE @:3TOP:REM Exit here arfter
pPausing

5@ REM Sprite Pattern 1

9@ DATA &5, &5, &S, &S, 227, 227,
227, 227, 227, 227, 227, 227, B85,
&5, 85, B5

4@@ DARATA &5, 219, 152, &5, 227, 227,
227, &5, B%, 227, 227, 227, B85,
1Sz, 219, &S5

41a@ DATAH &5, &5, &5, &S, 227, 227,
227, 5%, 55, 227V, =227, 227, B85,
&5, 85, B5

4z2@ DATA 152, 1852, &5, 227, 227, 227,
227, 5%, 55, 227, 227, 227, 227,
=25, 15z, 1Sz

458 DATAH &5, &5, &5, 227, 227, 227,
=55, &5, &5, &5, 227, 227, 227 .
&5, 85, B5

ZX Spectrum Next — User Manual

169

Chapter 18 — Time and Motion Animating Sprites

dd4@ DARATAH 248, &5, &5, 227, 227, 227,
=5, 255, 127V, &5, 227, 227, 227,
=55, 55, 240

45@ DARATA 227, 63, 63, @, 227, 227,
=s5, 127, 127, &S, 227, 227, @,
=5, &85, 227

45@ DARATAR 227, 152, 219, 7z, &, 227,
1Sz, @, &5, &5, 227, @, 72, 219,
1sz2, 227

47@a DARTARA 227, 152, 219, 72, 1lsz, @,
a, &, &3, 1lsz2, 227, 1lsz, 72, 219,
1sz2, 227

4S5@ DARTAR 227, 152, 219, 72, 15z, &S,
E5, @, &3, &5, &3, 1Sz, 7z, 219,
1sz2, 227

49@ DARATA 227, 248, &5, 72, 152, B,
E5, @, 85, B85, B85, 152, 72, B,
24@a, 227

S@a@a DRTAR 227, 227, 227, 72, 1z, &S,
255, 1lsz, 1sz2., 255, &S, 152, 72,
227, 227, 2287

Sl1@ DARTAR 227, 227, 227, 227, B35, BT,
255, &5, BS, 255, B, BS, 227,
227, 227, 227

sz DARATRAR 227, 227, 227, 227, 227, 65,
255, 1lsz, 182, 255, &5, 227, 227.
227, 227, 2287

S3@ DRATAR 227, 2287, 227, 227, 227,
227, 2568, 224, 236, 224, 227,
227, 227, =227, 227, 227

Sd4@ DARATRH 227, 227, 227, 227, 227,
227, 227, 224, 224, 227, 227,
227, 227V, =22¥v., 227, 227

Now, unlike the previous encouragement, RUN the program again. This will reserve a new
bank for sprites which isn't normally recommended but it is okay for the purposes of our
example. What we have done now is to create two patterns that are similar but differ
slightly in the cannons section and the engine section. Lines 136 to 150 will display sprite
0, 50 succesive times, however where things differ is at line 137 which “flips a switch” from
pattern O to pattern 1 for sprite 0 displayed at line 140. If you cannot see the effect very
well, you can insert a:

FPRUSE =

at the end of line 140 which should give you just about enough delay to see the sprite
changing at the engine and cannon sections while at the same time demonstrating how
important time control is in animation. We did cover the bitmap animation of the sprite it-
self; let's now see how we can make it move. First however let's try to rotate the sprite in
place so we can also see the usage of the flags in action. Add the following lines:

187 LET Xp=0@

185 REFPERT

189 IF ¥Mp=@ THER LET Xf=xX2080a1
1l1a IF ¥p=1 THE®K LET Xf=xXE20a81l1

170 ZX Spectrum Next — User Manual

Moving Sprites on Screen Chapter 18 — Time and Motion

111 IF Xp=2 THERN LET Xf=XEa1lal
ll2 IF Xp=3 THERM LET Xf=XE1a1ll
141 REFEART UHTIL Xp 3

and make line 140:

14@ SPRITE @,152,119,¥:s ,%f :PAUSE 35:
LET Xp=Xp+1

Now execute again with GO TO 100 and you will see the sprite rotate in place.
The process is quite simple; the last bit being the visibility flag:

First the sprite is printed upright, then the rotation flag bit gets turned on to give it a right an-
gle turn, then it gets turned off and the Y mirror flag bit gets turned on to make the sprite
point downwards and finally the rotation flag bit together with the X mirror flag bit get turn on
to rotate the sprite clockwise 90° and then mirrored horizontally to make the sprite pointing
to the left. The process restarts from the sprite pointing upwards when the rotation variable
%p gets reset to 0 and the whole thing repeats 50 times, all the while changing between
patterns 0 and 1.

Moving Sprites on Screen

Time to move the sprite about the screen; we'll start easy and then introduce you to the
real reason (that is obviously humourus) why maths exist! First remove all lines between
106 and 150 and replace with these:

185 FOR Xa = @ TO 255

158 LET Xs=¥l-=

14 SPRITE @,152, ®255-a,x:=s.,1

141 PFPRUSE =

145 HEXT Xa

1@ GO TO 1és: REM Qoo LL need to
stop thiz with EREARK

Execute with GO TO 100 and youl'll see our spaceship fire up its engines and cross the
screen from top to bottom. Now for something much fancier as promised, move line 106
to 120 and add these lines:

1858 PROC initSxXSineHMow (]

SE@ STOF

S7@ DEFFPROC initxXSineMHMow ()

SS@ FOR f =@ TO 319: LET Xal IWNT
TF¥1 =% IWT € 159% SIM (F-159% PI
17 HMEXT f

S9@ ERCFRROC

Finally modify lines 140 and 150 as follows:

14@ SPRITE @,%X159+alal, xX255S-a, x:=.,1
15@ GO TO 1z@

before executing again with GO TO 100. The spaceship now will move in a sinusoidal pat-
tern from the bottom to the top of the screen before wrapping around and coming from the
bottom. The way we did this, was by precalculating an integer array (See Chapter 12) to
hold all possible x values within our visible Sprite System coordinates. To avoid B Integer
out of range errors, we made sure the possible values of both the SIN function results and
line 140 that positions the spaceship in the x,y axis stay within acceptable range. To switch
the initial direction of movement, instead of a + you can start with a - in line 140 as follows:

ZX Spectrum Next — User Manual 171

Chapter 18 — Time and Motion Scrolling
148 SPRITE @,x159-a3[al, =x255-a, #=s,1

Note that our integer array %a is using the brackets [] variant instead of the parentheses ()
variant and that's because we have more than a potential 64 values. That means also that
integer arrays %a (), %b (), %c (), %d () and %e () have been used up by %a[].

It's obvious by this example that very complex animation patterns can be created with rela-
tive ease using the Sprite System. Before we move on to scrolling, it's useful to also cover
a couple of subjects we did not address in the course of our example.

The first thing is the ability to use palettes with the Sprite System. These are indistinguish-
able from other palettes in the ZX Spectrum Next palette control system? and they too are
also governed by the PALETTE DIM keyword to set them up as 8 or 9 bit. Like the LAYER
PALETTE equivalent, the Sprite System has its own keyword combinations: SPRITE
PALETTE and SPRITE PALETTE BANK. Their syntax is as follows:

SPRITE PALETTE n[,i,v]

where n is the palette number (0 for first and 1 for second) while the optional/, v are the col-
our index (0 to 255) and colour value (expressed in 9-bit RRRGGGBBB format regardless
of the PALETTE DIM setting).

SPRITE PALETTE n BANK b, 0

will operate like it's LAYER counterpart, assigning palette n from offset o in bank b. As with
the LAYER version, palettes are 512 bytes long if 9-bit and 256 bytes long if 8-bit (as set
with PALETTE DIM).

One last thing of note is the palette offset flag we discussed earlier. This is there to allow
for quick change of colour scheme on a sprite without changing its bitmap. If you recall the
discussion about 4-bit sprites, this is similar but the sprites are actually 8-bit ones. They
can still be defined in 8 bit index values however these values' 4 top bits will get chopped
off and replaced by the optional offset. Since calculating and/or anticipating and properly
structuring your palettes for such a use can be a large hassle; it's good practice if you want
to use this feature to define your sprite values from 0 to 15 and set the offset to adjacent
sets of 16 colours. This way in a potential future version of NextBAS/C that supports native
4-bit sprites, you won't have to change pattern definitions at all.

SPRITES cannot be saved as parts of any screenshot facility with the NMI menu or
via SAVE ... LAYER because they exists outside of normal memory space.

Scrolling

The last method of animation is by using the in-built hardware scrolling capabilities of the
ZX Spectrum Next. As you will find out in Chapter 23, all layers can be scrolled either in full
or within a clipping window (see Chapter 17 — Graphics). NextBASIC provides access to
hardware scrolling via the LAYER AT command. Its syntax is as follows:

LAYER AT xy

which moves the current layer to the offset defined by the coordinates x and y. According
to which side we're moving to, the existing graphics on that side get wrapped around the
opposite side. Let's demonstrate using one of the graphic demos' images inside the Sys-
tem/Next™ distribution SD:

1@ LAYER 2,1:CLS

3 See Chapter 16 for the Layer 2 notable palette exception

172 ZX Spectrum Next — User Manual

The Copper Chapter 18 — Time and Motion

28 .bmplLoad ~sdemossbmpa2SE&conwve
rtsesbitmapssterm.bmp: PRUSE
@B: REM Haszta La wista Hew!

S@ FOR W=x=@ to 255

4@ LAYER AT XX ,Xa

S8 MHEXT XM=

&8 LAYER AT @,@: LAYER 2,8:LAYER @

Once you RUN the above, you'll see an image racing towards the left side of the screen so
fast it may even be unusable for anything other than a simple effect. Running it at 3.5MHz
you will see a very smooth movement which shows how efficient hardware scrolling is on
the ZX Spectrum Next.

If you want to reverse the effect and make the screen move towards the right you will need
to change line 40 to:

4@ LAYER AT Xz255-x.,@

If we borrow a bit from the sprite example, we can even introduce a SIN function to make
the screen appear like it's bouncing from left to right and top to bottom and vice-versa.

By itself, the LAYER AT keyword doesn't do much other than roll a screen around; with the
combination however of layer clipping windows and background updating of the shadow
screens (See Chapters 23 and 24 as well as Chapter 17), you can produce a scrolling ef-
fect of very large landscapes. If you combine this with specially crafted screens that can
repeat themselves at infinitum then you have the basics for every side scrolling game ever
made!

The Copper

While not strictly an animation aid, the Copper is a hardware module of the ZX Spectrum
Next that can definitely be used for, among other things, animation. The Copper runs in
parallel and independently from the main Z80n processor and is dedicated to writing Next
Registers (NexREG) at specific points on the display. The name derives from “co-proces-
sor” and was first seen in the Amiga computer which had a similar function. The Copper,
essentially maintains a list of instructions that consists of only two commands; WAIT and
MOVE. This simple control allows updating of Next registers at regular times, synchro-
nised to points when the display is updated on the screen. The Copper system can there-
fore be used to send audio samples to the ZX Spectrum Next's digital audio hardware,
make fast colour changes to get sky effects, change layer priorities, enable or disable
screen modes etc. all that from a simple list of commands.

On older Spectrum models, you would have needed some very clever use of the Interrupt
system to do these sort of tricks with some being completely impossible or just too slow to
be of any practical use. Even with the ZX Spectrum Next's ability to generate interrupts on
each raster line, setting that up (especially in NextBASIC) and then trying to get the timing
right for nice clean effects is very complicated (or impossible) and yet simple to accom-
plish by using the Copper.

We'll jump ahead a bit and introduce a special command; REG (which will be covered in
full in Chapter 23). For now take REG n,v to be the same as OUT 9275, n: OUT 9531,v.
Let's see our example:

1a EORCER @: FPAFPER @: IMEKE 7:CLS

28 REG 95,@8: REM make sure Copper i=
stopped

S8 REG 97,8

4@ REM Select the Copper data
register

ZX Spectrum Next — User Manual 173

Chapter 18 — Time and Motion The Copper

S8 FOR ==@ TO &: REM Increaze this
if dou add more data Lines.
E@ REARALD m, L
T REG 95,m: REG 9&6,L: REM write the
Copper List from DRATA s=tatements
SB MNEXT =
9B REG 97 ,@8: REM Low part of address
188 REG 95 ,xMEl100@00@0@a: REM high part
of address and =tart Copper.,
repeat on WVBLank
18@@ LATAH 125+ (45201 ,8:
REHM LAIT for Line zZero horizontal
4=
181@ DATA 4,15 ,685,6BIH 11100086 :
REHM LHWRITE Falette Index 1& (FPaper
and Borderl, then WRITE RELD
18z2a DATAH 125+ (4520 , 188 :
REHM LAIT for Line 188 horizontal
4=
18aZ@ DATA &4 ,15 ,65,6IHM Q0200086 :
REHM LHRITE FPalette Index 158 and
LWRITE contents back to BLACK.
184a@ LATAH 125+1,125
1858 REM Las=t Line waits for a bit of
the s=creen that does not exist
1*25656+125 = 356 (STOR)

You can try changing the BIN statements in lines 1010 and 1030 to use different colours —
this is the 8 bit Palette value so RRRGGGBB

Now remember this list is still running in the background but, it is changing ULA palette 0
paper colour. NextZXOS uses palette 1 so you do not see it when editing NextBASIC. Just
type CLS and you will see that it comes back until you press a key!

WAIT commands (where the top bitis 1 i.e. bytes >128) will pause processing until a cer-
tain point on the display (to a fixed resolution).

MOVE commands (where the top bitis 0 i.e. bytes <128) will take a given value and pult it
in the numbered register.

You can have up to 1024 commands which can repeat or stop at any point by WAITing for
a non existent line l.e. >311 which works at both 50 and 60 Hz. So there is loads of room
for creativity and invention.

Only the lower 128 Next registers can be written but, this is not an issue as the registers
above 127 are mainly used for the accelerator and the Expansion Bus.

Register 96 (60h) is the data port to write the instructions. They are two bytes long so you
need to write them in pairs with the most significant byte first — not the usual Z80 way but,
needed for the way the system works.

Register 97 and 98 (61h and 62h) are the controls; the first is the low 8 binary bits of the ad-
dress to WRITE the instructions, the second contains the bits to control the mode and the
top bits of the instruction address. If you change to mode 01b (from another mode like
00b PAUSE/STOP) this also resets where the Copper begins to READ its instructions from
back to instruction 0 — in all other cases it will carry on from where it left off last time.

174 ZX Spectrum Next — User Manual

The Copper Chapter 18 — Time and Motion

The Copper sees the screen starting from the top left pixel of the display area of the
screen, this is 0,0. After 32 horizontal values (every 8 pixels) you have the right border, then
you have a gap (count of 12) which is where, on an old TV, the spot would be flying back
over to the left, then you have the right hand border of the next horizontal line.

Note: This zero point is also where the screen “dot” will be when the first Raster Line Inter-
rupt occurs. Do not confuse this with normal interrupts on the system which occur in the
top left of the whole screen as it is displayed on a monitor or TV. That is actually some-
where in the middle of the bottom right of the Copper view of the screen shown in the dia-
gram below. Exactly at raster line 224 at 60Hz or 248 at 50Hz.

Finally when it gets to the bottom of the screen it has the border and then a blank period (8
lines) while the old spot was running back to the top of the screen, then you have a number
of lines in the top of the screen area to play with (56 at 50Hz or 32 at 60Hz). To see this
change line 1000 for DATA 128+ (45*2),200 and line 1020 for DATA 128+ (45*2)+1,45.
Remember: 1*256+45 = 301.

This diagram will hopefully help to visualise that:

Right
AR H_Blank

=1
cP
FOM Cart 48K

ROM Cart 125K
45K ERSIC
Eack...

1792K

81982, 19586, 1987 Amstrad PLcC.
2008-2019 Garry Lancaster v2.84
Cogical drives: AEH

Bottom Border

V_Blank ULAIRG

Figure 24 — Copper operation

If you MOVE 0,0 (i.e. Write something to a Read Only Next Register like Register 0) then
the Copper does nothing for a short duration (a NOP in Z80 terms) so you can wait for a
more accurate moment to overcome the fact you only have 55 horizontal positions to wait
for i.e. every 8 pixels on the screen.

You can write to the Copper as it is running because it keeps a separate track of its READ
instruction address to the address you are using to WRITE.

WARNINGS:

Be careful as the NextZXOS Screensaver uses whatever palette is in place so if you have
any border effects running they will still be visible and could cause the screen to burn. This
is worth bearing in mind if you are writing software not to leave static images around too
long!

If you try to write to a Next Register at the same time as the Copper then this might cause a
conflict — don't worry; the Copper will win and the display will be OK but, your program
command may fail.

So some care is needed to manage the two systems. Turning off the Copper while you
make Next Register affecting changes in NextBASIC is a good idea. That includes things

ZX Spectrum Next — User Manual 175

Chapter 18 — Time and Motion The Copper

like the PALETTE command for example. If you are using machine code you will need to
use some form of flag and remember what the Copper might be doing at a specific time.

In the above program for example, it is possible the Copper STOP in the first two lines will
fail if you run it a second or third time to change the colour and will not reset the write ad-
dress, so you will write after the list already there and your new one will never be reached.
You could get around that by repeating the first two lines as it is unlikely to fail twice so
shortly after the last attempt and has no effect if it does run twice.

Exercises

1. Write a procedure to write a STOP command twice in a row so that you can
make sure the Copper is stopped when you need to in your programs.

2. Draw a Spectrum Flash on the right hand side border by changing the palette
colour five times — make sure the last time is back to your real paper/border col-
our. Hint you can use one or more WRITE 0,0 as a very short delay.

3. Write a program that controls two spaceships using the sprite defined, one go-
ing horizontally, while the other vertically on the screen

4. Enhance the above program with a memory based Layer 2 animation running in
the background

176 ZX Spectrum Next — User Manual

[/ Chapter

S

Sound and Music

This page intentionally left blank

Basic sounds with the BEEP command

Sound and Music

Unlike its predecessors, your ZX Spectrum Next doesn't fare poorly in the audio capabili-
ties department. From simple beeps and clicks, to complex compositions using its in-built
3 Programmable Sound Generators (PSGs) and full-fledged digital audio output, sound
can accompany almost every program you write or software you will load. Sound is output
in stereo from both the digital video port and an analogue 3.5mm jack output present on
the back of the machine. Additionally, there is the possibility of an on-board piezo speaker
(sold separately).

Chapter 19 — Sound and Music

Basic sounds with the BEEP command

The easiest way to create sounds (and the only method that works on all ZX BASIC ver-
sions including NextBASIC) is by using the BEEP statement:

BEEP duration, pitch

where, as usual, duration and pitch represent any numerical expressions. The duration is
given in seconds, and the pitch is given in semitones above middle C. For notes below
middle C we use negative numbers.

Here is a diagram to show the pitch values of all the notes in one octave on the piano:

Fig. 25 — Pitch/note equivalents

To get higher or lower notes, you have to add or subtract 12 for each octave that you go up
or down.

If you have a piano in front of you when you are programming a tune, this diagram will
probably be all that you need to work out the pitch values. If, however, you are transcribing
straight from some written music, then we suggest that you draw a diagram of the stave
with the pitch value written against each line and space, taking the key into account.

For example, type:

18 FPRIWNT "Frere Gustaw"

28 BEEEF 1,8: EEEF 1,2: EEEF .5,35: EEEF
.S5,2: BEEF 1.,@

& BEEF 1,8: EEEF 1,2: EEEF .5,35: EEEF
.S5,2: BEEF 1.,@

4@ BEEEFP 1,3: EBEEFP 1,%: EBEEF 2,7

& BEEFP 1,3: BEEFP 1,%5: EBEEF 2,7

=@ BEEEFP .75,7V: BEEF .25.5: BEEF .5.,7:
EEEF .5.5: BEEF .5,3: EBEERP .5,2: EBEEF
1.@

Y& BEEFP .75,7: BEEF .25.5: BEEF .5.,7:

ZX Spectrum Next — User Manual

179

Chapter 19 — Sound and Music Basic sounds with the BEEP command

EEEF .5.,5: BEEF .5.,3: BEEF .5,2:
EEEF 1.,8@
@ EBEEFP 1.,@: EBEEF 1,-5: EEEF 2.0
9@ EEEF 1,@: EEEF 1,-5: EBEEFP 2.8

When you run this, you should get the funeral march from Mahler’s first symphony, the bit
where the goblins bury the US Cavalry man.

Suppose for example that your tune is written in the key of C minor, like the Mahler above.
The beginning looks like this:

|

1N

|

:
y) -

i.__-

and you can write in the pitch values of the notes like this:

; e =
J T —
02 320 0 2 320 35 7 35 7

We have put in two ledger lines, just for good measure. Note how the E flat in the key sig-
nature affects not only the E in the top space, flattening it from 16 to 15, but also the E on
the bottom line, flattening it from 4 to 3. It should now be quite easy to find the pitch value
of any note on the stave.

If you want to change the key of the piece, the best thing is to set up a variable key and in-
sert key+ before each pitch value: thus the second line becomes:

28 EBEEFP 1l.keg+@: EBEEF 1,ked+2: EBEEF .5,
ked+5: BEEP.S.ked+2: BEEF 1,ked+@

Before you run a program you must give key the appropriate value — 0 for C, 2 for D, 12 for
C an octave up, and so on. You can get the computer in tune with another instrument by
adjusting key, using fractional values.

You also have to work out the durations of all the notes. Since this is a fairly slow piece, we
have allowed one second for a crotchet and based the rest on that, half a second for a
quaver and so on.

More flexible is to set up a variable crotchet to store the length of a crotchet and specify
the durations in terms of this. Then line 20 would become:

28 BEEFP crotchet,ked+@: BEEF crotchet,
ked+2: EBEEF cCcrotchets2,ked+3: BEEPR
crotchets2,ked+2: BEEFP crotchet, ked+@

(You will probably want to give crotchet and key shorter names.)
By giving crotchet appropriate values, you can easily vary the speed of the piece.

When using BEEP, one must remember that via NextBASIC we can only produce one tone
per unit of time since this is done via the CPU, therefore you are restricted to
unharmonised tunes. If you want harmonies, you should either use the PLAY command
described in the following section or program the computer in Machine Code. Further-

180 ZX Spectrum Next — User Manual

Basic sounds with the BEEP command Chapter 19 — Sound and Music

more, since tone generation via the CPU is an exclusive task, you cannot do anything else
on or off screen while the sound is playing, so in order to perform other functions while
sound is generated by using the CPU, you will also have to program in Machine Code, or
—assuming you have the Accelerated version or a Pi Zero installed— use the audio play-
back facilities described in the last section of this chapter (the latter working independ-
ently of whatever the ZX Spectrum Next is doing).

Try programming tunes in for yourself — start off with fairly simple ones like Three Blind
Mice. If you have neither piano nor written music, find a very simple instrument like a tin
whistle or a recorder, and work the tunes out on that. You could make a chart showing the
pitch value for each note that you can play on this instrument.

Type:
FOR n=@ TO 1a@@d: EBEEFP .5S,n:
ME=XT n

This will play notes as high as it can, and then stop with error report B Integer out of range.
You can print out n to find out how high it did actually get.

Try the same thing, but going down into the low notes. The very lowest notes will just
sound like clicks; in fact the higher notes are also made of clicks in the same way, but
faster, so that the human ear cannot distinguish them.

Only the middle range of notes are really any good for music; the low notes sound too
much like clicks, and the high notes are thin and tend to warble a bit.

Type in this program line:

1& BEEF .5,8: BEEF .5.,2: EBEEF .5.,4:
EEEF .S5,5: EBEEFP .5,7V: EBEEF .5.,9:
EEEF .5,11: EBEEF .5,12: STOF

This plays the scale of C major, which uses all the white notes on the piano from middle C
to the next C up. The way this scale is tuned, is exactly the same as on a piano, the
so-called even-tempered tuning because the pitch interval of a semitone is the same all
the way up the scale. A violinist, however, would play the scale very slightly differently, ad-
justing all the notes to make them sound more pleasing to the ear. He can do this just by
moving his fingers very slightly up or down the string in a way that a pianist can't.

The natural scale, which is what a violinist would play, comes out like this:

28 EBEEFP .5,8: BEEF .5.,2.839: BEEF .5,
S3.56: BEEP .5,4.93: EBEEF .5,7.082:
EEEF .5,53.854: BEEFP .5.,18.55:

EEEF .5,12: STOF

You may or may not be able to detect any difference between these two; some people
can. The first noticeable difference is that the third note is slightly flatter in the naturally tem-
pered scale. If you are a real perfectionist, you might like to program your tunes to use this
natural scale instead of the even-tempered one. The disadvantage is that although it
works perfectly in the key of C, in other keys it works less well — they all have their own natu-
ral scales —and in some keys it works very badly indeed. The even-tempered scale is only
slightly off, and works equally well in all keys.

This is less of a problem on the computer, of course, because you can use the trick of add-
ing on a variable key.

Some music — notably Indian music — uses intervals of pitch smaller than a semitone. You
can program these into the BEEP statement without any trouble; for instance the
quartertone above middle C has a pitch value of .5.

You can make the keyboard beep instead of clicking by:

ZX Spectrum Next — User Manual 181

Chapter 19 — Sound and Music Enhanced Sound and Music with PLAY
FORE 23589 ,255

The second number in this determines the length of the beep (try various values between
0 and 255). When it is 0, the beep is so short that it sounds like a soft click.

Enhanced Sound and Music with PLAY

When using NextBASIC, you have two different ways to make music and sound effects.
You can still use the BEEP command (as discussed above) but you also have access to
the PLAY command which allows you to make much more sophisticated music with up to
nine notes playing at once. It also gives you more control over the sound of each individual
note than is possible using BEEP.

Making music and sound effects with PLAY is simple. You just type in the series of notes
that make up a tune, then ask the ZX Spectrum Next to PLAY them. You can also include
instructions that tell your machine what sort of tone you want for the sound. Please note
that case is important when typing in the string expressions in the examples ie. ga should
not be typed as Ga, gA or GA.

To hear some of the wide range of sounds that you can make, type in one of the two pro-
grams below, RUN it, then try the other example. Don't worry if the program lines look
complicated, they are explained in detall later.

Music:

1@ LET b%="04 (CCEC) (SEF7G) (SGAGFSEC)
SEBTESEERBE"

28 PLAY "T1Sa@os (CLOEC) (SEFT7G) (ZGAGFSEC)
SCg7FCoCcgC ,b%, "3 (PCGE) (FCE) (PCGE)
SGL7VEaGRE

Sound Effects:

1@ LET af="HSUXSS@QLSO7F ([(C111": PLAY a%
FRUSE 25

28 PLAY "HSEUXS@@allloI ([(Cr 1" PRUSE 25

@ LET a%g="HMSSL2O01MSC" : PFPLAY a% : PRUSE
25

Using the PLAY command

In the examples above, you will see that each time the PLAY command appears, it is fol-
lowed by up to nine different parameters in the form of either string variables, string literals
or a combination of both in a statement like:

PLAY P1C1,P1C2,P1C3,P2C1,P2C2,P2C3,P3C1,P3C2,P3C3

where PxCy are strings that refer to the PSG (P) number (x) (1 to 3) and channel (C) num-
ber (y) (1 to 3). The order of these is specific and each PLAY command must have the full
complement if you require all the channels to reproduce a sound. You cannot issue two or
more PLAY commands to control individual PSGs as each PLAY statement sends a batch
of instructions to the audio hardware. If you wish one or more channels to be silent you
should replace them with the empty string "". As we will examine below, the strings contain
all the information to tell your ZX Spectrum Next which sounds to make.

As we discussed, PLAY controls nine separate sound channels over the 3 available PSGs,
each called A, B, and C.

In the Music example given above, "T18006(CDEC)(5EF7G)(83GAGF5EC)5Cg7C9CgC"
tells channel A of PSG1 to play the melody line, b$ tells channel B of PSG1 to play a har-
mony, and "O3(7CG)(7CG)(7CG)5GD7G9GDG" tells channel C of PSG1 to play a bass
part. In the Sound Effects example, only one noise is used at a time (although up to nine

182 ZX Spectrum Next — User Manual

Constructing strings Chapter 19 — Sound and Music

can be), so each oneis in channel A of PSG1 and the command is simply PLAY a$ - or (as
seen in line 20) PLAY "M56UX5000W103(((C)))".

In fact any of the channels can produce either a musical tone or noise or even nothing at
all, so you can mix sound effects in with your music (see Channel selection later on).

Constructing strings

Composing music and sound effects in NextBASIC is just a matter of creating strings containing
the information you want. Try this — very simple — example, which plays just one note —an A.

LET af%="a": FLAY a%

Any music program using PLAY will generally use string variables rather than literals to tell
it what to play, as you can see by looking at the earlier examples. The more complex, or
longer, the piece and the more complicated sound, the more complex the strings become
as obvious from the increased complexity of the examples above.

Any musical sound has a pitch and duration. It also has a volume and timbre. The strings in
the earlier examples contain information about all of these. The summary below lists each
possible command, and they are explained in detail opposite.

PLAY command summary

This is a brief list of the commands which can be contained in a PLAY string. Note that all
letters except note names must always be in capitals.

String entry Function
c-borC-B Gives pitch of note within current octave range

$ Flattens note following it
Sharpens note following it
Ox © Sels oclave range x (0 to 8)
1-12 Sets duration of note
& Denotes a rest
N | Separates two numbers
Vx Sets volume to x (0-15)
Wx Sets volume effect to x (0-7)
U ~ Turns on volume effect in the current channel
Xx Sets duration of volume effect to x (0-65535)
Tx - Sels tempo to x (60-240) bpm
() Enclose repeated phrase
' ~ Enclose a comment
H Halts a PLAY command
Mx ~ Selects channel and sets type to x (1-63)
Yx Turns on MIDI channel x (1-16)
Zx Sends x as a MIDI patch
L Restricts output from current PSG to Left Speaker Only
 Restricts output from current PSG to Right Speaker Only
S Restores stereo mode to current PSG

Table 11 — PLAY commands
Setting the pitch

As you saw above, you set the pitch of any note by giving its musical name —eg. CE G.
Sharp notes are prefixed by # (eg #C) and flat notes by $. A two-octave range in the key of
C, which use the letters ¢ to b for the notes in the lower octave and C to B in capitals for the

ZX Spectrum Next — User Manual 183

Chapter 19 — Sound and Music Note duration

higher one are available at any moment. Any number of notes within these two octaves
can be played one after another, for example:

1@ LET a%="cCcfedafrgCFEDRAFGCCY
28 FLAY a%

If you want to span more than just two octaves, you can change the overall pitch of the chan-
nel playing by using the octave command O followed by a number from 0 to 8. If you do not
specify an octave (as in the example above), this defaults to 5 (the range containing middle
C). The octave command remains in force for all notes following it until a new octave com-
mand is given.

This program lets you hear the same tune played in a higher octave (just add the O7 to
your earlier program):

1@ LET a%="07cCcredafgCFEDRAFGCC"
28 FPLAY a%

Try changing the octave number progressively to hear the full pitch range which your ZX
Spectrum Next's PSGs can produce.

Since each pitch range covers two octaves, two adjacent ranges overlap. For example, the
high part of O4 contains the low part of O5 (see Figure below). The following diagram shows
how you can create different notes using the PLAY octave command. As mentioned previ-
ously, the command O followed by a number from 0 to 7 sets the current PSG to a range of
two octaves beginning with a C. The diagram shows the complete range of notes covered by
08, 04, and 05. Adjacent octave ranges overlap, so the same notes appear in the upper part
of one range and the lower part of another. Individual notes within an octave range are set by
using the letters ¢ to b in lower case for the lower notes and C to B in capitals to give the notes
in the upper octave. Placing a # before any note letter gives a sharp note — a $ flattens it.

CDEFGABCDEFGABCDEFGABCDEFGAB
o O

A P=ul & Th=d
P=uL O Thaod

P=uL O Thod

i o0eC
(6]

)
9

¢

o O

“Octave’ 3

clde|/f|g|a/b[C|DE|F G AIB
“Octave” 4

cide|f|g|a/b|C|D|E|F| G|A B
“Octave” 5

Fig. 26 — Octaves and Pitch values for making music with PLAY

Note duration

If you do not specify the length of each note, they will all be played at the same length (as
crotchets) as in the examples above. You can fix the length of any note or series of notes
by prefixing it with a number from 1 to 12. This program lets you hear the different note du-
ration with numbers from 1 to 9 (there is a reason for the maximum number being 9 in this

184 ZX Spectrum Next — User Manual

Note duration Chapter 19 — Sound and Music

example as you will see in the table below).

1@ LET ag="1CzCcIC4CSCECFCSCac
28 FLAY a4

The PLAY command supports 9 standard musical durations: from a semiquaver (Six-
teenth note) to a semibreve (whole note) of the time signature. There are three extra dura-
tion values which denote triplet notes (three notes played in the time normally used for
two): from a triplet semiquaver (triplet sixteenth) to a triplet crotchet (triplet quarter). While
the first 9 values are set and apply to all the notes that follow, a triplet duration value
(10-12) only applies to the next 3 notes that will follow it in the string. For example:

1@ FPLAY "11ACE"

plays a triplet quaver of A, C and E. The following table lists the note duration values and
their musical term equivalent.

Note name Note name Musical
Value (Standard) (British) notation
1 Sixteenth Semiquaver A
2 Dotted sixteenth Dotted semiquaver A
3 Eighth Quaver D
4 Dotted eighth Dotted Quaver)
5 Quarter Crochet J
6 Dotted Quarter Dotted Crochet J
7 Half Minim J
8 Dotted Half Dotted Minim J
9 Whole Semibreve -
10 Triplet sixteenth Triplet semiquaver m
11 Triplet eighth Triplet quaver m
12 Triplet quarter Triplet crotchet ﬂj

Table 12 — Note duration values

Additionally there is also the ability to insert moments of silence (or rests as they're called
in music terminology) denoted by the ampersand symbol (&). Rests, last as long as the
current note playing. For example:

1a PLAY "7FAR&BACEDEAEE
is five minims with equal (minim-length) silence durations between them.

Tied notes can be indicated by giving the two note durations connected by an underscore
character (_) and the note name, eg.:

1a FPLAY "I_SAY

The second note duration you give will also apply to any following codes until you give an-
other duration code.

ZX Spectrum Next — User Manual 185

Chapter 19 — Sound and Music The N Command
The N Command

In some of the examples you will see the letter N used to introduce a series of notes within
the string:

FLAY "OFH1IZLDE"

N is used in cases where two sets of numbers would otherwise clash. In the example
above, O is set to octave 7, then a series of notes is given, starting with the duration code
1. Without the N code, NextBASIC would read the octave code as 71 — obviously not what
was intended!

Note volume

The overall volume of the sound is controlled by the volume setting of your display or am-
plifier. You can control, however, the volume of individual notes and phrases within the
tune by using the V command. V followed by a number from 0 to 15 sets the note(s) that
follow to a constant volume level. The lower the number, the quieter the sound, with VO be-
ing completely silent (VO is a useful way of stopping one channel playing while others con-
tinue). V15 is the maximum possible value and will be used automatically by NextBASIC if
you do not specify a level.

The low volumes are very quiet and you will normally use 10 to 15 unless you are output-
ting to an amplification system. Try running this program:

18 LET afs="Vl1l@cdefrgabCEFGRE"
28 FPLAY a%

Now try changing the number after the V to a new value to hear the difference.
Volume effects

Instead of you just setting each note to a fixed volume, PLAY also lets you change the vol-
ume of the sound while it is playing. For example, you can make a note start suddenly and
then die away (like a piano) or make a sound effect rise and fall in volume (like a steam
train).

This effect is controlled by the letter W which can be included in any of the strings con-
trolled by the PLAY command. You must also include the letter U in each string where you
want to use the effect. You cannot use it if the string already has a volume setting (if it con-
tains a V) — the volume command will override the effect.

The W must be followed by a number from 0 to 7 which controls how the sound builds up
(called attack) or falls off (called decay). Table 13 that follows, shows the full range of num-
bers and what they do together with a visual representation of the volume effect applied to
the sound playing:

This program plays the same note with each effect in turn to let you hear what they sound
like:

1@ LET af="U<1@@@l@Ci&LI1CE&LIZ20CE
HSC&E4CEISCEISCEITT
28 PLAY a4

Notice the U to turn on the effect, then the series of W numbers.

There is one other new command used here, the letter X. This can be followed by a num-
ber from 0 to 65535 to set the length of the sound effect — the larger the number, the longer
the effect lasts.

The X command is not mandatory. If you choose not to include one, NextBASIC will auto-
matically choose the longest. In general, repetitive effects (W4 to W7) are more effective

186 ZX Spectrum Next — User Manual

Tempo Chapter 19 — Sound and Music

with short settings, eg X300. Single-shot effects (WO to W3) need a longer period, eg
X1000. Try changing the value after X in the program above to hear the difference.

Tempo

The speed (tempo) at which a piece of music is played can be set with the command T fol-
lowed by the number of crotchet beats per minute (bpm) in the range 60 to 240. The com-
mand controls the speed at which all notes are played, but can only be included in
channel A of PSG1 (the first string after the PLAY command) otherwise it is ignored, eg:

18 LET af="TlS@cderfrg"
28 PLAY a%, "T1za@cCEFG"

will play octave chords but at 180bpm as the second setting is ignored. If no tempo is
specified, the music will be played at 120 bpm.

Repeated phrases

Any musical phrase can be repeated by enclosing the appropriate string or part of a string
in parentheses. For example:

18 FPLAY "abCI(DEFG) Y

will repeat the last four notes. If there is an unequal number of parentheses, the phrase will
be repeated back to the last parenthesis. If there is only a closing parenthesis, the phrase
will be repeated back to the beginning of the string. As an example:

18 FPLAY "abCDEFG! "™
will repeat all seven notes. Double closing parentheses:
1@ FPLAY "Oz2CEGAI "

will cause an infinite repeat. This is particularly useful for things like repetitive bass lines. To
turn off an infinite repeat you will need to use the H command.

Effect Value Visual Representation Description

0 Decay then stop

1 Attack then stop

2 Decay then hold

3 Attack then hold

4 M Repeated Decay

5 Repeated Attack

6 \/\M Repeated Attack-Decay
7 Repeated Decay-Attack

Table 13 — Volume effects values

ZX Spectrum Next — User Manual 187

Chapter 19 — Sound and Music The H command
The H command

An H included in any string immediately turns off the PLAY command. The main use of this
is where you have an infinitely repeated bass line in one string. You can stop this at the end
of the tune by putting an H on the end of the string which plays the melody.

Comments

You can include reminders and comments anywhere you like by using !! marks. Anything
written after a ! will be ignored until the next ! or the " at the end of the string is reached, for
example:

1@ PLAY "abCCDEFG! chorus!acEaDG"
Channel selection

The command M is used to select which of the three channels are in operation per PSG
and whether these give noise or musical tones.

You can have a maximum of nine channels (three per PSG) in use at any one time, but it
does not matter whether they are all tone, all noise, or a mixture of both.

Your choice is entered with a number following the M, worked out like this:

Tone Channels Noise Channels

Channel A B C A B o]
Number 1 2 4 8 16 32

Table 14 — Channel audio type Selection codes

Mark each channel you want to turn on, and note down its number from the table above.
Then just add them together to get the code you should use after the M. For example, if
you want to use tone channels A, B, and C, you add the numbers 142 +4 = 7, so you use
the command M7. In the same way, M56 would turn on noise channels A, B, and C.

Noise can be used on any channel but the most wide-ranging frequencies are available in
channel A for each PSG. For the best results, put your sound effects in the string which
controls this channel for each PSG — 7¢, 4hand 7t string, in other words the first string per
PSG after the PLAY command.

Stereo control

The PLAY commands L, R and S control the stereo image for each PSG. The first two re-
strict the current PSG's audio output to Left and Right speakers respectively while the latter
resets the Stereo image. If your ZX Spectrum Next is set up with ABC stereo (the default),
normally channel A goes to the left speaker, B goes to left and right, and C goes to right.

Therefore, if the L command is used, only channels A and B from the current PSG will be
audible. Similarly, if R is used, only channels B and C will be audible. Like the M com-
mand, the L, Rand S commands need to be re-entered in the strings targeting each PSG.

Digital Audio

Your ZX Spectrum Next also contains hardware that can output digital audio, that is sound
previously recorded digitally for reproduction, in a similar manner to your house or car CD
and MP3 players. There is no easy way to manipulate this hardware from NextBASIC so
NextZXOS provides a dot command'! (more on dot commands in Chapter 20— NextZXOS

1 Dot commands are short programs residing in folder c:/dot/ which are used to extend NextZXOS, or to expose
facilities not normally available to NextBASIC to the user. Dot commands were originally created for esxDOS (an
alternative, free, ZX Spectrum-compatible Operating System which also works on the ZX Spectrum Next) and whose
format was adopted by NextZXOS via its esxDOS emulation layer. Most esxDOS dot commands will work with
NextZXOS and vice-versa unless they use some special facility not covered by either the esxDOS emulation layer or
they are OS or machine dependent.

188 ZX Spectrum Next — User Manual

Using the Pi accelerator for audio Chapter 19 — Sound and Music
and alternatives), that can be incorporated into your programs and which allows you to
play any WAV file stored on SD Card media. In order to playback a digital audio wave file,
type:

avplay file.wavw

where file.wav is the audio file you want to play. This can be accessed (like all other
NextZXOS dot commands) from the 48K BASIC environment as well and fully incorporated
into all your NextBASIC programs. You can find more information on how to access the
digital audio hardware of your ZX Spectrum Next in Chapter 23 — IN, OUT and the Next
Registers .

Using the Pi accelerator for audio

If you have the Accelerated version of the ZX Spectrum Next, or have a Raspberry Pi Zero
installed on your board, then you have more options available audio-wise. These include
(but are not limited to) playback of:

* Commodore 64 SID files

* “Tracker” MOD files

* Atari ST SDH files

* MPSfiles

* High definition wav files

and many, many more.

The way the system works is as follows: The ZX Spectrum Next communicates with the
Accelerator via its secondary UART? and sends commands and audio files to the special-
ised SUPervisor software that is running on the Raspberry Pi Zero. The Pi Zero in turn inter-
prets these files and reproduces the audio contained therein via it's GPIO port onto the ZX
Spectrum Next /253 port which in turn mixes it with the rest of its audio output and redirects
it to whichever output you have available. In essence when it comes to playback, the ZX
Spectrum Next is considered a "sound card" where the accelerator is concerned and two
extra DACs where the ZX Spectrum is concerned. As a conseguence you can have Digital
Audio (on the ZX Spectrum Next), all three PSGs playing AND Digital Audio (on the Pi
Zero) all playing simultaneously!

To use the Pi audio facilities you need to first enable the secondary UART and set it to the
accelerator. In NextBASIC or the Command Line you must type:

CCr "C: sdEemos Jdart
and press ENTER. Then type:

LOAD "pi.bas"

You'll get a message stating 9 STOP statement, 50:1indicating the system is now ready to
play audio using the Pi Zero. Feel free to poke about the listing of the P1.BAS program as it
shows you the usage of Next Registers (see Chapter 23 for more).

Playing audio files requires a dot command called .pisend which you can find in c:/dot/
which serves a two-fold purpose: to send files to the Pi Zero's temporary storage and send
the appropriate command for it to play. Thankfully D. Rimron-Soutter and David Saphier,
maintainers of NextPi* and .pisend respectively, have packaged all this nicely into little
NextBASIC programs (located in c:/nextzxos/) which you can either call directly or via the
Browser by selecting a filetype already registered. Currently registered filetypes include
.SID, .MOD, .XM, .TZX and .SDH.

2 UART or Universal Asynchronous Receiver-Transmitter is a hardware device that exchanges data sequentially

between two systems. In our case this is done between the ZX Spectrum Next hardware and the Pi Zero accelerator
via its GPIO port.

3 12S or Inter-IC Sound is a serial bus interface standard to connect digital audio devices.

4 NextPi is the operating system running on the Pi Zero accelerator that's purposely built to support the Next.

ZX Spectrum Next — User Manual 189

Chapter 19 — Sound and Music External Audio Output

To illustrate how this works, we shall attempt to play an Atari™SDH file. Assuming you
have a SDH file named warhawk.sdh (search for it and download it on the internet; it's
freely available) on the root of your SD card, playing it is as simple as:

LOAD YC: snexitzxos s sndplad.bas':
LET f$="cCc: swarhawk.sdh" : G0 TO 1@

The screen will read Playing... ¢:/warhawk.shd and the music will start playing from your
speakers.

TZX files are "perfect' ZX Spectrum tape images. Due to them being compressed, they
require @ much more powerful CPU than the Z80N present on the Spectrum Next in
order to be decompressed to their original tape audio stream. While not audio in the
strict sense we're discussing in this chapter, they do use the audio subsystem to be
loaded on the ZX Spectrum Next side and as such they are covered here.

External Audio Output

If you are interested in doing more with sound from the ZX Spectrum Next, like hearing the
sound that BEEP and PLAY make on something other than the usually limited audio of
your display, you will find that the audio signal is also present on the Audio Out socket on
the back of the machine. You may use this to connect to a pair of headphones or a higher
quality ampilifier. Note that this will not disrupt audio reproduction on the digital display ca-
ble, therefore you may want to turn down the volume on your display before plugging an
external audio reproduction device. Note also, that there is no volume control for the Audio
Out socket so you should take that into account when using headphones or an amplifier.

Exercises:

1. Rewrite the Mahler program so that it uses FOR loops to repeat the bars.

2. Program the computer so that it plays not only the funeral march, but also
the rest of Mahler’s first symphony.

3. Repeat exercises 1 and 2 above by utilising PLAY instead of BEEP.

190 ZX Spectrum Next — User Manual

[/ Chapter

20

NextZXOS
and alternatives

Chapter 20 — NextZXOS and alternatives Guide to NextZXOS

NextZXOS and alternatives
Guide to NextZX0OS

Until now, we have been talking about NextBASIC, the programming language with which
you "talk" to your ZX Spectrum Next and get it to do things. Underneath NextBASIC how-
ever, lurks another program, one that allows your computer to communicate with the hard-
ware devices connected to it and the world at large. It manages your computer's memory,
makes sure your data is safe and accurate, that your programs behave as intended by
their programmers and performs important "housekeeping" on your storage devices. This
program is called an operating system and in the ZX Spectrum Next's case it is called
NextZXOS.

NextzXOS, written by Garry Lancaster, is the direct successor to his +3e/[DEDOS, which
in turn comes directly from the first proper Sinclair ZX Spectrum operating system called
+3DOS which first appeared on the ZX Spectrum +3.

NextZXOS main features

NextZXOS extends +3DOS, +3e and IDEDOS and features the following:

* FAT16 and FAT32 support for industry-standard compatibility with mass storage
devices while retaining IDEDOS/+3DOS compatibility for a full range of storage
choices

* Long File Name (LFN)' support

* Proper subfolders/subdirectories

* Memory Management facilities

* Virtual (container) file systems in disk and tape images?

* Installable device drivers

* Menu-driven file manager with extensible filetype associations/launchers

* esxDOS emulation layer for interoperability across ZX Spectrum compatible
machines and extended dot command support

* Automatic execution of software on boot
* Command-line interface
* Streaming support
* Virtual memory support (swap partitions)
* Timekeeping facilities
¢ Availability of disk and file management even on legacy (via dot commands),
48K modes
* Increased compatibility with previous models of ZX family of computers?
* Support for a variety of snapshot formats
* Multi-lingual and multi-font capabilities
* Extended windowing facilities
* Increased speed of operation compared to the previous versions
* Proper CP/M* 3 compatibility
Unlike other operating systems, NextZXOS tightly integrates with the in-built programming

language NextBASIC, to the point that it can be mistaken as being part of it. In reality how-
ever, NextZXOS provides two rich APIs (one being the native NextZXOS APl and the other

1 Long File Name support means that a filename under NextZXOS can be up to 255 characters long as opposed to the
earlier 11 (8 for filenames +3 for extension/filetype) character limit . LFN capability is not reserved for files. Folders can
also be up to 255 characters long. Longer file and folder names help with the organisation of your files as it is easier to
use more descriptive names.

2 A container file system / disk image is a bit-for-bit copy of the contents of a mass storage medium contained within a
single file. For example what used to be an entire floppy disk can be represented by one file, which NextZXOS will
access with traditional disk and file management commands once this is attached (mounted) by the operating

System.
3 NextZXOS is compatible —via emulators provided by Paul Farrow- with ZX80 and ZX81 while also being more
compatible than its predecessor with Timex Sinclair as well as the 128K and 48K lines of ZX Spectrum machines.
4 CP/M is an older operating system for personal computers with a vast library of software.

192 ZX Spectrum Next — User Manual

Files, Drives, Partitions and Disks Chapter 20 — NextZXOS and alternatives

the esxDOS-compatible API) which can be used from machine-code or a language other
than NextBASIC (for example C) to provide them with all the facilities needed for accessing
your ZX Spectrum Next without having to write low-level access to the computer's hard-
ware from scratch. The distinction is subtle and more easily discernible in facilities that are
exposed to the 48K legacy mode of operation where the NextBASIC commands do not ex-
ist and their place is taken by the aforementioned dot commands.

In the following sections we will examine the NextBASIC usage of NextZXOS facilities be-
fore we extend the discussion to dot commands and the NextZXOS Command line so for
the next few sections you can approach the subject as a NextBASIC topic if you feel more
comfortable that way.

Let's however start by introducing topics in the order they will be needed in our discussion.

In this chapter, a lot of commands produce visual feedback that may be easier to see
and understand on a 64 or 85 column display. Although NextZXOS menus are covered
much later in the chapter, it may be of benefit to learn to use the Command Line in
combination with the 32/64/85 option. You get to the Command Line menu either from
the main NextZXOS menu or by pressing EDIT and navigating to it while in NextBASIC.
Pressing EDIT again will allow you to select the 32/64/85 option which will cycle through
all available widths until you find one that visually satisfies you.

Files, Drives, Partitions and Disks

Like most Operating Systems, NextZXOS uses the concept of Files to store data in a hier-
archical organised set called a Drive identifiable by a Drive Name. This is the combination
of a letters from A to P suffixed by a colon ie. d:, which in turn can be contained within a
Disk. Afile is any type of collection of data; Sprites, Arrays, NextBASIC programs, machine
code, images or collections of the above. While NextZXOS via NextBASIC supports a finite
set of file types, this set can be extended with the use of external programs and dot com-
mands. For the following sections we will concentrate to what is available via NextBASIC
and the provided dot commands with a brief discussion of how NextZXOS (and
NextBASIC in turn) can be extended to handle more file types.

Files are usually organised in folders. While folders are not necessary for the storage of
files, they are advisable as they help categorise and group files in a logical way, which al-
lows them to be searched and accessed easily. That becomes apparent as your collec-
tion of files grows from a few tens to hundreds or thousands.

As mentioned above, files themselves are stored on disks, which are the physical devices that
can be removed from the computer and whose contents are not lost like the main memory af-
ter each power cycle. Depending on the type of disk, there may be one or more data struc-
tures on it called partitions which as the name implies is a way to virtually organise the
available space on the disk into smaller units. Partitions can be assigned to drives or sit un-
used —with or without data- invisible to NextZXOS (until a drive is assigned to them).

Apart from the physical disks, NextZXOS also allows the use of virtual disks and tape images.
These are special files that contain an exact replica of the medium they simulate. They too,
can be assigned to drives (see the footnote regarding tape images) as physical disks can and
they appear to the user (and NextBASIC) as any other physical disk. There are some special
considerations regarding these special files which we will visit further in this chapter.

Working with files

In our examples in the previous chapters we have already used files and specifically one
particular type of file: NextBASIC programs. Even more specifically, we have SAVEd and
LOADed them by using two commands: SAVE and LOAD.

5 NextZXOS cannot assign all letters in the range Ato P as drives, since some are reserved, C: is always the boot drive,
M: is the RAMdisk and T: (an exception to the A to P range) is the tape.

ZX Spectrum Next — User Manual 193

Chapter 20 — NextZXOS and alternatives Filenames

Apart from that basic functionality; we can also copy or move files from one location (folder
or drive or a combination of both) to another location, rename them, erase them, and cata-
logue them; that is to produce a list of all the available files in a location. These functions
are possible with the use of the COPY, MOVE, ERASE and CAT commands or their dot
command equivalents: .cp, .mv, .rm and .Is®.

Filenames

Before we visit the commands that manipulate files, it's best we visit the subject of file-
names first as there are special considerations on how and why a file is named.

First of all, filenames are basically strings that are made by up to four parts (according to
which file system we use as we will see further below) that help NextZXOS to uniquely iden-
tify a file. These are:
* User Area with Drive Name —or—
User Area followed by a colon (:) character if accessing files on the same drive
—or— Drive Name
* folder name or combination of folder names separated by forward (/) or
backward (\) slash characters

* actual file name

¢ suffix of a dot (.) character followed by a file type of up to three characters (for
example .bas)

Of these only the third part is absolutely required and every other part is optional. Also not
every part is applicable everywhere in NextZXOS. This strictly depends on the kind of
filesystem the files are located on. For example you can only use User Areas on virtual disk
images, the RAMdisk and IDEDOS (+3e) partitions but not on FAT partitions (we will exam-
ine these a little later), while you cannot use folders in the RAMdisk and virtual disk images
as the concept of folders doesn't exist there”. Similar for tape images or actual tapes where
you can only use drive names (specifically t:) and up to 10 charactes as a filename but not
folders.

Filenames can be up to 255 characters in length (inclusive of dot character and the op-
tional type), however, for compatibility reasons on virtual disks, IDEDOS partitions and the
RAM(disk, they can only be 8 (name) + 3 (lype) characters in length (excluding the optional
user area and drive letter combinations).

Finally, some characters are reserved and cannot be used to name files. Files can use the
following characters:

¢ Letters: abcdefghijkimnopgrstuvwxyz (upper or lower case)
¢ Digits: 0123456789
* Othercharacters®: #$@ T _{}~£
Upper and lower case letters are considered as having the same value for filenames, so

EXAMPLE and example would be identical as far as NextBASIC is concerned. They will
however be listed in the case they were stored in, when a catalogue is requested.

Afilename can end with an optional type field which is just up to three characters® long that
you may wish to use in order to group together or quickly identify files of the same type. If a

6 SAVE and LOAD do not have dot command equivalents as they're already available in the 48K mode personality even
though the latter was conceived prior to the introduction of mass storage devices to the ZX Spectrum family of
computers.

7 Technically for floppy disk , IDEDOS and Tape virtual images as well as the RAMdisk slash characters can be a part of

a filename but they're not an organisational unit as the folder is and since (as we'll see later) the filenames in these
cases are restricted in size, it's not advisable to use them.

8 Characters " and ' are available in some situations (for example for tape images or for CP/M) for filenames but are
reserved under NextBASIC and cannot be used directly.
9 Type fields, separated by a dot from the name field, are up to 3 letters long as a matter of both compatibility and

convention. In reality, in FAT drives like the System/Next™ card your ZX Spectrum Next came with, there are no
restraints on how many dots a filename can have but any filename with the dot character located at more than 4
characters before its end, is considered to have an empty type field (always keeping within the maximum allowed
length of a filename). See also the discussion regarding wildcards to see why this useful to know.

194 ZX Spectrum Next — User Manual

LOAD Chapter 20 — NextZXOS and alternatives

type field is specified, it must be preceded by a dot. Unlike some other BASICs,
NextBASIC does not automatically allocate a type to files if one is not specified.

You may find it useful to add your own types — a popular convention is to use .BAS to iden-
tify NextBASIC file types and .BIN or .COD to identify machine code file types.

NextBASIC already understands a number of popular types. Typing:

Asso0ciate -—-1L

will return the most commonly used ones together with the action that will be taken when
the Browser launches them.

The characters * and ? are called wildcards and have a special meaning to NextZXOS.
They're used to substitute ranges of characters or specific characters in filenames and
folders. We'll see why this is particularly useful further below.

The dot character . also has a special meaning according to how many we use. If we use
one (.) it means this folder and if we use two (..) it means the folder one level up. Keep this
information in mind as it will prove very useful in the examples we'll encounter.

The following are some examples of valid filenames:
* z
® squares
* m:picture.bin
e a:fred
* 13a:hello
* OM:CAPITALS
¢ file name
* test.bas
e philip
* glass.mus
° aaa
* c:/nextzxos/browser.cfg
* c:\nextzxos\browser.cfg
® 7:dubious

while the filenames below are illegal and attempting to use them will produce an error:

* <>-+=I& (must not contain any of these characters)

* *test (cannot contain an asterisk)

* te?st (cannot contain a question mark)
Note that in the list above we've made two assumptions regarding valid filenames, and
these are that drive names a: and m: are virtual disks and the RAMdisk respectively. User

areas are acceptable parts of filenames ONLY if the drive's filesystem allows them; other-
wise you will get an error.

With that information in hand, let's start examining below the main commands for working
with files.

LOAD

LOAD as its name implies retrieves a file from a drive and puts it (loads it) in the computer's
memory. Depending on how it was saved (in the case of NextBASIC programs) or named
(in the case of machine code software) it may also execute it as well. It takes the form:

LOAD filespec [MODIFIER [options]]

ZX Spectrum Next — User Manual 195

Chapter 20 — NextZXOS and alternatives LOAD

where filespec is a filename as described in the previous section followed by an optional
MODIFIER directive (SCREEN$, LAYER, CODE, DATA or BANK) which in turn may have
optional parameters.

Regarding the filespec, this can be as simple as an empty string, however this has special
meaning for tapes and disk images. Typing:

LOALC

will produce an F Invalid file name, 0:1 error. We'll revisit this promptly but first let's type:

Lo/

If you now repeat the previous command, you will see something changing on your
screen, with its border turning red and the rest of the screen becoming blank. This simply
means that your ZX Spectrum Next is expecting a tape to load! Indeed, finding a tape
deck, connecting it to your computer and a ZX Spectrum program on tape, inserting it and
pressing PLAY you will start seeing blue and yellow bars running down the border and the
program eventually loading. What the series of commands we just typed did, is to first
switch the default LOAD device to tape (that's denoted by the drive name T:) as opposed
to the SD Card and then attempted to load the first program on the tape that it could find.
Pressing SPACE or BREAK will return you to NextBASIC without loading anything. There is
a shortcut of the previous series of commands in the form of the Tape Loader option in the
NextzXOS Start Menu. This is also the preferred way of loading tape-based software on
your ZX Spectrum Next. Using LOAD with only a drive name as parameter will set the de-
fault drive to that drive and all file operations not having a drive name specified in the file-
spec will assume it.

We already learned that filespec can be only a drive name. There is one more special case
and this concerns virtual disks. Obviously, unlike what happens with a tape, the concept of
the first program you can find cannot exist on a random access medium like a disk, so
LOAD " will produce the error we saw when we first attempted it. In virtua/ disks however it
is possible to give the command:

LoRD et

This will attempt to load a special file named *, or, in the absence of that, load a file called
DISK. As we saw earlier, you cannot use NextBASIC to name a file * as this character is a
wildcard; you can however save a file called DISK and this will be loaded and if saved with
the appropriate SAVE option, will also execute. You can try this by pointing the Browser to
c:/demos/NextBASIC/ and selecting demo.dsk as a virtual disk, when prompted to
mount it, select A and then N (when asked if you would like to Autoboot it). Then just type
the command above and you'll be greeted by a cheerful Hello World message.

Abit earlier, we discussed how wildcard characters can be useful. We saw how it is to use
one as filespec in LOAD which as we said is reserved only for virtual disks. A variation to
that which uses the * wildcard is the following:

LoRD "dx*

which will attempt to load the first NextBASIC file that starts with the letter d. We'll revisit
wildcards further below as they're a very powerful tool for manipulating files.

So far we've examined LOAD with only the filespec option. This will load NextBASIC pro-
grams into memory, however with the optional use of MODIFIER directives, LOAD can dis-
play pictures, retrieve long data segments and load either code or raw data into memory.

One of the nice facilities provided by NextBASIC is the ability to store the screen as it's be-
ing displayed at a given moment, in order to be loaded later and redisplayed instantly,
whether it contains graphics, text or both. There are two (plus one) ways that this can be
achieved; first is with the use of SCREEN$ and second is with the use of the LAYER modi-

196 ZX Spectrum Next — User Manual

LOAD Chapter 20 — NextZXOS and alternatives
fiers. Here we'll skip ahead as we haven't talked about SAVE yet but for the time being type
the following:
18 LAYER @
2@ IrME Z: PARAPER &: PRIWNT
"HelLlo WorlLd!™
Z@ SAUVE "test.scr'" SCREEMNS

and then RUN it. You willimmediately be greeted by purple letters on yellow background.

Now type:

CLS:LORD "test.=zcr" SCREERMS

Immediately, the same message as previously will appear on your screen. Now change
line 30 and replace SCREEN$ with LAYER so it reads:

Z@ SAVYE "test.=scCcir" LAYER
and RUN it again. Then give the following:

CLS: LORD “Y"test.zcr' SCREEM%: PRIMNT AT
2,2; "Press ANY Eed": PRUSE @: CLS: LOAD
"test.zCcr" LAYER

and press ENTER. What you will see is two consecutive LOADs of the same image with an
intermediate prompt to press a key. Before we explain what just happened, type one more
thing:

LAYER 2.,1: LOAD "test.scr'" SCREEM%: FPRUSE
@: LAYER 2,8: LAYER @

This will produce a blank screen waiting for a keypress which when it comes will give its
place to the screen you previously saved. Finally modify the above line slightly to be:

LAYER 2.,1: LOARD "test.=cr" LAYER: FRUSE
@: LAYER 2.,8@: LAYER @

which will produce a garbled image and an error report End of file which will disappear
once you press a key. Don't forget to manually turn off Layer 2 after that command be-
cause due to the error, the command did not fully execute. What has happened is that the
LAYER modifier attempted to load a screen in the format supported by the current layer as
set by the LAYER command (and then run out of data as the Layer O screen we saved is
markedly smaller), while SCREEN$ exclusively loads screens in the format recognizable
by Layer 0; That means that for Layer 0, LOAD ... SCREENS is functionally equivalent to
LOAD ... LAYER but that doesn't apply to the other layers. LOAD filespec SCREEN$ and
LOAD filespec LAYER do not store the current palette in use. If you haven't changed the
palette at all and are using NextBASIC's standard colours, then you'll get the display you're
expecting, however if you have changed the palette you may be surprised by the unin-
tended effects this can produce. In order to get the active palette and store it in a file you
will need to use the ZX Spectrum Next's NextREG facilities covered in Chapter 23— IN, OUT
and the Next Registers, or the very handy Save Palette function of the NMI menu covered
later in this chapter. Additionally you cannot load screens in the shadow areas of the
graphic subsystem. For that you will need the following LOAD modifier; CODE with op-
tional parameters address, length. This essentially loads machine code programs and raw
data into memory either in the address they were saved from, or in the address and length
—in bytes— we specify. Keeping with the example above, type the following:

LAYER @: LOARD "test.=scCcr'" COLDE

Once again, you'll be greeted by the cheerful Hello World! screen we generated previ-
ously. To expand a bit on this first type:

ZX Spectrum Next — User Manual 197

Chapter 20 — NextZXOS and alternatives SAVE
HEIL)

After pressing ENTER, you'll be greeted by the NextZXOS Startup menu. Select NextBASIC
and rewrite the line above by adding 16384,6144 at the end after the CODE to read:

LAYER @: LOALD "test.scr" CODE 16554 ,5144

Amazingly, the Hello World! message reappears but this time colourless! Adding the two
numbers after CODE instructed the computer to load the file in address 16384 (which is
the start of Layer O's graphics memory) but at a smaller length than the actual file we've
stored, removing all the colour attribute information. Attempting to set a longer length than
the size of the file we're loading, the computer will return an End of file, 0:1 message. Note
here that doing just that is not a good practice and we should be using LOAD BANK,
LOAD SCREEN$ and LOAD LAYER to load data into graphic memory.

As we saw in Chapter 12, one of the most tedious aspects of programming is to prepare
arrays. They can involve endless typing via data statements and use a lot of program
space which could otherwise be used for actual program logic. Thankfully NextBASIC
gives us the option, after we've prepared an array, to save it to a file to be retrieved later,
saving us both time and code memory. To load such prepared arrays we need to use the
LOAD modifier DATA. This takes the form:

LOAD filespec DATA arrayname()

to load for example the array b() from Chapter 12 assuming we have already saved it as
b-array.dat we'd only need to type:

LORAD "“"b-arrad.dat” DATA bBI)

This would find if any other array named b() was already stored in the computer's memory,
erase it and replace it with the information provided in the file.

We can only load string and floating point arrays. Integer arrays cannot be loaded or
saved. Also of note is that the parentheses after the array name cannot be ommited.

The final LOAD modifier: BANK should be looked upon as a variant of the CODE modifier,
as it basically loads raw data into memory in the bank number, offset in said bank and
length (in bytes) we specify very much like CODE does. This takes the form:

LOAD filespec BANK number, [offset], [length]
Keeping with the example we have been using try:

LOoRD "test.zcr' EBARMNE S

will load and display the exact same screen, with the main difference that it will put it in off-
set 0 of bank 5. For reasons that will become clear in Chapter 24, this is exactly the same
location as the one we used with SCREEN$ and therefore if you slightly modify the com-
mand to be:

LOARD “"test.szcr" BAME S, @, &5l1l44

as previously, the file will appear colourless. When using BANK as a LOAD modifier, we
need to remember that NextBASIC and NextZXOS do not care what type of data is being
loaded. As such the BANK modifier is also used to load NextBASIC programs that make
the use of banks. More about that below when we examine SAVE.

SAVE

Our computer's memory lacks permanence; whatever is stored inside it during operation
disappears when we turn the power off. We need some means to store the information
onto a medium that can hold it even when the power is off; this comes in the form of the
SAVE keyword.

198 ZX Spectrum Next — User Manual

SAVE Chapter 20 — NextZXOS and alternatives

It follows the exact syntax of LOAD that we examined in the previous section and uses the
same modifiers and parameters with an additional LINE modifier. There are a few differ-
ences from LOAD in behaviour however and we'll examine these immediately. Typing:

SAVE """

will produce an F Invalid file name, 0:1 error even when our default drive is T: (tape). That's
simply because even on a tape, files NEED to be named, otherwise we wouldn't be able to
identify them!

As with LOAD, setting the filespec to a drive name (for example c:) will switch all
NextBASIC file retrieval and storage operations to that drive from that point forward so for
example:

SAYE “m: "
will make drive m: the default drive and won't actually store any information anywhere.

As we saw in examples in the previous section, SAVE filespec without a modifier (assum-
ing filespec is a string specifying more than just a drive name) will save the NextBASIC pro-
gram currently in memory onto the default drive or the drive/folder we specify. If however
this filename already exists in the location specified, NextZXOS will first create a backup file
made up from the original filename and then append the type .bak to it.

We will have to skip ahead again to see the results of our operations by using CAT (for
CATalogue) so let's quickly do some typing:

SAVE "o

1@ FPRIMNT "HelLLlLo"
and then:

SAYE "hello.bas"
followed by

CAT "hellox.x"

(Never mind what the *.* means, we'll examine that later).
Your screen will display the following:

hello.bas 1k
SQSEAHM free
Now perform the save again, again followed by CAT "hello*.*" and you!'ll see:

hello.bas 1k
hello.bas.bak 1k

SSE@AH free

before we discuss what has happened, make a small modification to the program (for ex-
ample add an exclamation mark after World on line 10 and do another save, a bit different
this time:

SAVE "hello"
and follow it by CAT "hello*.*" . Now you'll see:

ZX Spectrum Next — User Manual 199

Chapter 20 — NextZXOS and alternatives SAVE

hello 1k
hello.bas 1k
hello.bas.bak 1k

SQSEaM free

Repeat the last save command one more time and then do CAT "hello*.*" again. The
screen now shows:

hello 1K
hello.bak 1K
hello.bas 1K
hello.bas.bak 1K

9S5@aH free

If you however, had started with a SAVE "m:" thus redirecting the default drive to the
RAMdisk, everything would have been a bit different. First by not displaying a
hello.bas.bak and now after the entire series of commands CAT would have returned:

HELL®G 1K

HELLDO.ERK 1K

HELLO.ERS 1K
S99k free

so, why the difference? Let's take it from the beginning. We initially saved a NextBASIC
program that was named hello.bas; then once we saved it again, the file with the same
name on the drive had a .bak type appended to it. Then we saved the same program with
a name without a type. In the second case since we were trying to save to a +3D0OS
filesystem (the RAMdisk), NextZXOS can only use 8+ 3 character filenames unlike the FAT
filesystern that can have very long filenames. So in the second case, instead of appending
the .bak type to the original hello.bas file, it stripped the .bas type and replaced it with
.bak. What followed is, that we tried to save the same name without fype but now
NextZXOS had a decision to make; which filename with .bak type to keep? As you could
easily find out by LOADing back the hello.bak file, the last version saved is the one re-
tained. Your PRINT statement would be the one with the exclamation mark and not the
one without.

This example, makes an important point that due to the disparate types of filesystems
NextZXOS can handle, the auto backup feature provided is nice but it's not a panacea, so
do not rely on it exclusively and instead name your files explicitly!

A slight variation of the SAVE command as it deals with NextBASIC programs is that you
can add the LINE modifier with a numerical parameter after it. For example saving the pro-
gram above with:

SAVE "hello.bas" LIKE 1@
and then doing

LORAE "hello.bas"

will load AND start the program at line 10 which will then print Hello on your screen. As a
matter of fact you can use even non-existing line numbers when saving. LOAD will go to
the first available line after the one you entered if that doesn't exist in your program and at-
tempt to run from there. If the line number you entered is higher than the last line number in
your program, LOAD will just not execute the program, just simply loading it as if the LINE
modifier was never specified. SAVE filespec LINE number will NOT accept a number
greater than 65535 however and it will return a B Integer out of range, 0:1 error if such a
value is supplied for number.

200 ZX Spectrum Next — User Manual

SAVE Chapter 20 — NextZXOS and alternatives

It is noteworthy, that a particular type is not forced upon the file when using SAVE, so a
NextBASIC file for example will not automatically carry the type .bas. That being said, as
we saw earlier when discussing .associate, a standard set of types is known to the
NextZXOS browser. These, help it automatically launch files using the appropriate com-
mands. It is therefore a good idea to either adopt these, or modify the ones known to
NextZXOS to be the ones you prefer. Remember however that every time you update Sys-
tem/Next™, the known associations to file types are being overwritten with the default
ones, so always keep a backup of the browser.cfg file located in c:/nextzxos/ if you
indeed make these changes.

As we saw earlier, storing screens requires the use of either the SCREENS$ (for Layer 0) or
the LAYER (for all other layers) modifier directives. From our examples, you may have al-
ready assumed that the LAYER modifier this can also be substituted by the BANK or
CODE modifiers. While this is true for Layers 0 and 7, there's no functional way this can be
done for Layer 2 with CODE or BANK as the latter occupies more than one banks and
CODE only works within the main memory map.

The most compatible way to save screens is therefore the use of the LAYER modifier di-
rective as follows:

LAYER desired_layer
<statements generating graphical content>
SAVE filename.ext LAYER

Remember, that you must already be in the layer that you intend to save before initiating a
SAVE...LAYER command. Also as you can find from using .associate, NextZXOS already
recognises some types as belonging to a specific layer screen file. The table below lists
them in order:

Type/Extension Layer

.SCR ULA (Layer 0)

.SLR LoRes (Layer 1,0)
.SHR HiRes (Layer 1,1)
.SHC HiColour (Layer 1,2)
.SL2 Layer 2

Table 15 — Automatically recognisable screen file types

By this time and given the time we spent discussing the CODE modifier, you've probably
figured out that it's not reserved for machine code programs and instead will save or load
the raw data that's located in the memory address you specify whether this is graphics,
machine code, a NextBASIC program, variables, NextZXOS system variables or just ran-
dom numbers or even nothing (0s).

Unlike its LOAD equivalent, SAVE ... CODE requires both parameters, that is a legal ad-
dress and valid length. It takes the form:

SAVE filespec CODE start_address, length

where start_address can be any number from 0 to 65535 and length any number from 1 to
65535 and the sum of these should not exceed 65536'°. CODE as discussed works only
in the main memory (or rather in the main memory map) and for the rest of the memory we
should use the BANK modifier. The main difference is that BANK is only 16K in size thus
accepting a maximum of 16384 as offset!" and length. BANK can be used without an off-

10 In reality NextBASIC, in order to retain compatibility with earlier versions of Sinclair BASIC, allows all valid integer
numbers as both address and length. If you however include a non-valid length, you cannot be certain of what you're
actually storing so make sure you verify that the locations you're storing are inside the actual memory map.

11 Using the term offset is more accurate than start address for a bank as it can move location in the memory map.
Locations within a bank always start at 0 and that's common on all banks.

ZX Spectrum Next — User Manual 201

Chapter 20 — NextZXOS and alternatives SAVE

set or length (but once an offset has been specified, the length parameter is required).
Saving the contents of a bank takes the form:

SAVE filespec BANK number, [offset, length]

For NextBASIC programs that make the use of memory banks (as we'll see in Chapter 24),
apart from the main program that can be saved with a simple SAVE command, you also
need to save all the banks that contain parts of the program. It is therefore imperative to
use SAVE...BANK on its own (without offset information) to make sure that all the
NextBASIC parts are saved. As you will also see it's good practice to also assign banks
when writing a NextBASIC program using variables so when you're loading them back you
do not have to literally assign specific bank numbers as these can be reused by NextZXOS
or a machine code program already in memory.

We already saw how we can use LOAD to load arrays into NextBASIC without having to
enter complex DATA statements that have the potential of making our program hard to
read. We SAVE arrays by using the DATA modifier followed by the array name (including
parentheses) we wish to store for later usage. A few things we need to note are:

We cannot use a non-dimensioned array in our SAVE statement. For example if we do:

SAVE ""data' DATAH all
we're more than likely to receive a 2 Variable not found, 0:1 error. Writing something like this:

CIM a (31 : SAVE "data' DATAH aill
however will save happily.

An already dimensioned array can be saved using a direct NextBASIC command or as
part of a program but a saved array loaded using the command line or a direct NextBASIC
command will NOT be available from your program unless it's loaded explicitly from it.
Let's illustrate this point by writing the following little program:

1@ LIM a (3@l

28 FOR =1 TO Z@

S@ LET aifl) = Z@-f-F
4@ HEXT f

S@ SAVE Ydatat DRATAH all

RUN the program and then type NEW to restart NextBASIC. Then type the following pro-
gram:

18 FOR f=1 TO S@
28 FPRIMT a (f)
S8 MEXT

If you RUN the program you'll get a 2 Variable not found, 20:1 error, denoting that at line
20, NextBASIC has no idea what a means. Now without erasing the program give the fol-
lowing series of commands:

LORD “"data'"™ DATA al):FOR d=1 TO S@: FPRINT
aid): MEXT d

You'll get the same series of numbers you stored with the previous program (before you
typed NEW) on screen. If you however attempt to RUN the program you just typed the 2
Variable not found, 20:1 error will persist. In order to fix this, you will need to add the fol-
lowing line:

1 LOADE “"data' DARATAH aill

which will produce the same effect as the direct command you gave earlier. You do not
need to DIMension the array as LOAD will do that for you. It is also useful to note that it

202 ZX Spectrum Next — User Manual

VERIFY Chapter 20 — NextZXOS and alternatives

doesn't matter which array's data you saved since, when you load the same data back,
you can assign it to any available array. So you could theoretically SAVE "data" DATA a()
and LOAD "data" DATA b(). The only thing you need to remember is that the array type
must match the data saved otherwise you will receive a b Wrong file type, 0:1 error.

VERIFY

When storing data on tape, in order to make sure what the program or raw data that you've
stored is accurate, NextZXOS provides NextBASIC with the VERIFY command. On media
other than atape, VERIFY has no effect unless it's used in conjunction with a drive name in
which case it will act like its LOAD and SAVE counterparts switching the default drive to
the one specified. In every case, if not used on tape (drive t:), VERIFY will return 0 OK 0:1.
VERIFY follows the same syntax as SAVE except for the LINE modifier. Assuming you
have a tape deck attached to your ZX Spectrum Next, and having the Hello World! pro-
gram we typed a little earlier, save the program into tape by giving:

SAVE "t:": SAYE "hello.bas'

Now we will try to make sure that the program was saved to tape properly by doing the fol-
lowing:

1. Rewind the tape to just before the point at which you saved the program.
2. Type...
VERIFY "hello.bas"

3. Play the tape. The border will alternate between red and cyan until NextZXOS
finds the program that you specified, then you will see the same pattern as you
did when you saved the program. During the pause between the blocks, the
message Program: hello.bas will be displayed on the screen. (When
NextZXOS is searching for something on tape, it displays the name of every-
thing it comes across). If, after the pattern has appeared, you see the report 0
OK, then your program is safely stored on tape and you can skip onto the next
section, Otherwise, something has gone wrong — take the following steps to
find out what.

Ifthe program name has not been displayed, then either the program was not saved prop-
erly in the first place, or it was but was not read back properly. You need to find out which
of the two is true. To see if it was saved properly, rewind the tape to just before the point at
which you saved the program, then play it back while listening to your audio output.

The red and cyan lead-in should produce a clear, steady high pitched note, while the blue
and yellow information part gives a much harsher screech.

If you do not hear these noises, then the program was probably not saved. Check that you
were not trying to save the program onto the plastic leader at the beginning of the tape.
When you have checked this, try saving again.

If you can hear the sounds as described, then SAVE was probably alright and your prob-
lem is with reading back.

It could be that you mistyped the program name when you saved it (in which case when
NextZXOS finds the program on the tape, it will display the mistyped name on the screen).
On the other hand, perhaps you mistyped the program name when you verified it, in which
case NextZXOS will ignore the correctly saved program and carry on looking for the wrong
name, flashing red and cyan as it goes.

If there is a genuine mistake on the tape, then NextZXOS will display an R Tape loading er-
ror which means in this case that it failed to verify the program. Note, that a slight fault on
the tape itself (which might be almost inaudible with music) can wreak havoc with a com-
puter program. Try saving the program again, perhaps on a different part of the tape (or a
different tape altogether).

ZX Spectrum Next — User Manual 203

Chapter 20 — NextZXOS and alternatives MERGE
MERGE

Many programmers like to store parts of their programs or special subroutines they want
to use again and again, thus building libraries of code. Normally a subroutine will be part of
a larger program but what if it could be used anew on a different kind of program? Nor-
mally you would have to load the entire program into memory, edit out the parts you do not
need and then proceed to write the rest of the new program only leaving the part that you
want to reuse intact. Similarly, there may be someone that only wants a routine to be used
once into their program (for example during initialisation) and then exchange that space
for another routine that performs a completely different task. The answer to both these is-
sues is the MERGE command. MERGE is used in the same way as LOAD with the differ-
ence that it doesn't clear what's in memory already and does not erase the program's
variables and instead only replaces lines that already exist. To illustrate this point consider
this little program:

1@ PRIMT "“FPart 1
28 PRINT "“FPart 2
@ PRIMT "“"FPart Sa“
S@ FPRIMT "FPart 5

Now save the program by giving:

SAVE "part-a.bas"

and then give the command:

HEL

After you re-enter NextBASIC and type LIST you will see there's no program in memory. At
that point type:

S8 PRIWT "Part =
4@ FPRIMT “"Part 4"
Ea@ FPRIMT "Part &

Now save this program also by giving:
SAVE "part-b.bas"

Finally load the first program again by giving:
LORE “"part-a.baszs"

and doing LIST. What you're going to see is the first program as you expected. You should
now type:

MERGE "“"part-b.bas'

and then type LIST. Both programs have mixed (merged) together with line 30 being the
newer one. If you had done the procedure somewhat inverted, that is part-a.bas was
merged into part-b.bas then line 30 of part-a.bas would be the newest one and it would
have overwritten line 30 of part-b.bas saying PRINT "Part 3a" instead of PRINT "Part 3".

Like LOAD when used on tape (drive t:), MERGE does not need a defined filespec ac-
cepting instead just an empty string (") and will just merge the next available program. An-
other good use of MERGE is instead of LOAD for programs that have been saved with the
LINE modifier. MERGE will just load the program without executing it thus allowing you to
edit instead of trying to use BREAK to stop execution. MERGE will not work with CODE,
SCREEN, LAYER or BANK modifiers. To partly simulate that functionality, there's a dot
command called .extract which we will visit later on. Finally, MERGE does not work with
arrays (DATA).

204 ZX Spectrum Next — User Manual

Using NextZXOS Chapter 20 — NextZXOS and alternatives
Using NextZXO0S

Thus far, we have examined the major commands we can use to get files into the com-
puter's memory, as well as store the contents of the computer's memory into files but with
the exception of a slight glimpse into rudimentary cataloguing of files on a drive, we do not
actually know how to manage the files. The following sections will cover all the facilities
provided for file and folder management by NextZXOS, together with their dot command
equivalents (the latter work on both NextZXOS proper as well as 48K mode and some even
work on esxDOS which we'll cover at the end of this chapter). We will also examine the re-
maining features of NextZXOS as the system itself does much more than simple file and
folder management. Let's start by examining a few concepts that are necessary in order to
get a better grasp of the commands that will follow and what these do.

Wildcards

Earlier, we touched briefly on the subject of wildcards. We mentioned two characters *
and ?. Their meaning is as follows:

* Any number of characters up to the end of the Name part of
the filename if used prior to a dot within the filespec —and-
any number of characters remaining up to the end of the
Type part within the filespec if used after a dot in the
filespec

? Any single character

As a note to the above, it important to remember that the type part of a filename is recog-
nised by NextZXOS as avalid one, only if it consists of up to 3 characters. If there are more
than 3 characters it is considered to be a part of the name field and the type is therefore
considered blank.

You cannot use more than two * within a filespec and each * must always be the last char-
acter in its respective field (Name or Type) in the filespec, otherwise a Bad Filename 0:1
error will be returned. Below are some examples of proper and improper usage of
wildcards:

These will work:

* x Any filename with any type
* Any filename without a type
*? Any filename with any SINGLE LETTER type
*?77a Any filename with any type that ends in the letter a
a*.??? Any filename starting with a with any type
??a.7b? Any three letter filename ending with the letter a with a

type having a b as second letter (for example dba.dbf)

While these won't:

d. * not the last character in the Name field
.scr. * not the last character in the Name field
**d * not the last character in the Type field

As it's apparent from the examples above, combinations of very few characters can repre-
sent a wide array of filenames which is exactly why wildcards are invaluable in managing
our files.

Filesystems

We've also talked about filesystems; more specifically about FAT and IDEDOS/+3DOS but
not specifically about what these represent. In a few words, a filesystem is a specific way
of organising information that's located on a storage medium. There are filesystems that
are medium-specific (for example even though it doesn't have a specific name, the way
files are stored onto tape is a filesystem in itself) and filesystems geared toward general
use. NextZXOS supports 3 (or rather 4) filesystems: the ZX Spectrum native tape

ZX Spectrum Next — User Manual 205

Chapter 20 — NextZXOS and alternatives Partitions

filesystem, +3DOS (that comes from the ZX Spectrum +3'2 principally geared towards
floppy disks), and two variants of the FAT filesystem, FAT16 and FAT32 (their main differ-
ence where NextZXOS is concerned is capacity). FAT is the de-facto standard filesystem
for most modern removable media (like the SD cards the ZX Spectrum Next uses). Each
filesystemn has its pros and cons which affects slightly the way NextZXOS operates. As
we've already noted earlier not all features are available on every supported filesystem; this
obviously affects some of the features we'll examine below.

IDEDQOS (which comes from the +3e) is not a filesystem in itself but a scheme that allows
multiple +3DOS "partitions" to occupy a single physical disk, in order to facilitate the use
of large media like hard disks.

Partitions

In the introductory notes and the Filenames section, we've mentioned the term partitions
either by themselves or in conjunction with one of the filesystems mentioned above e.g. a
FAT partition. This is a bit misleading and in reality it's an acceptable mashing of two terms:
XXX filesystem type AND partition — a partition formatted with the XXX filesystem. In other
words a FAT partition is a partition formatted with the FAT filesystem (could be either FAT16
or FAT32 — using FAT as a portmanteau term is acceptable use). But what is a partition?
Nothing more than an arbitrary slicing of available space on a storage medium, usually to
make it more manageable. An SD card for example could have one or more partitions and
not all of the same filesystern. Note here that NextZXOS will always start from the first FAT
partition on the first SD card on the system. If you remember the initial discussion, drives
can be assigned to partitions; this process of assigning a partition to a drive is called
mounting and we will examine it right after we briefly examine storage devices.

Storage devices and disks

For NextZXOS a storage device can be physical or virtual. We use the term disk for both but
the former refers to an actual, tangible piece of hardware like the SD Card reader your ZX
Spectrum Next is equipped with, while the latter is nothing but a file containing the image
of a filesystem. NextZXOS uses a common set of controls to address and access both
types of disks. Physical disks are generally —with the exception of tape- assigned a num-
ber per device (ie. the primary SD card reader and secondary SD card reader have differ-
ent numbers) and each partition on each disk (if a partition exists) is assigned a number in
turn. Virtual disks on the other hand do not have device numbers as they don't physically
exist however both require a driver; that is a small program that sits between the disk and
NextZXOS and translates each device's individual characteristics into the common set of
controls that NextZXOS understands. That alone however is not enough; NextZXOS needs
to assign a drive to each partition on a disk (or in the cases of virtual disks and the RAMdisk
to the diisk itself). As it comes with your System/Next™ distribution; NextZXOS knows
three types of physical disks: SD Cards, the RAMdisk and floppy disks and two types of vir-
tual disks: +3 floppy disk images and IDEDOS hard disk images. It also knows virtual and
physical tapes both addressable via the reserved drive t:. Physical disk device numbers
start at 0 and are assigned according to the table that follows:

Device Number Description

0 All IDEDOS partitions on the first SD drive
All IDEDOS partitions on the second SD drive
Reserved for First Floppy Disk drive
Reserved for Second Floppy Disk drive
RAMdisk
All FAT partitions on the first SD drive
All FAT partitions on the second SD drive

o O~ W N =

Table 16 — Device Number assignments

12 The +3DOS filesystem is identical to the CP/M one.

206 ZX Spectrum Next — User Manual

Mounting Chapter 20 — NextZXOS and alternatives

On an unexpanded ZX Spectrum Next with an unmodified distribution of NextZXOS, the
first used number is 4 which is the RAMdisk and the second is 5 as System/Next™ comes
on an SD card containing only a single FAT partition. As seen on the table above, device
numbers 2 and 3 refer to floppy disk drives (not yet supported by NextZXOS).

Mounting

In order for NextZXOS and NextBASIC to know how to access a partition or disk (be it physi-
cal or virtual) this partition/disk has to be mounted. That is the process where a partition on
a device gets attached to a drive. If freshly installed, NextZXOS will automatically mount
two drives; drives c: and m: the first being device 5 partition 1 (in other words the Sys-
tem/Next™ distribution's SD card plugged into the first SD reader of the system) and the
second one being device 4 (the RAMdisk). On an initialised CP/M distribution (as we'll see
further below) one more drive will be mounted and that's drive a: (assigned to cpm-a.p3d
located inside c¢:/nextzxos/).

Generally speaking, if there are more than one FAT partitions detected on the SD card(s),
they will be automatically mapped to drives ¢: onwards on startup.

Finally, any files located inside the c:/nextzxos/ directory, are mapped to the appropriate
drives (if the drive in question has not already been mapped), if they are named as follows
and are valid +3DQOS partition images:

DRV-A.P3D
DRV-B.P3D

(..)
DRV-P.P3D
CPM-A.P3D
CPM-B.P3D

(.)
CPM-P.P3D

Virtual images named DRV-x.P3D (where x is a letter from a to p) have preference over vir-
tual images named CPM-x.P3D so in the presence of both, the DRV-x variant will be
mounted. Apart from the auto-mounting procedures described above; we can also manu-
ally mount partitions and disks. This will be covered a bit further below at its own section.
With all this information at hand, we can now proceed to examine NextZXOS facilities by
task.

Drive cataloguing

It's obvious that simply remembering a file's name and LOADINg it, is not possible after the
first few files, so we need a command that can help us see which files are stored on a
drive. This command is CAT (from CATalogue) and its syntax is as follows:

CAT [-] [#n1.]] [filespec] [EXP]

where - is a switch instructing the file list produced to use the short (8+3) format, #n is a
NextZXOS stream for the output of CAT to be redirected to, filespec follows the conven-
tions described in the filenames section earlier and the modifier EXP produces an ex-
panded listing with more information about the files being listed. All CAT parameters are
optional and by itself CAT will produce a listing of the default drive which can be set in the
same manner as with LOAD, SAVE etc. Try the following:

LoRAc mc:
CHT

You will receive the following on your screen

Mo files found
S22k free

B ak, @:1
ZX Spectrum Next — User Manual 207

Chapter 20 — NextZXOS and alternatives Drive cataloguing

Congratulations, you just listed the contents of the RAMdisk. Sadly it's empty! Now type:

LoRpe o't
CHT

Your display now will look similar to this:

CORES <L IR >
CEHOS LIR:
CoOCs <L IR >
CoT LIR:
GAMES <L IR >
MACHIMNES LIR:
HEXTZ=®0OS <L IR >
RFI LIR:
SRC <L IR >
SvS LIR:
THF <L IR >
TOOLS LIR:
LICEMSE .HD =18
REACHE . MD 2k
TEELUE.FLI 15SHE
TEELUE.TELU 455K

133STH free

@ 0Ok, @:1

which is a listing of the contents of the root folder'® of your System/Next™ distribution.
Now type:

CHAT E=xPF
Your display now will look similar to this:
CORES =
ZR19-29-02 @l:al
CEHMOS =

ZBlo-a9-a2 @l1l:al

LICEMSE.HD -———
ZB@lo-a9-a2 a@: a7 Sz243

REACHE . HD -———
ZBl9-a9-a2 Qa: a7 1427

TEELUE .FLI -_————
ZBlo-a9-a2 Q@: a7 17zasz

TEELUE.TEU -———
Z@lo-@9-a2 Q@: a7 475545

You can immediately notice two things: First the addition of a column made from four char-
acters at the rightmost side of the screen and secondly that every entry now occupies two
lines with the second containing a date, a time and a number (not in all cases). Let's start
from the second line. Two types of information is available there; when the file or folder was
created and what's its size (in bytes). The first line is the file itself (or the folder) while the
rightmost column describes the file's attributes. The d you can see in some entries is the di-
rectory attribute which designates a folder. Folders as far as the filesystem is concerned are
special files without size. In the shorter form of CAT we saw previously, this is displayed as
<DIR>. There are many more attributes to examine which we will look at later.

13 In filesystems other than IDEDOS and +3DQOS that use User Areas, files are organised in an inverted virtual tree of
sorts, contained in folders like branches on a trunk of a tree which in turn contain smaller branches and so forth. The
top level of the tree is called the root folder or root directory.

208 ZX Spectrum Next — User Manual

Drive cataloguing Chapter 20 — NextZXOS and alternatives

You may have noticed that the display gets very cluttered when using the EXP modifier es-
pecially if there are a lot of files with long names as the screen normally fits only 32 col-
umns. If you follow the note in the beginning of this chapter and use 64 or 85 column
modes. you'll see the situation improves. Switch to 64 column or 85 column mode, rerun

CAT EXP and you will get something similar to this:

I d--- 2019-10-22 20:2§
nocs d--- 2019-10-22 20:2§
Dot d--- 2019-10-22 20:23
GAMES d--- 2013-10-22 20:23
MACHINES d--- 2019-10-22 20:28
NEXTZHOS d--- 2019-10-22 20:25

d--- 2019-10-22 20:2§
SR d--- 2014-10-22 20:28
¥ d--- 2019-10-22 20:23
THP d--- 2013-10-22 20:25
rooLs d--- 2019-10-22 20:25
CHANGEL 06 ---- 2019-10-22 10:10 2940
CONTRIBUTING.md ---- 2019-10-22 10:10 9662
LICENSE.MD ---- 2019-10-22 10:10 5186
RERDME . MD ---- 2019-10-22 10:10 1301
TEELUE. Fld ---- 2019-10-22 10:10 172032
TEELUE. TBU —--- 2019-10-22 10:10 475648
CORES d--- 2019-10-22 20:25
test.bas -a-- 1980-00-00 00:00 212
test. L2 -a-- 1980-00-00 00:00 49280
test. sl -a-- 1980-00-00 00:00 49230
test.lL2.bak -a-- 1980-00-00 00:00 49230
EUBBEOBE. TAP ~S-- 2005-04-05 13:07 53224
EBubble Bobble (19571 (Firebird) (45K-125K). tap

Fig. 27 — CAT EXP output in 85 columns

Similarly, the output will be even more pleasant at 64 columns:

CEMOS 2019-10-22 20:25
cocs 2el9-10-22 20:2%
LoT 2019-10-22 20:28
EAMES 2019-10-22 20:25
MACHINES 2e19-10-22 20:25
MNEXTZX0S 2019-10-22 20:285
RFP I 2el19-10-22 20:28
SRC 2019-10-22 20:28
SYS 2019-10-22 20:25
THF 2019-10-22 20:25
TooLsS 2019-10-22 20:25
CHANGELOG 20e19-10-22 19: 182

CONTRIBUT IMG.md 2el9-1l0-22 10:18@

2el9-10-22 10:18@

README . MD 2019-10-22 10:1@
TEELUE.FU 2el9-1@-22 10:18@
TEELUE.TBU 2el9-10-22 10:1@
CORES 2019-10-22 20:286
test.bas 1950-00-00 QQ: Q@
test. L2 1950-00-00 QQ: Q@
tezt.sla 1950-00-00 QQ: Q@@
tezt.L2.bak 1950-00-00 QQ: Q@
EUEBEBOEBE . TRF -=== Z20Q05-24-05 13:07
Bubble Bobble (1957) (Firebird) (45K-125K) .1ap

475645

21z

49250
49250
49250
53224

Fig. 28 — CAT EXP output in 64 columns

It's evident that the columns are really 4 and they only get broken down in two lines in order

to fit. Let's now examine the use of the — switch. If you type:

CAT -

Your display now will look similar to this:

CORES . <CIR:
CEHMOS . <DIR:
Cocs . <CIR:
LoT . <DIR:
GARAMES . <CIR:
MACHIMES . <DIR:
HEXTZIx0O5. <CIR:
RFI . <DIR:
SRC . <CIR:
SW5 . <DIR:
THF . <CIR:
TOOLS . <DIR:
LICEMSE .HD =18

ZX Spectrum Next — User Manual

209

Chapter 20 — NextZXOS and alternatives Drive cataloguing

RERACHE « M =14
TEELUE « FLl 155K
TEELUE . TEL EN=11.4

1537H free

@ oK, @:1

As you can see, filenames are now clearly separated at the 9th character by a dot followed
by a 3 letter type. In order to demonstrate what happens with a larger filename we could
write a simple program and save it as follows:

1@ PRIWT "Hello World®
SAVE "Thi=s I= A Hello World Program.bas"
Then try both CAT and CAT - as follows:
CAT - "th*.bas": CAT "thx.basz'

(Here we're also demonstrating the use of wildcards for the first time). Your display will
then be:

THISIS"1.EBRS 1k

1537H free
This I= A Hello Worlkld Program.ba
= 1k

1537H free

@ Ok, @:1

you'll notice that the long filename This Is A Hello World Program.bas got truncated to its
first 6 characters after trimming all space characters followed by a tilde ~ character and
the number 1. This is to help differentiate from other files with long filenames that look alike
in the first 8 characters of their filename (omitting spaces). To demonstrate this, type:

SAVE "Thi=s I= A Hello United Kingdom
Frogram.bas"

and
SAVYE "This I= H.bas"
followed by

CAT - "“"th*.bas"
The resulting display will now be:

THISIS"1.EBRS 1k,
THISIS"2.EBRS 1k
THISISA ..EBRS 1k,

1537H free

@ oK, @:1

As you can see a ~2 was added to the This Is A Hello United Kingdom Program.bas file-
name when it was shortened otherwise you couldn't differentiate it from the This Is A Hello
World Program.bas as they both share the same starting characters. As a matter of fact
NextZXOS when faced with a lot of similar filenames will keep adding consecutive num-

210 ZX Spectrum Next — User Manual

Drive, Folder and User Area navigation and management Chapter 20 — NextZXOS and alternatives

bers truncating the original filename further until all the files are displayed in short format. If
you now use CAT with EXP you'll get to see a number of things. First, if you don't have a
Real Time Clock module installed, you will see that all the files you just saved have the
same date and time on them and secondly that in the second column, the second charac-
ter from the left has turned into a from a single dash (-). This signifies that the archive attrib-
ute has been set. CAT becomes more powerful with the use of wildcards, allowing us to
get alist of only the files we're interested in, omitting all others that may clutter our display.
For example:

CAT "“"%.tap"

will show us all the .tap format tape image files, we have stored in the current drive and
folder.

Thus far we have only displayed the ability to list files contained within the current drive and
folder, however CAT can display files in different drives, folders, user areas or a combina-
tion of the above (when the combination is supported by the filesystem of the drive). We
can instruct CAT to produce listings of files and folders inside drives other than our current
drive or folder or even user area without having to change our default filespec to that spe-
cific area. We'll cover the subject of changing the default filespec shortly so for now here
are some examples:

CAT "'m:" Displays a list of all files in drive m:

CAT "2m:" Displays a list of all files in user area 2 of drive m:

CAT "2m:*.bas" Displays a list of all files ending in .bas in user area 2 of
drive m:

CAT "c:/nextzxos/" Displays the contents of folder nextzxos found on drive c:

CAT "c:/nextzxos/e*.*" Displays all files whose filename starts with the letter e in the
folder nextzxos on drive c:

CAT has two aliases in NextBASIC: DIR and LS. Both follow the exact same syntax so all
the above applies to them. There are also two dot commands .Is and .Istap which are
available on both NextZXOS proper and the 48K Basic mode available from the Startup
menu. They replicate CAT and the combination of .tapein'# and CAT "t:" respectively. .Is
has a lot more options available than CAT which can be seen once you type:

L2 ——-helLp

which will give you about 3 screens full of available options! For most purposes however it
is used in the same manner as CAT filespec-wise. .Is does not require the filespec to be
enclosed in double quotes if there is no drive specified (drives contain colon characters
and both Sinclair as well as NextBASIC consider this as a statement separator and will
complain). One major difference in the way .Is displays the files versus how CAT displays
the files is that it uses the short format; ie. it's closer to giving CAT - than just plain CAT.
Similarly, .Istap provides extra information than CAT "t:" provides as you will see by giving:

. Lstap —--helLp

Istap is particularly useful in 48K Basic mode as there is no CAT "t:" equivalent in that ver-
sion.

Drive, Folder and User Area navigation and management

One of the major features of any operating system such as NextZXOS is the organisation
and management of files within the capabilities of its supported filesystems. In earlier
times, such as when the predecessor models of the ZX Spectrum Next were first available,
file storage needs were not as pressing as they are today.

Storage media couldn't really hold a lot of information and even program sizes were tai-
lored to the memory available to the computers of the era. Operating systems in other
words, weren't really needed unless one had very important business files to manage. As

14 .tapein is a dot command utility that lets NextZXOS assign a virtual tape image to the t: drive instead of the real tape

ZX Spectrum Next — User Manual 211

Chapter 20 — NextZXOS and alternatives MKDIR

time went on and computer capabilities grew, the few files that could fit on a tape or a
microdrive cartridge became the tens that could fit on a floppy disk while today with the
capacities of storage media skyrocketing we have to manage tens or even hundreds of
thousands of files. Compare a microdrive cartridge that held 90 KBytes of data which was
a massive capacity for the times, to your System/Next™ distribution that can hold 11
million times as much.

Early on, once the first disk based systems became available, the need to organise files in
a more logical way was recognised and the first type of grouping of files was realised in
the form of 16 user areas (numbered from 0 to 15). User areas served other needs as well
but for a machine like the ZX Spectrum +3 that introduced it to the ZX Spectrum line, it was
a means to gather together files. User areas are more than adequate for limited capacity
storage media but wholly inadequate for larger media like the multi-megabyte hard drives
that followed.

To that effect the concept of a folder (also known as a directory) was introduced which in
itself can hold other folders in a nested organisational chain. This structure is called a di-
rectory tree (it's really an inverted tree with the root of it sitting at the top).

The FAT filesystem used on your System/Next ™ distribution is a prime example of that or-
ganisation. It's obvious that with folders being nested, constantly writing commands like
SAVE or LOAD that includes the length of any number of folders in addition to the file's
name itself can be very copious. To that effect apart from the commands that deal with the
creation and deletion of folders, NextZXOS provides us with commands to navigate the
filesystem's directory tree. The filesystem navigation and management commands are:

MKDIR

MKDIR (for MaKe DIRectory) creates a folder on a drive that supports it. It's syntax is as
follows:

MKDIR filespec

where filespec follows the syntax already discussed in the Filenames section of this chap-
ter using the first two parts that make up a filename: Drive and Folder. In the absence of a
drive and an initial folder separator character, the folder you're creating will be created un-
der the current folder and drive you've set. You can mix the folder separators \ and / without
a problem when structuring the filespec. An attempt to create a folder with MKDIR in a
filesystem that doesn't support it will report a Non Implemented, 0:1 error.

If you are using MKDIR with a depth of folders greater than one, the folder name you're us-
ing must already exist otherwise you will receive an Invalid path, 0:1 error. Here are some
examples to illustrate:

MKDIR "/codes" Creates a folder named codes under the current drive's root
folder.
MKDIR "/codes/codes" Creates a subfolder named codes under the current drive's

root folder inside the codes folder. If there is no folder named
codes under the root folder, the command will fail.

MKDIR "d:/test" Creates a folder named test under the d: drive's root folder
MKDIR "d:test" Creates a subfolder under the d: drive's last changed-to
folder.

The last example is very interesting as it introduces the concept of current folder per drive.
Indeed, NextZXOS maintains a list of which folder was last changed to on each drive and
will switch you to that if you don't explicitly define a full pathname and only a drive. This will
become very useful when copying as we will see later on.

There is a dot command equivalent of MKDIR, which shares its name apart from the dot
prefix: .mkdir. It accepts two more, mutually exclusive options over MKDIR: --verbose and
--help otherwise it's syntactically the same. As with most dot commands if there's no drive
inside the filespec the double quotes enclosing it are optional.

212 ZX Spectrum Next — User Manual

RMDIR Chapter 20 — NextZXOS and alternatives
RMDIR

RMDIR (for ReMove DIRectory) removes an empty folder from a drive that supports fold-
ers. Its syntax is as follows:

RMDIR filespec

where filespec is as discussed in MKDIR above. RMDIR protects you from accidental de-
letion of files that can be contained within the folder by returning a Dir full, 0:1 error if even
one file or another folder is contained within. You will need to first remove all the files and
subfolders located inside the folder before RMDIR allows you to remove the folder.
Wildcards do not work with RMDIR; you cannot use RMDIR "*" and expect to remove all
folders under the location you are in. Any attempt to do so, will return a Bad filename, 0:1
error.

Finally, if you attempt to use RMDIR with a folder that doesn't exist, you will receive a an In-
valid path, 0:1 error.

.rmdir is RMDIR's dot command equivalent. It is a bit more destructive than RMDIR as it
allows the deletion of parent folders with the addition of optional switch --parents, how-
ever, it too, checks for data inside the folders slated for deletion and will return an error if
data exists. With the exception of the optional switches --parents and --help, syntax for
both RMDIR and .rmdir is the same.

CD

CD (for Change Directory) changes the current drive and/or folder (for drives that support
folders) or current drive (for drives that do not). CD's syntax is as follows:

CD filespec

where filespec consists of either one or two of the first two parts of a filename (Drive and
Folder) for filesystems that support folders (FAT16, FAT32) or of just the Drive for
filesystems that do not (+3DQOS, IDEDOS). Setting just the current drive with CD is func-
tionally equivalent to using SAVE, LOAD etc with just the drive as the filespec. Unlike fold-
ers, there is no way of setting a user area as the default one so if you need to address it you
must do so explicitly through the filespec, for example add a 3m: prefix to filenames for
files in the user area 3 of drive m:. CD works with wildcards by matching to the first folder in
order it finds them and change to that.

CD also accepts three filespec shortcuts: . (single dot), .. (double dot) and one of the fol-
lowing / or \ (forward or backward slash). As we mentioned earlier in the chapter, single
dot means: This folder, double dot means: The folder one level up and either slash on their
own means: The root folder of the current drive. Single and double dot entries do not exist
on the root folder and therefore you cannot use the shortcuts there.

Using a combination of the double dot and slash shortcuts, CD can also easily traverse
the folder tree horizontally at the same level without having to write the entire path that pre-
cedes the level you're currently in. Obviously that doesn't make sense at the first level un-
der the root as it would involve much more typing than the slash character alone but it
works nonetheless!

ZX Spectrum Next — User Manual 213

Chapter 20 — NextZXOS and alternatives CD

Assuming a structure like the one in your System/Next™ distribution as partly displayed in
the figure below, lets provide some examples of horizontal and vertical navigation.

System/Next™

example folder organisation

/

nextzxos machines docs

dotcommands extra-hw cpm

Fig. 29 — Folder tree navigation

Let's agree that we're located in the / of drive ¢: and we want to first go to ¢:/docs/cpm and
then go to c:/docs/extra-hw before returning to / again.

We could use one of the following sequences:

cC ‘docs'

S0 “cpm”
and then

co .

CDr vextra-hw'
and finally

co o t. L

[

C:sdocs-cpm"
CC "o sdocssextra-hw'

However it's much less typing to just do:

CC “osdocs sCcpm”
Ch ".arsextra-hw'
oo et

It's easy to see that the navigational shortcuts are quicker. The dot command equivalent of
CD is .cd with the optional switch --verbose which performs the functions of both CD and
PWD (see below) in order. A small deviation from the syntax of CD is that it allows specific
shortcuts to navigate quickly to the top folder of a deeply nested hierarchy.

These are:
.cd ... Functionally equivalent to two successive CD ".." commands
.cd ... Functionally equivalent to three successive CD ".." commands
.cd ... Functionally equivalent to four successive CD ".." commands

214 ZX Spectrum Next — User Manual

PWD Chapter 20 — NextZXOS and alternatives
PWD

PWD (for Print Working Directory) prints the current drive and folder to the screen or an op-
tional stream number. PWD's syntax is as follows:

PWD [#n]

In a NextZXOS context PWD is very useful, however you cannot assign its output to a
NextBASIC variable that easily for use inside our programs. In order to do that, one should
be a little creative (skipping ahead to the next chapter) and use the optional strearm param-
eter in a manner identical to the trick we used to get time from our RTC back in Chapter 18.

Type:

CIM d$(255) : OFPEN #2,"w:d%" :PLUD #2: CLOSE
HZ2: PRIMT 4d%

with which we define a fixed size string variable d$, then open stream 2 and assign it to
channel V which redirects its output to d$. We then invoke PWD with output redirection to
stream 2 which in essence takes its normal screen output and via channel v sends it to d$,
before closing the stream and printing d$. We did exactly what PWD would do normally
(that is print the working directory on the screen) but also managed to store it in a variable
for use later.

PWD doesn't have a dot command equivalent with the same name. Instead you only need
to use .cd --verbose without a filespec. The example above therefore becomes:

CIM d% (255 : OFPEM H#2," v d%": .Cd —--werbose:
CLOSE #2: FRIMNT 4d%

You may notice that there's no stream defined after .cd --verbose and that's because you
don'tneed it as stream #2 is the screen anyway! It's obvious that the same applies to PWD
above but PWD does offer the ability to redirect to a stream and that illustrated that fact
quite nicely. As a matter of fact, you can completely omit the stream from the PWD state-
ment in the previous example and it will function in the same manner; you will see why in
the next chapter.

Managing files and their attributes

In our examples in this chapter we have managed to clutter our drives with lots of copies of
the same programs. This may be desirable at times but sometimes we may want to keep
slightly altered versions of the same program in different places (for example to keep a
type of version history) but we may not have the organisation of the folders we'll store the
files in when we start working.

Other times we may want to get rid of some files we've created for any number of reasons,
or rename a file from a throwaway name like for example test.bas to something more
meaningful and finally we may want to move some files from one place to another when
done with them. NextZXOS provides us with all these facilities in the form of the COPY,
ERASE and MOVE commands and their dot command equivalents .cp, .rm and .mv.

We'll examine these below and additionally find how to modify file attributes (what is dis-
played as the second column in the CAT EXP command's output) again via a special ver-
sion of MOVE and its dot command alternative .chmod. There is one more function
provided by NextZXOS in regards to files and that's directly accessing its contents. This
however requires the use of Channels and Streams and is therefore covered in the next
chapter.

COPY

COPY does as its name implies; Copies a file from a location to another location. Its syn-
tax is quite simple:

COPY source TO destination

ZX Spectrum Next — User Manual 215

Chapter 20 — NextZXOS and alternatives COPY
A few notes, regarding the differences between source and destination parameters are:

First and most importantly, source can use wildcards while destination cannot. In other
words you can write:

COPY YCrw¥.bas" TO "m: M

but you cannot write:

cCoPy YCriw¥.bas" TO "m:w*¥.baszs"

or

COPY “C:w#.bas" TO "m:-~a%.bas"
as any attempt to do so will generate a Destination cannot be wild, 0:1 error.

Secondly, copying files between filesysterns with different capabilities will perform some
form of translation to the filenames. To give an example with two files named
raycaster.bas (longer than 11 characters) and ..later.bas (starting with two dots) on drive
c: doing:

copy "c:w¥.bas" TO "m:"

will change the filenames to raycas~1.bas and later.bas as the RAMdisk is a +3DOS
drive and as such accepts only 843 filenames.

Thirdly, the destination is not checked for if the files being copied already exist. So if you
perform the above operation twice, each time COPY will replace the files on the destina-
tion without creating backup files except if the file named the same in the destination has
the protected attribute set. To demonstrate let's skip a bit ahead and introduce you to an
attribute setting command. Type the following:

COPY YC:snexXtZzxosspisid.x" TO "m:"
HMOUE “m:PISIC.ERSY TO "+p"
COPY YC:snexXtZzxosspisid.x" TO "m:"

The first COPY operation will succeed while the second COPY operation will fail. In the
case of a mass COPY if the operation fails for any file, it will fail for all remaining files, so
keep that in mind.

COPY does not work between a disk and a tape; doing for example:

fLapeout Yteszt.tap”
COoOPY “m:¥.bas" TO "t:"

will fail with a Destination must be path, 0:1 error. Note above the use of the .tapeout dot
command which we will cover later on; it just allows us to substitute a tape image file for an
actual tape. To perform the above function we will need to do the following:

tapeout Ytest.tapt
LOADR "m:hello.bas"
SAVE "t:hello.bas"

and verify the output with .Istap we covered earlier:

Lz2tap "hello.tap"

(or alternatively not use .tapeout and .Istap at all and save onto an actual tape, in which
case we'd use VERIFY to check if the file was actually written)

There is a special version of COPY where the source file is stripped of all control codes,
just maintaining End-Of-Line characters (CR, LF or the combination of both — See Appen-
dix A for all Control Codes). It exists as either shortcuts SCREEN$ and LPRINT in lieu of
destination -or- as any stream that can be attached to a channel. The SCREEN$ shortcut

216 ZX Spectrum Next — User Manual

ERASE Chapter 20 — NextZXOS and alternatives

gets any file and prints it on screen while the LPRINT shortcut gets any file and sends it to
a ZX Printer or compatible. A good way to test the functionality is to check some of the
documents in c:/docs. For example to see the pinouts of the Next board you can type:

copy Yo sdocsrsextra-hwApinouts spinx.t=t®
TO SCREEM%

while if you do:

COPY "C: s sdocCsrextra-hw spinouts -pinx.t=xt"
TO LPRIMT

the file will be sent straight to the printer! SCREEN$ and LPRINT are shortcuts for their re-
spective streams (as you will see in the next chapter). Although there are no shortcut
keywords for other streams, if the destination is set to any stream, COPY's behaviour will
be identical to what we just saw.

The dot command equivalent for COPY is .cp and its syntax is similar with the exception of
the --force switch which allows overwriting of files without prompt. .cp CANNOT currently
address +3DOS/IDEDOS drives so it should be only used on FAT partitions on the SD
Card.

ERASE

Files can be deleted from a drive using the ERASE command. Its syntax is as simple as
one would imagine:

ERASE filespec

where filespec follows the same conventions as CAT meaning that just like CAT, you can
use the wildcards * and ? to identify a group of files, or you can specify the filename in full
(including optional Drive and/or User Area and Path) if you only want to get rid of one par-
ticular file. ERASE offers you some form of protection if your filespec contains wildcards in
the form of a question in which you will have to answer with a'Y on the keyboard to con-
tinue or with N to stop, but offers no protection if you specify a single filename, which will
immediately be erased from the drive — so exercise caution! If, for example, you wanted to
delete a file from drive m: called FRED.BAS, you would use:

ERASE '"m: fred.baszs"

If drive m: has already been set as the default drive (by either using SAVE, LOAD... or even
CD), then you don't need to include the m: at the start of the filename. It doesn't hurt to in-
clude the drive anyway, and with as powerful a command as ERASE is, you might feel
safer if you do. To erase all the files on drive d: you would use:

ERASE "d: ¥.%"
Before doing this, NextZXOS will ask for confirmation by printing

Eraze d: x.x% 7 (%M

on the bottom of the screen and assuming that you really mean to wipe all the files from
the disk in drive d:, you would then type Y.

If you attempt to delete a single file (or a group of files using wildcards) while there are no
files on the drive that match the filespec a File not found error will be displayed.

The dot command equivalent to ERASE is called .rm (from remove) and its syntax follows
that of ERASE with the exception of two switches namely --verbose and --help.
MOVE

MOVE is a very powerful command. It performs a total of five functions: moving and re-
naming files, changing file attributes and manually mounting and dismounting drives.

ZX Spectrum Next — User Manual 217

Chapter 20 — NextZXOS and alternatives MOVE

Since there are separate sections for the last three functions; we'll cover only the first two
here. For moving and renaming, MOVE's syntax is:

MOVE source_filespec TO destination_filespec

where source_filespec and destination_filespec follow everything discussed in the File-
names section earlier with the following considerations:

® You cannot use wildcards in either the source or the destination. This means
that both source and destination have to be complete filenames.

* You cannot perform a MOVE operation between drives

Let's examine what will happen in the first case. Assuming you have 3 NextBASIC files,
named HELLO1.BAS, HELLO2.BAS and HELLOS.BAS in drive m: (in the default User
Area 0) and you want to move them to User Area 1, typing as you would probably expect:

HMOUE "“%.bas'" TO "1:"
will fail with Bad Filename, 0:1. To perform this you should actually do:

copPy “"#%.bas" TO "1:Y
followed by

ERASE "#%.bas"

In the second case (and since we now learned our lesson we won't be using wildcards) at-
tempting to MOVE one file between drives like so:

HMOWE "c: stest.bas" TO "d: s test.basz"

will fail with No rename between drives, 0:1. To perform this you should actually do like
above:

copPy “"cC:stest.bas" TO Yd: .-
ERASE "cC: s test.bas"

As you probably have already figured out, moving and renaming files is basically the same
procedure and since we have to write an entire filename in both source and destination we
can change it at the same time!

HMOWUE "hellol.bkasz" TO "“"C: - sbakshello.bak"
both moves locations and renames hello1.bas.

Imagine we have saved a file called FRED, and then after working on it and saving a new
version with the same name, realised that we had made a terrible mistake and would like
to recover the last version. This would be possible using the commands:

ERASE "fred"
HMOWE "“"fred.bak"” TO "“"fred"

If a file you're moving or renaming already exists (or rather another file with the same
name) at the intended destination, MOVE will fail with an Already exists, 0:1 error.

MOVE's dot command alternative is .mv and unlike other dot command alternatives we've
examined so far, its renaming and moving capabilities far exceed those of MOVE's. It al-
lows operations across different drives, interactive or automatic overwriting of already ex-
isting files as well as the full use of wildcards. It's syntax is:

.mv [OPTION] [-T] source destination —or—
.mv [OPTION] source DIR —-or—
.mv [OPTION] -t DIR source

218 ZX Spectrum Next — User Manual

File attributes Chapter 20 — NextZXOS and alternatives

Where source and destination can be any valid NextZXOS filespec (including wildcards)
and DIR is any valid folder . Source or Destination filespecs with trailing slash characters (/
or) are considered to be folders. As.mv has numerous options, they are listed in the ta-
ble below to help you better understand what it can do. In general when you have a large

quantity of files to be moved or renamed it's better to use .mv over MOVE.

Option = Alt Option Syntax Description Notes
-b Makes backup of existing destination
-f --force Do not prompt for overwrite Of these three options,
-i --interactive Prompt for overwrite the last in order is the
- one that takes effect
-n --no-clobber Do not overwrite
--strip-trailing-slashes Remove slashes from names
-S --suffix=SUFFIX Override default backup suffix with SUFFIX
--system Match system files to source
-tDIR --target-directory=DIR Move everything in source to folder DIR
-T --no-target-directory Treat destination as a normal file
Move only if source is newer than destination
-u --update L .
or destination doesn't exist
-V --verbose Explain what is being done
-h --help Prints this list of options
-V --version Prints the version of .rm and exits

Table 17 —.rm options

File attributes

As mentioned in the previous section, MOVE has another use besides renaming and
moving files and that is to change afile's attributes. Attributes are bits of information asso-
ciated with a file that tell you (and the computer) a little more about it. You already saw in
the CAT EXP and ERASE examples how attributes appear to you and how they can affect
your files. There are three attributes that can be changed plus one more that is automati-
cally managed: write protection, system status and archive. The most useful attribute is, as
we've seen already, write protection. Once a file's write protection attribute has been set, it
will not be possible to erase it (or save a file with the same name) until you remove it.

MOVE's syntax for attribute changing is a bit different from the one used for renam-
ing/moving:

MOVE filespec TO +/-attribute

Where filespec CAN include wildcards unlike the previous case, and attribute is one of the
following letters: p, a and s used with either a + or - prefix. The prefix serves as a set (for +)
and unset/clear (for -). p is short for protection, a is short for archive and s is short for sys-
tem.

Write protection is the most useful attribute for NextZXOS. Try:

HOWE "“"hello.bas"™ to “"+p"
If you now ftry:

ERASE "hello.baszs"
ERASE will fail with a File is read only error.
To switch write protection off type:

HMJWE "hello.bas'" TO "-—-p"

and you'll be able to erase the file as before.

ZX Spectrum Next — User Manual 219

Chapter 20 — NextZXOS and alternatives The RAMdisk

As mentioned, we can use wildcards when changing attributes. As an example, to make
all the files on drive m: write protected, you would type:

MOWE “m: #%.%" to “+p"
As always, the drive letter can be omitted if it is the current default drive.

You can repeatedly switch attributes on or off without causing an error, so if you set write
protect on a file that has already got write protection, it will just stay protected.

The second attribute we mentioned is the system status attribute. This is really provided
just to be compatible with other CP/M based computers, however, if you do set a file's sys-
tem attribute to on, you will see that the file no longer appears in the list when doing a nor-
mal CAT. It will appear however when using CAT EXP with an s marked in the second
column and when using .Is. Try the following:

HMOUE "hello.bas'" TO "4+

CAT
CAT ExPFP
LOAD “"hello.bas'": RUM

As you can see hello.bas became invisible to CAT but you can still LOAD it properly if you
know its name. Bear in mind that you cannot have two files on the same disk with the same
filename and different system status attributes; so if you try to create or copy a file onto a
disk where a file of that already exists (but is hidden from CAT), then the previous file will
be deleted, unless of course its write protect attribute is set.

The final attribute you can change is known as the archive attribute. In an expanded cata-
logue, it shows up as a. On other systems the archive bit is cleared when a copy operation
has been performed, but that doesn't happen on NextZXOS. NextZXOS automatically sets
the archive bit when saving on a FAT driver but doesn't do so on IDEDOS/+3DOS drives.
It is therefore of no practical use and is only provided for file compatibility with CP/M.

If you try to use any letter other than a, s or p in setting or resetting attributes, or if the attrib-
ute option string is not two characters long, then you will receive an Invalid attribute error.

The dot command that handles attributes is .chmod and has a bit of a different syntax than
MOVE as it accepts four attributesr, h, s and a, for read-only, hidden, system and archive.
The first is in essence the same as p for MOVE while h doesn't exist on NextZXOS (setting
the system attribute makes it also hidden by default) but it does exist as an attribute on
FAT drives. Trying:

chmod TEELUE.FLI -h

you will see that nothing has changed when doing CAT EXP. If you however take your SD
Card to a PC, you will be able to see the file again there.

The RAMdisk

You may have been wondering what point there is in storing information in the RAMdisk
(m:) as it will be lost once the ZX Spectrum Next is switched off. Well, perhaps its most ob-
vious use is to store chunks of NextBASIC program (or routines) which can be merged (us-
ing MERGE "m:filename") into a smaller program, in sequence. This makes it possible to
write about 90K of NextBASIC code, and hold it in the machine, without going into the
more complicated BANK commands. Another little less obvious use is to store temporary
files there that won't be needed when your program finishes. Memory is the fastest me-
dium on your ZX Spectrum Next and quick access to files may be beneficial.

As we saw in Chapter 18, one of the more interesting uses of the RAMdisk is in animation,
where a series of pictures can be defined by a slow NextBASIC program, stored in drive
m:, then called back to the screen at high speed. Obviously BANK is still the preferred way
to do it, but for quick jobs that use Layer 0 it's a quick and easy method!

220 ZX Spectrum Next — User Manual

Drive and Partition Management Chapter 20 — NextZXOS and alternatives
Drive and Partition Management

We've talked about physical devices and virtual devices; we've also talked about the
automounting features of NextZXOS but we haven't truly explored how the system man-
ages storage devices and assigns them to drives. NextZXOS provides us with four com-
mands to help us list and manage disks and drives. The drive and partition management
commands are: CAT TAB that lists the physical storage devices attached to the system
and what partitions they contain; CAT ASN that lists all drive assignments to whichever
partition or disk (basically listing what's mounted), MOVE ... IN to assign any device/parti-
tion physical or virtual to a drive (mount) and MOVE ... OUT to remove an assigned parti-
tion from a drive as well as REMOUNT that allows us to change system disks on the fly.
NextZXOS also provides us with a way to create virtual disks of varying sizes in the form of
two dot commands: .mkdata and .mkswap

CAT TAB and CAT ASN

CAT TAB lists the storage devices currently connected to your ZX Spectrum Next and their
partitions. It's syntax is:

CAT [#n] TAB

where #n is an optional stream to redirect the output to (e.g. to a file). On a standard ZX
Spectrum Next with a single SD Card reader, giving

CHT THE

will return:

HHZ unit @ (laz4H)
HHZ unit S (1l@z24H)
Sr1:MEXT 1az24H FRATISZ2

which illustrates also a point we made early in the chapter. Each SD Reader is assigned
two device numbers (0,5 and 1,6 for first and second SD Readers respectively) according
to what partitions it holds. If for example we had eight partitions, seven IDEDOS and one
FAT32 then our display would have been:

HHZ unit @ (1@az4HM)

@:PLUSIDEDDS Edb =4d=

@:zeneral 4@395KE data
a:CRHM-A S2ak data
a:CFPHM-EBE S12K data
@:CPHMSLUrF S1z2K data
a:Dew 255K data
@rMext S2ak data

@yrmmmmam e lasadks, FREE
24 free partition entries

HHZ unit S (1l@z4H)

Sr1l1:MEXT 1a@asH FRATSZ2

CAT ASN on the other hand, displays which partition or disk is assigned to which drive.
The syntax is similar to CAT TAB:

CAT [#n] ASN

where, again, #n is an optional stream for the output to be redirected to. On a standard ZX
Spectrum Next with a single SD reader and prepared CP/M (whose virtual drive a: as we
have discussed would be already automounted), giving:

CHT HASH
would produce the following output:

ZX Spectrum Next — User Manual 221

Chapter 20 — NextZXOS and alternatives MOVE ... IN, MOVE ... OUT and REMOUNT

A: —---HMounted FS---
C: Srl:MEXT
HM: 4:RAMdDisk

If you are asking what happened to the IDEDOS partition we displayed earlier, it's not
mounted because IDEDOS partitions do not auto-mount. To mount them (or any other
partition or virtual/physical disk) you will need to employ the following commands:

MOVE ... IN, MOVE ... OUT and REMOUNT

In order to assign (mount) a disk/partition or virtual/physical disk to a drive you need
MOVE ... IN. Its syntax is as follows:

MOVE drive IN mount_point

where drive is any valid NextZXOS drive (a: to p:) and mount_point is either a device > [parti-
tion][>][partition_name] or a filespec of a virtual disk. Devices that don't have partitions are
written as X> where X is the device number, while devices that have partitions are written as
X>Y>[partition_name] where Y is the partition number for FAT partitions and X>partition
name for IDEDOS partitions. In the case of IDEDOS partitions the number can be totally
omitted as well if on device 0. Assuming that we had unmounted the RAMdisk, in order to
mount it again in some other drive, we'd need to do:

HMOUE "“o:" IM "d4:"

Notice that there's no partition number following the 4> as the RAMdisk has no partitions.
To mount a +3 disk image named mike.dsk located in c:/images/ into drive b: we would
need to:

HMOUE "b:'" IM "C: - images- smike.dsk"

Whereas to mount an IDEDQOS partition (for example one of the ones we examined earlier)
you would have to:

HMOUE "“e:" IM "@:CPHMSTUFF"

or

HMOWE "e:'" IMW "CPHstufrf"

Attempting to mount a drive that's already assigned will produce the error Already exists,
0:1. In order to do that, you'll first need to unmount the drive with MOVE ... OUT. The syn-
tax is even simpler:

MOVE drive OUT
So to unmount the disk image from b: we just need to give:

HMOUVE "b:' 0QUT

You cannot unmount the ¢: drive and attempting to do so will report an In use, 0:1 error.
You can however temporarily eject it (for example to write to it or just change it to a different
version of NextZXOS, or even a game). Doing that without powering down or just arbi-
trarily, can damage your card beyond repair so you must be VERY careful. Since the po-
tential for damage is great, NextZXOS has a special command to address that specific
need called REMOUNT. Remount is given without any parameters and upon invocation it
will prompt you to:

Remowe ~sinsert S0 and press %

Once you see the message you can eject your SD card, and when you reinsert it, press Y.
NextZXOS will perform the same mounting procedure it performs on boot (for all drives)
and your SD card contents will be safe!

222 ZX Spectrum Next — User Manual

Virtual filesystem management —.mkdata and .mkswap Chapter 20 — NextZXOS and alternatives
Virtual filesystem management —.mkdata and .mkswap

As we've already demonstrated, NextZXOS can read unprotected +3DOS and IDEDOS
virtual disks, but how are these made? There are two ways to do it: We can either create
them externally using special imaging software or right on NextZXOS, with the use of a
specialised dot command called .mkdata. Its syntax is as follows:

.mkdata filespec [size]

where filespec must follow the requirements set forth in the Filenames section for legal file-
names omitting the drive and size is an optional number from 1 to 16 (in Megabytes).
Leaving size blank, will select the default size of 16 Megabytes. You can use ANY file-
name, however only filenames with a .p3d type, named as described in the automounting
section earlier in this chapter and located inside c:/nextzxos/ will be automounted. Here
are some examples:

To make an 8 Megabyte automountable (as a:) virtual disk:

Mmkdata snextzxos s driv-a.p3d S

To make a 16 Megabyte virtual disk that can be manually mounted in c:/images/:

mkdata ~simages . ~disk.p3d

In order to make avirtual disk in a different drive you need to first change to it. For example:

co td: "
.mkdata ~simages - ~disk.p3d

will make a 16 Megabyte virtual disk image file named disk.p3d in d:/images/.

NextZXOS also supports virtual memory in the form of virtual swap partitions. These are
similar to the virtual disk images with the difference that they cannot be mounted as drives.
You can make virtual swap partition images with the .mkswap dot command which follows
the same syntax as .mkdata.

.mkswap filespec [size]

To make an 8 Megabyte virtual swap partition image named swp-0.p3s you will need to
give:

JMESWap SfNextzxos sswp-A.p3=s S

Swap partitions named swp-0.p3s to swp-9.p3s which are present in the c:/nextzxos/
folder will be available for machine-code application programs to use (via the IDEDOS
API).

Printing

NextZXOS supports printing via ZX Printer, Timex Sinclair 2040 and compatibles like the
Alphacom 32. It also supports printing via the WiFi module — if one is installed — and you
have access to a Pipsta™ printer or a printer compatible with D. Rimron's PrintShop as
found on: https://github.com/StalePixels/PrintShop.

To print a listing you only need the LLIST command while to print any string to the printer
you need to use LPRINT. Layer O and Layer 1 screens can also be printed by using the
COPY command given by itself with no options. In order to demonstrate this we will have
to jump a bit ahead. Load one of the games from c:/games/Classic48/ (preferably one
with a loading screen). Once you see the screen press the NMI button on the left side of
your ZX Spectrum Next. A menu will appear. Using the cursor keys go to the Screenshot
menu and press ENTER. Select Standard and Press ENTER. Press SPACE and type in a
name (for example: test.scr) Press ENTER again and then press the reset button on the
side of your computer or F4 on your keyboard. Re-enter NextBASIC and navigate to the lo-
cation you were in. Then do the following:

ZX Spectrum Next — User Manual 223

Chapter 20 — NextZXOS and alternatives The SPECTRUM command
LORADE "test.scr" SCREERS$: COPY

The screenshot will print on your printer!

Since you're undoubtedly observant you may have seen the Print item in the Screenshot
submenu when you pressed the NMI button. That will do the exact same thing! But more
on that in its own section below. There are also, other ways to print which we will examine
in the next chapter.

The SPECTRUM command

There is acommand that's a bit of a jack of all trades; it can switch modes, load programs
in various snapshot formats, change colour schemes, adjust the displayed columns for
the editor and finally control and adjust the screensaver's function! Let's start with the sim-
plest iteration of SPECTRUM which is the command without any options. This will take us
into 48K mode preserving any NextBASIC program we have in memory but losing all Next
mode features except for the dot commands which will be still available. If the program
you have loaded in memory is using specialised NextBASIC features, LIST may produce
gibberish (like graphics in the place of where commands would have been) and running it
will probably produce a C Nonsense in BASIC error. Let's demonstrate. Type:

LOAD "cC: s snextzxos smoudnter.bas"
LIST

SFECTRUH

LIST

RLM

If you are in the standard ZX 48K mode, you will need to know the keywords, printed on
your keyboard, but assuming you can find where CAT is (Press EXTEND then SYMBOL
SHIFT and 9), type:

CHAT

You will receive an O Invalid stream, 0:1 error. That's because 48K ZX Basic is unaware of
any mass storage medium except for the ZX Microdrive and CAT is made to work with
that. In order to actually see what's on your drive, you will need the dot command equiva-
lent of CAT, .Is. Indeed typing:

. L=
you will once again, see what's on your drive.

Once SPECTRUM is used to change to 48K Mode, you cannot return to the Next mode
using a command (as SPECTRUM does not exist in 48K BASIC). Instead you will have to
reset your machine, using either the Reset button on the side of the computer or by press-
ing F1.

A more complex iteration of the command is the following:
SPECTRUM filespec

This command loads a snapshot file in the popular .z80, .sna, .snx'¢, .p and .o formats
andrunsit. 48K, 128K as well as ZX80 and ZX81 snapshots are supported. Here are some
examples:

To load the ZX81 classic 3D Monster Maze:
SFPECTRUM "< games s ZxSl-3dmm- - Sdmonstermaze.p'
To load Pogie in Dreamworld Demo:

15 A screensaver is a protective function for your display. Some displays can damage themselves if they are displaying
the same picture for a prolonged period of time. A screensaver program, produces movement on screen
automatically after a period of inactivity to prevent that type of damage.

16 The .snx type is essentially the same as .sna but instructs SPECTRUM to load the snapshot using some Next mode
settings (as for example ZXN DMA instead of Z80 DMA) as it prioritises features over compatibility.

224 ZX Spectrum Next — User Manual

The SPECTRUM command Chapter 20 — NextZXOS and alternatives

SPECTRUM "~ 9ames snext -pogiespogdise.znx"

To load Darkstar:

SPECTRUM " ~sg9amessCclassiclas~s
darkstar.zsa"

To change colour schemes for the NextBASIC Editor, SPECTRUM can be used with one of
the following modifiers: INK, PAPER, FLASH, BRIGHT and ATTR (which sets all the previ-
ous ones in one command). The syntax is as follows:

SPECTRUM MODIFIER n

where MODIFIER is one of INK, PAPER, FLASH, BRIGHT or ATTR and n is a standard col-
our from 0 to 7 when using the INK and PAPER modifiers, 0 to 1 for disabled or enabled
when using the BRIGHT and FLASH modifiers, or calculated as:
(128*flash) + (64 *bright) + (8*paper) +ink for the ATTR modifier. Here are some examples:

SFECTRUM IME 4:SFECTRUM FARAFPER @

or

SFECTRUM RATTR 4
both set the NextBASIC Editor colours to green ink on black paper. You can see how the
second one is derived by doing the following calculation: (128*0)+ (64*0)+ (8*0) +4
SFECTRUM FPAFPER 1:53FPECTRUM IRME &

or

SFECTRUM ATTR 14

set the NextBASIC Editor colours to yellow ink on blue paper. Try to figure out how the sec-
ond variation works!

The colour scheme applies to the standard 32-column editing mode as well as the hi-reso-
lution 64/85 column modes. However, since Layer 1,2 only allows 8 different colour
schemes, the scheme used is the one with the same PAPER colour as standard mode.

SPECTRUM can also be used with the CHR$ modifier to set the number of columns in the
NextBASIC editor. Its syntax is:

SPECTRUM CHR$ n

where n is one of 32, 64 or 85 for the available column modes. To switch for example to 64
column mode you should type:

SFECTRUM CHR%$ &4

Attempting to enter a value other than 32, 64 or 85 as parameter will produce an Integer
out of range, 0:1 error.

Finally, SPECTRUM used with the modifier SCREEN$ can control the NextZXOS
screensaver behaviour. The syntax is as follows:

SPECTRUM SCREENS$ n,t

where n is the type of screensaver (0 = bouncing box, 1=blank screen) and t is the time-
out in minutes from 0 to 127. If t is 0 then the screensaver is disabled until the next reset.
The screensaver will activate (after the selected timeout) whenever the machine is waiting
for a key to be pressed under the following circumstances:

* In menus, Browser, Calculator, NextBASIC Editor or while in the Command Line

® During INPUT statements

ZX Spectrum Next — User Manual 225

Chapter 20 — NextZXOS and alternatives Speed Control

* During PAUSE 0 statements
* When NEXT #n,var is waiting for a keystroke from the K, S or W channels

* When executing machine-code software that uses the IDE_ BROWSER call, or
the IDE_STREAM _IN call (accessing K, S or W channels) or an IDE_BASIC call
accessing the previously listed NextBASIC statements.

The screensaver will not activate when games are being run (unless they use the API calls
listed above), or in 48 BASIC.

Speed Control

The ZX Spectrum Next has a much faster CPU than its predecessors operating in one of
the following speeds: 3.5MHz (same as the original ZX Spectrum), 7MHz, 14MHz and fi-
nally 28MHz. NextBASIC by default will set the CPU to execute at 3.5MHz, a setting which
can be changed using either the left and right cursor keys while in any NextZXOS menu,
by pressing the F8 key on your keyboard (which cycles through all available speeds) or di-
rectly from NextBASIC by using the RUN AT command. The syntax of the latter is as
follows:

RUN AT s
where s is a number from 0 to 3 (0=3.5 MHz, 1=7 MHz, 2=14 MHz and 3=28 MHz).
For example, to execute a program at 28 MHz begin the program with a:

1 RUM AT 3

NextBASIC Editor and Program support commands

NextZXOS provides a few direct commands, that allow NextBASIC programmers to con-
trol both the appearance as well as the flow of their programs. These are:

ERASE [first, last]

erases all lines between first and last (inclusive) keeping any variable intact. ERASE on its
own deletes the entire program (still keeping all variables intact) and unlike it's parameter
version, can be included in a program (see the autoexec.bas section below for an
example).

LINE first, step

renumbers the program starting at line first using a predefined step. Let's assume a small
program:

18 FOR f=1 TO 1@

28 FPRIMT .,

@ HNE=XT F

If we now give:

LIMNE 2,3
The program becomes:

2 FOR =1 TO 1@
5 PRIWT f,
S MEXT

It's obvious that we can pack as much "program' as we can in the amount of lines
NextBASIC allows once our program is finalised. This should not be confused with the di-
rect command

BANK n LINE first, last

226 ZX Spectrum Next — User Manual

NextBASIC Editor and Program support commands Chapter 20 — NextZXOS and alternatives

which copies all lines in the main program between first and /ast to BANK number n. More
on all bank-related commands can be found on Chapter 24.

LINE MERGE first, last

performs an even nicer optimisation to our typed programs, merging lines together to
form a longer line, thus freeing lines for use. Assuming the program above, type:

LIME HMERGE 2,5

the program then becomes:
2 FOR f=1 TO 1@&: FPRINT f,:
HEXT F

Obviously LINE MERGE makes our programs less readable but let's us pack them even
more allowing for even more line numbers to be freed.

BANK n MERGE

copies a banked program back into the main program (more details on Chapter 24) eras-
ing everything that's already there with the same line numbers. For example, in the above
LINE MERGE example, EDIT line 2 to be also line 4 by going over line number 2, deleting
it and replacing it with a 4. Then do the following:

ERAME HNEL a

ERAME. a LIKE 2.2
ERASE 2,2

LIST

and finally:

ERAME. a HERGE
You'll see that the line you erased with ERASE 2,2, is back into place

NextZXOS also provides two commands we've already seen but haven't sufficiently ex-
plained yet:

REM and ;

REM is not really part of a NextBAS/C program; it just adds remarks to it forimproved read-
ability and documentation. It can be substituted by a semicolon (;) but only as the first
character after a line number or a colon. The reason for the semicolon is that it can be
parsed by external programs like dot commands and get totally ignored by NextBASIC.
Due to however the way that several NextBASIC commands are structured the semicolon
needs to be preceded by a colon character (:) or a line number and we cannot place it
anywhere we want. For example:

1@ REM thi= i= a remark
28 ; This is also a remark

are functionally equivalent. However we can do this:
18 FPRIMNT 1@8: REHM Remark

and not
18 PRIMT 1@; Remark

as instead we'd have to write:
1@ PRIMT 18:; Remark
[BANK n] LIST [#c] [PROC name()]

ZX Spectrum Next — User Manual 227

Chapter 20 — NextZXOS and alternatives The Browser

which just lists the program (and optionally redirects its output to a stream) that's currently
in memory. Optionally LIST can produce the list of the program that's currently in BANK n,
or list a program whether banked or not starting with the procedure name()

The Browser

In order to allow easier navigation of your files, NextZXOS comes with the Browser, a pro-
gram that allows you to do so in a visual way. The Browser features the following:

* Easy navigation of drives and folders

* File management facilities: copying, erasing, renaming and moving of files
* Quick virtual disk mapping

* Automatic launching of known file types

¢ Extensible architecture for launching

* Cursor key or joystick navigation

The Browser is launched by using the EDIT key to bring up the NextZXOS menus or di-
rectly upon bootup by selecting the first entry in the NextZXOS menu.

The Browser Window

Once the menu is selected and ENTER is pressed, the screen changes to the Browser
window containing a list of the files located in the default drive and folder (as set by the CD,
LOAD, SAVE, MERGE or VERIFY commands in NextBASIC). Normally upon initial boot
this will be c:/ but subsequent runs without a complete power down may show different lo-
cations reflecting the last drive and folder set as default. Note that you do not need to
switch to NextBASIC to set a default drive and folder. Whatever you select with the Browser
has the exact same effect for NextBASIC, as giving one of the aforementioned commands.

The Browser window consists of four separate areas, as seen in the figure below:

- —Curmnt Drive and Path

pocs

Dot
GAMES
MACHINES
MEXTZX 05
RPL

—Flo and Foldar lat

CHANGELOG
CONTRIBUTING.md
LICENSE.MD
README . MD
TEELUE. FW
TEELUE. TEU
CORES
test. bas

Le

< ¥ p — —Act Fila Fiter
i1 =4 R, edit. EOIT=Up e
Hillrive niﬂdir EBcnan: Elopy Mllrase M IroSetus B Camimand

Fig. 30 — Browser window areas and their function

On the top of the Browser window, is the Current Drive and Path Area. As you navigate your
drives, it changes to reflect the current drive and folder you're in. This in effect, is the same
as giving the PWD command when in NextBASIC.

Right below that, is the File and Folder List Area; it contains all files and folders at the point
you're located as reflected by the Current Drive and Path Area at the top in combination
with the Active File Filter Area that's right below it (more about that in a little bit) shown in
pages of 20 items at a time. You navigate the file and folder list with the cursor keys,
ENTER and EDIT, a joystick set as cursor, or the first Kempston or Megadrive joystick re-

228 ZX Spectrum Next — User Manual

Using the Browser Chapter 20 — NextZXOS and alternatives

gardless of what port (Left or Right) it's set to. Immediately below the File and Folder List
Area, is the Active File Filter Area with which, you can reduce the file list to whatever types
(including folders which have essentially a blank type) you wish to see (according to a filter
set by wildcards) and finally, the bottom two lines is the Info/Status and Commands Area.

Using the Browser

The Browser is extremely easy to use; all it takes is a few keystrokes to accomplish most
tasks. Controls are listed in the next table:

Key Description
& Moves one page up or to the topmost item if you're on the first page
= Moves one page down or to the last item if you are on the last page
) Move up one item
4 Move down one item
ENTER If it's a folder, change to that folder. If it's a file attempt to execute it
SYMBOL SHIFT + ENTER Attempt the secondary action stored in browser.cfg for the file type
EDIT Move up one folder

Table 18 — Browser controls

while commands are the following:

Description

Cyclically changes the drive to the next in the list of mounted drives
Makes a new Folder

Renames the currently selected item

Selects the currently highlighted file for copying

Erases the currently selected item

Remounts all drives

Unmount current drive

czmo:uxug

Table 19 — Browser commands

In order to copy a file, you will need to highlight (using the cursor keys) the file and then
press C. The status lines will change to: Copy? (Y/N) to which you'll need to reply with a' Y
or N (for Yes or No). Then you navigate to the new location whether this is on the same
drive or on another drive and once you've reached your intended target you will need to
press P. The Browser will ask you if you want to Paste here? (Y/N) to which you'll need
again to reply with a'Y or N. If you attempt to copy a Folder (marked by a <DIR> on the file
and folder list) the Browser will still ask: Copy? (Y/N) but it will silently reject any attempt to
P(aste) the folder on another location.

Erase also asks a similar question; Erase? (Y/N) will appear after you highlight a file and
press E but in the case of a folder it will fail with a Dir Full flashing error displayed in the Sta-
tus Area if the folder contains any item in it.

Rename, as in the case for the MOVE command we examined previously, does three
things: Renames and/or moves a file. You highlight an item and press R, and a New
name: prompt appears in the Status Area asking you for a new name (or a new location to-
gether with the old or a completely new filename). Rename doesn't work across drives so
no drive name is required in case of amove, which means that you can start the new name
with a / or \ to indicate the root folder of the current drive. As a matter of fact entering any
drive (even the current one) at the beginning of the new name filespec, will fail with a No re-
name between drives error.

You can Rename/Move a folder to be under another folder, however the latter must al-
ready exist otherwise Rename will fail with an Invalid path error.

To make a new folder/directory, the Browser has the M(a)K(e) Dir command, accessible
by pressing K on your keyboard. The Status Area will change to display a New name:
prompt. The new name must conform to the parameters of a folder filespec as discussed
in the MKDIR command section earlier. As is the case with MKDIR, any attempt to create a

ZX Spectrum Next — User Manual 229

Chapter 20 — NextZXOS and alternatives Configuring the Browser

folder in a drive that doesn't support it will result in a Not implemented error in the Status
Area.

The Browser can unmount any drive except drive ¢: by switching to that drive using D and
then pressing U on the keyboard and mount any virtual disk image it knows about (that is:
.dsk and .p3d file types) by selecting it and pressing ENTER. It will ask you which drive let-
ter you want to mount it on by displaying a Mount on which drive? (A-P) prompt followed
by a [A: is recommended] in the case of +3 disk images. It will then display a Try to boot
disk now? (Y/N) prompt. The latter process will try to load special files named * or DISK
that exist inside the disk image. If auto booting is not possible a message: Not bootable
will appear in the Status Area.

There is no way to remount a single, previously mounted physical drive that you chose to
unmount through the Browser. You have, however the option to perform a complete re-
mount operation by pressing M on your keyboard. Once you do that, you'll be prompted to
remove your SD card (this message applies to both SD cards) and once you press Y on
the prompt, NextZXOS will perform the REMOUNT command as discussed earlier, thus
remounting any physical drives you've unmounted.

Configuring the Browser

File and drive management operations with the Browser is one facet of what it can do. The
most important function it has however is to recognise and launch files of various types
when we highlight them and press ENTER (or SYMBOL SHIFT + ENTER - see immedi-
ately below). It's able to do so due to its extensible nature using a simple, specially formed
text file called browser.cfg that's located under c:/nextzxos/. The Browser also offers a
way to assign TWO types of launching for a filetype. This is accomplished by adding two
lines in browser.cfg. For example we could LOAD a .bas file or convert it to plain text using
the .bas2txt dot command. The first action would be launched by ENTER and the second
one with SYMBOL SHIFT + ENTER

Each line of browser.cfg contains information formed in the following fashion:
TYPE LINE

where TYPE is a 3 letter file type (e.g. BAS) followed by LINE which is a sequence of
NextBASIC commands separated by colon characters as per usual but prefixed with
one of the following symbols:

Prefix Meaning
: Return to Menu afterwards
< Return to Browser afterwards

; Return to NextBASIC afterwards

The NextBASIC commands that follow, use the following placeholders:
Character Meaning
| Is replaced by the short filename as read by the Browser'”
"| Is replaced by the long filename as read by the Browser and
must be terminated by a matching quote (")
£ Is replaced by language code (ie. en for English, es for
Spanish etc)

Additionally, if a quote character is needed inside the NextBASIC command sequence, it
can be escaped using the backwards slash character as follows \".

Wildcards can be used to replace parts of a file type (* for the remainder, ? for only one
character)

Browser.cfg can be edited using any standard text editor, or with the special purpose dot
command called .associate we already touched upon, on earlier sections.

17 This functionality is recommended with dot commands that cannot deal with LFNs.

230 ZX Spectrum Next — User Manual

The Command Line Chapter 20 — NextZXOS and alternatives
The Command Line

The NextBASIC editor is excellent for editing large programs, however for single use com-
mands like the ones for file management or the dot commands we have been examining
on a case-by-case basis, it can be a bit cumbersome to use, especially since the underly-
ing NextBASIC listing will appear after every direct command. For that reason, NextZXOS
includes a special version of the NextBASIC ediitor, that hides (but does not erase) any
NextBASIC program that you may be editing and offers an uncluttered view of the screen
making it easier to enter commands directly to the operating system. Unlike other operat-
ing systems, the NextZXOS command line still gives full access to NextBASIC and doesn't
include a prompt like the one available on CP/M which we'll examine a bit further. To ac-
cess the Command Line interface, press EDIT to bring up the NextZXOS menu, select
Command Line and press ENTER. While in the Command Line interface you have the op-
tion to change how many columns are displayed by either again calling up the NextZXOS
menu with EDIT and selecting the 32/64/85 entry or by directly giving the SPECTRUM
CHR$ command that can change the columns displayed immediately. See the
SPECTRUM CHRS$ entry previously in this chapter for details of usage.

ROM Cartridge Loaders

For users of ZX Interface 2, Ram Turbo and Dandanator, NextZXOS introduces the ability
to load ROM cartridge based software directly from the More... submenu. Since the ZX
Spectrum Next starts with the expansion bus disabled, it provides a quick way to type the
appropriate commands to load either 48K or 128K ROM based software as well as apply
all necessary settings to ensure maximum compatibility of cartridge based software. All
you have to do is select the appropriate option. NextZXOS, will make the necessary adjust-
ments, enable the bus and load the software.

WARNING! WARNING! WARNING! WARNING! WARNING!

Disabled Expansion Bus refers to disabled SIGNALS on the Expansion Bus. The
Expansion Bus is CONSTANTLY UNDER POWER and you must ALWAYS PLUG
Interfaces and ROM cartridges with ALL CABLES DISCONNECTED otherwise
IRREPARABLE DAMAGE MAY OCCUR!!!!

WARNING! WARNING! WARNING! WARNING! WARNING!

48K BASIC

The 48K BASIC menu, located in the More... submenu, turns your ZX Spectrum Next to
into a standard 1982 ZX Spectrum... with a twist! First of all, according to the Next person-
ality you have selected during boot, you may have full key entry (Looking Glass) instead of
token (i.e. the keywords you see printed on your ZX Spectrum Next's keyboard) single-key
entry (ZX Standard). Additionally, you have access to all the ZX Spectrum Next's additional
features although not from BASIC. Finally you have access to your SD card via the dot
commands we've already discussed. You can also reach 48K BASIC using the
SPECTRUM command as discussed in a previous section.

NMI Menu

While in Next mode, pressing the NMI button will launch the NMI menu which provides a
lot of useful functionality to your ZX Spectrum Next. The NMI menu traces its lineage back

ZX Spectrum Next — User Manual 231

Chapter 20 — NextZXOS and alternatives NMI Menu

to an expansion interface called Multiface. Multiface, allowed users to pause a program
and break into it, create snapshots of the system's memory which upon reload, placed the

Fig. 31 — NMI main menu
machine in the same place they were (and running the specific program they were) at the
point in time they were, when they saved each snapshot.

The NextzXOS NMI menu offers, however, many more features over those of the original
Multiface. We'll examine these below.

Upon loading, we can see the following entries in the menu:

Return —turns off the NMI menu and returns you to whatever you were doing prior to press-
ing the NMI button.

Snapshot48/128 — Produces a snapshot of any legacy software that's currently running. It
automatically recognises if it's a 48K type or 128K type of software and adjusts the snap-
shot type produced accordingly.

Screenshot — Produces a screenshot of whatever is in any of the layers' screen memory ar-
eas and prints (to a ZX Printer or compatible) a ULA (Layer 0) screenshot. It also saves and
restores the current palettes. (Fig. 32)

Pr

St

L w

La

L=

Sa tte

Lo tte

Ex TAP_input:
C:/TOOLS/ DEV/ SPEDS SPEDSIEN. TRP
TAP autput:

Fig. 32 — NMI Screenshots menu <not attacheds

Fig. 33 — NMI TAPs menu

TAP Files —Manages the redirection of input and output to drive t: (tape) to virtual tape files
(tap) as well as browses their contents (In essence a shortcut to .tapein, .tapeout and
.Istap we've covered previously). (Fig. 33)

POKEs — Manages and applies .pok files to running software. These are files containing
known workarounds and patches to specific applications — used mostly for games; for in-
finite lives etc.

Debug tools — Gives access to maybe the most powerful set of features in the entire suite:
A Next Register and Z80n Register status browser, a memory map and bank browser, the

232 ZX Spectrum Next — User Manual

NMI Menu Chapter 20 — NextZXOS and alternatives

ability to set breakpoints in memory to intercept running code as well as a banked memory
save tool. (Fig. 34)

Fig. 34 — NMI Debug Tools menu
Settings — Allows easy modification of hardware settings on-the-fly, from the ones avail-
able on the configuration menu to the ones that are more nuanced (like the type of DMA
chip in use or the machine timings used in the specific personality) which aren't always
available through the standard configuration (Fig. 35 through 38).

Fig. 35 — NMI Settings menu

Sound

{ 14MHZ

Sterea AEC
Intspeaker 0OnN
TurboSound On
Cowox an
Addiochip M
AY¥@ Hono (N
A1l HMono OFF
A¥2 Hono arF
Exit

Fig.38 — NMI Settings Sound submenu

Keymap (48K) — This is a duplication of the .keyhelp dot command and provides a quick
on-screen legend of the keyboard tokens (for the 48K mode) which is particularly useful if
using a board-only Next or a PS/2 keyboard.

About — Displays a NextZXOS About screen with several credits to contributors of bug re-
ports and suggested features.

The NMI menu, uses the familiar Browser interface dialogs for loading and saving of files
as needed as can be seen in the next figure.

ZX Spectrum Next — User Manual 233

Chapter 20 — NextZXOS and alternatives The NextZXOS folder structure

REACHE .HD
TEELUE. Fl
TEBLUE. TEU
Bocs. o
<
o @1 o LICENSE 1D
<
MACHTNES <o %EEtﬂE ?éu
WEX 12305 <01 <DIR>
= S Bocs <DIR>
S ST oot <DIR>
e <1 Girtes <DIR>
CONTRIBUTING. md it bt
test.s=na RPI <DIR>
B <DIF>
THP <DIF>

4 CONTRIBUTING.md

r:o% % 4
Natigate us th CUrSr Keys: ENTERg EDIT 2nd e ana

&
D
Press ENTER to replace screenshot. or SPACE For N yect pip

Fil % %
Watigatz with CULSar kegs ENTER. EOLT and D
Press ENTER on .BIN to replace. or SPACE For new

Fig. 39 — NMI save/load dialogs
The NextZXOS folder structure

To achieve a complete and properly booting NextZXOS the following folders and files
need to be present on an SD Card:

At the root level there's the Firmware file (TBBLUE.FW) and the folders c:/nextzxos/ carry-
ing all the drivers (RTC, Mouse etc), support programs and overlay files as well as the
base CP/M image file together with the startup command file autoexec.bas.

Then there is c:/machines/next/ which contains two versions of the NextZXOS ROM (they
differ in the type of 48K ROM they contain; Sinclair or Looking Glass), the NextZXOS
divMMC ROM, the NMI ROM as well as the configuration file config.ini which tells the Firm-
ware the particular settings you require for your machine.

Finally, there is c:/dot/ which contains, apart from the third party dot commands, the ones
that constitute part of NextZXOS, namely: .$, .associate, .bas2txt, .browse, .cpm, .defrag,
.install, .Ifn, . mem, .mkdata, .mkswap, .nextver, .txt2bas and .uninstall.

To obtain just a booting NextZXOS you do not need the dot commands, CP/M base im-
age, mouse driver, RTC driver or even autoexec.bas and NM/ rom. Your functionality how-
ever will be limited.

NextZXOS dot commands

We have talked about dot commands, covering each one as the case dictated, but we
haven't talked about what they actually are! Well, dot commands are basically an easy way
to add functionality to NextBASIC (and ZX BASIC) originally invented for use by esxDOS by
its author, Miguel Guerreiro. Copying from the z88dk'® documentation by Allen Albright: A
dot command is loaded into an 8 K ram page located at address 0x2000, overlapping the
rom, and can run without disturbing the basic system. They are launched from basic by typ-
ing their names with a leading dot, hence the name "dot command". Any string following the
dot command's name is passed as a command line. On return the dot command can gen-
erate esxdos errors in the basic system, either canned ones or custom ones.

NextZXOS has extended the scheme while remaining compatible with the original specifi-
cation, thus a separate set of dot commands is included with System/Next™, than what
comes with esxDOS. See the esxDOS section below for more details on the differences.

The scope of this manual is a bit limited to cover dot commands in their entirety but you
can visit: https://github.com/z88dk/z88dk/tree/master/libsrc/ DEVELOPMENT/EXAM
PLES/zxn/dot-command to find out more about how they work and how you can write
your own.

18 z88dk is a C-based cross-development system for a variety of Z80 compatible CPUs and systems.

234 ZX Spectrum Next — User Manual

Modifying the startup — Autoexec.bas Chapter 20 — NextZXOS and alternatives

NextZXOS, apart from the third party ones included in the System/Next™ distribution, has
several dot commands that perform special functions not covered elsewhere. These are:

$ Dot commands cannot accept string arguments from
NextBASIC, so .$ allows execution of a dot command
accepting any parameter passed as a string thus enabling
full integration of dot commands in NextBASIC

.bas2ixt and .txt2bas NextBASIC is stored in a tokenised form. That means that
each keyword occupies one token (see Appendix A for
these values).

That further means, that it's only machine and not
human-readable other than from within the NextBASIC
Editor. These two dot commands allow NextBASIC to be
exported to a text file to be edited by a more specialised
programmer's editor, or shared with other, non Sinclair
computers and imported back in a form that the NextBasic
Editor can understand.

.browse One of the nicest features of the Browser is its built-in file
dialogs. .browse allows these to be used within your
NextBASIC programs and pass the selected file to a string
variable in your program saving immense amounts of time
from programming menu-based navigation.

.defrag NextZXOS provides a streaming APl which can be used for
audio or video. If the files however are not defragmented,
streaming is interrupted. .defrag solves this problem
rearranging the file in question to be in one, continuous,
piece.

.install and .uninstall These are the dot commands to install and remove drivers
like for example the mouse driver from the system.
NextZXOS provides a driver API, which you can use to
write your own drivers which is used in conjunction with
the new DRIVER command.

fn This is a very special use case command; its sole purpose

is to return the long file name for a short (8+3) filename.
.Ifn does not work on IDEDOS/+3DOS drives, or rather it
does work but returns the same name as +3DOS drives
only accept 8+3 filenames.

.mem Returns the free memory for NextZXOS and NextBASIC
use
.nextver Assigns the current version of NextZXOS to a variable we
specify.

Any errors generated by a NextZXOS dot command generate an error code of 255 (Dot
Command Error) which can be read with the ERROR and ERROR TO commands.
Refer to Chapter 2 for details.

Modifying the startup — Autoexec.bas

NextZXOS provides you with a very fast way to set up your NextBASIC and NextZXOS envi-
ronment upon boot by using commands stored in a special file called autoexec.bas lo-
cated inside the c:/nextzxos/ folder. The same rules apply as with regular SAVE, meaning
you will need to give a LINE parameter to save it before it can auto execute. If you omit the
LINE parameter, the commands will auto load upon boot but won't execute. For example

ZX Spectrum Next — User Manual 235

Chapter 20 — NextZXOS and alteratives CP/M
to set up a red background with bright white letters upon boot:

1@ SPECTRUM FPRFER 2: SFECTRUH
ERIGZHT 1: SFPECTRUM IME 7
28 ERASE: REHM ERARSES ALL LIMES

Then

SAVE "C: snextzxos sautoexec.bas'" LIMKE 18

Reset and... magic!
CP/M

The ZX Spectrum Next supports running CP/M Plus (also known as CP/M 3.0), an operat-
ing system available for many microcomputers in the late 1970s and early 1980s.

CP/M provides a command-line environment similar to MS-DOS. A huge amount of soft-
ware was available for it, including programming languages, both interpreted and com-
piled, word processors (such as the well-known WordStar), spreadsheets, databases,
utilities, text-based games and much more.

The ZX Spectrum Next runs CP/M Plus using a specially-written BIOS (Basic Input/Output
System) which gives it a 80 x 24 text-based terminal supporting full colour.

To run CP/M, you need to call up the NextZXOS Startup menu, go to the More... submenu
and select the CP/M option or from NextBASIC or the Command Line, use the dot com-
mand .cpm.

Any software, compatible with CP/M-80, CP/M 2.2, CP/M 3.0 or CP/M Plus will work on the

hill
components

automatically import

Inporting: ENKBD

Fig. 40 — Initial CP/M setup procedure

ZX Spectrum Next's flavour of CP/M except CP/M-86 software (which requires an Intel x86
processor) and CP/M-68 software (which requires a Motorola MC68K class processor).

Please note that CP/M graphical applications requiring GSX cannot be used at the mo-
ment, although support for these is under consideration. This is not affecting software
availability considerably, as there is very little software requiring GSX; most CP/M software
was text-based.

Getting started

Before you can use CP/M, you will need to download one archive file from the The
Unoffical CP/M Web site which is officially licensed to distribute the essential system files
required. The file in question is located at: http://www.cpm.z80.de/down-
load/cpm3bin_unix.zip. Once you have downloaded it, using a PC, extract its contents
into the c:/nextzxos/cpm folder on your Next's SD card.

236 ZX Spectrum Next — User Manual

CP/IM Chapter 20 — NextZXOS and alternatives

Having the archive's contents extracted in the aforementioned folder, you can restart your
ZX Spectrum Next and then choose the CP/M option from the More... submenu in the
main NextZXOS menu, or type .cpm in the NextBASIC Editor or the Command Line. This
will automatically set up your CP/M system drive (A:) and import the system files. When it
has completed and returned to the NextZXOS menu, setup is complete (Fig. 40 above).
From now on, selecting CP/M from the More... submenu will take you straight into CP/M
(Fig. 41).

CP/M Plus COPYRIGHT 1993, CALDERA, INC. 191198
CP/M PlUs BIOS (wA,81) far ZX Spectrul Next () 2819, Garry Lancaster

£0.5K TPR

R

Fig. 41 — ZX Spectrum Next properly booted CP/M setup

Commands

CP/M is operated by typing commands at the prompt (A>). One of the most useful com-
mands is DIR which works much in the same way that CAT works in NextZXOS.

Typing:
DIR A:

will show a list of all the files on the current drive or the drive specified. Initially you will just
have drive A: available, but more can be set up (drives A: to P: can be used) using the
.mkdata dot command in NextZXOS as per the instructions provided earlier, so that you
can keep different programs on different drives.

Any filename shown by DIR which ends in .COM is itself a command, and can be exe-
cuted at the prompt. You will have noticed there are a lot of .COM files to try. Another use-
ful one is:

HELP.COM

which provides help and information on all the standard commands and utilities provided
with CP/M. Note, that you do not need to type the .COM part all the time; CP/M will find the
appropriate command and executed without having to type its extension (in other words
its file type). So to call up HELP.COM you could just type:

HELP

Commands are also case-insensitive, so it doesn't matter if you type them in lower or up-
per case or a mix of both; all versions of HELP, help, hELP and HelP will call the exact
same program!

In the CP/M distribution that comes with NextZXOS, there are a number of commands spe-
cific to the ZX Spectrum Next. These include:

ZX Spectrum Next — User Manual 237

Chapter 20 — NextZXOS and alteratives CP/M

Command Description
UPGRADE Upgrades your installation of CP/M from the latest version available on your SD
card
TERMINFO An interactive demonstration of the terminal facilities provided on the ZX
Spectrum Next
EXIT Exits from CP/M and returns to NextZXOS

COLOURS Changes the colour scheme

TERMSIZE Changes the default terminal size (up to 80 x 32)

IMPORT Imports files from your NextZXOS c: drive (or other FAT drives seen in the
NextZXOS browser)
EXPORT Exports files to your NextZXOS c: drive (or other)
ECHO Sends text or escape sequences to the terminal
NEXTREG Views or changes ZX Spectrum Next hardware registers (use at your own risk!)

Typing the name of these commands will give some more information on how to use
them.

rum 05 Terminal Information

tion on the terminal facilities

y to the

i le
Y ing the
) anything i by

Fig. 42 - TERMINFO output

Drives and CP/M

CP/M on the ZX Spectrum Next cannot access the standard SD card drive c: (or other
drives you may have due to having additional SD cards inserted, for example). This is be-
cause CP/M directly accesses disks at a low level, and is incompatible with FAT
filesystems.

Therefore, on the ZX Spectrum Next, CP/M uses virtual disk files. These can either be .p3d
files (created by the .mkdata dot command) or .dsk files (images of standard ZX Spec-
trum +3 disks).

Initially, your SD card is supplied with a single image:
c:/nextzxos/cpmbase.p3d

When you first start CP/M, this is automatically renamed to:
c:/nextzxos/cpm-a.p3d

You can access multiple disk images at once in CP/M. To do this, simply create additional
files with .mkdata using the same naming scheme. eg. at the NextZXOS command line,
type the following:

238 ZX Spectrum Next — User Manual

CP/IM Chapter 20 — NextZXOS and alternatives

Mkdata "shextzxos s CPm-b.p3d"
Mkdata "“"snextzxos fCPm—-2.p3d"

When you next use CP/M, you will have drives A:, B: and E: available. Note that you can
have a drive C: in CP/M if you wish, but this is not the same as the c: drive used in
NextZXOS.

Up to 15 virtual disk images can be used at once by CP/M, and they can be mapped to any
drive A to P, simply by naming the files in any of these ways:

c:/nextzxos/cpm-X.p3d
c:/nextzxos/drv-X.p3d
c:/nextzxos/cpm-X.dsk
c:/nextzxos/drv-X.dsk

where X is the drive letter, from A to P. If you have created multiple files referring to the
same drive letter, CP/M will use the ones named cpm-X in preference to the ones named
drv-X. It has no preference over .p3d or .dsk, soif there is a cpm-b.p3d and a cpm-b.dsk,
then the first one in the directory will be used.

Note that NextZXOS will also automatically mount these drive images (except any image
where X is ¢) when it starts up. You can view them in the Browser (press D to change
drives) and copy files between them etc. NextZXOS will mount drv-X files in preference to
cpm-X files. You can also manually mount other disk images which don't follow the auto-
matically-mounted naming scheme. To do this, just press ENTER on the .p3d or .dsk file
in the Browser.

M Edition, Release 4
| &

Fig. 43 — ZX Spectrum Next CP/M running WordStar 4
Further information

There is a lot to learn about CP/M, and a lot you can do with it. Some useful places for fur-
ther information are listed below:

http://www.cpm.z80.de/ Contains a lot of manuals, documentation and software.

In particular, the CP/M 3 User Guide, Command Summary and Programmers' Manuals can
be found in the following locations:

http://www.cpm.z80.de/manuals/cpm3-usr.pdf User Guide
http://www.cpm.z80.de/manuals/cpm3-cmd.pdf Command Summary
http://www.cpm.z80.de/manuals/cpm3-pgr.pdf Programmer's Manual

A good starting point is also:

http://classiccmp.org/cpmarchives/ which links to many more useful sites, collections of
software, manuals, magazines and much more.

ZX Spectrum Next — User Manual 239

Chapter 20 — NextZXOS and alternatives Preparing your ZX Spectrum Next for esxDOS
Preparing your ZX Spectrum Next for esxDOS

Other than NextZXOS, CP/M and +3e/IDEDOS, your ZX Spectrum Next supports natively
one more Operating System called esxDOS. This is especially helpful when running East-
ern European software as the preferred method of storage is using TRDOS which esxDOS
supports natively. Unfortunately the copyright status of some parts of esxDOS prohibits its
inclusion in the System/Next™ distribution, but that doesn't mean you cannot install it
yourself. esxDOS can be invaluable for personalities other than the Next Native one as it
provides older model personalities with an easy way of managing FAT formatted SD
cards. As is the case with NextZXOS, it too uses FAT as the primary filesystem and thanks
to NextZXOS' design, it can therefore co-exist on the same drive without clashes.

In order to install esxDOS you need to do a few things first:

* (o to www.esxdos.org and download either the latest version or the one whose
rom comes with the System/Next distribution. For correct operation, the
minimum supported version is 0.8.6 beta 4

* Using a PC, Mac or Linux machine, unzip the contents of the esxDOS
distribution onto a drive, connect the System/Next™ SD card onto the same
computer and then do the following:

» Copy the BIN, SYS and TMP folders into the System/Next™ distribution's
root folder

» Copy the ESXMMC.BIN file from the esxDOS root to ¢:/machines/next/

» Finally, edit the config.ini file in c:/machines/next/ to include esxDOS with the
personality you choose (Note that this doesn't apply to Next Native mode)

Here is an example that will modify config.ini to use esxDOS with the 128K personality
(note that esxDOS will boot any 128K personality in what is called USRO mode; a special
mode where the editor is 48K but all the 128K features are available). After you download
the esxDQOS distribution archive from the esxDOS site, unpack it and follow the instruc-
tions above. Then go to c:/machines/next/ and using any text editor (for example Notepad
under Windows) open config.ini. Locate the line reading:

menu=ZX Spectrum 128k,1,8,128.rom
and modify it as follows:
menu=ZX Spectrum 128k,1,8,128.rom, esxmmc.bin,<none>

Also, if you have an RTC chip installed, go to c¢:/nextzxos/ and copy RTC.SYS to c:/sys/.
Save it, eject the SD card and transfer it to your ZX Spectrum Next. Upon boot, press
SPACE and then using the cursor keys, locate the ZX Spectrum 128k line. Press ENTER
and in a few seconds you'll see something like this:

ng dri

NAME,

Fig. 44 — ZX Spectrum Next running esxDOS 0.8.6

That was it, you now have a functioning esxDOS installation for your 128K personality on
your ZX Spectrum Next computer and the yellow Drive button on the left side of your com-
puter will start functioning calling the esxDOS browser.

240 ZX Spectrum Next — User Manual

(/] Chapter
o]

Channels, Streams,
Drivers and Windows

Chapter 21 — Channels, Streams, Drivers and Windows Channels

Channels, Streams, Drivers and Windows

As we have seen thus far, NextBASIC can read data from the keyboard using INPUT and
INKEY$ and it can write data onto the display or a printer by using PRINT and LPRINT.
However, these commands are really a form of shorthand designed to protect the user
from some of the computer's more complex features.

To the PRINT command, for example, there is no difference between the screen and the
printer. PRINT "Mikayla" really means: take the characters which make up the word
Mikayla and send them somewhere else. It's just convenient to use the screen most of the
time. Likewise, LPRINT usually sends data to the printer. In fact, what these commands
really do is to send data to one of a number of channels.

Channels

A channel is the pathway to the computer's input and output devices and on the ZX Spec-
trum Next, they are designated by a letter. These are:

Designator Direction Description Default Streams Default Status
k Input/Output! Keyboard 0,1 Open
s Output Screen 2 Open
p Output ‘ Printer 3 Open
i Input File (input) Closed
o Output ' File (output) Closed
u Input/Output File (Update) Closed
% Input/Output Variable Closed
m Input/Output Memory Closed
d Depends Driver Closed
w Input/Output Windows Closed
r Internal Internal Use only N/A Open

Table 20 — NextBASIC channels

To access a channel, it must be open. Opening a channel makes it ready to receive or pro-
duce data. A channel is opened by connecting it to a stream. From NextBASIC, you would
use a command like:

OFEM #4 ,"E"

which means connect stream 4 to the keyboard channel. As evidenced by the table above,
if we go by the direction of data flow there are three types of channels: Input, Output and
Input/Output (or Update).

However, we can better classify channels by device type: We have Screen, Keyboard,
Printer, File, Memory, Variable, Windows and Driver channels. Let's examine them accord-
ing to the device type however, as this affects what types of commands we can use with
them and how.

The Screen Channel deals with everything that goes to the screen. It is the simplest of all
channels and most of its characteristics have been covered in Chapter 15 already. It is al-
ready opened and connected to stream #2. In fact you can substitute any PRINT com-
mand with PRINT #2 and it will work in the exact same way as a regular PRINT command.

Similar things apply to the Keyboard Channel. This is already connected to two streams:
#0 and #1 as we can see by the following little program:

1 Outputting data to the keyboard might seem a bit peculiar, but once you consider that the computer uses the lower
screen (like INPUT does) to display the characters, it becomes clear why.

242 ZX Spectrum Next — User Manual

Channels Chapter 21 — Channels, Streams, Drivers and Windows

1@ IMFPUT H@; "Stream @ Input: ", a%
2@ IMNPUT #1;"Stream 1 Input: Y, b%
@ PRIMWNT a% " b%

The Printer Channel is also simple and by default attached to stream #3. As a matter of
fact, giving PRINT #3 is basically a default? longhand for LPRINT and similarly LLIST is
basically the same as LIST #3.

As streams #0 to #3 are predefined and already opened, altering these may also alter
the behaviour of the system, therefore you are advised to avoid the practice unless you
exercise care.

Where things start to differentiate a bit is with the Files Channel. Firstly, no file channel is by
default open, and secondly any file can be opened in 3 modes: Input, Output and Update
(Input/Output). As the names imply, Input will only accept data FROM a file, Output will
only direct data TO a file and Update will allow input and output of data TO and FROM a
file. There are a couple of special considerations regarding file channels:

* You should always take care to close streams that have been opened to a file in
Output or Update modes when you have finished, as otherwise data loss may
occur. It is always good practice to do this even for files opened in Input mode
(or streams open to other channels). The CLOSE command will be examined
further below.

* Files saved by CP/M or a +3e, are usually stored as a number of 128-byte
records and so you may read rubbish at the end of a file that comes from such
a system if it is not an exact multiple of 128 bytes in length. NextZXOS however,
reports proper file sizes and does not suffer from this problem even when it
saves files on a +3DOS/IDEDOS drive.

File channels support all the pointer commands (more on these further below).

The Variable Channels can be used to direct output to or input from a string variable, which
can be easily manipulated within a NextBASIC program. This would allow you to (for exam-
ple) examine disk catalogues in your NextBASIC program, or make an auto-running game
demo (by inputting from a string containing set keystrokes). The string specified must be a
character array with a single dimension, large enough to hold the maximum amount of
data you expect to have to deal with.

Variable Channels also support all the pointer commands.

The Memory Channel can be used in a very similar way to the Variable Channels. However,
as it is a fixed memory region, it is more suitable for use by machine-code programs. It
also requires you to reserve the memory beforehand.

The Driver Channels are special channels to exchange data with Device Drivers. Not every
Device Driver can be addressed by a Driver Channel and not all Driver Channels have all
options or can even access pointer commands. You will need to refer to each driver's doc-
umentation in order to know what is supported and what isn't.

Finally the most complicated Channels of all are the Windows Channels. Although they do
not support any of the pointer commands, they are extremely flexible as they accept a
large number of control codes as we've briefly mentioned in Chapter 15.

Windows, are defined by their top line (0-23), leftmost column (0-31), height (1-24), width
(1-32), and optionally character size (3-8) and character set address. If no character size
is specified, the default is 8. If a character set address is given, then this is used instead of

2 Default means in this context: "without parameters". As we will see further below, even LPRINT and LLIST
behaviour can change

ZX Spectrum Next — User Manual 243

Chapter 21 — Channels, Streams, Drivers and Windows Streams

the built-in fonts; this allows you to use nice fonts such as those provided with art pro-
grams and adventure games. Due to their complexity, we'll devote an entire section to
Windows after we discuss streams and the commands with which we use them.

Streams

Streams? are convenient ways for the computer to switch between channels by referring to
them as numbers. This idea makes it possible to write programs that can send information
to any device without having to use different commands. There are 16 total available
streams numbered 0 to 15. 4 streams; 0 through 3, as seen on the table above, are al-
ready opened to channels k,s and p. Note here, that many streams can be attached to a
channel depending on what we want to do.

Using Streams

All the above might seem complicated, and you may well wish to stick to the standard
PRINT and INPUT commands — that's why they're there after all. Even these commands
however, are just shortcuts to their "complete" versions that also include a stream number
and the benefits of using channels far outweigh their perceived complexity.

Stream control commands

Since it's now evident that any device on the computer that accepts input or produces out-
putis really a channel, it's easy to realise that we have been using streams all along; we've
already visited PRINT and LPRINT (which are really the same command), used INPUT
and INKEY$ and lastly, we've used LIST and LLIST (which also are the same command).
All the above, have versions which include a # (hash) followed by a current stream num-
ber, so we are already halfway therel!

Apart from these and OPEN # we saw in the channels section above, the following com-
mands are available for working with streams: CLOSE #, DIM #...TO, NEXT #...TO,
RETURN #...TO, GOTO #...TO and COPY ...TO #, CAT # and PWD #. Welll examine
them all below:

OPEN #n, channelspec

where n is the stream number* and channelspec is a string that can be any of the following
(capitals or lower case letters may be used), opens a stream and attaches it to the channel
defined by channelspec:

String Description
e The standard input channel (keyboard and lower screen). Streams 0 & 1 are
normally set to this channel
g The standard output channel (main screen). Stream 2 is normally set to this
channel.
p" The standard printer channel (serial or parallel). Stream 3 is normally set to
this channel.

This opens an input-only stream to an existing file. If the filename is at least
"i>filespec” two characters long, you can omit the "I>" as this will be assumed
(single-character names require the "I>" as otherwise they will be assumed
to be standard channel names).

"o>filespec” This creates a new file and opens an output-only stream to it.

"u>filespec” This opens an existing file and opens an input/output-stream to it.

"m>address, length" This opens an input/output channel to the memory area at address, length.

3 On other versions of BASIC, streams are called channels and channels are called devices. This may be a bit
confusing to a user coming from a different flavour of BASIC. The concepts however are basically the same.
4 Altering streams 0 to 3 will change the behaviour of the system and should be used with care.

244 ZX Spectrum Next — User Manual

Stream control commands Chapter 21 — Channels, Streams, Drivers and Windows

String Description

. . This opens an input/output channel to the variable x$ which must be a
v>x§ character array with a single dimension, large enough to hold everything that
will be output to it/input from it.

This opens an input-output channel to a text window on the screen, starting
at character position (/ine,col), with a height of ht character rows and a width
) .) of wid characters. Optionally, a character width of csize (3-8px) may be
"w>line, col, ht, wid [, csize [, cset]]" specified. This does not affect the definition details of the window, which are
always specified in 8px wide characters. A user-supplied character set may
also be specified, located at address cset. See the Windows special section
for details.

.)) . Opens a channel to driver_name, whose data flow direction is dictated by
d>driver_name>[driverspec] the driver it addresses. Driverspec is optional and depends on the driver (if
needed or not).

Table 21 — OPEN # channelspec setup strings

Here are some examples:

OPEN #4,"o>a:test.txt" Creates a file named test.txt on virtual disk drive a:
and opens an output-only channel to it, connected to
stream 4.

OPEN #5,"stuff" Opens an existing file named stuff on the default

drive and opens an input-only channel to it,
connected to stream 5.

Once a stream is opened, it can be used with the standard INPUT # and PRINT # com-
mands, as well as the additional pointer commands. Before we get into those, we should
just first mention:

CLOSE #n

which closes the previously opened stream #n. If n is a stream between 0 and 3, then the
default channel for that stream (k, s or p) is reattached to it. Note, that attempting to
CLOSE a stream that hasn't been opened, will not produce an error; instead it will exit
gracefully with OK, 0:1. For example:

CLOSE #4 Closes the channel attached to stream 4.

Streams, and especially those opened to large files, can be very long to navigate in a serial
manner; imagine having a file that's 100 Kbytes long, you would have to iterate through
102400 characters to read the very last one byte. For that reason, NextBASIC maintains
pointers to the position you're located within a stream, how long the stream is (in charac-
ters / bytes), the ability to move these pointers to any location within a stream and finally
the ability to read one byte from the current pointer position from that stream. The com-
mands to do that are called Pointer Commands and are the following: RETURN #...TO,
DIM #...TO, GO TO # and NEXT #...TO. Let's visit their syntax below:

RETURN #n TO [%]var

This command returns the current position of stream n and stores it in variable var. The
variable can be an integer one, which means that it will accept —safely— positions of up to
65536 bytes within the stream (or a maximum value of 65535 as position 0 is the very first
position within a stream). Do not use integer values if you plan on accessing streams
larger than that!

DIM #n TO [%]var

This command returns the size (in characters or bytes) of stream n and stores it in variable
var. As with RETURN #...TO above, var can be an integer variable in which case the same
warning as with the previous section applies.

GO TO #n, [%]pos

ZX Spectrum Next — User Manual 245

Chapter 21 — Channels, Streams, Drivers and Windows Stream control commands

This command sets the current position of stream n to position pos. Let's see how the pre-
vious three commands all tie together by experimenting with browser.cfg:

1@ OFER #4 ," snextz=os sbrowser
L2 Fat

28 REHM "i:" is optional =s=ince
the filename i= Longer
than 1 character

S8 OIM #4 TO Ma: REM Get
Filesize and put it in ¥a

4@ RETURK #4 TO Xb: REM Get
current Location and put
it in *b

S8 PRIWNT "You‘re in byte: '
=b o " oorF i HMa

E@ =0 TO H4, Xars2: REHM Howe
to the middle of the file

Ta RETURK #4 TO Xb: REHM Get
current Location and put
it in *b

S@ FPRIMT "Mow, Jou’re in
byte: i whb o o f ' #a

9@ CLOSE H4

NEXT #n TO [%]var

This command gets the next character of input from stream n and stores it in the variable
var. If used on the standard k channel, this is similar to the INKEY$ function, except that it
always waits for the next character to become available (ie on the k channel, it waits for a
keypress). Using an integer variable here, is safe as the command gets one character at a
time ergo one byte so its value will never exceed 255.

You can use this command instead of INPUT # on all channels that accept input other-
wise they're very much identical in function.

Try this little program which will turn your ZX Spectrum Next into a typewriter:

1@ MEXT #H#@ TO X
28 FPRINT CHR$ (1
S@ GO TO 1@

COPY filespec TO #n

We've seen this command sequence before in a shortcut which did not include a stream
number but rather a keyword: SCREENS. In that case n is the stream to channel s which
by default is #2. When used with a stream number, COPY...TO #n, can be used to trans-
fer the contents of a file to a stream. For example to write the extended version of COPY
"c:/readme.md" TO SCREENS$ we should type:

COPY Yo sreadme..md’ TO H2

When NextBASIC is running, it has four streams normally open. Streams #0 and #1 are
connected to the keyboard (channel k), and are used by INPUT and INKEY$. Stream #2
is connected to the screen (channel s), and is used by PRINT, LIST, CAT and PWD, com-
mands in other words that print something to the screen. Stream #3 is connected to the
printer (channel p), and is used by LPRINT, LLIST and COPY (without parameters). All of

246 ZX Spectrum Next — User Manual

The Variable and Memory Channels Chapter 21 — Channels, Streams, Drivers and Windows

these commands can be redirected to use another device by including a # followed by an
open stream number, so

FRIMT #1;"This is the Lower =screen'
will print the message on the lower screen while

FPRIMNT &HZ; "lLWho needs LPRIMNT, RomuolLus7s"
will use the printer. Conversely, LPRINT can behave like PRINT and typing:

LFRIMNT #2; "Are 4ou confused d4et Rog?"
makes LPRINT #2 do what PRINT normally does.

INPUT # may be used with other channels other than k and w such as file(i,o,u),
memory (m) and variable (v) channels. In these cases, it is advisable to avoid any
accidental outputs to the channels, by not using any prompt strings, and by using only
the semicolon as a separator. In most cases, you will want to input a string using the
LINE (See Chapter 15) modifier as without this, the data in the file (or other channel)
would need to be surrounded by quotes.

The Variable and Memory Channels

In the previous chapter, we've examined a special dot command (.$) that allowed
NextBASIC to talk to any dot command not made specifically to interact with it. The Vari-
able and Memory Channels can be seen as facilitating the reverse flow of information; to
get information from the outside world into NextBASIC. They both involve reserving some
space beforehand to accept the input but they differ in the sense that the former can be
moved anywhere in memory (as variables could be stored anywhere) while the latter is a
fixed location (which makes it more suitable for use by machine code programs). You may
remember the series of commands we used to get the output of PWD in Chapter 20 or
.time in Chapter 18. Let's remember them quickly:

LIM d% (255 : OFEM #H#2,"vi:d$": .Ccd —-—-werbose:
CLOSE #Z2: PRIMNT 4d%

and

LIM TtH0l1@a@) : OFEM #H2,"w:t$": .TIHME :CLOSE
H2:PRIMT t%

but now that you know a bit more about streams, should that even work? The answer is
yes, as it's designed to work that way. Most dot commands that produce textual output in
a "legal" way (that is without circumventing NextZXOS), will attempt to output content on
stream #2. By opening stream #2 to the variable channel and then executing the com-
mand whose output we want to grab, we're performing a temporary redirection of the
screen stream to the variable channel. Then, once we close the stream again, as the sys-
tem is designed to do, it resets it to its default channel s and reopens it. Obviously if a pro-
gram does not use the inbuilt NextZXOS and NextBASIC routines to produce output, this
will produce nothing. The example below, shows a more "traditional" way of using the vari-
able channel by using the inbuilt facility of a command (CAT ASN in this case) to output to
a different channel:

1@ LIM ags(lad@a)

28 0OPEM #5, "wrag"
S@ CAT #5 ASH

4@ RETURMH #5 TO L

ZX Spectrum Next — User Manual 247

Chapter 21 — Channels, Streams, Drivers and Windows Installable device drivers and Driver Channels

S8 PRIMNT "As=zignment Length
is:"; LY chars"

E@ FPRIMT "List is:"

Ta PRIMT a%i(TO LI

S@ CLOSE HS

As you can see line 40 also demonstrates the use of a pointer command in the variable
channel. If you do not reserve enough room (for the sake of displaying the results, change
the size of a$ to just 10 characters from the 1000 it has) you will receive an 8 End of File er-
ror at line 30.

If a stream operation fails (like in the example above), the stream will not automatically
close. It is therefore a good practice to start all your programs that operate on a stream
with a CLOSE # prior to actually performing an OPEN # operation for the first time. It's

also even better programming practice to include ON ERROR error-trapping, on every
stream operation (especially the ones that operate on File Channels) as a lot of things
can go wrong while working with files and channels in general (e.g. Running out of data,
or your reserved memory area was smaller than the one you should have reserved etc).

The memory channel operates in a very similar manner; once you reserve the space, you
open it and dump the output to it. Let's modify the above program to use the memory
channel:

1@ CLEARAR 29999

28 OFPEM #35, '"'m:Io086,laGa"

S8 CHT HS ASH

4@ RETURM #S TO L

S@ PRIMT "Ass=ignment Length
iz, LY Cchars"

E@ REHM perform some magic
here wia HC

Ya FOR r = @ TO L-1

S@ PRIMT CHR$ (FEER (ZS@@@@4+F1 1 ;
REM print the L fFirst
baytes Jou =s=toared in memory

9@ HEXT F

SB CLOSE # S

Installable device drivers and Driver Channels

As mentioned in the previous chapter, NextZXOS allows for installable device drivers. A
maximum of 4% of those can be installed.

These are mainly intended for use as software that allows access to external or internal pe-
ripherals such as printers, mice, network devices etc, but can also be used for other pur-
poses, such as a potential NUL driver which does nothing. (The notion of a device that
does nothing is a bit peculiar but it has its uses in computing!). As mentioned in Chapter
20, to install or uninstall a driver, you need to use the following dot commands
respectively:

.install drivername
.uninstall drivername

5 This number may change in subsequent versions of NextZXOS
248 ZX Spectrum Next — User Manual

Driver Channel support Chapter 21 — Channels, Streams, Drivers and Windows

where drivername is the name of the file which contains the code for each driver. For ex-
ample the WiFi driver for the ESP chip that your ZX Spectrum Next may have come with or
you may have installed yourselves is espat.drv.

The documentation that comes with the driver will describe how to use it. Some drivers for
example may make use of the new DRIVER command. This has the following form:

DRIVER driverid, callid [,n1[,n2]] [TO var1[var2[,var3]]]

where n1 and n2 are optional values to pass to the driver, and var?, var2 and var3 are op-
tional variables to receive results from the driver call. The individual DRIVER commands
that you can use, depend on each device driver and they will also be in the driver's accom-
panying documentation.

Driver Channel support

Some drivers can support input/output via streams and the Driver Channel d. If so, the
documentation will describe the exact format it supports. Generally speaking however, in
order to open a stream to channel d, you will be using one of the following command vari-
ants (assuming the driver id is ASCII X):

OFER HS,'"d:»x"
which opens stream #8 to simple driver channel for device X.

OFEM #5,"d:X:string”

which opens stream #8 to channel d as described by string on device X.

OFEH HS,"d:=,p1"
which opens stream #8 to channel d as described by numeric value p1 on device X.

OFEM H#S,'"d:=,pl.,p2"

which opens stream #8 to channel d as described by numeric values p1 and p2 on device
X.

To close the driver's stream, you will use a standard CLOSE # command (in the examples
above that would be CLOSE #8).

Once the driver's channel is open, you can use any of NextBASIC's stream input, output or
pointer manipulation commands (if these are supported by the loaded driver; Usually
each driver's documentation should describe what can be used).

A good example of using the driver channels can be found in the documentation for the
ESP (WiFi) driver by Tim Gilberts, included in the c:/docs/extra-hw/ folder of the Sys-
tem/Next™ distribution. You can see there for example that talking to the internet via
NextBASIC can be as simple as:

OFEM #4 ,"d:MH:TCP, 145.2539.2080 .54 58"
which will open a TCP connection to port 80 on specnext.dev
Windows

NextBASIC offers the ability to create and manipulate text "windows" on screen via its Win-
dow Channels. This allows for immense flexibility in manipulating textual output, going be-
yond what simple PRINT commands can.

System Windows vs User Windows

When we talk about Windows, we're really talking about two kinds; System and User Win-
dows. The former are created and managed by NextBASIC while the latter are created and

ZX Spectrum Next — User Manual 249

Chapter 21 — Channels, Streams, Drivers and Windows System Windows vs User Windows

controlled by the user. By default, 4 System Windows are created; one for each Layer other
than 0. These are full screen and are used to produce output through the standard s chan-
nel and only a few parameters of these can change (size always remains the maximum
possible).

Press a key to continue

Fig. 45 — NextBASIC Text Windows

User Windows on the other hand can have varying sizes and can be defined anywhere in
the screen. From now on, wel'll refer to System Windows as SW and to User Windows as
UW. If no designation exists, then the discussion applies to both types.

Defining User Windows

User windows are defined by their top line (0 to 23), leftmost column (0 to 31), height (1 to
24), width (1to 32), and optionally by character size (3 to 8) and character set memory ad-
dress®. If no character size is specified, the default is assumed which is 8 px wide. If a
character set address is given, then this is used instead of the built-in fonts7; this allows
you to use nice fonts such as those provided with art programs and adventure games.

The character size, has no bearing on the way the window is defined, but it does affect the
number of actual columns you have available. For example, the following defines a win-
dow the size of the entire screen; but because a character size of 5 is specified, the num-
ber of characters that can be printed in the window at any time is 24 x 51:

OFEM #5,"w:d,d@,24,32,5"

When outputting via PRINT to windows, you can use many of the same control functions
as you can with the normal screen. For example: ' (apostrophe); start a new line, ,
(comma); start a new column, TAB, AT, POINT, INK, PAPER, FLASH, BRIGHT,
INVERSE, OVER.

When first defined, windows are in non-justified mode, but they can be set to be left, full or
centre justified. Note that in justified mode, some features and control codes cannot be
accessed, so you may need to switch back to non-justified mode to use them.

A complete list of control codes follows in the table below; these codes can be sent to a
window using PRINT followed by the CHR$ function as we've already seen in Chapter 15.
Note that it's always preferred to use standard PRINT, AT, INK etc commands instead of
control codes when using windows as they're usually easier to use than their control

Memory address refers to an address location within the main memory map.

Afont is a collection of a stylised graphical representation of characters . For the ZX Spectrum Next, this follows the
8x8 pixel matrix of the UDGs and it is exactly 768 bytes long (defining 96 characters in the 7-bit Sinclair ASCII series
from 32 to 128). See Appendix A for a list of characters.

250 ZX Spectrum Next — User Manual

N O

System Windows vs User Windows

Chapter 21 — Channels, Streams, Drivers and Windows

codes counterparts. Below is a list of all control codes that can be used while outputting
to a Window Channel's stream:

J Code Description
uw SwW
o Increases the current character set width (can
0 Turn justification off range from 3 to 8 pixels), and moves the
cursor to the start of the next line.
o Decreases the current character set width
1 Turn justification on (can range from 3 to 8 p\ersR., and moves the
cursor to the start of the next line.
: Causes the size 8 character set to be
2 Save current window contents replaced with the character set defined by the
CHARS system variable.
3 Restore saved window contents E)e%uesne:ratl?eedsues 3 to 7 character sets to be
4 Home cursor to top left
5 Home cursor to bottom left
X 6 Tab to left or centre of window (PRINT ,)
7 Scroll window
X 8 Move cursor left
X 9 Move cursor right
10 Move cursor down
11 Move cursor up
X 12 Delete character to left of cursor
13 Start new line (PRINT ')
14 Clear window to current attributes
15 Wash window with current attributes?
o 16, n Set INK n (where n=0107)
[] 17,n Set PAPER n (where n=0t0 7)
[18, n Set FLASH n (where n=0o0r 1)?
[} 19, n Set BRIGHT n (where n=0or 1)*
o 20, n Set INVERSE n (where n=0or 1)
[] 21,n Set OVER n (where n=0or 1)
Sets cursor to pixel line y, character size column x. (AT y,x). Position is specified in terms of
X character positions (dependent upon the character size currently selected and whether
22,y, X reduced-height text is in operation. Double-width and double-height do not affect the
coordinates, however)
X L High TAB to (character sized) column n. This is a 16bit number so for column numbers smaller than
23, nLow, nHig 256, nHigh is always 0. Otherwise 1 is calculated as nLow+ (nHigh*256)
o 24, n Sets ATTR n (Where n=0 to 255)'°
Changes the print position to pixel coordinates x, y (0 to 511 and O to 191 respectively). Since
we may be running at Layer 7,2 mode (H|Resg)and the x position may be higher than 256
X L High B|xels (ergo a value larger than what a single byte can hold) it breaks the x coordinate into two
25, y, xLow, xHig yte components: xLow (O to 255) and xHigh (0 to 1). For horizontal resolutions up to 256
pixels, xHigh is always O while for resolutions > 256 pixels it may be O or 1. The x coordinate
1S calculated as (xLow) + (xHigh*256)
Auto-pauses every i character lines. After each n character lines have been scrolled out of the
window, output will autom.ancalli/ pause until the SPACE key is pressed (the bottom right
PY character in the window will be flashed to indicate SPACE is being waited for).

26,n After a window has been cleared, the first pause occurs before any lines have been scrolled out;
subsequent pauses wait for n character lines. Typically you would want to set to the height of
the window. If set to O (the default), auto-pause is disabled.

[] 27,n Fills window with character n. Attributes and cursor position are affected.
8 Has no effect on Layer 2 or LoRes
9 Ignored unless in Standard or HiColour modes and EnhancedULA is not enabled
10 Ignored in LoRes, Layer 2 and HiRes modes

ZX Spectrum Next — User Manual

251

Chapter 21 — Channels, Streams, Drivers and Windows User character sets

J Code Description
uw SW
X 28, n Sets double width (where n=1) or normal width (where n=0)
P Sets height n (O=normal, 1=double, 2=reduced, 3=double reduced) — See Chapter 15 for
29 details
Selects justification mode n where 1 is Changes the current character set width to n
30, n 0=Left Justified , 1= Fully Justified and 2 (can be 3,4,5,6,7 or 8 pixels), and moves
=Centre Justified the cursor to the start of the next line.
Causes the size n character set to be replaced
Selects whether embedded codes are ¢ :
31,n permitted (1) or not (0) in justify mode with the character set defined by the CHARS

system variable.

Table 22 — Window control codes

In the table above on the column marked as J an X means ignored if issued in justified
mode and an ® means code can be used in justified mode only if the "embedded codes"
setting has been enabled. For control codes normally ignored in justified mode, note that
these will still be taken into account if you set them before entering justified mode.

User character sets

If the default character set(s) are replaced using control codes 2, 3 or 31 in a system win-
dow, any subsequent text printed in any window (which doesn't have its own user-defined
character set) will use the new character set(s).

The system-defined character sets are partially shared: sizes 3 and 4 use the same set
(only the leftmost 3 pixels are used for size 3), and similarly so do sizes 5 and 6. This
should be borne in mind when replacing system character sets using control code 31.

Window input

Text windows support the INPUT command. If you use INPUT #, then a cursor is added to
the window at the current position. You can then input any text desired, using the left and
right arrows to move along the text input so far, or the up and down arrows to move to the
start or end of the text.

The DELETE key deletes the character to the left of the cursor, and the ENTER key com-
pletes the input. Up to 191 characters can be accepted into each input variable.

Window definitions

Since windows are defined using character squares so for example in LoRes, this means
the maximum window size is 16 x 12 (and not 32 x 24). In HiRes however, character
squares are considered to be 16 pixels wide, so the maximum window size is still 32 x 24
pixels.

Memory constraints

It should be noted that saving/loading window contents (only available on user windows)
is a costly operation. The amount of memory required for each character square is:

*9 bytes (Layer 0)
*16 bytes (Layer 1 HiRes or HiColour)
*64 bytes (Layer 1 LoRes or Layer 2)

Forexample, a 10 x 10 window in Layer 2 requires 6400 bytes of available memory for sav-
ing its contents.

252 ZX Spectrum Next — User Manual

[/ Chapter

2

Optional Features
(RTC, WIFI, RAM
and Accelerator)

© ® 8 sir
5 o 2 5
T T o A —
"
ol
. zm
> - 58 e
o : : i
- e]
B s° .
o0z
i oWr o s 05 | |2
end By
0
I ooy
T oeey L
Z sy o
LY
N §NOD
I |] n —
Y] =
== 0o = 3 e
Tz wmyw = = 1
vgu N L
red Ny 5 z o
oM 'm' 8
6y o "
sy L
Y =
— 1 %y 2
] szd 2 e
¥y
= - v o
" I
Q LR =1
2 5 []
3 58 ZNOD
5 T
: 2z
2 I M
5 C o]
I ooy
- sy
Z sy
S ey
+ S sy
o A —
- sy a
Z g
Z sy]
g we izl |
N A Le
c 1B p -
¥y (53
o wa g 1
= eey 8
s o osed
= Z 620 sn n €N zn Ny
H Z s
)
z o
I [Ty u—
= o
= i 210
i Y] -
- o r 105180
- I]
T i Q
| zcozuo H
+ 4 §
94 s 4
E w
L] .
- N
£ N - €10
]
”]]
I
TE
Tt ™
S T i3s3y 3AEa z I—Im
-QIH
2 + + +
S
60 7N
Diagram Legend
WARNING! WARNING! WARNING! WARNING! Description

Before attempting any hardware addition, make sure all

Real Time Clock

power is disconnected first!!!
ALL USER APPLIED MODIFICATIONS COME AT THE

WiFi module (ESP)

USER'S OWN RISK

RPi0 Accelerator

11IRREPARABLE DAMAGE MAY OCCUR!!!

O|O|wm| = 3%

Memory

1

The ZX Spectrum Next Mainboard with optional equipment locations

Overview

Optional Features

Overview

Chapter 22 — Optional Features

Depending on the model you have, your ZX Spectrum Next may have a number of op-
tional features pre-installed. These are: RTC hardware, a WiFi module (ESP), extra RAM
and the Raspberry Pi Zero (RPi0) accelerator. The following sections will describe how to
install and use them. Remember that modifying your ZX Spectrum Next carries a number
of risks and that if you are not careful, you can damage your machine!

Installation

Most add-ons are very easy to install with the exception of the Real Time Clock module
and RPIO accelerator. Installation of the former, requires soldering a number of parts onto
the board and should be undertaken only by users with soldering experience. We recom-
mend using a specialised service, if you do not feel comfortable with a soldering iron. In-
stallation of the latter also requires soldering experience but that's confined on the RPiO
board itself and not on the ZX Spectrum Next. On the table below, we list all parts that you
will need to perform each upgrade:

Option Parts Needed Notes
1024K Memory upgrade 2 x Alliance AS7C34096A-10JCN —or— Upgrades the memory
2 x Samsung K6R4008V1D-JI10 to 2048K
1xDS1037 IC Allows time and date
1 x YXC YT-38, 32.768KHZ, 12pF oscillator or similar ~ keeping that does not
RTC module 1 x CR2032 Battery holder rely on if your computer
1 x CR2032 Battery 3.3V is powered on
1 x 8 pin DIL socket (optional)
. Provides access to the
WiFi module ESP8266 ESP-01 internet and your home
network
RPi Accelerator 1 x Raspberry Pi Zero Various functions such
1 x Female IDC connector 2 x 20 pins as enhanced audio

Installing a WiFi module, only requires you to populate the empty socket marked by a B on
the diagram in the opposite page by plugging in the ESP module in the place reserved.

Memory is equally simple, however, care must be exercised in that the RAM sockets ac-
cept larger chips than the ones the ZX Spectrum Next has. You need to line up the orienta-
tion notch (B) of each RAM chip (A) with the corner of the socket (D) leaving space (C) in
the back of the socket. Once you have everything lined up, push with your finger at the
centre of the RAM chip and it should make a slight click. While pushing the RAM in (and
every other module) make sure you provide enough support on the obverse so the board
doesn't flex. Refer to the figure below on the proper installation of each RAM chip.

AGBABY TWN FX

-
MVVIAIINATE R

Fig. 46 — Optional RAM upgrade installed
ZX Spectrum Next — User Manual 255

Chapter 22 — Optional Features Testing the add-ons' installation

The Raspberry Pi Zero (RPi0) accelerator requires a little bit of work. You will need to solder
the 40 pin (2 x 20) FEMALE IDC header on the RPi0's GPIO through-holes. Unlike what
would be normally expected the socket needs to be soldered from the component side,
therefore facing downwards. With a properly soldered IDC header you need to be able to
see the RPi0's SD card reader and all its components with the IDC header out of view like in
the figure below:

Fig. 47 — Raspberry Pi 0 accelerator installed (with WiFi module in view (left)

The most complicated installation is the one of the RTC module. It requires you to solder
the oscillator in the X1 location of the board, a battery holder in the location marked and fi-
nally the DS1037 IC in its place next to the battery holder paying attention to the orientation
(marked by a notch on the sketch on the board as well as on the chip itself). It's advisable
that you install a 8 pin DIL socket instead of the DS1037 IC as heat may damage it during
soldering.

Pay very close attention on the soldering of the oscillator; the through holes are very small
and need to be free of any flux or solder residue as this will stop the oscillator from work-
ing. Finally, you will need to install the battery in the socket otherwise the RTC will only
work for as long as the machine is powered.

Testing the add-ons' installation

Once you have your add-ons installed, it is time to test them; we'll start with the easier tests
first and wel'll progress to the most difficult ones.

A. Testing the memory

This is by far the simplest test; if your memory installation worked, your NextZXOS Startup
menu will report 1792K instead of the 768K it reported up until now (see Fig. 48).

Fig. 48 — NextZXOS reporting 2M
To further verify that the memory was properly installed, there's a program called
ramtest2.snx located under c:/tools/ in your System/Next™ distribution.

Execute it with the browser or by using the SPECTRUM command and let it go through all
your memory testing it's working properly (see Fig. 49 and 50).

In case that something went wrong, your memory chips are either defective or you didn't
install them properly. Make sure your memory chips are properly seated in their sockets

256 ZX Spectrum Next — User Manual

Testing the add-ons' installation Chapter 22 — Optional Features

Fig. 49 — ramtest2 running Fig. 50 — ramtest2 completed OK

by a. checking the space is left as in Fig. 46 and b. pressing them firmly in their socket until
you hear a subtle “click” sound. If the memory test still fails, your memory chips are proba-
bly defective.

B. Testing the WiFi

Testing that the WiFi feature was properly installed, involves a bit of typing. There are many
ways to go about it but the easiest of all is to use the .uart dot command or the wifi.bas
program located under c:/demos/esp in your System/Next™ distribution. .uart is not very
complicated but it's quite temperamental especially if you use a PS/2 keyboard. You will
need to use the standard ZX Spectrum keys; CAPS SHIFT + 0 for DELETE, SYMBOL
SHIFT + K for +, SYMBOL SHIFT + C for ?, SYMBOL SHIFT + P for " and SYMBOL
SHIFT + L for =.

You run it by issuing a:
uart

you will be greeted by a screen full of information that will end in an L. cursor. To test type
the following:

AT
and press ENTER
If you're good so far, the ESP will be responding with:

[u[A
|

That's a very good sign. That means serial communications have been established. To
see however if the ESP is actually working you'll need to issue a few more commands.

Type:
AT +CLHHMOCE"T

the ESP there should respond with a 1, 2 or 3 (this is the mode that's its working at; being 1
for Station, 2 for Access Point and 3 for both). Normally this should be enough to verify
your ESP is working but if you want to take it one step further, you should set the ESP to
station mode by giving:

AT +CLIHMODE=1
then check for what Access Points are around by doing:
AT +CLLARP

before finally connecting to one by giving the command:

ZX Spectrum Next — User Manual 257

Chapter 22 — Optional Features Testing the add-ons' installation

AT +CWJARP="535I0C" ,"vourFass"

where SSID is the name of your network and YourPass is your WiFi password. The ESP will
retain these so you can do if you want:

AT +RST
which will reset your ESP and give you a lot of information before concluding with a

LIFI CORMMECTELD
LIFI 0T IR

Exit .uart by pressing SYMBOL SHIFT + SPACE. If none of this worked, then the most
likely culprits are that you either have a bad ESP module or that the power supply you're
using is not powerful enough for both your ZX Spectrym Next and the ESP module. First try
with a different power supply, otherwise return the ESP module for an exchange.

Note that different ESP firmware versions have slightly different versions of the commands
above so always consult the most up-to-date documentation!

C. Testing the RTC installation

There's avery simple way of testing for the RTC and that's to give it the .time command. If it
doesn't work outright, it will produce an output like the following:

Mo ACH an == ~rEg =Zelect.
Frobablgy n Cclock at @ax&s.

Fig. 51— RTC not working
There are a few issues that can occur with the RTC; if the output is as above, the most likely
culprit is the soldering of the IC onto the board. A cold solder will leave the RTC not work-
ing, a short somewhere will do the same but the RTC IC will start getting hot. If you feel the
IC warming up disconnect all power immediately and inspect your soldering.

A defective battery holder installation as well as a defective (or depleted) battery will mani-
fest itself with the RTC not keeping time upon bootup and NextZXOS not displaying the
time and date information on its Startup menu. Setting the time and date anew, however,
will restore the time display.

If on the other hand the commands described in the Using the Real Time Clock hardware
section below do work, the time and date information appear in the Startup menu but time
does not advance, then the issue lays usually with either the oscillator or the pins of the
DS1307 IC these connect to. There's either a short somewhere or even a situation as sim-
ple as leftover flux from soldering. The oscillator can be damaged quite easily so make
sure there's no continuity on its two legs before even turning the power on and inserting
the battery in the holder.

D. Testing the Accelerator installation

Before you can test that the accelerator is working, there is a number of things you need to
do: Firstfind a 1Gb or larger microSD Card and then you need to download the NextPi dis-
tribution from: http://zx.xalior.com/NextPi together with the instructions that accompany
it.

258 ZX Spectrum Next — User Manual

Using the Real Time Clock hardware Chapter 22 — Optional Features

Once you prepare the SD card according to the instructions put it in your Pi Accelerator
prior to booting up your ZX Spectrum Next. Transfer the support programs into a folder of
your choosing on your System/Next™ distribution's SD, then power up the machine.

If you have access to the RPi0 you should see the green led flashing while the ZX Spec-
trum Next is booting; that's a good first sign showing that the RP/0 is loading its NextPi dis-
tribution. The LED will eventually stop flashing and should turn into a steady green. Once
you're all booted up, change to the folder you placed the NextPi support files and locate
and execute (with the browser or with the SPECTRUM command) terminex.snx by David
Saphier. If the RPIO installation worked, you will see a message stating Connection to
NextPi established followed by a SUP> prompt which means your RPi installation was
successful as shown in the figure below.

W
TERMINEY - B.48b-dey - Da hier i - Bpel b1
Use SYRFCAPSHH for HELF! - lse E'fMﬂ.ZRPB-*B for E:ﬁIIDRR'IE
Use SYNHCAPSHCFD Tor CTRLAC/D

Connection to NextPi established.- on cald baet it can take up to EBseconds!
AP .

Fig. 52 — RPi Supervisor prompt via Terminex

If the SUP> prompt does not appear after a maximum of 20-25 seconds, that means
there's something wrong. That doesn't mean your RPI0 is not working; especially if you
saw the flashing green LED light on it earlier. This more than likely means that you didn't
transfer the NextPl image properly or that there's some problem with the microSD card
you used.

To verify the RPi0 is working, you will need to unplug it from your ZX Spectrum Next, locate
a micro usb power supply, an appropriate HDMI™ cable and a standard RPi0 distribution
and power it independently.

If you can see output on the screen, then there's either a problem with your NextPI SD card
(which you can verify by plugging its microSD card in the RPi0's reader instead of the stan-
dard RPi0 distribution), a cold solder on your IDC connector you soldered earlier, or, fi-
nally, a not powerful enough power supply for your ZX Spectrum Next.

The RPiOs are very resilient pieces of hardware and they don't fail easily; chances are any
failure you experience is due to one of the cases listed.

Using the Real Time Clock hardware

If you're lucky to have an expanded ZX Spectrum Next with the battery backed-up Real
Time Clock (RTC) hardware installed (or if you followed the instructions to install it your-
selves) then more options in timekeeping become available to you. These options do not
suffer from the drawbacks and caveats laid out in the previous sections as this dedicated
hardware option keeps time regardless of what else the computer is doing and in fact
keeps time even when the computer is turned off.

The RTC is only accessible via two dot commands: .date and .time.
Setting up your RTC for first use

Before you can use .date and .time you will need to set up your Real Time Clock hardware.
Luckily this is only done once when you install it and whenever you need to change bat-
tery. You will initially (for safety) need to issue the command:

ZX Spectrum Next — User Manual 259

Chapter 22 — Optional Features Using the RTC together with the WiFi module

stime -—-di

This wipes the RTC signature from the chip and gets it ready to accept a date and time.
You can then type:

Ltime Y1l@: 35 235"

where "10:35:23" can be substituted by any string of the format HH:MM:SS where HH
(hour) is anumber from 00 to 23 , MM (minute) is a number from 00 to 59 and SS (second)
is a number from 00 to 59. You then enter the correct date by issuing:

date Y1Ss@Sszalst

where "18/08/2018" can be substituted by any string of the format DD/MM/YYYY where
DD is the day (01 to 31), MM is the month (01 to 12) and YYYY is any year from 2000 to
2099.

A few interesting things will happen once you install and setup your RTC. First, NextZXOS
will report the time and date on its Startup menu (which is very nice indeed). Then, your
saved files will start having a date and timestamp on them (visible with CAT EXP or .Is).

Using the RTC together with the WiFi module

The RTC module is not very accurate and can lose several seconds over the period of a
few weeks. Luckily, like other, much larger systems, the ZX Spectrum Next can also set its
time from the internet, thanks to .nxtp, the dot command client to Robin Verhagen-Guest's
NeXt Time Protocol server. Its syntax is:

.nxtp server-address port [-z=Timezone]

where server-address is a FQDN or IP address running a nxtp server, port is the port where
that nxtp server is listening to (by default 12300) and an optional timezone parameter to
set the time to any location you would like from a list of acceptable timezones.

MELp time.nxtel.org 12308 -z =UTC

will talk to the the nxtp server located at time.nxtel.org, listening on port 12300 and set the
RTC's time to Coordinated Universal Time (UTC) whereas

MELp time.nxtel.org 12308 -z =GHT

will do the same but for Greenwich Mean Time meaning the time will adjust for summer
giving you BST and winter giving you UTC, as .nxtp already knows about daylight savings.
It will work this into your RTC's time setting meaning you never have to worry about setting
your clock in the summer or winter provided your location observes these.

A full list of accepted timezones exists at the .nxtp project's wiki page located at:
https://github.com/Threetwosevensixseven/nxtp/wiki/Timezone-Codes

It is a good idea, if you have an always working WiFi setup, to add .nxtp to your
autoexec.bas file so it always sets up the correct time upon your ZX Spectrum Next's boot.
The potential startup delay is very small and the benefit of always having correct time out-
weighs the delay.

Using the rest of the add-ons

Both the WiFi and Raspberry Pi Accelerator add-ons open up exciting features not before
seen on a ZX Spectrum computer. This chapter provides only limited coverage as the
featureset of both is still evolving. We have included all features implemented thus far (Au-
dio playback, TZX loading, DRIVER support etc) in Chapters 19, 20, 21 and this chapter,
however, you're encouraged to read the accompanying documentation found in your Sys-
tem/Next™ distribution and on www.specnext.com as they will always contain the most
up-to-date information regarding these add-ons and newer ZX Spectrum Next features.

260 ZX Spectrum Next — User Manual

[/ Chapter

23

IN, OUT and the
Next Registers

*** This page intentionally left blank ***

IN and OUT Chapter 23 — IN, OUT and the Next Registers

IN, OUT and the Next Registers

We can instruct the processor to read from and (at least with RAM) write to memory by us-
ing PEEK, POKE and their variants. For all the possibilities, examine Chapter 24 — The
Memory. The processor itself does not really care whether memory is ROM, RAM or even
nothing at all; it just knows that there are 65536 memory addresses, and it can read a byte
from each one, even if it's nonsense, and write a byte to each one, even if it gets lost be-
cause the address is read-only. In a completely analogous way, there are also 65536
hardware address, called 1/O ports (nput/Output ports). These are used by the processor
for communicating with attached devices like the keyboard or the display, and they can be
controlled from NextBASIC by using the IN function and the OUT statement. Six I/O ports
that are specific to the ZX Spectrum Next and control its advanced functions; they too, are
accessible with IN and OUT, but two of them, are also accesible via a special dual state-
ment/function, called REG.

IN and OUT
IN is a function like the simplest form of PEEK:
IN port

It has one argument, the hardware address port, and its result is a byte read from that port.
OUT on the other hand is a statement like a simple POKE:

OUT port, v
which writes value v to the hardware address port.

Hardware address decoding

How the address is interpreted depends on the hardware in the computer and attached
devices. In previous versions of the ZX Spectrum line of computers and especially in leg-
acy peripherals, many different port addresses mapped to the same device. This is called
partial decoding and happened because some address bits were ignored in the hardware
to save on cost. As a consequence, entire ranges of port addresses were reserved by indi-
vidual peripherals. This made it hard for new peripherals to find non-conflicting ports to
use and, in reality, many did not and only managed to use ports that didn't conflict with the
most popular peripherals. The situation was somewhat mitigated by the fact that only a
couple of peripherals could be connected to the older ZX Spectrum machines at once,
due to electrical limitations. Today, where modern ZX Spectrum implementations pack
many devices into their hardware, this port conflict problem returns with renewed urgency,
as any pair of devices with conflicting port addresses are not compatible with each other.

The ZX Spectrum Next fully decodes port addresses for new peripherals (meaning it does
not ignore any address line), but because a lot of the hardware it contains is based on ex-
isting devices, those must continue to be partially decoded. In order to best understand
the issues at hand, and in the table that follows which contains all port addresses avail-
able on the ZX Spectrum Next, it is best if we approach them as written in binary. That way
we can easily show which bits are being ignored by a specific peripheral. Each hardware
address is 16 bits wide, which we shall call (using A for address):

A5 A4 A3 A12 A1 A0 A9 A8 A7 A6 A5 A4 A3 A2 A1 AD

Here A0 is the 1st bit, A1 the 2d bit, A2 the 4t bit and so on. The table that follows shows
which bits are important for the corresponding device. For example, the ULA only needs
A0 to be 0 in order to respond, which means it will respond to all 3768 even port addresses
and not just its official port 254 (FEh). The byte read or written has 8 bits, and these are of-
ten referred to (using D for data) as:

D7 D6 D5 D4 D3 D2 DI DO

ZX Spectrum Next — User Manual 263

Chapter 23 — IN, OUT and the Next Registers

Hardware address decoding

Here is a list of the port addresses used with their decoding. For the reason mentioned,
only the ULA has an even port addres and every even-numbered port IN will result in the

ULA being read.

AlAlA|AAIA
1111111
5/4/83/2/1|0

vor
oo >
~No >
oo>
o>

A
0
4

uy)

wo>
no >
——or

Port
(Hex)

Description

[
EEEEERS
~
~
.
~

E B EEEEERER
- 2 0000000000 —+0O0
-~ 0O 0000000000 = —
- 2 O 00O 00O =+~ —+00O0o
JEIG S U PGS DU PG PN IS P} R § R) RS QY
- 2 0O 000000 O0o
4O L L0000 = 4
- 2 00 = =+ 000O0
NG IS JE Ve S R N o S IS oy & NG e

[eNeloloNolNeoloNHolNolNoNol
O — — 44w

[UG) DR DS DU UGS DG UG P Y

_;_k_k
o—o0
R DG N
o = -

OO—\—\—*—*—kOO—*OOOO—*—*'—*'O—kO—\—*O—kOA—*O
444 L4 L L0000 O O

0O000 2+ 120 2000 - 4 44 4 1 00—~ 2 a2 00 =20

[ENG o} PN I IS PIG NI PG SIS Vo § JUNY JING SIS JIFG e, § JIIG ', UG JING JING Ve, | DI JIIG e, § JUNG JIIG e, § PIIY

JEFRGS RIS UGS NG UGS USROS UGS UGS UGS PGS PG (RG] U U DG UG UG s J U QUGS SIS JUNUS DU DU DU ', DUV ey B o Y UL UGS QUGS DUIFOD DUITG) UGS QU DU QUG QUG DI o % N S R R E o § F o R RS

O—2 0O 24 4 4 4 444 a A0 0 2 201200 204 2032220000000 000O0O

B T e i i S T e B T B B i i o e e e e e e B R e N e B e S B B e S e e e e e N e I N =Yk

FEh
FFh
7FFDh
7FFDh
DFFDh
1FFDh

243Bh
253Bh
103Bh
113Bh
123Bh
133Bh
143Bh
153Bh
BF3Bh
FF3Bh
6Bh
FFFDh
BFFDh
1Fh
Fih
3Fh
OFh
F3h
DFh
FBh
B3h
4Fh
Foh
5Fh
E7h
EBh
E3h
FBDFh
FFDFh
FADFh
1Fh
37h
1Fh
9Fh
3Fh
BFh
BFh
3Fh
303Bh
57h
5Bh

ULA

Timex video, Floating bus
Memory Paging Control
Memory Paging Control (+3 only)
Next Memory Bank Select!
+3 Memory Paging Control
+3 Floating bus

NextREG Select

NextREG Data

[2C SCL

[2C SDA

Layer 2

UART Tx

UART Rx

UART control

ULAplus Register

ULAplus Data

zxnDMA

AY Register

AY Data (readable on +3 personality)
DAC A

DAC A2

DAC A

DAC B

DAC B

DAC AD

DAC AD

DAC B,C

DAC C

DAC C2

DAC D

SPI CS (SD card, Flash, RPiO)
SPI DATA

divMMC control
KEMPSTON Mouse X
KEMPSTON Mouse Y
KEMPSTON Mouse Wheel, Buttons
KEMPSTON Joystick 1
KEMPSTON Joystick 2
Multiface 1 Disable
Multiface 1 Enable
Multiface 128 Disable
Multiface 128 Enable
Multiface +3 Disable
Multiface +3 Enable

Sprite slot flags

Sprite Attributes

Sprite Pattern

1 Precedence over AY
2 Precedence over xxFD

264

ZX Spectrum Next — User Manual

Hardware address decoding Chapter 23 — IN, OUT and the Next Registers

Before we look at other ports and provide some examples,let us look at the six ports the
ZX Spectrum Next uses to control its special features. These are in order: the Next Regis-
ters (Controlled by two ports; Select and Data), the Layer 2 port and the Sprite control ports
(Control, Attributes and Data). Of these, the most important to learn about is the Next Reg-
ister (NextREG) with which you control almost all the machine's features. NextREG, from a
processor perspective (but also from NextBASIC) is accessed with two consecutive OUT
commands: The first, to the Select port 9275 (243Bh) to select a specific register and the
second to the Data port 9531 (253Bh) to modify the value stored there. If given from
NextBASIC, these commands must be given together as NextBASIC may do something
different with NextREG in-between commands. If you give the first and then wait to give the
second, NextBASIC may have changed the Select register in the meantime; so by giving
them together you give it no time to do something else. In order to read the value of a reg-
ister (if this can be read), you still need to do an OUT to port 9275 and then a consecutive
IN from port 9531. The Z80n CPU the ZX Spectrum Next has, also provides a special
NEXTREG command and this is referenced in Appendix A. As mentioned in the introduc-
tion, NextBASIC also has a specialised command and function to read NextREG which is
much easier to use. However we'll give both methods here, in order for you to be able to
use them even from 48K BASIC as the Next facilities are still available there but without
NextBASIC to make access to them easier. The command as mentioned earlier is REG
and as a statement it has the form:

REG n,v

which is essentially the same as doing: OUT 9275, n:OUT 9531, v. Obviously n is the reg-
ister number and v is the value we modify the register with. As a function, REG has the fol-
lowing form:

% REG n

as it always returns bytes, so it's part of the integer expression evaluator. This essentially is
the same as executing OUT 9275, n: LET %x = % IN 9531. Let's give one simple example
in both forms and let's mix-and-match a bit as well to show the equivalency:

Assuming we want to change speeds to 28MHz, we could give:

RUM AT =

or

auT 9275, V. oUuT 9531, S

and we can verify it's set by either bringing up any NextBASIC menu (menus list the cur-
rently set speed) with the EDIT key or by doing:

auT 9275.,7: PRIMT X IM 9531 & 311
Which is the same as

FPRIMNT X REG 7F&E11

You can verify this actually changes things by doing a RUN AT 2 and give the OUT/IN se-
quence again. As you will see from the list that follows, not every NextREG is dedicated
solely to one function; in this case the only bits that concerned us were Bits 0 and 1 and
that's why we used a 2-bit bitmask with the bitwise AND operator &. For the same example
using just the REG command, our line would have been as simple as:

REG 7.3

We'll list all of NextREGs below in numerical order. Not every register is accessible, so pay
attention to the key at the start of the list to understand whether a register can be read, writ-
ten or both.

ZX Spectrum Next — User Manual 265

Chapter 23 — IN, OUT and the Next Registers

The Next Registers

The Next Registers

NextREG 05 (05h) — Peripheral 1 Settings

Next Register Diagrams' Key Data Bits
Reserved value in either R(ead) or W(rite) condition but used in the inverse — Not Appli Group Name RWEAEHSRSHARMEDE Doscription HD
R dval Scandoubl an 0 Scandoubler Disabled
- candoubler
eserved value - Not Applicable 1 Seandoubler Endbled
b Reserved value MUST be X
Vertical Frequenc, L] 0 S0tz mode
v tical Frequ
:ot:p:)hca:l;e /UDun;cdars S quency | 60 Hz mode®
R Weé (\' mavked),unmavken meansNotA p‘p \;a le 55 5 Sinclar 2 67890)
W Write (if marked). Unmarked means Not Applicable 0o Kermpsion 2 (Por 370)
H Hard Reset / Soft Reset / Config Mode. Unmarked means Soft Reset if there's a value in column D]
01 0 Kempston 1 (Port 1Fh)
D Contains the default value after a reset (Soft, Hard or Config as marked in column H).* refers to nofes below
Joystick 1 mmo0 1 1 Megadrive 1 (Port 1Fh)
w In columns RAW marks the status of the register. In column H means Hard Reset
@ Means Config Mode 10 0 Cursor
® Means any value (0 or 1) 10 1 Megadrive 2 (Port 37h)
N Any letter in a data bit position refers you to the notes below 11 0 Sinclair 1 (12345)
00 0 Sinclair 2 (67890)
NextREG 00 (00h) — Machine ID 00 1 Kempston 2 (Port 37h)
Data Bits 01 0 Kempslfmw (Port 1Fh)
Group Name RW7654 3 2 10 Description HD i Joystick2 =m 01 1 Megadrive 1 (Port 1Fh)
0000000 1DEA 10 0 Cursor
0:0:0.0:0:0 1:0 DE2A 10 1 Megadrive 2 (Port 37h)
0:0:0:0:0 1:0:1:FBLABS 11 0 Sinclair 1 (12345)
00000110 VIRUICCO Soviet Timings have no 60 Hz mode; when in Soviet Timings, every setting is 50 Hz.
Machine ID " 00000 111 WXEDA NextREG 06 (06h) — Peripheral 2 Settings
0000100 0 EMULATORS* Data Bits
0000 10 1 0 ZXSpectrum Next* Group Name RW76 54 321 0 Description HD
0000101 1 Mulicore 0.0 M
1:1.1.1.1.0 1.0 ZXSpectrum Next Anti-Brick* PSG Mode Control nm 0.1 AY
Settings with * indicate their relevance for ZX Spectrum Next machines and Software 11 :Hold all PSGs in Reset
i Keyboard Primary
NextREG 01 (01h) — Core Version PS/2 Mode Control an 0 2 i .1
1 Mouse Primary
Data Bits
Group Name RW7 65 4 38 2 1 0 Description H:D § NMI Bution Control um . NI bution enable” 0
Minor Version Number n ® @ o o Minor Version divMIMC Automap/NMI Conirol ' 'm . divMMC Automap and NMI"” bution enable m 0
Major Version Number m eeee Major Version F3 Hotkey Control um . 50Hz / 60Hz hotkey toggle Enable 1
See NextREG 14 (0Eh) for sub minor version number 0 2nDMA
DWMA Mode Control LI 1 "0
1 780DMA
NextREG 02 (02h) - Reset F8 Hotkey Control ame CPU Speed hotkey Enble 7
Data Bits * NMI button refers to the button to the right side of the SD Card reader
Group Name RW7 65432 Description HD ** Refers to the Drive button to the left side of the SD Card reader
LastSysemBesel Type' m Sofeset NextREG 07 (07h) - CPU Speed
Hard Reset
Data Bits
Reserved L) Reserved Group Name RW7 654 3 210 Description HD
- RESET not asserted a0 0.0 35MHz
ESP/Expansion Bus RESET flag RESE asserted

0:1:7MHz

Generate Soft Reset

CPU Speed Control

1.0 14 MHz

Generate System Reset [}

Generate Hard Reset (reboot) 1:1:28 MHz
Reserved [Jooo0o0o0 Reserved (must be 0) Reserved Reserved, must be 0
Generate ESP/Exp. Bus Reset? ue Generate/Release Reset (Exp. Bus & ESP) Reserved Reserved, must be 0

' If read in NextzXOS a 1 will be returned as the booting process generates a Soft Reset
2 Afull reset cycle for the ESP and Expansion Bus, requires setting D7 first to 1 and then to

0. If not explicitly released the Expansion Bus and ESP will stay with RESET asserted until
the next system hard reset
Of DO - D1 only one bit can be set and Hard reset has precedence

NextREG 03 (03h) — Machine Type

3.5 MHz
7 MHz
14 MHz

Current Actual’ CPU Speed

* Soft reset defaults this to 00
+ Current Actual speed may differ from the set speed due to Expansion Bus use, or another

forced change.

Data Bits
Group Name RW 765432 10 Description HD | NextREG 08 (08h) - Peripheral 3 Settings
000 Configuration mode
K DataBits
001 Group Name RW7 654 3 210 Description HD
Machine Type =n 010 X128K/ +2 ® : Issue 2 Keyboard um ® Enable Issue 2 keyboard u0
0.1 1 2X+2A +2B/ +3/ Next NextSound ® Enable Multiple PSGs =0
1.0 0 Soviet Clones (PENT) Timex Video Port Control am 0 Enable read of Port FFh (Timex) "o
. 0 No User Lock on display timing applied DACs Control . Enable DACs (A-B-C-D) "o
EK');?,‘SY Timing user lock 1 User lock on display timing Internal Speaker Control mm . Enable Internal Speaker 1
] 1 Apply User Lock on Display Timing =0 0 Select ABC
5o e U PSG Stereo Mode Control ~— mm ; e =0
001 ZX 48K Contention Control nm e Disable RAM and Port Contention 0
Display Timing == 010 IX128K/ +2 128K Banking Unlock Conrol m m @ Unlock Port 7FFDh DS (Unlocked = 1) 0
011 X +2A +2B/ +3/ Next R
100 Soviet Clones (PENT)" NextREG 09 (09h) - Peripheral 4 Settings
Display Timing change enable ~ ' @ Allow changes to D46 0 Data Bits
~— Soviet Gories (PENT fiaing i 50 e auly Group Name RW7165 413 2 1.0 Description HD
Awrite 1o this register disables the boot rom in configuration mode 0 0 :Scanlines off
DO through D2 select machine type when in configuration mode. Selection may affect port 0 1 Scanlines at 75%
decoding and enabling of some hardware Scanline Strength am H
10 Scanlines at 50%
NextREG 04 (04h) — Configuration Mapping 1.1 :Scanlines at 25%
Data Bit HDM!I audio output Control am . HDMI audio mute L)
ata Bits
Group Name RW7 675 43 2770 Desoription 1D ; GWMMC mapRAM bit Control m m . Resel bit 6 port E3n (Read is always 0)
16K SRAM bank mapping L] ® @ @ o Mapsa 16K SRAM Bank no. (0-31)" m 0 : Spite Lockstep Control am . Enable Sprite ID Lockstep 0
Reserved u Reserved, must be 0 PSG 0 Mono Mode Control nm . Enable Mono u0
* Maps a 16K SRAM bank over the bottom 16K. Applies only in configuration mode when PSG 1 Mono Mode Control m e Enable Mono "0
the boot romis disabled PSG 2 Mono Mode Control_ m m @ Enable Mono w0

In Sprite Lockstep, NextREG 52 (34h) and Port 12347 (303Bh) are in Lockstep.

266

ZX Spectrum Next — User Manual

The Next Registers

Chapter 23 — IN, OUT and the Next Registers

NextREG 14 (OEh) — Core Version (Sub minor number)

NextREG 24 (18h) - Layer 2 Clip Window Definition

Data Bits Data Bits
Group Name RW7 654 3210 Description HD} Group Name RW[7Z161514 81 21001 Description HD
Sub Minor Number m e e e e e e e e (o SubMinor Version Number Coordinate (Xipy XengYony Yer) MM @ @ @ @ @ @ @ @ B-bit value 0f X X, .Y Yong COOMdinaLE *
See NextREG 01 (01h) for Major and Minor Core Version T Possible values 0 10 255 or 0 1o 191 depending on the coordinate being written
15 Write Xaq POSition — *Default value Upon reset is 0 — AVaNce 10 Xong
NextREG 16 (10h) — Core Boot 21 Write Xng pOSition — *Default value Upon reset is 255 — Advance 10 Yoa,
Data Bit 39 Write Yy, position — *Default value upon reset is 0 — Advance 10 Yo,
ata Bits 4" Wite Y s position - *Default value upon reset is 191 - Advance to xM
Group Name. RW 7.6 5432 10 Description HD Reads do not advance the clip position - Use NextREG 28 (1Ch):DO through D1 to read
NWI Bulon State Flag - ® NMIButlon Pressed the position. If need be write to NextREG 28 (1Ch):D0 1o reset the clip index and then do
Dive Bulton Ste Fag - Drive Button Pressed nsecutive writes and reads to get to the value you're searching for
Reserved 000000 Reserved, must be 0 NextREG 25 (19h) - Sprites Clip Window Definition
Core ID oo Coe D (0-31) . Data Bits
Reserved - T MET0 Group Name RWIZI615 418 20910F Description HD
' Coordinate (Xiug XesVogp Yer) MM @ @ @ @ @ @ @ @ 8-bil Value Xy Xy, Yoeg g COOMinate -
Start Core me Reboot FPGA using selected core 0 Kooy Yord el Sigen)
1 Possible values 0 to 255 or 0 to 191 depending on the coordinate being written
Core D with DO through D4 can be set in configuration mode only T5WHe Xpny pOSTioN “Defaut vaILe UPON reset 1S 0 — AGVANCE 10 Xpng
NextREG 17 (11h) — Video Timin 20 Write Xeng pOSition ~ *Default value upon reset is 255 — Advance 0 Yy,
(11h) 9 39 Wiite Yy position — *Default value upon reset is 0 — AQVance (0 Yoy
Data Bits 4" \Write Y p.g poSition — *Default value upon reset is 191 — Advance 10 X,
Group Name RWIFIBIE: 418 200 Description HD Reads do not advance the clip position — Use NextREG 28 (1Ch):D2 thiough D3 to read
RV 5 — 72T the position. If need be write to NextREG 28 (1Ch):D1 1o reset the clip index and then do
0:0:0; Base VGA timing, clk28 = consecutive writes and reads to et to the value you'e searching for. When the clip win-
1 VGA setting 1, clk28 = 28571429 dow is enabled for sprites in over border mode, the X coordinates are internally doubled
& VGA sting 2, 08 = 20464286 and the clip window origin is moved to the sprite origin inside the border
1 VGA sefting 3, ck28 = 30000000 NextREG 26 (1Ah) — Layer 0 Clip Window Definition
VGA Timin - *
" 0 VGA setting 4, clk28 = 31000000 __ DalaBis
Group Name R WIZI615 4181 20910F Description HD
1 VGA setting 5, clk28 = 32000000
"o COOGINAE (K K Vg Vo) MM ® © © @ @ © @ © BDILVAILE Xy Ko Yo Yo COOTAITATET o
0 VGA setting 6, clk28 = 33000000
1 Possible values 0 to 255 or 0 to 191 depending on the coordinate being written
1 Digital, clk28 =27000000 15 Write X,q, position — *Default value upon reset is 0 — Advance to Xog
Reserved 0000 0] Reserved, mustbe 0 29 Wite Xgog pOSition — *Default value upon reset is 255 — AVance 10 Yoy
3 Write Yyuq pOSition — *Default value upon reset is 0 — Advance 10 Yoy
50Hz/60Hz depends on NextREG 5 (05h):D2 ~ There is no 60Hz mode for Soviet Timings 4" Wiite Y. position — *Default value upon reset is 191 — Advance to Xe
NextREG writable in configuration mode only Reads do not advance the olip position - Use NextREG 28 (1Ch):D4 through DS to read
; me position. If need be write to NextREG 28 (1Ch):D2 to reset the clip index and then do
NextREG 18 (12h) - Layer 2 Active RAM Bank nsecutive writes and reads to get to the value youre searching for
Data Bits WARNING: LoRes may get a sepérate clip window n a fulre upgrade
Group Name RW 7 6 5 4 3 2 1 0 Description H:D : NextREG 27 (1Bh) — Layer 3 Clip Window Definition
Layer 2 Active RAM Bank ® o o @ @ Suing 16K RAM Bank Data Bits
Reserved Reserved, must be 0 Group Name RWZ 656482 1 0 Description HD
Soft reset, resets the default to 8. NextZXOS changes that to 9 Coordinate (Xy; Xy Yoy Vo) MM ® @ @ @ @ @ @ @ B-Dil alUe Xy Xy Yieg Yoy COOIdiNEIE" *
" Possible values 0 0 159 or 0 o 255 depending on the coordinate being written
NextREG 19 (13h) - Layer 2 Shadow RAM Bank 15 Write X,y pOSition — *Default value Upon reset is 0 — AGVANCE 10 Xeg
29 Write Xy pOsition — *Default value upon reset is 159 — Avance 10 Yo,
Data Bits 3¢ Wite Y, pOSition — *Default value upon reset is 0 ~ Avance 10 Yoy
47 \Write Y g pOSition — *Default value upon reset is 255 — Advance 0 Xoeq
Group Name RWw76543 21 0 Descrplion HD Reads do not advance the ciip position — Use NextREG 28 (1Ch):D6 through D7 to read
Layer 2 Shadow RAM Bank ® o @ @ o Stating 16K RAM Bank the position. If need be write to NextREG 28 (1Ch):D3 to reset the clip index and then do
consecutive writes and reads to get to the value you're searching for.
Reserved Reserved, must be 0 The X coordinates are internally doubled

Soft reset, resets the default to 11. NextZXOS changes that to 12

NextREG 28 (1Ch) — Clip Windows Control*

NextREG 20 (14h) - Global Transparency Colour Data Bits
. Group Name RW[7I6T54 8 2H1R0! Description HD
Grou Name a‘ai“swmw ion b - Laver 2Cip ndec . ® @ Layer 2 Clip Index (0-3)
u RW7 6543210 ipti -
i n L) [
Global Transparency Mask EE e e e e 0 e e o 3hicolurvale fpme;LaLyerCW\uc\:vde‘xd EDHIEZC‘LD nd:xc(:) ‘3‘: -5
n oo -
Default value upon soft reset is E3h (227) ayer 0/ Layer 1 GlpIndex 2y 0/ Layer 1 Clpncex (0= 3)
This value is 8-bit; the transparency colour is compared against the MSB of the actual 9-bit ; Layer 3 Clip Index n e Layer 3 Clip Index (0-3)
colour; as such, two colours (with either value of By) are made transparent
This setting only applies to Layer 2, Layer 0 and Layer 1. Sprites use NextREG 75 (48h) Reserved) 0:10-0:0 Reserved, must be 0
and Layer 3 uses NextREG 76 (4Ch) for transparency Layer 2 Clip Index Rosel enable | m @ 1 to Resel the Layer 2 Clip Index
Sprtes Clip Index Reset enable m ® 10 Rosel o Spries Clip Index
NextREG 21 (15h) — Sprite and Layer System Setup Layer 0 Clip Index Reset enable . 'm . 1 to Reset the Layer 0 /Layer 1 Clip Index
DataBits Layer 3 Clip Index Resel enable . m . 10 Reset the Layer 3 Clip Index
Group Name R W7I615: 418 251701 Description H D i+ This NoxIREG may change in the future
Spiite Engine Conlrol an Enable Spiites 0 iy
Ll E NextREG 30 (1Eh) - Active Video Line (MSB)
Spiite Extended Avea Contiol_ m @ Enable Spriles over border 0
Data Bits
9i0.0 SLU Group Name RW]7ZI615 48 20910 Description HD
001 Lsu ‘Active Video Line (MSB) ® 1 for lines above 255 else 0
0:1:0 SUL Reserved RIOIOICHY Reserved, must be 0
011 Lus
Set Layer Priority an .
100 WSk NextREG 31 (1Fh) - Active Video Line (LSB)
101 uLs
SR s : Data Bits
110 (U-+L): ULA and Layer 2 combined! Group Name RW|7I615:4 8 20001 Description HD
111 S(U+L-5): ULA and Layer 2 combined Active Video Line (LSB) m eee e e e e e AiikoLie(ss)
Sprite Border Clipping L) . Enable Sprite Clipping in over border mode - 0 .
NextREG 34 (22h) — Line Interrupt Control
Sprite Priorit - 0 Sprite 127 on top o
rite Priri
’ Y 1 Sprite 0 on top ____DataBits ____
T ae e Lo 5 i-Group Name RW[ZI6T5 4 8 2II0! Description HD
Oftes Lontro Line Inferrupt Value MSB MSB of ine number 0
X Sle):?j'r[s"é}:fn;gg‘gm reset is 000 Line Interrupt Control Enable Line Interrupt 0
2 Colours Clamped to [0,7] ULA Inermupt Control Disable ULA Inerrupt 0

ULA means all ULA modes: Layers 0 and all Layer 1 combinations

NextREG 22 (16h) - Layer 2 Horizontal Scroll Control

Reserved, must be 0
Reserved
Reserved, must be 0

Data Bits

Group Name RWZ 664 8 2 1 0 Description

ULA nerropt Satus Flag ~ m ULA asserting inferupt

X Offset EE e 00 0o e e e 3hialeofXOifset (0-255)

ULA Interrupt Status Flag will indicate if the ULA is asserting an interrupt even if the ULA in-
terrupts are disabled

NextREG 35 (23h) - Line Interrupt Value LSB
NextREG 23 (17h) - Layer 2 Vertical Scroll Control ____DalaBils
Group Name RWIZI615 418 20410F Description HD
____DataBits___ Line Interrupt Value LSB. mE e e e e e e e e Lowesbisof ine number 0
Group Name RWIZ161514:8 21110] Description
Y Offset EEO o000 0 e o 3bivalueofYOfset (0-191) 0
ZX Spectrum Next — User Manual 267

Chapter 23 — IN, OUT and the Next Registers

The Next Registers

NextREG 38 (26h) — ULA Horizontal Scroll Control

NextREG 52 (34h) — Sprite Number

Data Bits Data Bits
Group Name RW7 6 543 21 0 Description HD : Group Name RWZ 6548321 0 Description HD
©0 000000 - ® @ @ @ @ o o Spite number' / Pattern Number?
X Offset L] 8-bit value of X Offset (0-255) 0 When NR09:D4 is set am DI
This setting refers to all ULA modes except Layer 1.0 - LoRes L Pattern Offset Address Offset>
NextREG 104 (68h):D2 adds a half pixel to the scroll The above applies only when the sprites portis in Lockstep and effectively performs an OUT to port 12347
NextREG 39 (27h) — ULA Vertical Scroll Control (303Bh) with the same value otherwise the section below applies
When NRO9:D4isNOTset mm 0 ® @ @ @ @ ® @ Sprite number'
—Ddlabie 1 Val 0to 127
Group Name RWIZI615:48 20410 Description HD! 5 valee oot 68
Y Offset EE O e e 00 e e o ibivalueofYOffset (0-191) 0: 3 Adds 128 to pattern address

This setting refers to all ULA modes except Layer 1,0 - LoRes
NextREG 40 (28h) — Stored Palette Value and PS/2 Keymap Address MSB

This register selects which sprite has ts attributes connected to the registers that follow:
NextREG 53 (36h) ~ NextREG 57 (39h) and their auto-incremented counterparts
NextREG 117 (75h) - NextREG 121 (79h)

Data Bits ;
Group Name RW[7161514:812:1.0 Description H D i NextREG 53 (35h) — Sprite Attribute 0
Stored Palette value H 0 00 0 0 0 o0 o ScehexREG 68 (44h) Data Bits
PS/2 Keymap Address MSB u @ PS/2 Keymap Address MSB 0 ; Group Name RW{7 654821 0 Description HD
Hosarved M0 00000 0 TR X Coordinate LSB me o0 0o e e e SpXCordnelss
MSB is in NextREG 55 (37h): DO
NextREG 41 (29h) — PS/2 Keymap Address LSB
Data Bits NextREG 54 (36h) — Sprite Attribute 1
Group Name RWI7Z161514:3 21110) Description HD Data Bits.
PS/2 Keymap Address LSB e oo oo e e e Bbivle(2s 0 : Group Name RWIZI615 418 20150; Description HD
Y Coordinate LSB me o000 e e e S Cordnlels
NextREG 42 (2Ah) — PS/2 Keymap Data MSB i
MSB is in NextREG 57 (39h)'s DO
Data Bits
Group Name R WI71615:4 8121101 Description H.D | NextREG 55 (37h) - Sprite Attribute 2
PS/2 Keymap Data MSB L] ® PS/2 Keymap Data MSB
Reserved s PIEOEIEEEE Reserved, must be 0 ____DataBits ___
. Group Name R WIZHB15 4581 20H0F Description HD
NextREG 43 (2Bh) - PS/2 Keymap Data LSB Sprite Attribute 2 Weieeedicib a Senoes
a For relative sprites: Indicates that e is relative to the anchor's palette offset
____ DataBits For normal sprites: Sprite's X Coordinate MSB (See NextREG 53 (35h) for LSB)
Group Name RWIZI6761478 2 110] Description HD: b 90° Clockwise Rotation Control (0 = No, 1 = Yes)
PS/2 Keymap Data LSB me o000 0 0 e shile(5 ¢ Vertical Mirror Control (0 = No, 1 = Yes)
d Horizontal Mirror Control (0 = = Yes)
Awrite causes the data to be written and auto-increments the Keymap Address o 4-bi paletie offset
NextREG 44 (2Ch) - DAC B Mirror (Left) / IS Left Sample MSB Rotation is applied before mirroring
Data Bits en
Group Name RWI716161418 20110] Description 1 p NexIREG 56 (38h) - Sprite Attribute 3
125 Left Sample MSB H 000 00 e e e 3hivle(0-25) ____ DataBits
8-bit sample Left DAC B meooo o oo e bhivae + ; Group Name R W BERERANARPRNBIO] Dosoription HD
Sprite Attribute 3 Wcbaaaaa a Senoes
* Asoft reset sets a value of 128 (80h)
The IS Left Sample LSB is latched and can be read from NextREG 45 (2Dh) later a Sprite pattem to use. Possible values = 0 to 63
b Attribute 4 switch (0 = No, 1 = Yes)
NextREG 45 (2Dh) - DAC A+D Mirror (mono) / IS Sample LSB If b = 0 then the sprite is fully described by Attributes 0 to 3. The sprite pattern is an 8-bit
one identified by pattern a and is an anchor and cannot be made relative. Sprite display
Data Bits behaves as if Attribute 4 = 0
Group Name R W[7Z161614 81211101 Description HD If b = 1 then the sprite is further described by Attribute 4 that follows in NextREG 57 (39h)
125 Last Sample LSB m 00000 e e e 8hile2s ¢ Visibility Control (0 = Invisible, 1 = Visible)
8-bit sample DACs A + D me oo o0 oo e vk - :
A soft reset sets a value of 128 (80h) NextREG 57 (3oh) - Sprite Attribute 4
Returns the LSB of last sample read from NextREG 44(2Ch) or NextREG 46(2Eh) Data Bits
NextREG 46 (2Eh) — DAC C Mirror (Right) / I’S Right Sample MSB Group Name R W HISSRORRSRSRRO Description HD
Sprite Attribute 4 mfedccbb a Seenoes
Data Bits -
TTREIa A o1 a For relative sprites: Indicates that the sprite pattern number is relative to the anchor's
Group Name RWI7161514:8 2110) Description HD For normal sprites: Sprite's Y Coordinate MSB (See NextREG 54 (36h) for LSB)
128 Right Sample MSB m e e e 00 e e e ibhivale(0255 b For normal and relative, composite type sprites indicates X direction Magnification
8-bit sample Right DAC C me oo oo 0 0 0 dbhiale * (00 = 1x, 01 = 2x, 10 = 4x, 11 = 8x)
For relative, unified type sprites it's 0
* Asoft reset sets a value of 128 (80h) ¢ For normal and relative, composite type sprites indicates Y direction Magnification:
The S Right Sample LSB is latched and can be read from NextREG 45 (2Dh) later (00 = 1x, 01 = 2x, 10 = 4x, 11 — 8x)
For relative, unified type sprites its O
NextREG 47 (2Fh) - Layer 3 Horizontal Scroll Control MSB d For normal sprites, indicates that the attached relative sprites are: 0 for Composite, 1 for
. DaaBis __ E&"ﬁifauve sprites contains the 7th pattern bit if the sprite pattern is 4-bit
Group Name R WERBES 882 10 Description HD: ‘e For normal sprites contains the 7th pattern bit if the sprite pattern is 4-bit.
Layer 3 X Scroll Offset MSB 'm0 ® Layer 3X Scroll Offset MSB For relative sprites its 1
f 4-bit pattern switch: 1 if the sprite pattern is 4-bit otherwise
Reserved ot (0FL0/I0EIOFI0ELO Reserved, must be 0 {f,e} must not equal {0,1} as this combination is used to indicate a relative sprite. See
Meaningful range: 0 10 319 in 40 tiles mode, 0 to 639 in 80 tiles mode notes above.
NextREG 48 (30h) — Layer 3 Horizontal Scroll Control LSB
NextREG 64 (40h) - Pallete Index Select
Data Bits
Group Name RWIZ16161418 21110] Description HD Data Bits
X Offset LSB EE O 00 00 0 e e 3hivle (0255 Group Name RW7 6548 21 0 Description HD
Meaningiul range: 0 o 319 in 40 tiles mode, 0 to 639 in 80 tiles mode Palette Index Select mme 00 000 0 e Piindexnumber
. Selects the palette index to change the associated colour
NextREG 49 (31h) — Layer 3 Vertical Scroll Control For ULA only, INKs are mapped to indices 0 through 7, BRIGHT INKs to indices 8 through
Data Bits 15, PAPERS to indices 16 through 23 and BRIGHT PAPERs to indices 24 through 31
L — In EnhancedULA mode, INKs come from a subset of indices from 0 through 127 and
Group Name RW7 654321 0 Description HD PAPERs from a subset of indices from 128 through 255
Y Offset mE o 000000 0 Bhile25) [The number of active indices depends on the number of attribte bits assigned to INK and
PAPER out of the attribute byte
NextREG 50 (32h) - Layer 1,0 (LoRes) Horizontal Scroll Control In ULAplus mode, the last 64 entries (indices 192 to 255) hold the ULAplus palette.
The ULA always takes border colour from PAPER for standard ULA and Enhanced ULA
Data Bits
Group Name RWI716161418 20110] Description H D | NextREG 65 (41h) — 8-bit Pallete Data
X Offset EE O 00 00 0 0 o 3hivalueof XOffset (0-255) 0
ayer 1.0 (LoRes) scrols i al-pxels a ho same resoluon and smoothmess as Layer2 & (- R w% Deserpion WD
NextREG 51 (33h) — Layer 1,0 (LORES) Vertical Scroll Control 8-bit Palette Entry mme e oo e e o e ColouentyiRRRGEEEE format
Data Bits The lower blue bit of the 9-bit internal colour will be the logical OR of Bits 0 and 1 of the
Group Name R W|FIEIB 418 200 Description HD 8-bit entry. After each write, the palette index is auto-incremented to the next index if the
Y Offet. Mmoo e o0 e e b0l 013 5 auto-increment has been enabled in NextREG 67 (43h):D7.

Layer 1,0 (LoRes) scrolls in half-pixels at the same resolution and smoothness as Layer 2

Reads do not auto-increment the index. Any other bits associated with the index will be ze-
roed

268

ZX Spectrum Next — User Manual

The Next Registers Chapter 23 — IN, OUT and the Next Registers
NextREG 82 (52h) — MMU Slot 2 Control

NextREG 66 (42h) — EnhancedULA Attribute Byte Format

Data Bits
____DataBits ____ Group Name R W[7161594 31851101 Description HD
Group Name RW766 4 8 2 1 0 Description HD £ "y siot 2 Control mm e e e 00 e e e 5KRANpagE foraddress 4000h-5FFFh *
Attribute Byte Format EEe e e 00 e e e AbutbyesINK lion mask * iy Defaull 10 (0AN)
Soft reset defaults t0 7 Pages range from 0 to 223 on a fully expanded Next

Not set bits, indicate PAPER. Acceptable values are made by setting each bit from 0 on, in
sequence: (1,3,7.15,31,63,127 and 255) which effectively splits the attribute byte setting

the INKs from the right side and the PAPERS from what's left. INKs are mapped from Index NextREG 83 (53h) — MMU Slot 3 Control
0 onwards on the paletie while PAPERs and BORDER are mapped from Index 128 on-

wards. Data Bits

Mask examples Group Name RWZIBT5 418 20! Description HD
00011111 will set a maximum of 64 INKs and 8 PAPERs VIIU Siot 3 Control mEe oo e e e e e BKRAVpage oaddess GO00NTFFFN =
01111111 will set a maximum of 127 INKs and 2 PAPERs *

Default 11 (0Bh)

A full value of 255 will set all colours to INK (Full INK mode) and PAPER and BORDER are Pages range from 0 to 223 on a fully expanded Next

taken from the falloack colour defined in NextREG 74 (4Ah)

If the mask is not one of those listed above, the INK is still the result of logically ANDing NextREG 84 (54h) — MMU Slot 4 Control

the mask with the attribute byte but the PAPER and BORDER will be taken from the

fallback colour. Data Bits

Example: Group Name R WIZI615 4181 20910F Description HD

00111011 will be ANDed with the attribute byte to form the INK index and PAPER will w -
come from the fallback colour. MMU Slot 4 Control HE O e 0 00 o o o 3KRAMpage for address 8000h-9FFFh
* Default 4 (04h)

Pages range from 0 to 223 on a fully expanded Next

NextREG 67 (43h) - Palette Control

DataBits NextREG 85 (55h) — MMU Slot 5 Control
Group Name RW]ZI616:4 8 211101 Description HD s
Enh LA control mm ® Enable Enf e —
hancedULA conto Endblo EnhancedU LA 0'¢ Group Name RW[7I6T5 4 8 2H110F Description HD
Active ULAT Palete - 0 | First Palete o & MMUSlot 5 Control mE e oo e e e e e BKRAVp oralies ANOh BFFFN
1 Second Palette Defaull 5 (05h)
o First Palette Pages range from 0 o 223 on a fully expanded Next.
Active Layer 2 Palette o 0
i Second Palette
0 First Palelte NextREG 86 (56h) — MMU Slot 6 Control
Active Sprites Palette L) 0
1 Second Palette Data Bits
500 A Group Name RW[7I615 4 8 SI1H0! Description HD
S MU Siot 6 Control mEe oo e e e e e BKRAV D oaidess COOONDFFFN *
100 oo * Default 0 (00h)
001 Layer 2 First Pages range from 0 to 223 on a fully expanded Next
Pl i 101 Layer 2 Second .
alete Selectfor Read/Write m m g A Sortes Fist NextREG 87 (57h) - MMU Slot 7 Control
110 Sprtes Second Data Bits
01 Ly 3 First Group Name RW[7I6T5 4 8 SH1N0F Description HD
= .
T eSS MMU§|0:7‘CD‘H\;;\"1) mE e e e e e e e e BKRAV pag foraddiess EOOON-FFFFN
* Default
Palefte Auto-increment Conirol m m @ Disable Palette Wite Aufo-increment 0 Pages range ffom 0 t0 223 on a full expanded Next

* After a soft reset defaults to 000

' ULA refers to all ULA modes (Layers 0 and 1) NextREG 96 (60h) — Copper Data 8-bit Write

NextREG 68 (44h) — 9-bit Palette Data ____DataBits ____
Group Name RWIZI615 4T 8I2 I 0F Description HD
____DataBits ____ Copper Instruction 8-bit m e o o e e e e e Byelowiteto copperinstruction memory

Group Name RwW765.4.38210 Description Each Copper Instruction is two-bytes long. After a write, the Copper address is auto-incre-
MSB Colour (1*Write) Non[2 .~ @ @ ® @ @ @ @ @ @ NISB (RRRGGGBB) formal —non L2 palette mented to the next memory position '
LSB Blue (2 Write) Non L2 u ® LB B format — non L2 palette
Reserved Non L2 u GOV Reserved, must be 0 —non L2 palette NextREG 97 (61h) — Copper Address LSB
MSB Colour (T Wiite) L2 Mo ee e oo o o /5B RAAGEGES) lormal— L2 palelle

m Data Bits
LSB Blue + Priorily L2 (24 W) m m @ ® 2grrity (07) and LSB B(DO) - L2 Group Name RWIZI615 4.3 20000F Description HD
Reserved L2 L] 000000 Reserved, must be 0 L2 palette Copper memory address LSB @ m @ @ @ @ @ @ @ @ Copper instruction memory address (LSB) 0

9-bit Palette Data is entered in two consecutive writes; the second write auto-increments Copper memory addresses range over 0 through 2047 (7FFh)

the palette index if auto-increment is enabled in NextREG 67 (43h):D7

If writing an L2 palette, the second write's D7 holds the L2 priority bit which if set (1) brings
the colour defined at that index on top of all other layers. If you also need the same colour
in regular priority (for example: for environmental masking) you will have to set it up again,

NextREG 98 (62h) — Copper Control

Data Bits
this time with no priority. e T]
Reads retur the second byte and do not auto-increment Group Name R W RS Doscription HD
Copper Memory Address MSB_ m m @ @ o Copper Instruction Memory Address (MSB) . 0
NextREG 74 (4Ah) — Fallback Colour Value 00 - Copper fully stopped
01 Copper start, exec. list from idx0, loop to st
Data Bits Copper Start Control [}] oo 6 -
Group Name R W7I8514181 200] Description HD 10 Copper start, exec. list from last, loop fo st.
Fallback Colour mE e e e e e e e e 5hicolouifall laers are ansparent o il Copper start, exec. list from idx0, rst at 0,0
* Soft reset sets the default fallback to 227 (E3h) as it must be the same for when * Soft reset defaults to 000
ULAplus programs hit the transparent colour, otherwise nothing will be displayed Copper memory addresses range from 0 through 2047 (7FFh)

Note: Writing the same copper start control value does not reset the copper
NextREG 75 (4Bh) — Sprite Transparency Index

NextREG 99 (63h) — Copper Data 16-bit write

Data Bits
Group Name RWZ 664 8 2 1 0 Description HD Data Bits
Transparency Index mm e e e e e e e e Spyite colourindex realed as transparent + i Group Name RW7 6548 21 0 Description HD
* Soft reset defauls to 227 (E3h Copper data me oo 0 e 0o o iiehSB 27wieLSB 0
For 4-bit sprites, only 4-bits are used (from DO to D3) The 16-bit value is written in pairs. The first 8-bits are the MSB and are destined for an
For example for 8-bit transparency index 227 (E3h) the 4-bit equivalent will be 3 (3h) even copper instruction address. The second 8-bits are the LSB and are destined for an

odd copper instruction address.
After each write, the copper address is auto-incremented to the next memory position.

NextREG 76 (4Ch) — Layer 3 Transparency Index After a write to an odd address, the entire 16-bits is written to copper memory at once

Data Bits
Group Name R W7 6164 81211110 Description H D NextREG 104 (68h) — ULA Control
Transparency Index L] ® @ @ e 4-hitindex treated as transparent * Data Bits
Reserved {RJ0 000 Reserved, must be 0 0} Group Name 6548 2110 Description HD
* Soft reset defaults to 15 (Fh) Stencil Mode conrol ® Enable Stencil Mode' 0
Reserved Reserved, must be 0 0
NextREG 80 (50h) — MMU Slot 0 Control ULA Half Pixel Scroll ULA Half Pixel Scroll enabled? 0
Data Bits ULAplus Control ULAplus Enabled 0
Group Name R WZ161614 81211101 Description HD i pecorved ——— 0
MMU Slot 0 conirol mE e e e e e e e e BKRAMpage for address 0000h-1FFFh * o erm‘mw
* Default 255 (FFh) 5“79(%%"‘%“’2‘;"9‘"" mm il 0
Pages range from 0 to 223 on a fully expanded Next. A value of 255 (FFh) makes the ROM : Control for S(L+U) 1 Layer 0 +3 mix
become visible Output Control Eme Disable ULA output 0
1 When both ULA and Layer 3 are enabled, if either are transparent, the result is transparent
NextREG 81 (51h) - MMU Slot 1 Control otherwise the result is a logical AND of both colours
2 Setting may change
Data Bits
Group Name R WI7Z161614 8121110 Description HD
MMU Slot 1 Control EE 0 00 0 0 0 o o 3KRAM page for address 2000n-3FFFh @

* Default 255 (FFh)
Pages range from 0 to 223 on a fully expanded Next. A value of 255 (FFh) makes the ROM
become visible

ZX Spectrum Next — User Manual 269

Chapter 23 — IN, OUT and the Next Registers

The Next Registers

NextREG 105 (69h) — Display Control 1

NextREG 120 (78h) — Sprite Attribute 3 (Auto-ir

___DataBits ___ ___DataBits ___
Group Name R W7H815: 48 800 Description H'D : Group Name R wZH615 4 8 20N Description HD
Port 255 (FFh) Timex’ alias_m ® e 0 e e o Porl25 (FFh)alias Spite Allibute 3 mcbaaaaaaSem
Port 32765 (TFFON) D3alics mm @ ULA Shadow Displey Enable a Sprite patter 0 Use. Possible values = 010 63
Port 4667 (12380)D1ales mm @ Layer 2 Enable b Attribute 4 switch (0 = No, 1
(12sBh) g If b = 0 then the sprite is fully described by Attributes 0 to 3. The sprite pattern is an 8-bit
one identified by pattern a and is an anchor and cannot be made relative. Sprite display
behaves as if Attribute 4 = 0
NextREG 106 (6Ah) - Layer 1,0 (LoRes) Control It b = 1 then the sprite is further described by Attribute 4 that follows in NextREG 57 (39h)
Data Bits ¢ Visibilty Control (0 = Invisible, 1 = Visible)
Group Name RWZ 65747872 110 Description H D : NextREG 121 (79h) — Sprite Attribute 4 (Auto-ir
Féadas\an UlAplus paette ® o o e Radastan Palette Offset 0 Data Bits
fiset ® © ULAplus Palete Offset 0 ¢ Group Name R WZIBRE 418 230 Description HD
Radastan / Timex inferaction . Radastan — Timex DFILE switch' 0 & Sprte Attribute 4 miedcocbb a Senes
Radastan Memory Area Control Radasian Mode Enable 0 a For relative sprites: Indicales that the sprite patiern number is refative to the anchor's
po— - Reserved, mustbe 0 For normal sprites: Sprite's Y Coordinate MSB (See NextREG 54 (36h) for LSB)
b For normal and relative, composite type sprites indicates X direction Magnification:
1 When using Radastan mode, only half the space is used as opposed to Layer 1,0 thus, (00 = 1x, 01 = 2x, 10 = 4x, 11 = 8x)
only one DFILE is occupied -at either 16384 (4000h) or 24576 (6000h). Which location is For relative, unified type sprites its 0
used is determined by port 255 (FFh), where one can choose between DISP_FILET or . Fornormal and elative, composit type serfes indicates Y difection Magnicaton
DISP_FILE2 at the aforementioned addresses. If set, this bit inverts the location so it can (00 = 1x, 01 = 2, 10 = 4x, 11 = 8x)
switch between the two allowing Radastan mode to co-exist with a normal Layer 0 screen For relative, unified type spmes its0
d Relative Type Sprite indicator: 0 for Composite, 1 for Unified
NextREG 107 (6Bh) - Layer 3 Control For relative sprites contains the 7th patter bit if the sprite pattern is 4-bit
Data e For normal sprites contains the 7th pattern bit it the sprite pattern is 4-bit
P N . For relative sprites it's 1
roup Name 5.4 escription f 4-bit pattern switch: 1 if the sprite pattern is 4-bit otherwise 0
Layer 3 Priority Layer 3 on top of ULA Enable 0 {f,e} must not equal {0,1} as this combination is used to indicate a relative sprite. See
512 Tile mode Control Acivate 512 Tile mode’ 0 notes above
Reserved Reserved, must be 0 0 i NextREG 127 (7Fh) - User Register 0
Text mode Cortrol Text mode Enable 0
0 Palele 0 el
Layer 3 paltte Select - o i Group Name R w7615 4 8 2FI0! Description HD
1 Palette 1 User Register EE O 0000 0 0 o UseRegisler *
Aibute Entry Control DOEED Attribuls entry Disable Ui 7 Soft reset defaults 10 255 (FFh)
Layer 3 Size Control an 0 s 0
13 Size Conlr - ;
ayer 3 Size Gontro 1 80x32 CAUTION: NextREG numbers above 127 (7Fh) are inaccessible to the Copper
Layer 3 Control ume Layer 3 Enable 0

1 Ifthis bitis set, NextREG 108 (6Ch):DO0 changes meaning
2 Ifthis bit s set then the Layer 3 tilemap entries are only a single byte Tile ID and the attrib-
ute byte comes from NextREG 108 (6Ch) instead

NextREG 128 (80h) — Expansion Bus Enable

Data Bits

- Group Name R w7615 4181 20110¢ Description HD
NextREG 108 (6Ch) — Default Layer 3 Attribute* AFTER SOFT RESET (Copied inlo bils D4 firough D7) |
Data Bits Memory Cycles and ROMCS _ 'm'm @ Memory cycles Disable/ Ignore ROMCS __ m 0|
Group Name RW7 65 4 8 2 1 0 Description H D : /0 Cycles and IORQULA am @ 1/0 cycles Disable / Ignore IORQULA m0
1512 Tile mode is disabled ~ m ® ULA over Layer 3 0 Expansion bus Enable - . Expansion bus Enable m0
1512 Tile mode is enabled ~ m ® Bit 8 of the tle number IMMEDIATE
Rolate 90 Contor - o B T 5 & Memory Cycles and ROVCS _ w m D Memory cycles Disable/ Ignore ROVCS _ m 0
Y Wiirror Control n ° Y Mirror 0 1/0 Cycles and IORQULA am . 1/0 cycles Disable / Ignore IORQULA u0
X Mior Contol - o XNior 3 ; Expansion bus Enable ame Expansion bus Enable =0
Palefte Offset mEmecee Palefte Offset U { NextREG 129 (81h) - Expansion Bus Control
* Active if NextREG 107 (6Bh) D5 is set to 1 Dam B
ata Bits
NextREG 110 (6Eh) - Layer 3 Tilemap Base Address Group Name RW]ZI616:418 21110 Description HD
Data Bits 0:0.:35MH:
Group Name RWIZ161514:8 201110] Description HD 01 7MH
MAX CPU Speed when am H "
MSB of LayersTHemap bse W W ® @ o o o o (ffsetinto bank 5 Entered together with Expansion Bus is enabled” 170 14MHz
address in Bank 5 meo bits 6 and 7 11 28 M
= 00 Read always as 0 Propagate MIAX CPU Clockena. .m0 . Propagate MAX CPU Clockatall imes? w0
* Soft Reset default 44 (2Ch) - This is because the address is 27648 (6C00h) so the MSB is - - -
6Ch. But the stored value Is onlly the lower 6 bits so Its an offset into the 16K Bank 5. To | ; 0-DsROMCSsialefleg 1w @ ROMCS asserted on Expansion Bus
calculate therefore sublract 40h leaving you with 2Ch *Hard reset defaults to 00
The value written is an offset into the 16K Bank 5 allowing the tilemap to be placed at any 1 Currently fixed at 00
multiple of 256 bytes. 2 Applies even when the Expansion Bus is disabled
Writing a physical MSB address in 64 (40h) - 127 (7Fh) or 192 (COh) - 255 (FFh) range is
permined 064 (400 ~127 (7Fh) (G0R) =295 (FF) 1802 S\ 1REG 130 (82h) - Internal Port Decoding Control 1/4
The value read back should be treated as having a fully significant 8-bit value. Data Bis
NextREG 111 (6Fh) — Layer 3 Tile definitions Base Address Group Name RW{7 654821 0 Description HD
Deta Bits Enable Timex 00 ® PorlFFh 1
Group Name RWZI6161418 SUH10) Description HD E"as:e :agl”ha - : : < hd EO: ;?FE: 1
n ® @ @ o o o Ofisetinto bank 5 - Entered together with nable Next Memory Paging 0l
S8 ofLayer 3 Tl deiniions
base acress in Barl mee bits 6 and 7 Enable +3 Paging nm D Port 1FFD 1
Reads al 0 Enable +3 Floating Bus L] 0} +3 Floating bus 1
" {010 ST Enable DVA] 0 Port 681 (OMA) [
* Soft Reset default 12 (0Ch) — As MSB of the larger address thafs really 19456 (4C00) S0 "Engbie Kempsion Por 1 2alie Por 171 (Kempsion /WD 1) T
see the previous entry for the method of calculation.
The value written is an offset into the 16K Bank 5 allowing tile definitions to be placed at Enable Kempston Port 2 ume Port 37h (Kempston / MD 2) 1
any multiple of 256 bytes ;
Writing a physical MSB address in 64 (40h) — 127 (7Fh) or 192 (COh) - 255 (FFh) range is. : NextREG 131 (83h) — Internal Port Decoding Control 2/4
permitted
The value read back should be treated as having a fully significant 8-bit value: Data Bits
Group Name R w7615 4181 20910: Description HD
NextREG 117 (75h) — Sprite Attribute O (Auto-incrementing; Enable dvMMC] ® Port E3h (divMMC Control) 1
Data Bits Enable Muliface 00 ® ! Mullface (wo variable ports) 1
Group Name RW[7 6 654872 1.0 Description HD i Enable kC LIL] . Ports 103Bh, 113Bh (1C) 1
X Coordinate LSB me e e @ e o e e SpyieXCoordinate LSB Enable SPI nm . Ports E7h, EB (SPI) 1
VSB s in NexiREG 55 (37h)'s DO Enable UART um ° Ports 1338h, 1438, 1538h (UART) 1
5 - - ; Enable Kempston Mouse 00 D Ports FADFh,FBDFh,FFDFh mouse 1
NextREG 118 (76h) — Sprite Attribute 1 (Auto-incrementing) Enable Sprites e Ports 570,581 303N (Spries) 7
Data Bits Enable Layer 2 ame Port 1238 (Layer?) T
Group Name RWI716161418 20110] Description HD -
Y Coordinate LSB me oo o e e e e SpieYCordinaelSs NextREG 132 (84h) - Internal Port Decoding Control 3/4
MSB is in NextREG 57 (39h)'s DO Data Bits
) : : Group Name R WIZI616 4181 20010F Description HD
NextREG 119 (77h) — Sprite Attribute 2 (Auto-incrementing) Enable AY o m ‘e Ports FFFDI, BFFDN (AY) T
Data Bits Enable Soundrive DAC Mode 1 m m @ Ports OFh, 1Fh, 4Fh, 5Fh (DAC SD1) 1
Group Name RW7 676482 10 Description H D : "Enable Soundrive DAC Mode 2_m m D Ports F1h, F3h, Foh FBh (DAC SD2) 1
Sprite Atribute 2 meeeedcb a Senles Enable Profi/Covox Stereo DAC m m D Porls 3Fh, 5Fh (DAC stereo-Profi/Covox) 1
a For relative sprites: Indicates that e is relative to the anchor's palette offset Enable Covox Stereo DAC am 3 Ports OFh, 4Fh (DAC stereo-Covox) 1
For normal sprites: Sprite's X Coordinate MSB (See NextREG 53 (35h) for LSB) Enable Penlagon/ATMDAC _ m . Port FBN (DAC mono-Penta,) (SD2 of) T
b 90° Clockwise Rotation Control (0 = No, 1 = Yes) Frable Covo(6S Mo DG m o T e e i
¢ Vertical Mirror Control (0 = No, 1 = Yes) /GS Mono ort B3 (DAC mono-GS/Covox)
d Horizontal Mirror Gontrol (0 = No, 1 = Yes) Enable SPECArum Mono DAC_ m m @ Port DFh (DAC mono-SPECrum) 1
e 4-bit palette offset
Rotation is applied before mirroring,
270 ZX Spectrum Next — User Manual

The Next Registers Chapter 23 — IN, OUT and the Next Registers
NextREG 133 (85h) — Internal Port Decoding Control 4/4 (MSB) NextREG 145 (91h) — PI GPIO Pin Output Enable 2/4
Data Bits Data Bits
Group Name R W7Z161614 8121110 Description HD } Group Name RWI7Z16151418 20110! Description HD
Enable ULADIUs =n ® Porls BF3Bh, FF38h (ULAplus) ~ MSB 1:Ping . ® Enable 0
Pin9 L e Enable 0
NextREG 134 (86h) — Expansion Bus Port Decoding Control 1/4 Pin 10 M ° Enable 0
Data Bits Pin 11 . D Enable 0
Group Name RWI716161418 20110] Description HD:Pni2 = D Enable 0
Enable Timex ® PortFh miiPni3 . D Enable 0
Enable Paging @ Port7FFDR w1iPnid = D Enable 0
Enable Next Memory Paging L Port DFFDh m1:Pini5 ame Enable 0
Enable +3 Paging D Port 1FFDR wi 3
Enable +3 Floating Bus Y 3 Floaling bus w1 : NextREG 146 (92h) — PI GPIO Pin Output Enable 3/4
Enable DMA ° Port 687 (DMA) i) Data Bits
Enable Kempston Port 1 D Port 1Fh (Kempston / MD 1) w1 i Group Name RWI7Z161514:8 20110! Description HD
Enable Kempston Port 2 ° Port 37h (Kempston / VD 2) wi:Pini6 = ® Enable 0
Pin 17 u ° FEnale 0
NextREG 135 (87h) — Expansion Bus Port Decoding Control 2/4 Pin 18] ° Enable 0
Data Bits Pin19 L . Enable 0
Group Name 716151413 209101 Description HD P20 [D Enable 0
Enable GVMNIC ® Porl E30 (ivIMC Control) w1 Pin2l . D Enable 0
Enable Muliface ® Wullface (wo variable ports) w22 . D Enable 0
Enble IC D Porls 1038, 1138h (°C) miiPn23 mme Enable 0
Enable SPI D Porls E7h, EB (SP)) wi ;
Enable UART . Ports 13380, 14380, 1538 (UART) w 1 : NextREG 147 (93h) — PI GPIO Pin Output Enable 4/4
Enable Kempslon Mouse ° Porls FADFh,FBDFh FFDFh mouse] Data Bits
Enable Sprites ° Ports 57n,5B1,3038h (Spriles) =1 : Group Name [71615141812110; Description HD
Enable Layer 2 . Port 1238h (Layer?) mi:Pin24 ® Enable 0
Pin 25 o Enale 0
NextREG 136 (88h) — Expansion Bus Port Decoding Control 3/4 Pin 26 ° Enable 0
Data Bits Pin 27 D Enable 0
— B 5.0 NextREG 152 (98h) - PI GPIO Pin State 1/4
Enable DAC Mode 1 @ Porls OFh, 1Fh, 4Fh, 5Fh (DAC mode 1) @ 1 Data Bits
Enable DAC Mod 2 . D Porls F1h, F3h, F9h FBh (DACmode2) _ m 1 : Group Name R w7615/ 418120110: Description HD
Enable Profi/Covox Stereo DAC ‘@’ ° Ports 3Fh, 5Fh (DAC stereo-Profi/Covox) m 1 : Pin0 L) ® Data 1
Enable Covox Stereo DAC] ° Ports OFh, 4Fh (DAC stereo-Covox) m1:Pinl L) o Data 1
Enable Pentagon/ATM DAC [l ° Port FBI (DAC mono Pentagon) (SD2off) 'm 1 : Pin2 = . Data 1
Enable Covox/GS Mono DAC " e Port B3h (DAC mono GS/Covox) mi:Pin3 L) ° Data 1
Enable SPECGrum Mono DAC m m Port DFh (DAG mono SPECdrum) m1:Pind = . Data 1
Pin 5 . ° Dala 1
NextREG 137 (89h) — Expansion Bus Port Decoding Control 4/4 (MSB) PinG M ° Data 1
Data Bits Pin 7 ame Data 1
Group Name RWI716161418 20110] Description HD
Enable ULADIUS) ® Ports BF3Bh, FF3Bh (ULApIus) w1 : NextREG 153 (99h) — PI GPIO Pin State 2/4
Data Bits
The Internal Port Decoding Enables always apply. Group Name R W MEEEORERSRSRIRG Doscription H.D
When the Expansion Bus is enabled, the Expansion Bus Port Decoding Enables Pin8 - S g
are logically ANDed with the Internal Enables. A result of 0 for the corresponding : -"¢ L o1 Data 0
bit indicates the internal device is disabled. If the Expansion Bus is enabled, this Pin 10 B e Data 0
allows /0 cycles for disabled ports to propagate to the Expansion Bus, otherwise : Fin 11 " hd Data 0
corresponding I/O cycles to the Expansion Bus are filtered. Pin 12 L © Data 0
Pin 13 . D Dala 0
; Pin 14 . D Dala 0
NextREG 138 (8Ah) — Expansion Bus /O Propagate Control T ame o 3
DataBits
Group Name RW7 665482 1 0 Description H.D : NextREG 154 (9Ah) — PI GPIO Pin State 3/4
Port FER ® Propagate port FEN 10 Cycles ui Data Bits
Port 7FFDh Propagate port 7FFDN /0 Cycles w0 Group Name RWIZI61514 8 20110 Description HD
Port DFFDh Propagate port DFFDh 1/0 Cycles m0:Pinib = ® Data 0
Porl IFFDh Propagate port 1FFD /0 Cycles mo: 7 L o I Daia 0
Reserved 0000 Reserved, must be 0 Fin 18 = Q L) 0
. Pin 19 . D Dala 0
If any of the bils are set, /O cycles for the corresponding ports are othe Ex i Bigg A 5 et 0
pansion Bus when the Expansion Bus is enabled. If the internal port decode is stil active,
any response sent by devices on the Expansion Bus will be ignored Pin 21 u . Data 0
This allows external peripherals to monitor changes in state inside the ZX Spectrum Next Pin 22 . D Dala 0
Port FEN is treated specially, so that external keyboards can be attached. When its propa- : pin 23 aae Daia 0
gate bitis set, the value read from the bus will be mixed into keyboard reads on port FEh
NextREG 140 (8Ch) - Alternate ROM NextREG 155 (9Bh) - PI GPIO Pin State 4/4
Data Bits ___DataBits ___
Group Name, R WIZ161514 81211101 Description H D ;_Group Name RW[7/65 4821 0 Description HD
AFTER SOFT RESET (Copied into bits D4 through D7)]: _Pin 24 © Data 0
RO 0 (128K) Lock Enable © RO 0 Lock Enable; mQf; Pin25 o D 0
ROM 1 (48K) Lock Enable ® ROM 1 Lock Enable mo0:rin26 . Data 0
"ALT ROM Availability Swilch . 'ALT ROM visible ONLY during writes w0 fn2l . Data 0
ALT ROM Enable D ALT ROM Enable w0 Writes to the above registers only propagate to the PI GPIO when the corresponding pin
MMEDIATE has its output enabled by NextREG 144 (90h) to 147 (93h)
ROM 0 (128K) Lock Enable D RO 0 Lock Enable; w0
ROM 1 (48K) Lock Enable 0 ROM 1 Lock Enable. w0 : NextREG 160 (h) - Pl Peripheral Enable
ALT ROM Avalabilty Switch D ALT ROM visible ONLY during writes w0 Data Bits
ALT ROM Enable mme ALT ROM Enable w0 Group Name R W716151418120110; Description HD
Enable SPI [@ Enable SPIon GPI0 7,89,10,11 * 0
NextREG 144 (90h) — PI GPIO Pin Output Enable 1/4
Reserved Reserved, must be 0
Data Bits Enable 120 Enable 12 on GPIO 2,3 * 0
Group Name RWI716161418 20110] Description HD —
Pin0 - S I ETT] 0ing Connect Rx o GPI0 15, Tx o GPIO 14 7
Pin 1 © Pin 1 cannot be enabled 0 Connect Rx o GPI0 14, Tx to GPIO 152"
Pin2 ° Enable 0 : Enable UART Enable UART on GPIO 14,15 * 0
Pin3 . Enable 0 £ Reserved Reserved, must be 0
Pin 4 ® Enable 0 % Overrides GPIO Enables
Pin5 . Enable 0: 1 For communication with Pi HATS
Pin6 Enable 0: 2 For communication with Pi
Pin7 Enable 0
ZX Spectrum Next — User Manual 271

Chapter 23 — IN, OUT and the Next Registers Other port addresses

NextREG 162 (A2h) - PI I2S Audio Control
Data Bits

Mute L control -m [Mute left side

Group Name RWIZ16751418 20110] Description HD
Redirect to EAR nn ® Direct IS audio o EAR on port 0+FF 0
Slave Mode Control =« B ® Slave mode (PCM_CLK, PCM_FS extemal) | 0
Mute R control un . Mute right side 0
0
0

0 PCMD_OUT to Pi, PCMD_IN from Pi (Hats)
Audio flow direction L) | - "

PCMD_OUT from Pi, PCMD_IN o Pi (pi)

| |
i
Reserved . o] Reserved, must be 0

128 Disabled

N 128 is mono, source R
125 state (H
1 128 is mono, source L

IS is stereo

* Soft reset sets a default of 00
NextREG 163 (A3h) - Pi0 IS Clock Divide (Master Mode)
Data Bits
Group Name R W71616:4 81201101 Description HD
Clock Divide EE O 0000 0 e o 3hivle (255 *
Clock Divide sets sample rate when in master mode: Clock Divider = 538461+

SampleRateHz - 1
* Soft reset defaults to 11

Other port addresses

As seen in the table at the beginning of this chapter and the discussion about decoding,
all even addresses refer to ULA functions. You may find yourself in need read the key-
board directly for the hardware. As mentioned, part of the ULA's function is to return the
state of keypresses. The keyboard is divided in 8 half-rows of 5 keys each, each half-row
having it's own port address®.

IN 65278 reads the half-row CAPS SHIFT to V
IN 65022 reads the half-row A to G

IN 64510 reads the half-row Qto T

IN 63486 reads the half-row 110 5

IN 61438 reads the half-row 0 to 6

IN 57342 reads the half-row Pto Y

IN 49150 reads the half-row ENTER to H

IN 32766 reads the half-row SPACE to B

(These addresses are calculated as: 254 + 256*(255 - 2") as n goes from 0 to 7).

In the byte read in, bits DO to D4 stand for each of the five keys in the given half row — DO for
the outside key and D4 for the one nearest the middle. The bitis 0 if the key is pressed and
1 if it is not. D6 on each is the value at the EAR socket.

For example to find the value of the CAPS SHIFT key, you can do:

FRIMNT XIM 55275 & E1

Writing a value using OUT to the ULA (Port 254 / FEh) controls other hardware as well. You
can drive the beeper with D4, the MIC socket with D3 and modify the BORDER colour us-
ing bits DO,D1 and D2. For example to make the border a nice magenta colour you can:

ouT 254, HEQ000@0all

Port addresses 32765 (7FFDh), 8189 (1FFDh) and 57341 (DFFDh) control the extra
memory. Executing an OUT to these ports from NextBASIC without knowing the ramifica-
tions will nearly always cause the computer to crash, losing any program and data. These
ports are write-only, i.e. you cannot determine the current state of the paging by an IN in-
struction. This is why the BANKM system variable is always kept up to date with the last
value output to this port. Check Chapter 24 — The Memory where we examine the banking
system in detail.

Writing to port 65533 (FFFDh) will select a particular PSG register (on the AY sound chip)
and writing to port 49149 (BFFDh) will send a particular value to that register. Reading

3 Extended keys are combinations of the other keys, so they need to be read by the specific port that produces it.
For example EXTEND is CAPS SHIFT + SYMBOL SHIFT etc.

272 ZX Spectrum Next — User Manual

The ZX Spectrum Next Hardware Ports List Chapter 23 — IN, OUT and the Next Registers
from port 65533 (FFFDh) returns the value stored in the selected register. Judicious use of
these two registers can allow sounds to be generated while NextBASIC gets on with some-
thing else.

The section that follows describes all ZX Spectrum Next — specific hardware ports' data
bits functions; addressing them is via OUT commands.

The ZX Spectrum Next Hardware Ports List

NOTE Audio
The following Hardware Ports are not listed: Port 65533 (FFFDh) - PSG Control and Register Select
254 (FEh), 3765 (7FFDh), 8189 (1FFDh), 57341 (DFFDh),
48955 (BF3B), 4667 (123Bh) and 65339 (FF3B) ___ DataBits
as they're already documented elsewhere in this user manual or are provided as extra g'lwlpd'\éame[ST RWI7:6:5:4:8:211.0 \?Ts”‘p“?”m I
compatibility features. Ports are arranged according to their function elected Register Stalus B 0eeesoeee Ra “E‘”;e oted register of active
00 Reserve
- 11 PSG 0 made active"
Input / Output / Legacy Video Active PSG Control L]
1.0 PSG 1 made active
Port 255 (FFh) — Timex SCLD ULA Extensions" 0 1;PSG 2 made active
Data Bits 1 Reserved, must be 1
Group Name RW7 6 65432 1.0 Description 1 Reserved, must be 1
00 0 Std: DFILEO-+ COLOURFILEO @ 4000h 1 Reserved, must be 1
Stereo Channel Control® L]
00 1 Shd: DFILET+COLOURFILE! @ 6000h . Right Channel Enable
Screen Mode Select LI} - 5 £
0 10 HC: DFILE @ 4000h, COLOURFILE @ 6000h . Left Channel Enable
110 HR: odd DFILE @ 4000h, even DFILE @6000n 1 : Reserved, must be 1
000 BRIGHT Black on White Register Select? coee 110000 selects a register from the Active PSG
001 BRIGHT Blue on Yellow * Default value
010 BRIGHT Red on Cyan ' IfNR8 (08h):D1 = 1 and D7 through D4 are not 0000
011 * BRIGHT Green on Magenta
HiRes Colour Scheme Select m m o Port 49149 (BFFDh) - PSG Data
100 BRIGHT Magenta on Green
Data Bits
1.01 BRIGHT Cyan on Red Group Name RW{7 6543210 Description
110 BRIGHT Yellow on Blue Selecled Regisler Stalus'’ W e e e e e e e e Vaeinselhled regisker o alie PSG
PR * BRIGHT White on Black Active PSG Register Data me e e e e e e e Vaueluwielhe egister
Frame Interrrupt Control "m e ULA Frame Interrupt Disable " Readable if machine type is ZX Spectrum Next or ZX Spectrum +3 only.
Timex MU Select mme Timex Horizontal MU Bank Select Ports 2511, 2232, 319, 241+, 63° (FBh, DFh, 1Fh, F1h, 3Fh) - DAC Channel A (Left)
Only readable if NR 8 (08h):D2 = 1 Data Bits
' Not implemented on the ZX Spectrum Next —Daabls
otimplemented on the 2% Spectrum Nex Group Name RWTI6T5 4 8 21170 Description
Port 64479 (FBDFh) — Kempston Mouse X position DAG output LJO O 000000 bl
Data Bit All DAC originate from various ZX Spectrum peripherals and compatible models and are
——JaaBits kept for compatibility. DACs are enabled by setting NR 8 (08h):D3 = 1
Group Name RW76543 2 1.0 Description Found in Soviet Penta/ATM
Current X Position m o000 0000 il 25 Found in SpecDRUM ™

Found in SoundDrive 1
Found in SoundDrive 2
Found in Profi Covox

Returns the current X position of the mouse 0 - 256.
The value wraps from 255 to 0 on a right movement and from 0 to 255 on a left movement.

Port 65503 (FFDFh) — Kempston Mouse Y position

Ports 179", 152, 243% (B3h, OFh, F3h) - DAC Channel B (Left)

Data Bits

Group Name RW[76154 32 10 Description ___ DalaBits

Current Y Position m eeee e e e e ikl 255 ;{Wp Name 1 6549210 DESC”""‘W‘ :
Returs the current Y position of the mouse 0 - 255 C output p OO0 0O OOOEIEILINCS
The value wraps from 255 to 0 on a downward movement and from 0 o 255 on an upword All DACs originate from various ZX Spectrum peripherals and compatiole models and are
movement kept for compatibility. DACs are enabled by setting NR 8 (08h):D3 = 1

Found in GS Govox
Found in SoundDrive 1 and Covox
Found in SoundDrive 2

Port 64223 (FADFh) — Kempston Mouse Button Status

Data Bits
Group Name. RW 7 6543 2 1 0 Description Ports 1797, 792, 2493 (B3h, 4Fh, Foh) — DAC Channel C (Right)
® Left Mouse bution status Data Bits
Mouse Button Flags' n e Right Mouse buton satus Group Name .
. Middle Mouse button status DAC output me oo e e e e e dhisamplevaue
Mouse Wneel Position® = ecee Mouse Wheel position (Wraps)

All DAC originate from various ZX Spectrum peripherals and compatible models and are
kept for compatibility. DACs are enabled by setting NR 8 (08h):D3 = 1

Found in GS Govox

Found in SoundDrive 1 and Covox

Found in SoundDrive 2

' Pressed = 1, Not Pressed
2 Value 0 to 15. Upwards scroll 15 to 0 — wraps to 15; Downards scroll 0 to 15 — wraps to 0

Port 31 (1Fh) — Kempston Joystick 1 / Megadrive Pad 1 Status

Data Bits 1 oo 958 - ;
Group Name RWI7T675 4.3 27170 Description Ports 2511, 2232, 95° (FBh, DFh, 5Fh) — DAC Channel D (Right)
e Right Data Bits
o Lot Group Name RW7165 43 210 Description
Joyslck Movemen! Salus W DAC output me oo oo e e e shilumle
o All DAC originate from various ZX Spectrum peripherals and compatible models and are

kept for DACs are enabled by setting NR 8 (08h):D3 = 1

. Fire 1 (MD = 0/2) 1 Found in Soviet Penta/ATM and SoundDrive 2
_ 2 Found in SpeoDRUM™
Joystick Button Status i [E2(MD = BY) 2 Found in SoundDrive 1 and Profi Covox
. MD AX (0 on Kempstor)
. MD Start/Mode (0 on Kempston) Storage

Kempston joysticks and Megadrive Pads share ports but MD pads use more bits
Port 227 (E3h) — divMMC Control

Port 55 (37h) — Kempston Joystick 2 / Megadrive Pad 2 Status

___ DataBis
____DataBits ___ Group Name RW[7 654321 0 Description
Group Name RW776:643 2 10 Description RAM bank Control . @ © o o NMemory Bank Select for 8K - 16 K region
Right MapRAM Conirol® n e MapRA Enable
Left ConMEM Conlrol? mme ConMEM Enable
Joystick Movement Status ~ m
. Down T Can only be set once. Only a power cycle can reset it. NR 9 (09h):D3 can be set to 1 in or-
. " der reset this bit. When set, it replaces the expected esxDOS ROM with civMMC RAM
bank 3
. Fire 1 (MD = C/2) 2 Can be used to manually control divMMC mapping. When set it maps in divMMC:; OK - 8K
o T Feamw—sy will contain the esxDOS ROM, 8K - 16K will contain the selected divMMC bank (from DO
Joystick Button Status] L - — through D3)
. MD A/X (0 on Kempston) The divMMC automatically maps itself in when instruction fetches hit specific addresses in
the ROM. When this happens, the esxDOS ROM (or divMMC bank 3 if mapRAM is set) ap-
L MD Start/Mode (0 on Kempston) pears in OK - 8K and the selected divMMC bank appears as RAM in 8K - 16K.
Kempston joysticks and Megadrive Pads share ports but MD pads use more bits DivMMC automapping is normally disabled by NextZXOS. See NR 6 (06h):D4

ZX Spectrum Next — User Manual 273

Chapter 23 — IN, OUT and the Next Registers

The Expansion Bus

Communication DMA
Port 4155 (103Bh) - I°C SCL Port 107 (6Bh) — zxnDMA
Data Bits Data Bits
Group Name RW[716154 8 2 1.0 Description Group Name RW[71654 32 1.0 Description
I2C Clock Line Control " ® State of the Clock Line 2xDMA Control mme e 0 0 0 0 o e xDAcommandvalue

Port 4411 (113Bh) — I°C SDA

Data Bits

Group Name RW7166:4:3 2 1.0 Description

The xnDMA implements a subset of the Zilog Z80DMA architecture while adding a burst
mode primarily used to play digital music. NR 6 (06h):D6 can be used to select a Z8ODMA
ps: pecnext. the im:

I2C Data Line Control LIS State of the Data Line.

Layer 2 Graphics

Port 231 (E7h) - SPI CS*

Port 4667 (123Bh) — Layer 2 Control

Data Bits

Data Bits

a N A R o " Group Name RW 7 654 832 1 0 Description
roup Name escription Memory Write Mapping Conirol m m @ Enable Mapping for Memory Writes
5D Card 0 Select an Select SD Card 0 il Pomg LI U
SD Card 1 Select Py Select SD Card 1 Layer 2 Display Control am L] Enable Layer 2 Display
PISPI0 Select 5 Select Fi SP1 0 on e GFIO pins Memory Read Mapping Conrol m m . Enable Mapping for Memory Reads
PISPI 1 Select’ D Select Pi SPI 1 on the GPIO pins ot 0 Map Active Layer 2
FPGA Flash Select ° Select the FPGA Flash ROM (Infernal Use Only) ontro - 1 Map Shadow Layer 22

* The SPI port's data lines are active low (0 to select) Reserved - 00 Reserved, Must be 0

!

Pi GPIO must be configured for SPl. See NR 160 (A0h) 5 stk of oy 21 o baltom 6K

Five devices are connected to the SPI interface. The ZX Spectrum Next must be

SPI master.

Only one of DO through D3 can be 0 at one time. If not, the result will be no device se-
lected

Port 235 (EBh) - SPI Data

0
01 ' Second 16K of Layer 2 inthe bottom 16K
Layer 2 Map Type Select o

(1]
1 Third 16K of Layer 2 in the bottom 16K
First 48K of Layer 2 in the bottom 48K

Data Bits
Group Name RW7 654 3 2 1.0 Description
SPI Dala mE e e e 0 e e e e ReadWil data lo the selected SPI device

Port 5435 (153Bh) — UART Control

Data Bits

Group Name RW7 654 3 2 1.0 Description
Prescalar MSB Value m ® @ e Baud rale prescalar MSB
Prescalar MSB Write Enable m m! o D2:D0 write enable
0 ESP UART Select
UART Select m
1 Pi0 UART Select"

* PiGPIO must be configured for UART. See NR 160 (AOh)

Port 4923 (133Bh) — UART Transmit

* Memory pointed at by NR 18 (12h) or NR 19 (18 h) can be mapped into the lower 16K or
48K if Layer 2 memory mapping is enabled in D2 and/or DO. This mechanism is separate
from MMU and will overlay the paging state set by MMU but only if the memory access
type matches the enable condition (Read-only, Write-only)

2 SeeNR 18 (13h)

The Expansion Bus

The Expansion Bus is found in the back of
the ZX Spectrum Next and exposes its CPU
to the world. As it too gets addressed by IN
and OUT commands, it is listed below:

Data Bits
Group Name RW7 65 43 2 1.0 Description A1l 28 | 28 Reserved
Read bulfer stalus flag . ® Sel il read bulfer conlains received byles —
Transmilter busy flag u @ el he lransmilter is busy sending a byle A9 27 | 27 A10
Read bufer full flag . o Setifthe read buffer is full] BUSACK 26 | 26 A8
Data Transmit WMo e e e o e e o Sendabyteiothe connected device’ -
* There is no transmit buffer so the program must make sure the last transmission is com- ROMCS 25 | 25 RFSH
pleted before sending another byte. _
A4 24 | 24 M1
Port 5179 (143Bh) — UART Receive _—
- A5 23 | 23 NC
Group Name RW7166:4:8 2 1.0 Description
Data Receive W e 0 0 e e e e e Redsabyliom e eceive buffer A6 22 | 22 NC
4001 LL L 2t |z AT
17 bi -bit prescalar valu SEGET
*If the buffer is empty 0 s returned. RESET i& NC
' The UART' baud rate is determined by the prescalar according to this formula: 4
Proscalar — o/ baurate, Py ~ Sydte lock for NR 17 (111) BUSREQ® 19 | 19 WR
Example: If the system is on a Digital display, NR 17 (11h) indicates that F.,, = 27000000 an
The prescalar for a baud rate of 115200 is 27000000 / 115200 = 234 NC 18 | 18 RD
w
Sores g NC 17 | 17 TORQ -
El Reserved 16 | 16 MREQ b
Port 12347 (303Bh) — Sprite Slot Select'! o - [<2)
o
—— 2 ROMCS 15 | 15 HALT =
Group Name RW71654:3 2 1.0 Description NMI
Sprite Collision flag [l ® Setif any two displayed sprites collide on screen GND 1 4 1 4 Wl
Wax. No. of Spriles per ine flag m @ Selil maximum no. of sprles per line exceeded IORQULA 13 | 13 INT
Current Paller Index Selec M@ @ @ @ @ @ @ Sels Curtent Paltern Index -t
Current Sprite Index Select' m e e e e e e e ScisCurenSpie (0-127) A3 12 12 D4
* Reading the port clears all flags T T
' The current sprite and pattern index are separate quantities internally A2 11 11 D3
2 The pattern index is 6-bit in bits DO through D5 and selects pattern 0 - 63 in the pattern T
RAM. Each pattern is 256 bytes long. D7 can be used to offset 128 bytes halfway through At 10 | 10 D5
the patter; this accommodates 4-bit sprites whose patterns are 128 bytes in size. A0 TT D6
Port (57h) — Sprite Attributes - r
Data s CLK 8 | 8 D2
Group Name RW7166:4:3 2 1.0 Description
Atribute Data me oo oo e e e Al GND 7 7 D1
Writes the current sprite’s attributes. Each sprite has either 4 or 5 attributes and after all are GND 6 6 DO
written, the current sprite pointer is advanced to the next sprite. The pointer wraps from 1 -
127100 Key 5[5 Key
Port (5Bh) — Sprite Pattern +9v (PSU)5 4 4 ROMCS
Data Bits — T
Group Name RW7166:4:3 2 1.0 Description +5v 3 3 D7
Pattern Data me oo e 00 o o PaernDala T A | A
Writes a byte to the current pattern address and advances the current address by one. The A2 2 2 M3
pattern address is changed by writing the pattern index in port 12347 (303Bh). A pattern A4 1 1 A15
index indicates the start of a 256-byte range of data used to define an 8-bit sprite patterm
or a 128-byte range of data use to define a 4-bit sprite pattern. .
The ZX Spectrum Next Expansion Bus
4 BUSREQ is Active High
5 This pin receives the unregulated power from the PSU line. If you plug a higher voltage PSU, that voltage will be

present at that pin and may damage your peripherals

274

ZX Spectrum Next — User Manual

/i Chapte
r

24

Th
o
Memo
ry

Chapter 24 — The Memory Overview

The Memory

Overview

In previous chapters, we talked about binary code, bytes, words and long words. We also
discussed strings, floating point and integer numbers. It's time to go into more detail and
explore how your computer stores information we put into it.

The kind of data we're processing makes absolutely no difference to the computer.
Whether it's music, a game or a document, it ends up as a series of ones and zeros organ-
ised as bytes and stored in memory. We can rely on NextBASIC to manage that informa-
tion or we can do it ourselves as long as we know how!

The ZX Spectrum Next is an 8-bit computer with a 16-bit Address Bus. That means that it
stores and manipulates information in 8-bit bytes, and can see at most 65536 of these
bytes at one time. Hold onto this information for now as it's important.

ROM and RAM

Memory can be categorized into two kinds: ROM and RAM. ROM (read-only memory)
cannot be written to whereas RAM (random access memory) can be both read and writ-
ten. RAM is where things like the program and display contents are stored because they
can change while the computer is running. ROM can be used to hold something perma-
nent like the NextBasic interpreter or NextZXOS. You may have picked up on the discus-
sion of the ROM earlier and may have been wondering how we can load a ROM from a file
as described in various places around this book, when ROM is supposed to be perma-
nent and read-only (see for example Chapter 7).

The truth of the matter is that, although the ZX Spectrum Next contains a physical ROM
chip, this has nothing to do with the ZX Spectrum Next's operation. The physical ROM is
used to configure the Xilinx Spartan 6 FPGA and a small amount is used to store a pro-
gram that configures the machine on boot. The ZX Spectrum Next itself only sees RAM
memory supplied by up to four 512K SRAM chips. The unexpanded model has two chips
present for a total of 1024K of memory and the expanded model has four for a total of
2048K memory (See Chapter 22 on how to upgrade the RAM to the maximum possible).
The ROM contents are loaded into a portion of this RAM and then the hardware is in-
structed to make that portion read-only. So after the machine boots, those areas of RAM
behave just like ROM because running programs cannot change anything stored there.
This reproduces the behaviour of the original Spectrums which did use physical ROMs to
store the basic interpreter. In other words, for the purposes of NextBASIC and NextZXOS
the ZX Spectrum Next indeed has ROM.

The Memory Map

In the introduction of this chapter we talked about how the ZX Spectrum Next has a 16-bit
Address Bus and how this fact means the computer can see 65536 bytes (64 Kilobytes) of
memory, a figure that includes both ROM and RAM. That is enough to generate the obvi-
ous question: But my computer has 16 (or 32) times as much memory, what's the point of
having it? And you would be absolutely right to ask this!

The answer to that question is that the computer uses a memory access technique known
as bank switching. In this technique there's a distinction between the maximum address-
able memory (the amount of memory that the CPU can see, ie 64K in our case) and the
amount of physical memory in the system. In the ZX Spectrum Next's case, the physical
memory is divided into equally sized portions called banks and the 64K of memory that
the computer can see is also divided into the same sized portions called slots. A virtual
map of sorts is constructed that tells the hardware what physical memory bank appears in
each of the 64K's slots. We shall refer to this virtual map as the memory map. Whenever in-
formation located in physical memory is required, the specific physical bank that holds it is
entered into the memory map in one of its slots so that the CPU can see the bank in the
slot's address range. Paging in the new bank replaces whatever was there before be-

276 ZX Spectrum Next — User Manual

Memory Management Chapter 24 — The Memory

cause the CPU is given a new window in to a different bank in physical memory. This way
the usable physical memory can far exceed the memory the CPU can normally see while,
at the same time, older software is completely unaware and will continue to run properly
without performing any bank switching.

Memory Management

There are two banking schemes employed in the ZX Spectrum Next: Standard and
MMU-based banking. The Standard scheme is inherited from the +3 and the other 128K
Spectrum models. The MMU scheme co-exists with the Standard scheme but it is unique
to the ZX Spectrum Next.

ROM RAM
16K 16K 16K 16K
00000 | 416384 32768 | 449152 65535
®6000h ®.4000h T8000n Coooh FrEEe®

Figure 53 — Standard (NextBASIC) memory map

As you can see, in the memory map NextBASIC uses, the available 64K of addressable
memory is divided into four slots of 16K each with the bottom slot always occupied by
ROM. Standard banking, inherited from prior Spectrum models, selects which 16K ROM
is visible in the bottom 16K slot (addresses 0to 16383) and which 16K RAM bank is visible
in the top 16K slot (addresses 49152 to 65535).

The Spectrum +3 introduced a new, so called, AllRam mode that could place a limited se-
lection of arrangements of four 16K RAM banks into all four slots. This was not widely used
and is often forgotten by programmers who mostly target the 128K Spectrum models prior
tothe +3. A good example of AlRam mode is running CP/M, that requires RAM at the bot-
tom of the address map.

There is a total of four 16K ROMs to select from (inherited from the +3) and a total of 48
16K RAM banks available (112 in 2048K ZX Spectrum Nexts). If you make a quick calcula-
tion, that accounts for 832K in the unexpanded ZX Spectrum Next. The remaining portion
of the 1024K is allocated to other uses, most notably to divMMC memory. The NextZXOS
Startup menu reports available RAM only, which will be either 768K or 1792K.

The Standard banking scheme is controlled by hardware I/O ports (covered in the previ-
ous chapter) and via the BANK command and its variants which we will examine soon.

The MMU (memory management unit) scheme is diagrammed below. It is much more
flexible in that it can map any 8K bank of physical RAM into any 8K slot of the CPU's ad-
dressable memory.

g 8192 24576 240960 57344
% 2000h 6000h AOCOh 000N

MMUO _|MMUT_ |MMUZ2 IMMUS__ |MMU4_ IMMUS _ |MMUE IMMU7

500000 16384 532768 g49152 65535,
0000h 4000h 8000h coooh FFFFh

Figure 54 — MMU based memory map

ZX Spectrum Next — User Manual 277

Chapter 24 — The Memory Reading and Writing to Memory
The memory map, is divided into eight slots of 8K named MMUOQ through MMU?7 and the

physical memory is broken into 96 8K banks'. Placing a specific 8K bank n into the ad-
dress range 0 to 8191, we might say that 8K bank n has been written to MMUO.

Since NextBASIC exposes physical memory banks using the Standard scheme's 16K
size, we'll concentrate only on this. More information on using the ZX Spectrum Next's
MMU system can be found at the end of this chapter, in other sources such as the Spec-
trum Next Wiki at wiki.specnext.dev and in Volume 2 — Advanced ZX Spectrum Next pro-
gramming of this manual.

Reading and Writing to Memory

In the normal course of operations, NextZXOS and NextBASIC read and write memory on
your behalf. As it has been demonstrated in previous chapters, we sometimes need to ex-
amine the memory's contents or directly modify it. For these cases NextBASIC provides a
series of commands and functions to examine and modify memory both in the memory
map as well as in the whole of the physical memory. These are all variations of two main
keywords, namely the PEEK (and PEEKS$) functions (to read the contents of memory) and
the POKE command (to alter the contents of memory). The full list follows:

Command Description

PEEK addr Reads the byte at address addr

POKE addr,v Changes the contents of address addr to the byte value v

DPEEK adadr Reads the word stored at addresses starting at addr (addr, adar+1)

DPOKE addr, v Changes the contents of addresses starting at addr (addr, adar+1) to contain the 16 bit value v

Reads memory region of length /en stored in the addresses beginning with addr and stores it in

PEEKS (addr, len/t) astring —or—)) ») o
Reads the string terminated with a user specified terminator ¢ beginning with address adar

POKE addr, s Writes a string s in the addresses beginning with adadr

BANK n PEEK o Reads the byte at offset 0 in bank n

BANK n POKE o, v Changes the contents in bank n at offset o to value v

BANK n DPEEK o Reads the word stored in bank n at offset o (0, 0+17)

BANK n DPOKE o, v Changes the contents of bank n starting at offset o (0, 0+7) to contain the 16 bit value v

Reads a region of length /en stored in bank n heginning at offset o and stores it in a string —or—
BANK 1 PEEKS (0./en/t) Reas the gtring terminated with 2 user specif?e Eminator ¢ from bank eginning at st o

BANK n POKE o, s Writes a string s in bank n beginning at offset o
Table 23 — PEEK and POKE variants

As you can see from the table above, NextBASIC provides us with a wealth of options to
manipulate the contents of both the 64K memory map and the physical memory as a
whole. These, complemented by the extended options provided by the BANK command,
which we will examine further below, can cover almost any memory manipulation need
that may arise in the course of writing a program.

Before we continue further with examination of PEEK, PEEK$ and POKE, let's first begin
with a warning of sorts: Usage of the non BANK variants is extremely discouraged. In-
stead it's best, if you use their BANK variants at all times. The reason for that is two-fold
and goes back to Memory Banking.

Let's explain; as we said earlier NextZXOS and NextBASIC update portions of the memory
map like the system variables or the display memory if need be. What this means, is that
you can't really be sure a value you POKEd into the memory map will be there when you try
to recover it with PEEK unless you take some measures first2.

Furthermore, POKEing into the memory map unless you absolutely know what you're do-
ing, can have unintended consequences which could result in crashing the machine.

1 224 in a fully expanded ZX Spectrum Next
2 Refer to the CLEAR statement further down this chapter

278 ZX Spectrum Next — User Manual

Reading and Writing to Memory Chapter 24 — The Memory

Welll first give an example of what could go wrong (it's fortunately safe as an example) and
then welll take a detour and explain how the memory map itself is organised from a
NextBASIC perspective before returning to PEEK, POKE and their variants. Type:

1 FORKE 16354, "RABCabC”
@ CLS

@ LET a$=FEEER% (153354 ,56]
4@ PRIMNT a%

From what we've talked about thus far, the intention of the program is obvious (for now
also never mind what line 10 does; we'll discuss it later). First we put the word ABCabc into
address 16384 of the memory map. Then we try to extract it from the same memory loca-
tion. RUN the program. What do you see? Certainly not ABCabc you were expecting. Now
modify lines 20 and 30 and replace 16384 with 20000 in both lines and RUN the program
again.

This is perhaps a contrived example but it shows what happens when you try to use mem-
ory that is also being used by something else. In this case, address 16384 is where the
contents of the display is stored. After placing the string with POKE in address 16384, a
CLS is executed which clears the display and the stored string at the same time.

Here is a trickier example:

1@ LAYER 1,2
2@ FOKE 16354 ,255
@ FOKE 24576,25%5

4@ FPRIMNT AT 1,@; "18334 = '
FEEEK 168354

S&@ FPRIMNT "24576 = ", PFPEER
245765

This program selects Layer 1,2 (HiRes) and then creates two solid and adjacent character
sized lines into the display via the POKE commands in lines 20 and 30. Running the pro-
gram, the results aimost seem correct except the character sized line is only one character
wide.

The POKE to 24576 did not go to the display in bank 5 because NextBASIC placed a dif-
ferent memory page in the memory map to cover the last half of bank 5.

Contrast with the following program that does all its PEEKs and POKEs to bank 5 (the
BANK commands will be explained in more detail later). As we will see, PEEK and POKE
into a 16K bank, is done using an offset into said bank. This means that the “address”
range is 0 through 16383; Banks are only 16K long after all. Bank 5, which holds the dis-
play is normally placed at address 16384 in the memory map. Performing therefore a
POKE into address 16384 is the same as POKE to offset 0 in bank 5. Likewise address
24576 corresponds to offset 8192 in bank 5.

1@ LAYER 1,2
28 BAME S FOKE @,2%55
@ BARAME S FOKE S192,255

4@ FPRIMT AT 1,8; " 18354 = "X
EAME S FEEE @
S@ PRIMNT "24576 = "X BARAMHE S

FEEE S192

This time, the POKE to 24756 (offset 8192) does go to bank 5 and you will see the solid
line twice as wide as the first program.

ZX Spectrum Next — User Manual 279

Chapter 24 — The Memory NextZXOS and NextBASIC memory allocation
NextZXOS and NextBASIC memory allocation

Before we begin to elaborate on NextZXOS' memory usage, it should be mentioned that
Standard memory management and MMU management are internally synchronised for
most cases. Every time a 16K bank is being paged in, the equivalent MMU unit gets the 8K
bank component of the larger 16K bank NextZXOS uses. As mentioned previously
NextzXOS also supports AllIRam mode where the ROM is paged out; this is mainly used
by CP/M. With this information out of the way, let's see how NextZXOS uses the memory.

By default the first 9 RAM banks are used as follows:

Bank Description Address Range
0 Standard 48K Spectrum memory 49152 - 65535

RAMdisk
Standard 48K Spectrum memory 32768 — 49151
RAMdisk
RAMdisk
Standard 48K Spectrum memory 16384 — 32767
RAMdisk
Used for workspace and data structures by NextZX0S
Used for additional screen data (for LoRes, HiRes and HiColour) and other data by NextZX0S

11 Available for user programs (By default banks 9,10 and 11 are used by Layer 2)

- 00N o o B~ W NN =

©
|

Generally speaking, banks 9+ are always available to the programmer, and can be ac-
cessed using the BANK command, while banks 0 — 8 can be used with the following ex-
ceptions:

e Bank 0 can be used, only if CLEAR has set the RAMTOP to below 49152.

e Bank 2 can be used, only if CLEAR has set the RAMTOP to below 32768.

* Banks 1,3,4,6 can be used if the BANK 1346 USR command has been used.

* Banks 7 and 8 can never be used.

* Bank 5 can be used with caution.

e Banks 9, 10 and 11 can be used for other purposes if you aren't using Layer 2 or you have

changed their assignments with the LAYER BANK command.

From the above, it is easy to surmise what the initial bank assignments are after boot:

Slot 1 Slot 2 Slot 3 Slot 4
ROM Bank 5 Bank 2 Bank 0

In case you were thinking that this looks easy enough — | could page in any bank | want,
don't! In actuality, NextZXOS and NextBASIC expect certain things to be in certain places
at all times within the memory map which is organised in the following manner:

- =
=] =)
= o' 2
B g g 2
= 51 & 5
Display File Atiributes System Variables Channel Information
o 16384 22528 | 23296 023734
4000h 5800h 5800h 5CB6h
=2 &
Command or Program
80h NextBASIC Prograrm Variables 80h | Line being Edited NL |80h
-
& 8 2 =E & %
= =] = = 4
g & E EE = 8 =
Temporary Calcwlator Machine NextBASIC User Defined
INPUT Dala NL | Workspace Stack |Spare | Stack Return Stack|? |3Eh | Graphics

Figure 55 — Memory map usage by NextBASIC
280 ZX Spectrum Next — User Manual

Memory Areas and their use Chapter 24 — The Memory

As seen in the figure above, the memory map is divided into different areas that store dif-
ferent kinds of information. The areas are only large enough for the information that they
actually contain, and if you insert some more at a given point (for instance by adding a
program line or variable) space is made by shifting up everything above that point. Con-
versely, if you delete information then everything is shifted down. Some areas as you can
see include an address below and a name above them whereas others only a name. The
areas beginning at an address, signify fixed points in memory such as the Display and
Colour Files, the System Variables and the Channel Information. The first three fixed points
are required while the fourth (Channel information) is an unintended consequence! Let's
see why:

The Display and Colour Files are as we've seen in previous chapters, legacy areas. The
display hardware expects them at these addresses and cannot move inside the memory
map. They contain the standard Layer 0 display memory and parts of Layer 7 with the rest
appearing as needed and managed by NextZXOS.

The System Variables on the other hand are the system's directory; they contain most in-
formation regarding both NextZXOS and NextBASIC and provide information on the
boundaries between the rest of the memory areas on the memory map. In other words fol-
lowing the discussion above, if, say, the last program line changes, it's stored within the
area pointed to by the system variable PROG. Some of these locations are marked by the
names above the areas in the diagram. A complete list follows in the next chapter. Note,
that these are NextZXOS variables and not NextBASIC variables, so typing these names
means nothing to NextBASIC.

Now you probably noticed that we said most information regarding NextZXOS and
NextBASIC and not all information. That's because the information that's held in System
Variables (or SYSVARS) deals with legacy applications and compatibility. NextZXOS main-
tains even more unmovable information elsewhere, tucked away in protected banks and
manages it there.

Memory Areas and their use

Below, let's examine some of the memory areas portrayed in the figure above, as it's help-
ful to generally know how things are laid out in the memory map.

The Display and Colour Files areas store the bitmap for the Layer 0 (and part of the Layer 1)
picture. As we saw in chapters 75 through 77, itis rather curiously laid out, so you probably
won't want to PEEK or POKE in it. The upshot of all this is that if you're used to a computer
that uses PEEK and POKE on the screen, you'll have to start using SCREEN$ and PRINT
AT instead, or PLOT and POINT.

The System Variables area, contains various pieces of information that tell the computer
what sort of state the computer is in. They are listed fully in the next chapter, but for the mo-
ment note that there are some (called CHANS, PROG, VARS, E_LINE and so on) that con-
tain the addresses of the boundaries between the various areas in memory. These are not
NextBASIC variables, and their names will not be recognised by the computer.

The Channel Information area contains information about the input and output devices as
seen in Chapter 21.

The NextBASIC Program and Variables areas contain your program and its variables, or-
ganised in standard data structures we will examine in the following section.

The calculator is the part of the NextBASIC system that deals with arithmetic, and the num-
bers on which it is operating are held mostly in the Calculator Stack area.

The Spare area contains the space so far unused.

The Machine Stack area is space reserved for the CPU stack.

ZX Spectrum Next — User Manual 281

Chapter 24 — The Memory NextBASIC Data Structures

Similarly, the NextBASIC return stack area which was mentioned in Chapter 5 maintains a
record of your program's currently-active subroutine and procedure calls, loops and error
handlers.

The byte pointed by the RAMTOP variable shows the maximum address that is reserved
for use by a NextBASIC program. We will visit this in more detail, in the section about the
CLEAR command below.

Finally the User Defined Graphics area holds all the definitions to the system's UDGs as
discussed in Chapter 14.

NextBASIC Data Structures

NextBASIC stores numbers, strings, arrays, programming lines and FOR...NEXT loops in
strictly defined forms called data structures. The following discuss all these data structures
that are user accessible. Integer-based variables, arrays and control structures are not
available to the user and are hidden by NextZXOS in protected memory areas so they're
not covered here.

Each line of NextBASIC program has the form:

MSB LSB
I I
2b)|/tes 2bj|/[ES 0:010:01‘1:1:0:1
Line number Text Length Text ENTER

ENTER

Note that, in contrast with all other cases of two-byte numbers in the Z80n, the line number
here is stored with its more significant byte (MSB) first: that is to say, in the order that you
write them down (also known as Big-Endian order).

A numerical constant in the program appears as ASCII text followed by its binary form, us-
ing the character CHR$ 14 followed by five bytes for the number itself.

The variables have different formats according to their features. The letters in the names
should be thought as starting off in lower case. The available variants and their formats
are:

Number whose name is one letter only:

[T TTTTI1 Exponen[& ? =
011 s 4 mantissa bytes
UL L] | byte £ 2
Number whose name is longer than one letter:
[TTTTTTT T \I\IIIHEXponen[& %
101 0 1 = 4 manlissa byles
N B Ll | byte . /
Letter (=60h) 2" Letter Last Letter Value

Array of numbers:

of
dimensions

| | |
2b)lxtes 1 byte| 2 bJIIIES 2 bj‘/tes 5 bytes each

Letter (=60h) Total length 1*dimension Last dimension Elements
of elements

dimensions

282 ZX Spectrum Next — User Manual

NextBASIC Data Structures Chapter 24 — The Memory
Specifically for arrays the order of the elements is as follows:

¢ first, the elements for which the first subscript is 1;
* next, the elements for which the first subscript is 2;
* next, the elements for which the first subscript is 3;

and so on for all possible values of the first subscript.

The elements with a given first subscript are ordered in the same way using the second
subscript, and so on down to the last. As an example, the elements of the 3 x 6 array b in
Chapter 12 are stored in the order b(1,1) b(1,2) b(1,3) b(1,4) b(1,5) b(1,6) b(2,1) b(2,2) ...
b(2,6) b(3,1) b(3,2) ... b(3,6).

Control variable of a FOR...NEXT loop:

Staternent

18 Msg "
|
1:1:1: : : : : | 5 bytes ‘ 5 byes ‘ 5 byles ‘ 2 bytes ‘mm{
1
Letter (=60h) Value Lirmit Step Looping line
String:
[T TTTTI '
010 2 byles
I I
Letter (=60h) Number of Text of string (may be empty)
characters

Array of characters:

of
dimensions
—

I I I
2 J'JJ‘/fE‘S 1 byte 2 bj‘rfes 2 bj‘/.'es 1 byte each

S W —] [—— S S ——

Letter (=60h) Total length 1" dimension Last dimension Elements
of elements
and dimensions
+ 1 for # of
dimensions.

As you saw in the examples above, numerical values are represented as 5 bytes. These
are floating-point values. In contrast to integers which are —as discussed in Chapter 7 and
referenced in chapters 70 through 72 — of a fixed 16 bit (or two-byte) size, floating-point
numbers can represent both decimal and integer values. Due to the calculations involved,
their usage will slow down your programs; so avoid using them if you do not need decimal
points or values higher than 65535.

For floating-point values, any number (except 0) can be written uniquely as: = m x 2¢

where =+ is the sign, m is the mantissa, which lies between 2 and 1 (it cannot be 1), and e
is a biased exponent.

Suppose you write the fractional m in binary. Because it is a fraction, it will have a binary
point (like the decimal point in decimal) and then a binary fraction (like a decimal fraction).
So in binary:

one half is written as A
one quarter is written as .01
three quarters is written as A1
one tenth is written as .000110011001100110011
and so on.

With our number m, because itis less than 1, there are no bits before the binary point, and
because it is at least %, the bit immediately after the binary pointis a 1. To store the num-

ZX Spectrum Next — User Manual 283

Chapter 24 — The Memory PEEK, POKE and their variants
ber in the computer, we use five bytes, as follows:

I write the first eight bits of the mantissa in the second byte (we know that the first bit
is 1), the second eight bits in the third byte, the third eight bits in the fourth byte and
the fourth eight bits in the fifth byte

Il. replace the first bit in the second byte which we know is 1 by the sign: 0 for plus, 1
for minus

Il write the exponent +128 in the first byte.

For instance, suppose our number is '/,:
1o =45 x 23

Thus the mantissam is .11001100110011001100110011001100 in binary (since the 33
bit is 1, we shall round the 3277 up from 0 to 1), and the exponent e is -3.

Applying our three rules gives the five bytes:
[T T T T T I T T T T [T T T T T [T T T T T [T T T T T
L 1| [L1717

111110102 001100110011 001100110011001101

|
-3+ 128 f%’ Mantissa “,g except the 1% bit which is the sign

There is an alternate way of storing whole numbers between -65535 and +65535:

|. the first byte is O

Il. the second byte is 0 for a positive number, FFh for a negative one

II. the third and fourth bytes are the less and more significant bytes of the number
(or the number +131072 if it is negative),

IV. the fifth byte is 0.

This is essentially the two's complement representation we discussed in Chapter 7 for inte-
gers with two extra bytes, one before and one after the number and an entire byte dedi-
cated to the sign as opposed to one bit only. Compared to the integer type supplied by the
Integer Expressions evaluator, it is wasteful memory-wise and slower to process.

PEEK, POKE and their variants

Now that we've examined more thoroughly what the memory map looks like to NextBASIC,
it's time to revisit the commands and functions that read and modify its contents.

To inspect the contents of one or more memory locations, we use the PEEK, DPEEK and
PEEK$() functions; The PEEK variant functions are always safe to use as they change
nothing in memory; they can however give unpredictable results in cases where a memory
location is marked for moving. As we saw however, there are places in memory which are
unmovable; reading in the System Variables area for example is a always a predictable
scenario. For instance, this program prints out the first 27 bytes in ROM (and their ad-
dresses) — Note that if you want to examine the contents of the standard 48K ROM you
should use PEEK rather than DPEEK or PEEK$() as the latter two operate with a different
ROM paged in. The example below however doesn't fall under that case:

1@ PRIWNT "Address'"; TRHE &; "B4dte"
28 FOR a=@ TO 2@

@ PRIMT a; THRHE S; PFPEEK a

4@ MNEXT a

All these bytes will probably be quite meaningless to you, but the processor understands
them to be instructions telling it what to do.

DPEEK s similar but since it returns 16 bit values, the example above would have to be re-
written as follows:

284 ZX Spectrum Next — User Manual

PEEK, POKE and their variants Chapter 24 — The Memory

1@ PRIWT "Addressz"; THE &;
Yllord®

2@ FOR xa=@ TO 2@ STEFR =2

S@ PRIMWT Xa;, THE &; DFEEER *a

4@ MHEXT Xa

This, as mentioned before will produce completely different results as DPEEK is calling a
different ROM to work. We'll rewrite the example later when visiting the BANK command to
display that they're actually identical. Generally speaking, PEEKing into ROM is very much
useless and it's much more likely that you'll use PEEK to either read a system variable or
read a value you've previously POKEd. PEEKS () on the other hand returns the values at
an address in memory in the form of a string. Its syntax is as follows:

PEEKS$ (address, argument)

where address is any address in the memory map, while argument can be one of the fol-
lowing:

1. A number signifying a length of characters to be retrieved

2. A single tilde ~ character, to find any bit-7 terminated string (that means that
bit-7 of the last character in the string is set)

3. Atilde ~ character followed by the ASCII code of one character that termi-
nates the string

PEEKS$() can only be used in the context of an assignment and not on its own. For exam-
ple you CAN use LET a$ = PEEK$(address,length) but you CANNOT use: PRINT
PEEK$(address, length).

Let's look at an example which helps us search in memory (albeit very slowly):

18 RUM AT 3: REM this takes a
Lang time!

Z@ FOR xa=@ TO &5535

S8 PRIWNT AT @,@; "Mow =canning
address: " xa

4@ LET a$= FPEERK% (Xa,S5)

S@ IF a%="Variable” THE®H FRIRKT
AT 1.,.8; " "Found word at
address:";¥xa: GO TO 7a@: REH
stop iterating here and 9o
b Low

5@ MHEXT Xa

TR FOR ¥Xa=@ TO 865535

S@ PRIWNT AT S3,@: "Mow =canning
address:"; Xa
9@ LET af = FPEEEZ% (Xa, “1l@li

1@a@ IF ag="Wariabl"” THEWK FPRIMNT AT
4 ,8; “"Found word at address " Xa
11@ HEXT Xa

You'llundoubtedly notice that line 100 says Variabl instead of Variable and that's because
the terminator character we set in like 90 to look for, is not included in the string returned
by PEEK$(). What this program actually finds is the address in the memory map where
line 50 is stored! The second half of this example (lines 70 on) is very much pointless but
was made to show the flexibility of PEEK$()'s arbitrary termination character search.

ZX Spectrum Next — User Manual 285

Chapter 24 — The Memory PEEK, POKE and their variants

Normally, it is much more likely to read for NUL terminated strings (~0), FFh terminated
strings (~255), often used in +3DOS/IDEDOS and perhaps CR terminated strings (~13),
if for example the data you're searching for has been PRINTed with line separators.

To change the contents of a RAM address in the memory map, we use the POKE or
DPOKE statements. These have the form:

POKE address, value[,value2[,value3...[,valueN]]]
DPOKE address, value[,value2[,value3...[,valueN]]]

The ability to POKE gives you immense power over the computer if you know how to wield
it; and immense destructive possibilities if you don't. It is very easy, by poking the wrong
value in the wrong address, to lose vast programs that took you hours to type in. Fortu-
nately, you won't do the computer any permanent damage.

As we mentioned earlier, POKE is generally not safe to use within the confines of the mem-
ory map, unless you either know what you're doing, or the area you're modifying is fixed
(like say the Layer O screen or attribute areas or the System Variables — the latter always
with caution). It's also safe to POKE within the memory map if you have used the CLEAR
command and modify the area above it.

Let's try modifying a system variable to show how powerful POKEing can be:

First, type test in the editor and once you hit ENTER your computer will complain with a
buzzing sound. The variable that holds let length of that buzz is called RASP and it's lo-
cated in address 23608 (5C38h) within the System Variables area.

Now, let's see how can we adjust that buzz. We'll start by looking what is its current value
with:

FRIMT FEEEK Z235A35
Then modify it with

FOREE 236@3, 16

Type test again and press ENTER. The buzz indicating the error in your code, shortened
in length. You can experiment with different values. The new value you enter must be be-
tween -255 and +255, and if it is negative then 256 is added to it.

POKE is not confined into a simple byte sized value as you may have surmised. In fact it
can accept a mix of numbers and strings, in a comma separated list of values with each
accepting an optional tilde ~ character suffix. In the case of numeric values, the optional
tilde suffix after each value makes that value 16 bits wide (a word) while in the case of
strings, the optional tilde suffix sets the most significant bit of the last character in the
string, usually known as bit7-termination. This is sometimes used in order to store vari-
able-length strings in a compact way. However, it's usually more convenient to use a byte
such 0 (NUL) (null-termination), 255 (FFh) or 13 (0Ch) (CR) to terminate a variable-length
string in memory. Note that for DPOKE, the tilde is used after numeric values to specify
values that should be written to memory as a byte rather than a 16 bit word. You can there-
fore think of the tilde as a write this value in the opposite way to the default for this command
designator! Let's see a few examples:

FPOKE 327635 ,200a
modifies the contents of the byte address 32768 to 200.

FOREE S327VeS,5,9,1@,"test1" ,Sa@@a” , 55

modifies the contents of address 32768 to 8, address 32769 to 9, address 32770 to 10,
addresses 32771 to 32774 to contain the string test (or in other words the values 116, 101
,115 and 116 respectively — the ASCII codes for the letters making up the word test), ad-
dresses 32775 and 32776 to contain values 48, 117 respectively (or 117 x 256 + 48 =

286 ZX Spectrum Next — User Manual

CLEAR Chapter 24 — The Memory

30000) and finally address 32777 to 55. In other words we POKEd 3 bytes, a string, aword
and a byte.

CROKE 32768, 1086, 2008 , 388, 1aa” ,2

modifies addresses 32768 though 32775 (pokes 3 words, a byte —with the tilde-and a
word).

In Chapter 14 we briefly discussed POKE USR "fetter" . That may look like a separate vari-
ant of POKE but in reality USR "letter" is just as shortcut to the address of the UDG defined
by letter. There is a small caveat that when used in a single value context, 8 successive
POKE USR commands must be given (one for each row in the 8x8 matrix of the UDG) so
it's always better if we use it in a list of values context like so:

FOKE USSR "RA",1,3,7,15,31,6835,127,255
which redefines UDG A.

Using POKE with strings is equally powerful so it deserves a separate example. Let's use

the example that used PEEK$() to search for a string in order to demonstrate a bit of

NextBASIC memory areas magic! First delete all lines after 60 and modify line 20 to read:
2@ LET =xa=2z2@8@d@ TO 85535

(This change is to make sure the program doesn't take forever).

RUN the program and when you find the address, note it down, then do the following:

FORKE address, "Horrible"

where address is the address you noted earlier. Press ENTER, then write LIST and look at
line 50. See? Magic!

Note that using the first form of POKE to any address between 0 and 16383 (the ROM slot)
will have no effect regardless of what you attempt to do as shown by this example:

FOR Xf=@ TO 16353: POKE =f,@: RMNEXT Xf

The same however is not entirely accurate for DPOKE and the string POKE version of the
command. For example both the commands that follow will NOT write in the ROM slot but
WILL write in the RAM slot (it so happens as you see from the previous figure) that the first
area right after the ROM is DISP_FILE so you'll see a visual result immediately:

FOEE 163583, "This= iz a test":PRAUSE @

and

CROEE 16353, 65S535: FPRUSE @

will both produce a visible result in the upper left corner of the display while the ROM slot is
not affected.

CLEAR

When looking at the different memory areas maintained by NextBASIC, we briefly men-
tioned the System Variable RAMTOP. This variable (located at address 23730) contains
the address of the last byte used by NextBASIC. Even NEW, which clears the RAM out,
only does so as far as this address — so it doesn't change the user-defined graphics. You
can change the address RAMTOP points to by putting it as an numeric argument in a
CLEAR statement as follows:

CLEAR new_RAMTOP
This effectively does 4 things:

ZX Spectrum Next — User Manual 287

Chapter 24 — The Memory Memory Bank management with BANK

* clears out all the variables

¢ clears the display file (like CLS)

* does RESTORE

¢ clears the NextBASIC return stack and puts it at the new RAMTOP address —

assuming that this lies between the calculator stack and the physical end of
RAM; otherwise it leaves RAMTOP as it was.

RUN also performs a CLEAR, although it never changes RAMTOP.

Using CLEAR in this way, you can either move RAMTOP up to make more room for Next
BASIC by overwriting the user-defined graphics, or you can move it down to make more
RAM that is preserved from NEW. It can also be used to ensure that the machine stack is
below BFEOh (49120) when intending to call NextZXOS - this means that the stack will not
have to be subsequently moved within your own machine code.

Type NEW, select NextBASIC, then CLEAR 23800 to get some idea of what happens to
the machine when it fills up. You'll immediately get an M RAMTOP no good error mes-
sage. Trying CLEAR 23900 will report 0 OK but attempting to write a program will stop
with a buzzing sound very quickly. That means that the NextBASIC user program memory
is now full and you will have to make room before typing any more. There are also two error
messages with roughly the same meaning, 4 Out of memory and G No room for line.

It's worth mentioning that the Clear option in the NextBASIC menu (accessible by pressing
the EDIT key) can also be used to CLEAR memory and it's particularly useful if you have
cleared RAMTOP too low and no longer have enough memory to enter NextBASIC com-
mands as with the example above. It sets RAMTOP to just below the current UDG area (ie.
equivalent to CLEAR % DPEEK 23675-1, one less than the value in the UDG SysVar).

Memory Bank management with BANK

Under NextBASIC the system's memory capacity is shown in the on-screen menus. It can
also be queried programmatically by examining the new system variable, MAXBNK, which
contains the number of the highest usable bank in the system (normally 47 or 111)3.

To make all the extra memory easily accessible to the user, NextBASIC provides a special
command called BANK which can be combined with a number of normal commands to
extend their functionality to the whole of the ZX Spectrum Next's memory and not just the
memory map addresses. We've seen some already used in the course of this guide, espe-
cially in chapters 75 through 78 as well as Chapter 20.

Memory banks are marked as in-use or free by the user or by commands that access them
(BANK ... PEEK/ PEEK$ / POKE / COPY / ERASE / USR / LAYER, LAYER ... BANK and
LOAD ... BANK). Users can mark a bank as in-use or as free, by either using an explicit
command from the list above or one of the two special commands BANK NEW var and
BANK n CLEAR.

BANK NEW var

Reserves the next available free bank number and assigns it to the numeric variable var,
ready for use with and by other BANK commands. This command is useful for allocating
banks for use in NextBASIC, allowing for cases where a resident machine code program
has previously allocated banks for its own use.

Note, that is not essential to use this command, as commands such as LOAD ... BANK
will automatically allocate the specified bank for use by NextBASIC, but only if the speci-
fied bank is not already in use by a resident machine code program.

Let's try a small example. Assuming you have a 2048K ZX Spectrum Next; type the follow-
ing program:

3 The dot command .mem also returns the memory information, although measured in 8K banks.
288 ZX Spectrum Next — User Manual

Memory Bank management with BANK Chapter 24 — The Memory

1@ FOR xf = @ TO 111:REHM 47 rfor a
18z24FK HMext

28 EBAME HEWL a

S@ PRIWMT AT @,@8; "ALLocating bank:'"; a

4@ HEXT xf

Once you RUN it, the program will begin to allocate memory banks and print the ones it al-
locates; you'll notice two things: Allocation begins at bank 111 (47 if using an unexpanded
version) and progresses backwards and that program execution will stop abruptly with a 4
Out of memory error report once you reach a bank that's allocated by the system as de-
scribed in the NextZXOS and NextBASIC Memory Allocation section. Indeed, if you use the
dot command .mem then you'll see that you have 0 banks free (OK). In order to free up a
bank to be used, you will need to use the BANK n CLEAR command whose syntax is as
follows:

BANK n CLEAR
Marks bank n as free for use by other parts of the system (eg dot commands).

Let's try to free a bit of memory after the mess we've made with the previous program.
Without making any more changes, let's try:

EAME 11 CLEARR

More likely than not the system will report: In Use, 0:1. What has happened? Most likely
that the bank itself is in use by the system. Let's try again:

EAME 12 CLEAR

This time the system will most likely report: 0 OK, 0:1. We can verify this by running .mem
again. This time it will show us 2 Banks free (Remember .mem reports memory in MMU
sized banks —that is 8K). Bank 11 you tried to free originally unless the system hasn't been
modified, is being used by Layer 2 (which takes 3 banks, by default 9,10 and 11but can be
changed by the LAYER...BANK command) so it's rightfully marked as in-use. Note here
that if you're not using Layer 2, the banks it occupies CAN be used for other purposes in-
cluding machine code programs. They just cannot be released.

Banks marked as in-use, remain reserved after a NEW command, and are only released
at a reset (or with this BANK n CLEAR). BANK CLEAR reports A Invalid Argument, 0:1 if
you try to clear banks 1,3,4 and 6 even if you have given the BANK 1346 USR command
which is described below.

NextZXOS allocates 64K to the RAMdisk by reserving banks 1,3,4 and 6; BANK 1346
USR allows you to release these for use by your programs. Once you give the command:

ERAME 1345 USSR

the following things happen; first all files in the RAMdisk are deleted, then the drive itself is
unmounted and using BANK commands on these banks stops producing errors. To undo
this action and reinstate the RAMdisk you will need to use:

EAME 1345 FORMAT

which will erase the contents of these banks and re-attach them to the RAMdisk. The disk
itself however will need to be manually mounted again by using the MOVE...IN command.
See Chapter 20 for details.

Bank contents can be copied and erased in whole or in part using the BANK COPY and
BANK ERASE commands.There's also a specific one that copies data quickly to and from
the screen but we'll look at that separately. The syntax to copy bank data is:

BANK source _bank COPY [source_offset, len] TO destination bank [,dest _offset]

ZX Spectrum Next — User Manual 289

Chapter 24 — The Memory Using BANK with graphics

where source _bank is a readable bank number to copy from while destination bank is a
writeable bank number. Source_offset and len signify the location within the source bank
and the size in bytes of the memory chunk we're copying. If the latter are specified, then
the dest_offset must also be specified. Let's try:

EAME 9 COPY TO 47
will copy the bank holding the first third of Layer 2 into bank 47. While,

ERME. 1 COPY TO 47
will return A Invalid argument, unless BANK 1346 USR has been used!

ERAME. 9 COPY Sl9z, Sl9z TO 47, @

will copy the bottom half of the first third of the Layer 2 screen to the start of bank 47 (Once
you untangle that tongue-twister you can see how this can create interesting blinds ef-
fects).

It's also quite handy to quickly erase the whole or part of a bank (fill it with zeroes or an arbi-
trary byte value). This is accomplished by the BANK ERASE command whose syntax is:

BANK n ERASE |offset, len]][,][value]

where n is the number of writeable bank, offset is the optional starting point of the erase
and len is the length (in bytes) of the area to be erased. The optional value will fill the area
with a byte of your choosing or —if omitted— 00h. Here are some examples using Layer 2
and an image present in your System/Next™ distribution:

1ad Ck "cC: sdemos s bmp25S5Ccon
verts sbitmaps"
28 LAYER 2.1
S@ .bmpload critters.bmp
4@ BAME 9 COPY TO 111: REH
First we copy it
S@ FPAUSE @: REM wait rfor a
key
5@ EBAME 9 ERASE 125: Eraze it with
value 125 which is b4 derfrault a
red colour fFor Lader 2
T FPAUSE @: REM wait rfor a
key
9@ BAME 111 CoPYy TO 9: REM restore it
188 PARAUSE @: REM wait rfor a
ey
118 LAYER 2,@: LAYER @

You can see easily how fast this happens (and how it can be used for a myriad of applica-
tions)

Using BANK with graphics

Over the course of chapters dealing with graphics, we've used a lot of graphics-related
commands that involved the use of BANK. These are BANK LAYER, LAYER BANK,
LAYER PALETTE BANK, SPRITE PALETTE BANK, SPRITE BANK, TILE BANK and TILE
DIM all benefiting all providing significant speed enhancements both in development and
in usage.

We saw above the use of BANK COPY to copy data from one bank to another. This in-
cludes Layer data as they too are kept in banks and managed by NextZXOS. There is how-

290 ZX Spectrum Next — User Manual

Using BANK with graphics Chapter 24 — The Memory

ever a specially crafted command that does this and more as it adds more options
specifically tuned to the requirements of display. Unlike BANK COPY, this is designed to
update small areas of the screen to facilitate effects and especially animation. The com-
mand is BANK LAYER and it is used to quickly copy data from a memory bank to the
screen in the current mode, or vice versa. The syntax is as follows:

BANK n LAYER x,y,w,h | offset TO [raster_op] offset |x,y,w,h

where n is the source OR destination bank number, x and y is the top left character posi-
tion expressed in character column and row coordinates, w, h are the width and height
again in characters of the area to be copied from or copied to, offset is the starting offset in
the bank we'll be copying to or from while raster_op, is an optional symbol modifier to TO
that affects the data being copied at their destination (does not affect the source data).

TO raster_op can be one of the following values:

TO Straightforward copy

TO & ANDs the copied data onto the destination

TO | ORs the copied data onto the destination

TO © XORs the copied data into the destination

TO ~ Copies data into the destination unless it is equal to the

global transparency colour (default E3h); if so, leaves
the destination unchanged

The area of screen copied by BANK...LAYER is defined as with Windows in characters.
That means that character positions range from 0 to 31 for x and 0 to 23 for y, for all modes
except LoRes, where they range from 0 to 15 for x and 0 to 11 for y.

Data copied from the screen is laid out as follows, depending upon the currently selected
layer (see Chapter 16):

Standard resolution (Layers 0 and 1,1)

The attribute data comes first, stored as h consecutive rows of attributes, w bytes wide.
Following this is the screen data, stored as h x 8 consecutive rows of pixel data, w bytes
wide. The total memory used is therefore w x h x 9 bytes.

HiRes (Layer 1,2)

In this mode, each character position is 16 pixels wide, comprising a left and right “half”.
The screen data is stored as h x 8 consecutive pixel rows of data. For each row, the first w
bytes comprise the left halves of all characters. The next w bytes in the row comprise the
right halves of all the characters. The total memory used is therefore w x h x 16 bytes.
HiColour (Layer 1,3)

The screen data is stored as h x 8 consecutive pixel rows of data. For each row, the first w
bytes comprise the pixel data. The next w bytes in the row comprise the attribute data. The
total memory used is therefore w x h x 16 bytes.

LoRes (Layer 1,0) and Layer 2

The data is stored as h 8 consecutive pixel rows of data. For each row, there are w x 8
bytes, with each byte representing a single pixel. The total memory used is therefore w xh
x 64 bytes.

In the previous section, we dealt with bank management. The following command could
very well belong there, but since it deals with memory management of the graphics sub-
system and specifically with Layer 2, we will cover it here. LAYER BANK redefines which
banks will store Layer 2 display data (the front buffer) and which will act as the back buffer
(for rendering). The syntax is as follows:

LAYER BANK n,m

ZX Spectrum Next — User Manual 291

Chapter 24 — The Memory Using BANK with graphics

where n is the front buffer base bank number for Layer 2 (this also sets n+7 and n+2) and
m is the back buffer base bank number (and also sets m+1 and m+2). These values can
be the same and both default to 9. Unlike other LAYER commands, it can be executed in
any mode. For example to move Layer 2 to banks 13 to 15 (front buffer) and 16 to 18 (back
buffer):

LAYER BRAME 13,16

If we now give:

ERME. 9 CLEAR

We can see that bank 9 (the original base bank for Layer 2) can now be released. The ef-
fects of LAYER BANK can be undone either by reversing the command, with NEW or with
LAYER CLEAR.

Memory banks are also ideal to store palette information as palettes are basically a series
of 256 bytes or words (depending on your PALETTE DIM setting). There are two com-
mands for that: LAYER PALETTE BANK and SPRITE PALETTE BANK. Their syntax is vir-
tually identical and is as follows:

LAYER |SPRITE PALETTE n BANK b, offset

where n is the palette number (0 or 1), b is the bank number and offset is the start location
in the bank where the palette values are located. As mentioned above, if PALETTE DIM
was set to 8, LAYER and SPRITE PALETTE BANK will load 256 bytes from bank b, offset,
while if PALETTE DIM was set to 9, 512 bytes will be loaded.

Apart from the palettes, sprite definitions* themselves can be stored and exchanged
through the use of memory banks. The command and its syntax to define either all 64
sprites at once (64 sprites of 256 bytes each equals a full bank of 16K) or some of them is:

SPRITE BANK b [, offset, pattern_no, number_of _sprites]

where b is the bank number holding the sprite pattern definitions, offset is the starting lo-
cation in the bank where sprite definitions are stored, pattern_no is the starting pattern
number that's defined by the command and number of sprites is the total number of
sprites that are defined. If we store all 64 sprite definitions within a bank, then the com-
mand can be as simple as:

SFRITE EAHE 14

which will load 64 sprite definitions from bank 14. Alternatively to load 32 sprite definitions
starting with pattern number 4 from bank 15 offset 256 would require:

SFPRITE EBAHE 15,4 ,255

Sprites and tiles (not to be confused with Layer 3 tiles) are closely related. As a matter of
fact as we saw in Chapter 18, their main difference is that tiles are managed by software
and not hardware, so it follows that NextBASIC provides similar commands to manage
them at least memory-definition wise. The BANK commands related to tiles are TILE
BANK to define the tiles themselves and TILE DIM to define the tilemap, that is how are the
tile patterns organised. The syntax of the first is:

TILE BANK n

where n is the number of the base bank holding the tiles. If more are needed as defined by
the tilemap, they will be taken from subsequent bank numbers (up to an additional 3 mak-
ing a total of 4 banks assigned to tile definitions). The tilemap itself is also held in a bank
and managed with:

4 Although the ZX Spectrum Next's Sprite Engine can define and manipulate a total of 128 sprites, these only work with
4 bit palette definitions which are not supported by NextBASIC. Instead NextBASIC supports a total of 64 sprites of
256 colours each

292 ZX Spectrum Next — User Manual

Using BANK with files Chapter 24 — The Memory
TILE DIM n,offset, w, tile_size

which defines the tilemap in bank n, starting at location offset with width w which ranges
from 1 to 2048 and tile size tile_size (8 for 8 x 8 pixels or 16 for 16 x 16 pixels).

Using BANK with files

The entire range of BANK commands for file management, has been covered in length
throughout Chapter 21 — NextZXOS and alternatives so we'll just include them here for
completeness and as a quick reference. As a general guideline for syntax, BANK does not
needs an offset and length for SAVE operations except the ones that deal with fixed areas.
The commands that deal with files and their syntax are:

LOAD | SAVE | VERIFY filespec BANK n [,offset,length]
and the additional
SAVE | LOAD filespec LAYER

that are special shortcut commands to load and save the current layer display. This obvi-
ously includes bank access (as for example Layer 2 occupies 3 banks) and thus it's in-
cluded here. In all the above, filespec is a valid filespec for the filesystem you're accessing,
n is the bank number while the optional offset and length must be given together to signify
the starting location and length of the data chunk we're manipulating. If omitted the
entirety of the bank is used.

Extending NextBASIC Programs with BANK

Unlike previous iterations of Sinclair BASIC, NextBASIC makes it possible to write pro-
grams larger than the approximate 41K which used to be the norm with previous ZX Spec-
trum models. This is achieved through the use of BANK command extensions; whole
sections of NextBASIC programs can be copied into any memory bank available to the
user (and saved/loaded with the SAVE / LOAD...BANK commands as described in Chap-
ter 20 as well as the previous section). Programs can then switch between lines in the
“main” program area and those held in a bank.

The following new commands are available to manage banked sections of NextBASIC
programs: BANK LINE, BANK LIST and BANK LIST PROC(), BANK MERGE, BANK GO
TO, BANK GOSUB, BANK PROC and BANK RESTORE. We have covered these as well
in the appropriate sections of this guide, so they're mentioned here in brief for complete-
ness and reference. Syntax is as follows

BANK n LINE x,y

Copies lines x through y (inclusive) from the main program to bank n. The total number of
bytes used in the bank will be shown. Once this has been done, it is not possible to
change or delete any lines in the banked section, except by completely overwriting the
bank's contents using another BANK...LINE command or by executing a command that
will replace the bank's contents with something else.

BANK n LIST [/ | PROC name()]
Lists lines, optionally starting with line / or from a procedure named name, in bank n.
BANK n MERGE

Copy all lines back from bank n into the main program. This won't overwrite line numbers
that did not exist in the source bank

BANKn GO TO/

performs a GO TO line/in bankn. To GO TO to a line in the main program from a banked
section, the bank number should be 255.

BANK n GOSUB/

ZX Spectrum Next — User Manual 293

Chapter 24 — The Memory NextZXOS Paging Mechanism Overview

branches using GOSUB to the subroutine located at line / in bank n. To GOSUB to a sub-
routine in the main program from a banked section, as with GO TO above, the bank num-
ber should be 255.

BANK n PROC name (parameter],...,parameter8])[TO variable1],...,variable8]]

branches to the PROC named name located in bank n with optional parameters
parameter1 to parameter8 and optional return values stored in variable1 to variable8. To
branch to a PROC in the main program from a banked section, as with GO TO above, the
pank number should be 255.

BANK n RESTORE /
Sets the DATA pointer to line / in bank n ready for the next READ operation.

It's noted that BANK LINE and BANK MERGE can only be given as direct commands and
not as part of a saved program be it in a bank or in the main section.

NextZXOS Paging Mechanism Overview

As we discussed in the introduction to this chapter the CPUs used in all previous models
of the ZX Spectrum line as well as this one, can only address 65536 bytes. The original
128K ZX Spectrum crammed in, more than twice the amount of memory than it could ad-
dress clocking in at 131072 bytes of RAM and 32768 bytes of ROM making 163840 bytes
(160K) in all. The +3 that followed it a few years later increased that to almost 192K with an
additional 32K of ROM while the Next has increased that number even further to 1024K or
2048K depending on if you have expanded the ram on your machine or not.

All the extra memory is hidden from the processor by the hardware using a process called
paging — NextBASIC (and the processor) always sees the memory as 16K of ROM and
48K of RAM (or 64K of RAM with no ROM in AllIRam mode — though that is never used by
NextBASIC and NextZXOS and it's reserved for CP/M).

While the processor can indeed address only 64K of memory at once, the extra memory
can be slotted in and out of that 64K at will as seen in the introduction to this chapter. Con-
sider an old jukebox. Although it (and you) can only deal with one album at a time, there
are many more albums there which can be selected with the right buttons. So, even
though there's much more information than you can use at any one time, you can pick and
choose which part is relevant.

It is much the same for the processor. By setting the right bits in an I/O port, it can pick and
choose which chunks of the available of memory it wants to use. When in non-banked us-
age of NextBASIC as well as when using legacy software most of the memory is ignored,
but for Next mode games playing, Layer 2 graphics and the use of all the new capabilities
the ZX Spectrum Next is equipped with, having sixteen or even thirty two times as much
RAM is really rather useful!

Normally, usage of the additional memory capabilities are handled directly by NextZXOS
and NextBASIC either automatically or by using the BANK commands, however in order to
understand the underlying mechanisms we can elaborate a little bit.

Look again at the memory map; RAM pages 2 and 5 are always in the positions shown
when NextBASIC is used, though there's no reason why they shouldn't be in the “legacy
banked” section (C000h to FFFFh) —however, it would be difficult to see any use for this.

For legacy usage (usually where programs generate very strictly timed video effects),
RAM banks are considered as being of one of two types: contended (meaning that there's
a competition between the CPU and the ULA for access to them) and uncontended
(meaning the CPU has their exclusive use).

Only four banks are ever contended: banks 4 to 7. The rest of the available RAM banks are
always uncontended. This is a setting that can be turned on an off by using a Next Register
as we saw in the previous chapter. It's turned OFF by default, but for compatibility rea-
sons, NextZXOS turns it ON when loading software in a legacy format (.SNA, .Z80 or

294 ZX Spectrum Next — User Manual

NextZXOS Paging Mechanism Overview Chapter 24 — The Memory

.TAP). When writing software that may be used in older models, place any machine code
which has critical timing loops (such as music) in uncontended bankss.

Assuming contention has been turned ON, to turn it OFF you will need to issue a:

REG &, ¥ REG SIE@1la0@@@d

command, setting therefore NextREG 8, D6 to 1. The inverse (setting it to 0) will turn con-
tention ON again for these banks. Alternatively you can just press the NMI button and set
it/reset it using the NMI menu under Settings > General which is much much easier!

The ZX Spectrum Next uses a combination of paging techniques we called standard at the
beginning of this chapter. In reality, it uses three: The 128K style paging (described below)
controlled by I/O address 7FFDh, the +3 style paging controlled by I/O address 1FFDh
extended by Next Memory Bank Select control controlled by I/O address DFFDh.

The reason for this complicated scheme is that the original ZX Spectrum 128K which intro-
duced banking, only had 8 pages of RAM (8 x 16K) to deal with and only two of ROM (2 x
16K) so there was no appropriate care taken for further expansion. In an original 128K ma-
chine only the top slot (slot 4) of the address space was banked in and out by the user (lo-
cated at address range C000h to FFFFh.

When the ZX Spectrum +3 came out, there were two more 16K ROMs introduced, which
didn't originally exist; that paired with the need to run CP/M that requires RAM at the bot-
tom of the address map, necessitated the creation of yet another I/0O address: 1FFDh.

Between these two ports, there are enough bits to address all the RAM pages of an unex-
panded Next, however, on a fully expanded Next, one more port was needed to be able to
address the entire physical memory available. These methods are all extending one an-
other so backwards compatibility is ensured, while the introduction of the MMUs allows for
a more straightforward memory management system for user programs.

Let's begin how this all works by first looking at 128K style paging. The hardware port that
controls it, is at /O address 7FFDh (32765). The bit layout for this port is as follows:

Bit D7 D6 D5 D4 D3 p2 | b1 | Do
Description Disable ROM Screen RAM Select
Paging Select Select

D2 to DO is a three bit number that selects which RAM page goes into the CO00h to FFFFh
slot. In previous models (such as the +3e) in BASIC, RAM page 0 was normally in-situ,
and when editing, RAM page 7 was paged in for various buffers and scratchpads.

D3 switches screens: Screen 0 (the Display + Colour Files) was held in RAM5 (beginning
at 4000h) and it was the one that BASIC used, screen 1 was held in RAM7 (beginning at
C000h) and could only be used by machine code programs.

D4 determines whether ROMO (the editor ROM) or ROM1 (the 48K BASIC ROM) is paged
into Slot 1 at 0000h to 3FFFh.

D5 is a safety feature — once this bit is set, no further paging operations will work. This is
normally used when the machine assumes a standard 48K Spectrum configuration and all
the memory paging circuitry is locked out. On previous models, this meant that it couldn't
be turned back into a 128K machine other than by rebooting; however, the sound chip can
still be driven by OUT either from 48K Basic or machine code. On the ZX Spectrum Next
however, you can override that lock switch it back to on by setting NextREG 8, D7 to 1.

Note here that the 16K Bank 5, is the bank read by the ULA to determine what to show on
screen for Layer O (and 1). The ULA connects directly to the larger memory space ignoring
mapping; the screen is always 16K Bank 5, no matter where in memory it is (or if it is

5 For comparison, executing NOPs in contended RAM will give an effective clock frequency of approximately 2.6MHz
as opposed to the normal 3.5MHz in uncontended RAM for the base clock speed. This is a speed reduction of about
25%

ZX Spectrum Next — User Manual 295

Chapter 24 — The Memory NextZXOS Paging Mechanism Overview

switched in at all). Setting D3 of Memory Paging Control (7FFDh) will have the ULA read
instead from 16K Bank 7 (otherwise known as “shadow screen”), which can be used as an
alternate screen. Beware that this does not map 16K bank 7 into RAM; to alter 16K bank 7
it must be mapped by other means.

Let's now examine the bit layout of port 1FFDh used by the +3.

Bit D7 D6 D5 D4 D3 D2 DI | Do
Description Par. Port Disk | Switchtype | ROM/ RAM switchin
P Strobe® Motor? P / ¢

When D0 is 0, D1 has no effect and D2 is a “vertical” ROM switch (ie between ROMO and
ROM2 or between ROM1 and ROM3). D4 at 7FFDh on the other hand is a “horizontal”
ROM switch (ie. between ROMO and ROM1, or between ROM2 and ROMB). The following
diagram illustrates the various ROM switching possibilities:

D4:7FFDh
(SysVar:BANKM)
4+—>
Horizontal
ROMO ROM1
g
£
i))
& % = =
>
12X
Horizontal
ROM2 ROMS3

Figure 56 — Horizontal vs Vertical ROM switching

It is best to think of D4 in port 7FFDh and D2 in port 1FFDh combining to form a 2-bit num-
ber (ranging from 0 to 3) which determines which ROM occupies the memory area 0000h
to 3FFFh (16K Slot 1). D4 of port 7FFDh is the least significant bit and D2 of 1FFDh is the
most significant bit.

D2/1FFDh | D4/7FFDh ROM Used
0 0

w|iN | = |O

0 1
1 0
1 1

ROM switching (with DO of 1FFDh set to 0)

Tying it all together, we can easily surmise that 128 style memory management can only
alter the bank addressed at CO00h (For 16K banks that would be Slot 4, or for 8K
MMU-type banks Slots 7 and 8). The active 16K bank at CO00h is selected by writing the 3
LSBs of the 16K bank number to the bottom 3 bits of Memory Paging Control (7FFDh),
and the 4 MSBs to the bottom 4 bits of Next Memory Bank Select (DFFDh). (The reason for
the division is that the original Spectrum 128, having only 128k of memory, only needed 3
bits.)

6 Not applicable on the ZX Spectrum Next
296 ZX Spectrum Next — User Manual

MMU-Based Memory Management Chapter 24 — The Memory

This in essence constructs a “super hardware port” of sorts, very similar to the combina-
tion used to select a ROM using bits from 1FFDh and 7FFDh

D3/DFFDh | D2/DFFDh | D1/DFFDh | DO/DFFDh | D2/7FFDh | D1/7FFDh | DO/7FFDh Bank
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 2
1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 RE

“Standard Next paging” bank selection settings

If you are using the standard interrupt handler or NextZXOS routines, then any time you
write to the Memory Paging Control port (7FFDh) you should also store the value in
SysVars at location 5B5Ch. Any time you write to the +3 Memory Paging Control (1FFDh)
you should also store the value at 5B67h. There is no corresponding system variable for
the Next-only Next Memory Bank Select (DFFDh) port.

Note that internally NextZXOS and NextBASIC utilise a combination of all possible banking
methods according to what's needed at which time, and you should not rely on this infor-
mation as a definitive guide on how the system behaves at all times.

AllRam mode

“Special paging mode” (also called AllIRam mode or CP/M mode) is enabled by writing a
value with the LSB set to the +3 Memory Paging Control (1FFDh). Depending on the 3 low
bits of this value a memory configuration is selected as follows:

D2/1FFDh | D1/1FFDh | DO/1FFDh | RAM Page combinations (Slot1/.../Slot4)
0 0 1 0,1,2,3
0 1 1 4,5,6,7
1 0 1 4,5,6,3
1 1 1 4,7,6,3
AllRam paging

This mode is selected by default when you select the CP/M Menu from the More...
submenu of the Startup menu, or you run the dot command .cpm.

MMU-Based Memory Management

MMU Based memory management is much simpler to use. It only requires a write to the
appropriate MMU Next Register to change the 8K bank occupying a specific 8K slot in the
64K address space (See the previous chapter for details on Next Registers). The MMU
registers begin with slot 0 in NextREG 80 (50h) and end with slot 7 in NextREG 87 (57h).
For MMUO and MMU1 only, the ROM can be paged in by selecting 255 (FFh) as a bank
number. The default values for the MMU Registers are listed in Chapter 23 and corre-
spond to the normal default memory mapping of the 128K Spectrums.

Layer 2 Bank Switching

Layer 2 can also be overlaid on top of the MMU memory map in the bottom 16K or 48K in a
Read-only or Write-only mapping. The Write-only mapping, for example, would mean that
memory writes to the bottom 16K go to Layer 2 but memory reads come from the MMU
mapping as normal. The bottom 16K is normally occupied by the ROM so this Write-only
mapping would allow NextBASIC programs to continue to function (the ROM is a
read-only program) while allowing POKESs to write into the Layer 2 screen. Itis an easy way
to gain access to 32K in a single 16K address range.

The Layer 2 mapping is controlled by bits in the Layer 2 Access Port 4667 (123Bh). These
bits select among 16K or 48K mapping, Read-only or Write-only, and whether the active
Layer 2 screen is mapped or a second Layer 2 buffer (Shadow Screen) is mapped. Layer 2

ZX Spectrum Next — User Manual 297

Chapter 24 — The Memory Paging method interactions

and its second buffer can be located anywhere in RAM and their starting 16K banks are
programmed into NextREG 18 (12h) and 19 (13h) respectively.

The Layer 2 mapping does not have to be used for Layer 2 graphics only; it can be used as
a third banking mechanism to access memory more generally.

Paging method interactions

The most recent change to the memory map, whether that is by Standard or MMU meth-
ods, always applies. Each time a change is made to the memory map using the Standard
mechanism (a write to port 7FFDh, DFFDh, or 1FFDh), the affected MMUs are changed
immediately. For example writing to port 7FFDh will change MMUO and MMU1 to FFh to
make sure the selected ROM is visible and MMU6 and MMU7 will be changed to reflect
the selected 16K RAM bank.

Paging out the ROM

As seen above, the ROM can be paged out by enabling AllRam mode, or by using MMU
based memory management. This may cause problems as some programs may assume
that ROM-based service routines are present at fixed addresses in ROM. Additionally, if
the default interrupt mode (IM1) is set, the CPU will JP to 0038h every frame trying to find
an interrupt handler routine. If it does not, (which it won't unless you write your own), the
system will crash.

298 ZX Spectrum Next — User Manual

[/ Chapter

25

The System Variables

*** This page intentionally left blank ***

Overview Chapter 25 — The System Variables

The System Variables

Overview

Certain locations in memory are set aside for specific uses by the system. There are a few
routines (used to keep the paging in order), and some locations called system variables
(or SYSVARS). You can use PEEK and DPEEK to read them, in order to find out various
things about the system, and on some of them you can usefully change with POKE and
DPOKE. They are listed here with their uses.

The area occupied by SYSVARS spans the addresses 23296 (5B00h) to 23733 (5CB5h)
(inclusive) and a subset of them are used in 48 BASIC - addresses 23552 (5C00h) to
23733 (5CB5h).

Note that in 48K mode, there is a buffer area between 23296 (5B00h) and 23552 (5C00h)
which was used for controlling the printer. This was quite a popular location for small ma-
chine code programs on the old 48K Spectrum, and if any of these routines are tried in
NextBASIC, the computer will invariably crash so it's advisable that any 48K BASIC pro-
gram that uses PEEK, POKE and USR to either be run in 48 BASIC mode (although it can
be entered in NextBASIC mode and transferred using the SPECTRUM command) or ex-
amined thoroughly and converted so it won't use any of these commands or that any ma-
chine code routine embedded within it be moved in a safer area.

System Variables

The system variables listed below, all have unique names, but do not confuse them with
NextBASIC variables. The computer will not recognize the names as referring to system
variables, and they are given solely as mnemonics to be human-readable.

The abbreviations in column 1 of the table that follows have the following meanings:

X The variables should not be poked because the system might crash.
N Poking the variable will have no lasting effect
R Routine entry point. Not a variable.

The number in column 1 is the number of bytes in the variable. For two bytes, the first one
is the less significant byte; the reverse of what you might expect. So to POKE a value vto a
two byte variable at address n, use DPOKE instead, as it does the conversion for you oth-
erwise you'd need to enter the following for SYSVAR n value v:

FORE n,w-2556*%IHT (v 255)
FOEE n+l, IHNT (w.-256]

and to peek its value, either use DPEEK or the expression:

FEEE n+2S5S&*xFPEEE (n+1)

Address
Notes | Hex Dec | Name Description
R16 | 5B00 | 23296 | SWAP Paging subroutine.
R17 | 5B10 | 23312 | STOO Paging subroutine. Entered with interrupts already disabled and AF,

BC on the stack.
R9 | 5B21 | 23329 | YOUNGER Paging subroutine.
R16 | 5B2A | 23338 | REGNUOY Paging subroutine.

R24 | 5B3A | 23354 | ONERR Paging subroutine.
X2 | 5B52 | 23378 | OLDHL Temporary register store while switching ROMs.
X2 | 5B54 | 23380 | OLDBC Temporary register store while switching ROMs.
X2 | 5B56 | 23382 | OLDAF Temporary register store while switching ROMs.
N2 | 5B58 | 23384 | TARGET Subroutine address in ROM 3.

X2 | 5B5A | 23386 | RETADDR Return address in ROM 1.

ZX Spectrum Next — User Manual 301

Chapter 25 — The System Variables

System Variables

Address
Notes | Hex Dec | Name Description

X1 | 5B5C | 23388 | BANKM Copy of last byte output to I/O port 7FFDh (32765). This port is used
to control the RAM paging (bits 0...2), the 'horizontal' ROM switch
(01 and 23 - bit 4), screen selection (bit 3) and added /O disabling
(bit 5). This byte must be kept up to date with the last value output
to the port if interrupts are enabled.

X1 | 5B5D | 23389 | RAMRST RST 8 instruction. Used by ROM 1 to report old errors to ROM 3.

N1 | 5B5E | 23390 | RAMERR Error number passed from ROM 1 to ROM 3. Also used by
SAVE/LOAD as temporary drive store.

1| 5B5F | 23391 | INKL INK colour for LoRes

1| 5B60 | 23392 | INK2 INK colour for Layer 2

1| 5B61 | 23393 | ATTRULA Attributes for standard mode

1| 5B62 | 23394 | ATTRHR Attributes for HiRes (only paper colour in bits 3 — 5 is used)
1| 5B63 | 23395 | ATTRHC Attributes for HiColour

1| 5B64 | 23396 | INKMASK Softcopy of EnhancedULA InkMask (or 0)

N1 | 5B65 | 23397 | LSBANK Temporary bank number in LOAD/SAVE and other operations

1| 5B66 | 23398 | FLAGS3 Various flags. Bits 0, 1, 6 and 7 unlikely to be useful. Bit 2 is set
when tokens are to be expanded on printing. Bit 3 is set if print
output is RS232. The default (at reset) is Centronics. Bit 4 is set if a
disk interface is present. Bit 5 is set if drive B: is present.

X1 | 5B67 | 23399 | BANK678 Copy of last byte output to I/O port 1FFDh (8189). This port is used
to control the 43 extended RAM and ROM switching (bits 0..2 — if
bit 0is 0 then bit 2 controls the 'vertical' ROM switch 02 and 13), the
disk motor (bit 3) and Centronics strobe (bit 4). This byte must be
kept up to date with the last value output to the port if interrupts are
enabled.

X1 | 5B68 | 23400 | FLAGN Flags for the NextZXOS system

1] 5B69 | 23401 | MAXBNK Maximum available RAM bank
X2 | 5B6A | 23402 | OLDSP Old SP (stack pointer) when TSTACK is in use.
X2 | 5B6C | 23404 | SYNRET Return address for ONERR.

5| 5B6E | 23406 | LASTV Last value printed by calculator.

1| 5B73| 23411 | TILEBNKL Tiles bank for LoRes

1| 5B74 | 23412 | TILEML Tilemap bank for LoRes

1| 5B75 | 23413 | TILEBNK2 Tiles bank for Layer2

1| 5B76 | 23414 | TILEM2 Tilemap bank for Layer2
X1 | 5B77 | 23415 | NXTBNK Bank containing NXTLIN
X1 | 5B78 | 23416 | DATABNK Bank containing DATADD

1| 5B79 | 23417 | LODDRV Holds T'if LOAD, VERIFY, MERGE are from tape, otherwise holds

‘A, 'B'or 'M".

1| 5B7A | 23418 | SAVDRV Holds 'T' if SAVE is to tape, otherwise holds 'A', 'B' or 'M'".
N1 | 5B7B | 23419 | L2SOFT Softcopy of Layer 2 port

2| 5B7C | 23420 | TILEWL Width of LoRes tilemap

2 | BB7E | 23422 | TILEW2 Width of Layer 2 tilemap

2| 5B80 | 23424 | TILEOFFL Offset in bank for LoRes tilemap

2| 5B82| 23426 | TILEOFF2 Offset in bank for Layer 2 tilemap

2| 5B84 | 23428 | COORDSX x coord of last point plotted (Layer 1/2)

2| 5B86 | 23430 | COORDSY y coord of last point plotted (Layer 1/2)

1| 5B88 | 23432 | PAPERL PAPER colour for LoRes mode

1| 5B89 | 23433 | PAPER2 PAPER colour for Layer 2 mode

Nx | 5B8A | 23434 | TMPVARS Base of temporary system variables (space shared with bottom of
TSTACK)

302 ZX Spectrum Next — User Manual

System Variables Chapter 25 — The System Variables

Address
Notes | Hex Dec | Name Description
X117 | 5BFF | 23551 | TSTACK Temporary stack grows down from here. Used when RAM bank 7 is
switched in at top of memory while executing the editor or calling
NextZXOS). it may safely go down to 5B8Ah if necessary . This
guarantees at least 117 bytes of stack when NextBASIC calls
NextZXOS.
N8 | 5C00 | 23552 | KSTATE Used in reading the keyboard.
N1 | 5C08 | 23560 | LASTK Stores newly pressed key.
1| 5C09 | 23561 | REPDEL Time (in 50" of a second) that a key must be held down before it
repeats. This starts off at 35, but you can POKE in other values.
1| 5CO0A | 23562 | REPPER Delay (in 50" of a second) between successive repeats of a key
held down — initially 5.

N2 | 5C0B | 23563 | DEFADD Address of arguments of user defined function (if one is being
evaluated), otherwise 0.

N1 | 5COD | 23565 | K_DATA Stores 2 byte of colour controls entered from keyboard .

N2 | 5COE | 23566 | TVDATA Stores bytes of colour, AT and TAB controls going to TV.

X38 | 5C10 | 23568 | STRMS Addresses of channels attached to streams.

2| 5C36 | 23606 | CHARS 256 less than address of character set (which starts with space and
carries on ©). Normally in ROM, but you can set up your down in
RAM and make CHARS point to it.

1| 5C38 | 23608 | RASP Length of warning buzz.

1] 5C39 | 23609 | PIP Length of keyboard click.

1] 5C3A | 23610 | ERRNR 1 less than the report code. Starts off at 255 (for -1) so PEEK 23610
gives 255.

X1 | 5C3B | 23611 | FLAGS Various flags to control the NextBASIC system.

X1 | 5C3C | 23612 | TVFLAG Flags associated with the TV.

X2 | 5C3D | 23613 | ERRSP Address of item on machine stack to be used as error return.

N2 | 5C3F | 23615 | LISTSP Address of return address from automatic listing.

N1| 5C41| 23617 | MODE Specifies [, M, @, [E or [E cursor.

2| 5C42 | 23618 | NEWPPC Line to be jumped to.
5C44 | 23620 | NSPPC Statement number in line to be jumped to. Poking first NEWPPC
and then NSPPC forces a jump to a specified statement in a line.
2| 5C45 | 23621 | PPC Line number of statement currently being executed.
5C47 | 23623 | SUBPPC Number within line of statement currently being executed.
1| 5C48 | 23624 | BORDCR Border colour multiplied by 8; also contains the attributes normally
used for the lower half of the screen.
2| 5C49 | 23625 | E_PPC Number of current line (with program cursor).

X2 | 5C4B | 23627 | VARS Address of variables.

N2 | 5C4D | 23629 | DEST Address of variable in assignment.

X2 | 5C4F | 23631 | CHANS Address of channel data.

X2 | 5C51 | 23633 | CURCHL Address of information currently being used for input and output.

X2 | 5C53 | 23635 | PROG Address of NextBASIC program.

X2 | 5C57 | 23637 | NXTLIN Address of next line in program.

X2 | 5C57 | 23639 | DATADD Address of terminator of last DATA item.

X2 | 5C59 | 23641 | E_LINE Address of command being typed in.

2| 5C5B | 23643 | K CUR Address of cursor.

X2 | 5C5D | 23645 | CH_ADD Address of the next character to be interpreted — the character after
the argument of PEEK, or the NEWLINE at the end of a POKE
statement.

2| 5C5F | 23647 | X_PTR Address of the character after the [] marker.

X2 | 5C61 | 23649 | WORKSP Address of temporary work space.

X2 | 5C63 | 23651 | STKBOT Address of bottom of calculator stack.

X2 | 5C65 | 23653 | STKEND Address of start of spare space.

ZX Spectrum Next — User Manual 303

Chapter 25 — The System Variables System Variables

Address
Notes | Hex Dec | Name Description
N1 | 5C67 | 23655 | BREG Calculator's B register.
N2 | 5C68 | 23656 | MEM Address of area used for calculator's memory (usually MEMBOT,
but not always).
1| 5C6A | 23658 | FLAGS2 More flags. (Bit 3 set when CAPS SHIFT or CAPS LOCK is on.)
X1 | 5C6B | 23659 | DF_SZ The number of lines (including one blank line) in the lower part of
the screen.
2| 5C6C | 23660 | S_TOP The number of the top program line in automatic listings.
2| 5C6E | 23662 | OLDPPC Line number to which CONTINUE jumps.
1| 5C70 | 23664 | OSPPC Number within line of statement to which CONTINUE jumps.
N1 | 5C71 | 23665 | FLAGX Various flags.
N2 | 5C72 | 23666 | STRLEN Length of string type destination in assignment.
N2 | 5C74 | 23668 | T_ADDR Address of next item in syntax table (very unlikely to be useful).
2| 5C76 | 23670 | SEED The seed for RND. This is the variable that is set by RANDOMIZE.
3| 5C78 | 23672 | FRAMES 3 byte (least significant byte first), frame counter incremented every
20ms.
2| 5C7B | 23675 | UDG Address of first user-defined graphic. You can change this, for

instance, to save space by having fewer user-defined characters.
1| 5C7D | 23677 | COORDS X-coordinate of last point plotted.

1| 5C7E | 23678 Y-coordinate of last point plotted.
X1 | 5C7F | 23679 | GMODE Graphical layer/mode flags
X2 | 5C80 | 23680 | PRCC Full address of next position for LPRINT to print at (in ZX Printer

buffer). Legal values 5B00 — 5B1F".
1] 5C81 | 23681 | STIMEOUT Screensaver control

2| 5C82 | 23682 | ECHO_E 33-column number and 24 line number (in lower half) of end of input
buffer.
5C84 | 23684 | DF_CC Address in display file of PRINT position.

2| 5C86 | 23686 | DF_CCL Like DF CC for lower part of screen.
X1 | 5C88 | 23688 | S_POSN 33-column number for PRINT position.
X1 | 5C89 | 23689 24-line number for PRINT position.
X2 | 5C8A | 23690 | SPOSNL Like S_POSN for lower part.

1| 5C8C | 23692 | SCR_CT Counts scrolls — it is always 1 more than the number of scrolls that

will be done before stopping with scroll?. If you keep poking this
with a number bigger than 1 (say 255), the screen will scroll on and
on without asking you.

1| 5C8D | 23693 | ATTR_P Permanent current colours, etc., (as set up by colour statements).

1| 5C8E | 23694 | MASK_P Used for transparent colours, etc. Any bit that is 1 shows that the
corresponding attribute bit is taken not from ATTR_P, but from what
is already on the screen.

N1 | 5C8F | 23695 | ATTR_T Temporary current colours, etc., (as set up by colour items).
N1 | 5C90 | 23696 | MASK_T Like MASK_P, but temporary.
1| 5C91 | 23697 | P_FLAG More flags.

N30 | 5C92 | 23698 | MEMBOT Calculator's memory area — used to store numbers that cannot
conveniently be put on the calculator stack.

2| 5CB0 | 23728 Unused
2| 5CB2 | 23730 | RAMTOP Address of last byte of NextBASIC system area.
2| 5CB4 | 23732 | P_RAMT Address of last byte of physical RAM.

1 Not used in 128K mode or when certain peripherals are attached

304 ZX Spectrum Next — User Manual

[/ Chapter

26

Using Machine Code

*** This page intentionally left blank ***

Using Machine Code Chapter 26 — Using Machine Code

Using Machine Code
Using Machine Code

Computers do not respond directly to BASIC, or any other higher level programming lan-
guage. Instead, such languages are either interpreted or compiled into what is known as
machine code, and it is this which is understood by the CPU. The kind of processor that is
built into the computer determines the type of machine code that is used. The ZX Spec-
trum range contains a Z80 processor, and so one writes Z80 machine code when ad-
dressing the processor directly. Specifically for the ZX Spectrum Next, the CPU is an
updated one called Z80n which contains a superset of the instructions found in the Z80.
This section is written mainly for those who understand Z80 machine code. If you do not,
but would like to, you might choose to read a book about it. Suitable titles will be some-
thing along the lines of Z80 machine code (or assembly language) for the absolute begin-
ner. If it also mentions one of the computers in the ZX Spectrum range, so much the better.
You might also like to read online resources and find tools such as the Design-Design
Zeus cross assembler at: https://www.desdes.com/products/oldfiles/, or the z88dk
suite which includes apart from a C compiler, also an assembler, at www.z88dk.org, and
last but not least the specnext.com forums.

Rather than write the numerical values of a machine code program directly, people usually
choose to use mnemonics, known as assembly language, which, although cryptic, is not
too difficult to understand with practice. You can see the assembly language instructions
understood by the ZX Spectrum Next's CPU in Appendix A.

For a computer to execute this code the program must be converted into a sequence of
bytes — in this form it is called machine code. This translation is usually done by a com-
puter, using a program called an assembler. There is no assembler built into the ZX Spec-
trum Next ROM, however, two, loadable ones are included in the System/Next™
distribution: Zeus and SPED kindly provided by Neil Mottershead and Simon Brattel for
the former and César Hernandez Bano for the latter respectively. It is also possible do the
translation yourself, but this can be a painstaking process.

Let's take as an example the program:

1d bc, 99
ret

This will load the BC register pair with 99 and then return. This translates into the four ma-
chine code bytes 1, 99, 0 (Id bc, 99) and 201 (ret). (If you look up codes 1 and 201 in Ap-
pendix A, you will find that 1 corresponds to Id bec, NN —where NN stands for any two-byte
number; and 201 corresponds to ret.)

Using CLEAR to Make Space

Once you have written your machine code program, the next step is to load it into the com-
puter’'s memory. You need to decide whereabouts in memory to locate it — the best thing is
to make extra space for it between the NextBASIC area and the user-defined graphics.

If you enter the command:

CLERR BES5S2E67

This will give you a space of 100 (for good measure) bytes starting at address 65268.To
create the machine code program, you may run a NextBASIC program like this:

1@ LET a=55S2E55

28 REARLD n: FPOEKE a.,n
S@ LET a=a+l: =0 TO zZ@
4@ DARATAH 1,99.,8,28l

ZX Spectrum Next — User Manual 307

Chapter 26 — Using Machine Code Using USR to run machine code

This will stop with the report E Out of DATA when it has filled in the four bytes you speci-
fied.

Using USR to run machine code

To run the machine code, you use the function USR or its —preferred— BANK command
variant. This time however you need to provide it with a numeric argument, i.e. the starting
address or the bank offset. Its result is the value of the BC register on return from the ma-
chine code program, so assuming you type:

FRIMT USSR &ES2E635
It will return the value 99.

The return address to NextBASIC is stacked in the usual way, so return is by a Z80 ret in-
struction. You should not use the IY and | registers in a machine code routine that expects
to use the NextBASIC interrupt mechanism. To perform the exact same function by using
the BANK variant, make the following changes to our program:

1@ LET *a=@

28 BAME HEL Xb

S@ RERAD xn @ BARMNE Xb POEKE Xa.,Xxn
4@ LET Ma=Xa+l: GO TO 3@

S8 CATA 1,99,8,z2al

RUN it and you'll see the E Out of Data error again; Now it's time to execute it and it's done
by giving:

PRIWNT X EBAME B USSR @

If you are writing a program to run with the 48K or 128K ROM, you should not load | with
values between 40h and 7Fh (even if you never use IM 2). When using one of the 128K
ROMs, values between COh and FFh for | should also be avoided if you plan on enabling
contention for your target machine / personality and contended memory (i.e. RAM 4 to 7)
is to be paged in between C000h and FFFFh. This is due to an interaction between the
ULA and the Z80 refresh mechanism, which can cause apparently inexplicable crashes,
screen corruption or other undesirable effects. Thus, you should only use vector IM 2 inter-
rupts between 8000h and BFFFh unless you are very confident of your memory mapping
(or you are only going to run your program on the +2A, +3e or Next personalities where
this problem does not exist).

There are a number of standard pitfalls when programming a banked system such as the
ZX Spectrum Next from machine code. If you are experiencing problems, check that your
stack is not being paged out during interrupts, and that your interrupt routine is always
where you expect it to be (it is advisable to disable interrupts during paging operations). It
is also recommended that you keep a copy of the current bank register setting in unpaged
RAM somewhere as the ports are write-only. NextBASIC and the editor use the system
variables BANKM and BANK678 for 7FFDh and 1FFDh respectively.

If you call NextZXOS routines, remember that interrupts should be enabled upon entry to
the routines. Remember also that the stack must be below 49120 (BFEOh) and above
16384 (4000h), and that there must be at least 50 words of stack space available.

You can save your machine code program easily enough with, for example:

SAVE "nmname'" CODE &5265,4
or, in case you used the BANK variant

SAVE "mame" BAME Xb, @, 4

308 ZX Spectrum Next — User Manual

Calling NextZXOS from NextBASIC Chapter 26 — Using Machine Code

There is no way of saving the program such that when loaded it automatically runs itself;
however, you can get round this by using the short NextBASIC program:

1a LOACD "mame'" CODE &S5S265.,4
28 PRIMT USSR &S5S268

Which should also be saved as a separate program, using a command of the following
form:

SHAVE " Loader" LIMKE 1@
You may run the machine code from NextBASIC using the single command:
LORC " Loader '

This then loads and automatically runs the NextBASIC program, which in turn loads and
runs the machine code. You can try and make a version with the BANK variant as well as
that's safer and always preferred.

Calling NextZXOS from NextBASIC

When NextBASIC's USR function is used, the code it references is entered with the mem-
ory configured with the ROM switched in at the bottom of memory in the address range
(000h — 3FFFh) being ROM 3 (the 48 BASIC ROM). The RAM page at the top of memory is
Bank 0 and the machine stack resides in this area (unless the CLEAR command has been
used to reduce it to somewhere below C000h). As explained in the accompanying docu-
ments explaining the NextZXOS API (found in the c:/docs/nextzxos/ folder in your Sys-
tem/Next™ distribution), NextZXOS can only be called with RAM page 7 switched in at the
top of memory, the stack held somewhere in that range 4000h to BFEOh, and ROM 2 (the
NextZXOS ROM) switched in at the bottom of memory (000h to 3FFFh).

Consequently, it will be necessary to switch both ROM and RAM, and move the stack be-
fore and after calling one of the entries in the DOS jump table.

If the CLEAR command has been used so that the NextBASIC stack is below 49120
(BFEOh), then it is not necessary to move the stack. However, we have done so in the fol-
lowing example to demonstrate the technique when this is not the case.

A simple example to call DOS CATALOG:

org 7000h
mystak equ 9FFFh ;arbitrary value picked to be below
;BFEOh and above 4000h
staksto equ 9000h ;somewhere to put BASIC's stack
;pointer
bankm equ 5B5Ch ;system variable that holds the
;last value output to 7FFDh
portl equ 7FFDh ;address of ROM/RAM switching port
;in I/0 map
catbuff equ 8000h ;somewhere for DOS to put its cata
;log
dos_catalog equ O011Eh ;the DOS routine to call
demo: di junwise to switch RAM/ROM without
;disabling interrupts
1d (staksto),sp ;save BASIC's stack pointer
1d bc,portl ;the horizontal ROM switch/RAM
;switch I/O address
1d a, (bankm) ;system variable that holds current
;switch state
res 4,a ;move right to left in horizontal

;ROM switch (3 to 2)

ZX Spectrum Next — User Manual 309

Chapter 26 — Using Machine Code

Calling NextZXOS from NextBASIC

or 7
1d (bankm) , a

;switch in RAM page 7
;must keep system variable up to

;date (very important)

out (c),a
1d sp,mystak

ei

1d hl,catbuff

1d de,catbuff+l
1d bc, 1024

1d (hl),0
ldir

1d b, 64

1d c,1

1d de,catbuff

1d hl,stardstar
call dos_catalog

push af

pop hl
1d (dosret),hl

1d c,b

1d b, 0

di

push bc
1d bc,portl

1d a, (bankm)

;make the switch

;make sure stack is above 4000h and
;below BFEOh

;interrupts can now be enabled
;The above will have switched in
;the DOS ROM and RAM page 7. The
;stack has also been located in a
;"safe" position for calling DOS
;The following is the code to set
;up and call DOS CATALOG. This is
;where yourown code would be
;placed.

;somewhere for DOS to put the cata
;log

;maximum (for +3DOS) is actually
;64x13+13 = 845

;make sure at least first entry is
;zeroed

;the number of entries in the
;buffer

;include system files in the cata
;log

;the location to be filled with the
;disk catalog

;the file name ("*.*"

;call the DOS entry

;save flags and possible error num
;ber returned by DOS

;put it where it can be seen from

; NextBASIC

;move number of files in catalog to
;low byte of BC

;this will be returned in NextBASIC
;by the USR function

;If the above worked, then BC holds
;number of files in catalog, the
;"catbuff"

;will be filled with the alpha-
;numerically sorted catalog and the
;carry flag but

;in "dosret"™ will be set. This will
;be peeked from NextBASIC to check
;if all went well.

;Having made the call to DOS, it is
;now necessary to undo the ROM and
;RAM switch and put BASIC's stack
;back to where it was on entry.
;The following will achieve this.
;about to ROM/RAM switch so be
;careful

;save number of files

;I1/0 address of horizontal ROM/RAM
;switch

;get current switch state

310

ZX Spectrum Next — User Manual

Calling NextZXOS from NextBASIC

Chapter 26 — Using Machine Code

stardstar:

dosret:

set 4,a ;move left to right (ROM 2 to ROM
i3)

and F8h ;also want RAM page 0

1d (bankm) , a ;update the system variable (very

;important)

out (c),a ;make the switch

pop bc ;get back the saved number of files
;in catalog

1d sp, (staksto) ;put NextBASIC's stack back

ret ;return to NextBASIC, value in BC

defb "*.*", FFh
;with FFh

defw 0

;1s returned to USR

;the file name, must be terminated

;a variable to be peeked from BASIC
;to see if it worked

As some of you may not have an assembler available, the following is a NextBASIC pro-
gram that pokes the above code into memory, calls it, and then uses the value returned by
the USR function and the contents of dosret to print a very simple catalog of the disk:

1@
=1}
=@
4.3
=1
=1

va
Sa

=15
18@
11@
1=2@
158
146

1=5@
1@

17@a

1S@

19@

LET =z=um=@a

FOR i=28&87z2 TO 23753

REALC n
FORE i
HEXT i
IF =um <>
“"Erraor in

N

LET =s=um=sum+n

95357 THEW FPRINWNT
CATAR'" . STOR

LET == USR 25672

IF IMT 1 FEEEK (237571 21 =
FEEE (25757 2 THEM FPRIMNT
"Di=k Error "PFPEEK (2573580

STOR

IF =1 THEM FPRIWKT "Moo file
found'™: STOP

FOR i=@ TO =-2

FOR =@ TO 1@

FRIMNT CHR%

[PEEK

[(Z2T7SL1+1i*13+.4011;

HEXT .
FRIMT
HEXT i

CATAH 243,237,115 ,8,144 ,1,
253,127,585 ,92,91,285, 157,24

E,7.,.58,392,
L 159,251

21,237,121 ,49,255

CATA 33,@,125,17.,1,125,1.,
a,4,54,8,237,176,6,64,14,1,

17,8,125,353,81,11=2.,.285,3@,1

245,225,534 ,85,112,72.,6,08
CATA 243,197 .,1,255,127,55,

Q92,911,285 ,231,2538,245,58,92

91,237,121 ,195,237,125,8,
144,281
CATAH 42,46 ,42,255,8,08

ZX Spectrum Next — User Manual

311

Chapter 26 — Using Machine Code Opcodes Prefixes

The addresses picked for the above code and its data areas are completely arbitrary.
However, it is a good idea to keep things in the central 32K wherever possible so as not to
run into the pitfall of accidentally switching out a vital variable or piece of code.

Ifinterrupts are to be enabled (as is the case in the above example), it is imperative that the
system is kept up to date about the latest ROM switch. This means, that the user must
make the BANK678 system variable reflect the last value output to the port at 1FFDh. As
shown by the above example, the general technique is to take a copy of the variable in A,
set/reset the relevant bits, update the system variable then make the switch with an OUT
instruction. Interrupts must be disabled while the system variable does not reflect the cur-
rent state of the port. The port at 1FFDh doesn't just control the ROM switch, so setting the
variable to absolute values would be very unwise. Using AND/OR with a bit mask or
SET/RES instructions is the preferred method of updating the variable.

Just as BANK678 reflects the last value output to 1FFDh, BANKM should also be kept up
to date with the last value output to 7FFDh. Again, it is unwise to use absolute values, as
the port is used for other purposes. For example, the bottom 3 bits of the port are used to
select the RAM page that is switched into the memory area C000h through FFFFh (this is
also shown in the above example). Naturally, when more than one bit is to be set/reset, a
bit mask used with OR/AND is the more efficient method. Note that RAM paging was de-
scribed in the Memory Management section in Chapter 24.

The above was a very simple example of calling DOS routines. It works — apart from the ZX
Spectrum Next — on the ZX Spectrum +3 and ZX Spectrum +3e as well.

Opcodes Prefixes

Some Assembler opcodes are preceded by a prefix byte which changes the opcode rep-
resented by the following byte.

Assembler opcode prefixes CBh (203) and EDh (237) alter the meaning of certain instruc-
tions, as indicated in the 5th and 6th columns of Appendix A. This includes the provision of
some entirely new opcodes for the ZX Spectrum Next.

Assembler opcode prefixes DDh (221) and FDh (253) alter the meaning of certain instruc-
tions that ordinarily refer to the H or L registers, so that they refer to either the component
registers of IX or IY register respectively. For example, the instruction LD H,n will load the
value of n into the H register. Preceding this two-byte instruction with the IX register's
opcode prefix DDh, would result in the most significant 8 bits of the IX register being
loaded with that value instead.

This general transformation rule is modified when the original instruction contains (HL),
with this component replaced by (IX +N) and any other reference to HL left unaffected.
For instance:

DDh 66h is interpreted as Id h,(ix + N)

A DDh opcode will be ignored, interpreted as nop, if it precedes DDh, EDh or FDh. Similar
rules apply to the FDh instruction.

312 ZX Spectrum Next — User Manual

[/ Appendix

A

Character Set,
Z80N Mnemonics
and Control Codes

This Page Intentionally Left Blank

Appendix A — Character Set, Z8BON Mnemonics and Control Codes

Character Set, ZB0ON Mnemonics and Control Codes

This is the complete ZX Spectrum Next / NextZXOS character set, with codes in decimal
and hexadecimal, the character each code represents, as well as the control codes
(shaded) together with their corresponding NextBASIC tokens, if any. Tokens that are
shaded are specific to the ZX Spectrum Next and cannot be found in earlier ZX Spectrum
models. If one imagines the codes as being Z80N machine code instructions, then the
right hand columns give the corresponding assembly language mnemonics. As you are
probably aware if you understand these things, certain Z80N instructions are compounds
starting with CBh or EDh; the two rightmost columns give you these. Note that ED instruc-
tions that are shaded, cannot be found in regular Z80 CPUs and are only native to Z80N,
the variant of the Z80 CPU, found on the ZX Spectrum Next. Control codes are marked
with UW if they refer to User Windows and SW if they refer to System Windows.

Dec Character / Control Code / Token Hex Z80ON Assembler - after CB - after ED
0 Justify off (UW) Increase font (SW) 00 nop ricb
1 Justify on (UW) Decrease font (SW) 01 Id bc,NN ricc
2 Save Window (UW) Change font (SW) 02 Id (bc),a rlcd
3 Restore Window (UW) 03 incbc rlce

Regenerate Small Fonts (SW)
4 Cursor to top left (UW)(SW) 04 incb rlich
5 Cursor to bottom left (UW)(SW) 05 dechb rlc |
6 PRINT comma 06 Idb,N rlc (hl)
7 EDIT, Scroll (SW)(UW) 07 rlca rlc a
8 Sl 08 exaf,af rmcb
9 = 09 add hl,bc e c
10 4 OA Ida,(bc) rrc d
11 i) 0B decbc rmce
12 DELETE / Backspace 0C incc rrch
13 ENTER/ Carriage Return 0D decc rre |
PRINT apostrophe
14 Clear Window (UW)(SW) OE IdcN rre (hl)
15 Wash Window (UW)(SW) OF rrca e a
16 INK 10 djnzDIS b
17 PAPER 11 Id de,NN rlc
18 FLASH 12 Id (de),a rld
19 BRIGHT 13 incde e
20 INVERSE 14 incd rth
21 OVER 15 decd il
22 AT 16 IddN rl (hl)
23 TAB 17 rla rha
24 ATTR (UW)(SW) 18 jrDIS b
25 POINT (UW)(SW) 19 addhlde e
26 AUTO PAUSE (UW)(SW) 1A Id a,(de) rrd
27 Fill window with character(UW)(SW) 1B decde e
28 Set Double Width (UW)(SW) 1C ince rrh
29 Set Font Height (UW) 1D dece il
30 Justification mode (UW) 1E IdeN rr (hl)
Set Font Width (SW)
31 Permit embed. codes in justif. mode 1F rma ra
gJch\i/Lfine Character Set (SW)
32 Space 20 jrnz DIS slab
33 ! 21 Id h,;NN slac
34 ! 22 Id (NN),hl slad

ZX Spectrum Next — User Manual 315

Appendix A — Character Set, Z8ON Mnemonics and Control Codes

Dec Character / Control Code / Token Hex Z8ON Assembler - after CB - after ED
35 # 23 inchl slae swapnib
36 $ 24 inch slah mirror a
37 % 25 dech slal
38 & 26 IdhN sla (hl)

39 ' 27 daa slaa test N
40 (28 jrz,DIS srab bsla deb
M) 29 addhihl srac bsra de,b
42 * 2A Id hI,(NN) srad bsrl de,b
43 + 2B dechl srae bsrf de,b
44 2C incl srah bric de,b
45 - 2D decl sral
46 . 2E IdIN sra (hl)
47 / 2F cpl sraa
48 0 30 jrnc,DIS mul d,e
49 1 31 Idsp,NN add hl,a
50 2 32 Id (NN),a add de,a
51 3 33 incsp add bc,a
52 4 34 inc (hl) add hi,NN
53 5 35 dec (hl) add de,NN
54 6 36 Id (hi),N add bc,NN
55 7 37 scf
56 8 38 jrc,DIS srlb
57 9 39 addhl,sp srlc
58 3A Id a,(NN) srld
59 ; 3B decsp srle
60 < 3C inca srlh
61 = 3D deca srl
62 > 3E IdaN srl (hl)
63 ? 3F ccf srla
64 @ 40 Idbb bit 0,b inb,(c)
65 A 41 Idbc bit 0,c out (c),b
66 B 42 Idbd bit 0,d sbc hl,bc
67 C 43 Idbe bit 0,e Id (NN),bc
68 D 44 Idbh bit 0,h neg
69 E 45 Idb)l bit 0, retn
70 F 46 Id b,(hl) bit 0, (hl) im0
71 G 47 Idba bit 0,a Idia
72 H 48 Idcb bit 1,b inc,(c)
73 | 49 Idcc bit 1,c out (c),c
74 J 4A Idcd bit 1,d adc hl,bc
75 K 4B Idce bit 1,e Id bc,(NN)
76 L 4C Idch bit 1,h
77 M 4D Idc| bit 1,1 reti
78 N 4E Id c,(hl) bit 1,(hl)
79 (0] 4F Idca bit 1,a Idra
80 P 50 Iddb bit 2,b ind,(c)
81 Q 51 Iddc bit 2,c out (c),d
82 R 52 Iddd bit 2,d sbc hl,de
83 S 53 Idde bit 2,e Id (NN),de
84 T 54 Iddh bit 2,h
85 u 55 Idd| bit 2,1
86 v 56 Idd,(hl) bit 2, (hl) im 1

316 ZX Spectrum Next — User Manual

Appendix A — Character Set, Z8ON Mnemonics and Control Codes

Dec Character / Control Code / Token

87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

17

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

=

e NI

SQ -~ ®© Q 0 T o ml

—_ X - -

- o o o 5 3

—+ 0

— — N < X = < C

l

©

" " m

PEEK$
REG
DPOKE

Hex
57
58
59
5A
5B
5C
5D
5E
5F
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
7
78
79
7A
7B
7C
7D
7E
7F
80
81
82
83
84
85
86
87
88
89

Z80N Assembler
Id d,a
Ideb
Ide,c
Ided
Idee
Ide,h
Ide,l

Id e, (hl)
dea
Id h,b
Id h,c
Id h,d
Idh,e
Id h,h
Id h,l

Id h, (hl)
Id h,a
Id I,b
Idlc
Id1,d
Idle

Id 1,h

Id 1]

Id 1,(hl)

Id (hl),a
Idab
Idac
Id a,d
Idae
Id a,h
Ida,l

Id a,(hl)
Id a,a
add a,b
add a,c
add a,d
add ae
add a,h
add a,!
add a,(hl)
add a,a
adc a,b
adc a,c

- after CB
bit 2,a
bit 3,b
bit 3,¢c
bit 3,d
bit 3,e
bit 3,h
bit 3,1
bit 3,(hl)
bit 3,a
bit 4,b
bit 4,¢
bit 4,d
bit 4,e
bit 4,h
bit 4,1
bit 4,(hl)
bit 4,a
bit 5,b
bit 5,c
bit 5,d
bit 5,e
bit 5,h
bit 5,1
bit 5,(hl)
bit 5,a
bit 6,b
bit 6,c
bit 6,d
bit6,e
bit 6,h
bit 6,1
bit 6, (hl)
bit 6,a
bit 7,b
bit 7,c
bit 7,d
bit 7,e
bit 7,h
bit 7,1
bit 7,(hl)
bit 7,a
res 0,b
res 0,c
res 0,d
res 0,e
res 0,h
res 0,
res 0,(hl)
res 0,a
res 1,b
res 1,c

- after ED
Id a,i
ine,(c)
out (c),e
adc hl,de
Id de,(NN)

im2
Idar
inh,(c)
out (c),h
sbc hihl
Id (NN),hl

rrd

inl,(c)
out (c),!
adc hi,hl
Id hl,(NN)

rid
inf,(c)

sbc hl,;sp
Id (NN),sp

ina,(c)
out (c),a
adc hl,sp
Id sp,(NN)

ZX Spectrum Next — User Manual

317

Appendix A — Character Set, Z8ON Mnemonics and Control Codes

Dec Character / Control Code / Token Hex Z8ON Assembler - after CB - after ED
138 | DPEEK 8A adcad res 1,d push NN
139 | o MOD 8B adcae res 1,e

140 - << 8C adcah res 1,h

141 o >> 8D adca,)l res 1.l

142 kL UNTIL 8E adc a,(hl) res 1,(hl)

143 [] ERROR 8F adca,a res 1,a

144 (@) ON 90 subb res 2,b outinb
145 (b) DEFPROC 91 subc res 2,c nextreg r,N
146 (©) ENDPROC 92 subd res 2,d nextreg r,a
147 (d) PROC 93 sube res 2,e pixeldn
148 (e) LOCAL 94 subh res 2,h pixelad
149 ® DRIVER 95 subl res 2 setae
150 (@) WHILE 96 sub (hl) res 2,(hl)

151 (h) REPEAT 97 suba res 2,a

152 (i) ELSE 98 sbcab res 3,b p(©)
153 () REMOUNT 99 sbca,.c res 3,c

154 (k) BANK 9A sbca,d res 3,d

155 (1) TILE 9B sbcae res 3,e

156 (m) LAYER 9C sbcah res 3,h

157 (n) PALETTE 9D sbca,l res 3,

158 (0) SPRITE 9E sbca,(hl) res 3,(hl)

159 P PWD 9F sbcaa res 3,a

160 @ CD A0 andb res 4,b Idi

161 (@] MKDIR Al andc res 4,c cpi
162 (s) RMDIR A2 andd res 4,d ini

163 ® SPECTRUM A3 ande res 4,e outi
164 (u) PLAY A4 andh res 4,h Idix
165 RND A5 and| res 4, ldws
166 INKEY$ A6 and (hl) res 4,(hl)

167 PI A7 anda res 4,a

168 FN A8 xorb res 5,b ldd
169 POINT A9 xorc res 5,c cpd
170 SCREENS$ AA xord res 5,d ind

171 ATTR AB xore res 5,e outd
172 AT AC xorh res 5,h Iddx
173 TAB AD xorl res 5,1

174 VALS$ AE xor (hl) res 5,(hl)

175 CODE AF xora res5,a

176 VAL BO orb res 6,b Idir
177 LEN B1 orc res 6, cpir
178 SIN B2 ord res 6,d inir
179 COs B3 ore res 6,e otir
180 TAN B4 orh res 6,h Idirx
181 ASN B5 orl res 6,

182 ACS B6 or (hl) res 6,(hl)

183 ATN B7 ora res 6,a Idpirx
184 LN B8 c¢pb res7,b |ddr
185 EXP B9 cpc res 7,c cpdr
186 INT BA cpd res 7,d indr
187 SQR BB cpe res7,e otdr
188 SGN BC cph res 7,h Iddrx

318 ZX Spectrum Next — User Manual

Appendix A — Character Set, Z8ON Mnemonics and Control Codes

Dec Character / Control Code / Token

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

ABS
PEEK
IN

USR
STR$
CHR$
NOT
BIN

OR
AND
<=

>=

<>
LINE
THEN
TO
STEP
DEF FN
CAT
FORMAT
MOVE
ERASE
OPEN #
CLOSE #
MERGE
VERIFY
BEEP
CIRCLE
INK
PAPER
FLASH
BRIGHT
INVERSE
OVER
ouT
LPRINT
LLIST
STOP
READ
DATA
RESTORE
NEW
BORDER
CONTINUE
DIM
REM /;
FOR
GO TO
GO SuB
INPUT
LOAD
LIST

Hex
BD
BE
BF
Co
C1
C2
C3
C4
C5
C6
Cc7
C8
C9
CA
CB
cC
CD
CE
CF
Do
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF
EO
E1
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF
FO

Z80N Assembler
cpl

cp (hl)
cpa

ret nz
pop bc

jp nz,NN
jp NN

call nz,NN
push bc
add a,N
rst0

retz

ret

jp z,NN
modifying prefix
call zZ,NN
call NN
adc a,N
rst 8

ret nc
pop de

jp nc,NN
out (N),a
call nc,NN
push de
sub N

rst 16
retc

exx

jp ¢,NN
ina,(N)
call ¢,NN
IX prefix*
sbc a,N
rst 24

ret po
pop hl

jp po,NN
ex (sp),hl
call po,NN
push hl
and N

rst 32

ret pe

i ()

jp pe,NN
ex de,hl
call pe,NN
modifying prefix
xor N

rst 40

ret p

- after CB - after ED
res 7,1
res 7,(hl)
res7,.a
set0,b
set0,c
set 0,d
set0,e
setO,h
set0,!
set 0,(hl)
set0,a
set1,b
set1,c
set 1,d
set 1,e
set 1,h
set 1,
set 1,(hl)
set 1,a
set2,b
set2,c
set 2,d
set2.e
set2,h
set 2,
set 2,(hl)
set 2,a
set3,b
set 3,c
set 3,d
set 3,e
set 3,h
set 3,1
set 3,(hl)
set 3,a
set4,b
set4,.c
set 4,d
set4,e
set4,h
set 4,
set 4,(hl)
set 4,a
set5,b
set5,c
set 5,d
set5,e
set 5,h
set 5,1
set 5,(hl)
set5,a
set6,b

ZX Spectrum Next — User Manual

319

Appendix A — Character Set, Z8ON Mnemonics and Control Codes

Dec Character / Control Code / Token Hex Z8ON Assembler - after CB - after ED
241 LET F1 pop af set6,c
242 PAUSE F2 jp p,NN set 6,d
243 NEXT F3 di set 6,e
244 POKE F4 callpNN set 6,h
245 PRINT F5 push af set 6,!
246 PLOT F6 orN set 6,(hl)
247 RUN F7 rst48 set6,a
248 SAVE F8 retm set7,b
249 RANDOMIZE F9 Id sp,hl set7,c
250 IF FA jp m,NN set7,d
251 CLS FB i set7.e
252 DRAW FC callm,NN set 7,h
253 CLEAR FD 1Y prefix* set 7,1
254 RETURN FE cpN set 7,(hl)
255 COPY FF rst56 set7,.a

320 ZX Spectrum Next — User Manual

/i Appendix

B

Reference

Appendix B — Reference

Reference

The following sections provide a handy reference of Error Codes and their equivalent Re-
ports, NextBASIC keywords and functions as well as other information discussed so farin
a consice form

Reports and Error Codes

Reports and Error Codes

These appear at the bottom of the screen whenever the computer stops executing some
function, and explain why it stopped, whether for a natural reason, or because an error
occurred.

The report has a brief message explaining what happened and the bank number (not
present unless the error occurred in a banked section of program), the line number and
statement number within the line where it stopped (A command is shown as line 0. Within
a line, statement 1 is at the beginning, statement 2 comes after the first colon or THEN,
and so on). Some of the codes will have a code number or letter so that you can refer to
the tables below. There are two types of error reports: General and Storage System re-
lated.

General Errors

The behaviour of CONTINUE depends very much on the reports. Normally, CONTINUE
goes to the line and statement specified in the last report, but there are exceptions with re-
ports 0, 9 and D.

Below, there is a table showing all the reports together with the circumstances they can
occur.

Code Report
0 OK

Description Situation

Successful completion, or jump to a line number bigger Any
than any existing. This report does not change the line
and statement jumped to by CONTINUE.

The control variable does not exist (it has not been setup NEXT
by a FOR statement), but there is an ordinary variable
with the same name.

For a simple variable, this will happen if the variable is Any
used before it has been assigned to in a LET, READ or
INPUT statement or loaded from tape or set up in a FOR
statement. For a subscripted variable, it will happen if the
variable is used before it has been dimensioned in a DIM
statement or loaded from a storage device.

1 NEXT without FOR

2 Variable not found

Subscript wrong

Out of memory

Out of screen

Number too big

RETURN without GO SUB

End of file
STOP statement

Invalid argument

A subscript is beyond the dimension of the array, or there
are the wrong number of subscripts. If the subscript is
negative or bigger than 65535, then error B will result.

There is not enough room in the computer for what you
are trying to do. If the computer really seems to be stuck
in this state, you may have to clear out the command line
using DELETE and then delete a program line or two
(with the intention of putting them back afterwards) to
give yourself room to manoeuvre with — say — CLEAR.

An INPUT statement has tried to generate more than 23
lines in the lower half of the screen. Also occurs with
PRINT AT 22, ..., TILE and SPRITE.

Calculations have led to a number greater than about
10,

There has been one more RETURN than there were GO
UBs

After this, CONTINUE will not repeat the STOP, but
carries on with the statement after.

The argument for a function is no good for some reason.

Subscripted
variables,
substrings

LET, INPUT, FOR,
DIM, GO SUB,
LOAD, MERGE,
BANK, PALETTE,
SPRITE, LAYER,
TILE. Sometimes
during expression
evaluation

INPUT, PRINT AT,
SPRITE, TILE

Any arithmetic
RETURN

Storage device, etc,
operations

STOP

SQR, LN, ASN,

ACS, USR (with
string argument)

322

ZX Spectrum Next — User Manual

General Errors

Appendix B — Reference

Code Report

B

Integer out of range

Description

When an integer is required, the floating point argument
is rounded to the nearest integer. If this is outside a
suitable range then error B results. For array access, see
also error 3.

Situation

RUN, RANDOMIZE,
POKE, DIM, GO
TO, GO SUB, LIST,
LLIST, PAUSE,
PLOT, CHR$,
PEEK, USR (with
numeric argument),
PALETTE, BANK,
SPRITE, LAYER,
TILE, POINT, Array
access

C Nonsense in BASIC The text of the (string) argument does not form a valid VAL, VAL$
expression.
D BREAK - CONT repeats BREAK was pressed during some peripheral operation. LOAD, SAVE,
The behaviour of CONTINUE after this reportis normalin - VERIFY, MERGE,
that it repeats the statement. Compare with report L. LPRINT, LLIST,
COPY. Also when
the computer asks
scroll? and you type
N, SPACE or
STOP!
E Out of DATA You have tried to READ past the end of the DATA list. ~ READ
F Invalid file name SAVE with name that is empty or unacceptable (see SAVE
Chapter 20)
G No room for line There is not enough room left in memory to Entering aline into
accommodate the new program line. the program
H STOP in INPUT Some INPUT data started with STOP, or — for INPUT INPUT
LINE — STOP was pressed. Unlike the case with error 9,
after error H CONTINUE will behave normally, by
repeating the INPUT statement.
| FOR without NEXT There was a FOR loop to be executed no times (e.g. FOR
FOR n=1TO 0) and the corresponding NEXT statement
could not be found.
J Invalid I/O device Storage device etc.
operations
K Invalid colour The number specified is not an appropriate value. INK, PAPER,
BORDER, FLASH,
BRIGHT, INVERSE,
OVER, PALETTE;
also after control
characters
L BREAK into program BREAK pressed, this is detected between two Any
statements. The line and statement number in the report
refer to the statement before BREAK was pressed, but
CONTINUE goes to the statement after (allowing for any
jumps to be done), so it does not repeat any statements.
M RAMTOP no good The number specified for RAMTOP is either too big ortoo . CLEAR, BANK;
small. possibly in RUN
N Statement lost Jump to a statement that no longer exists. RETURN, NEXT,
CONTINUE
o Invalid stream Storage device, etc,
operations
P FN without DEF An attempt was made to call a function with FN that has FN
not been defined with a matching DEF FN statement.
Q Parameter error Wrong number of arguments, or one of them is the FN
wrong type (string instead of number or vice versa).
R Tape loading error A file on tape was found but for some reason could not VERIFY, LOAD or
be read in, or would not verify. MERGE
d Too many parentheses Too many parentheses around a repeated phrase inone PLAY
of the arguments
i Invalid device The storage device specified does not exist
k Invalid note PLAY came across a note or command it didn't PLAY
recognise, or a command which was in lower case.
| Too big A parameter for a command is an order of magnitude too PLAY
big.
m Note out of range A series of sharps or flats has taken a note beyond the PLAY
range of the sound chip.
1 STOP cannot normally be entered in NextBASIC as a token; this is retained for compatibility and does work when you

switch to 48K mode

ZX Spectrum Next — User Manual 323

Appendix B — Reference

Storage Device Related Errors

Code Report

n

(o]

Out of range

Too many tied notes
Invalid mode
Direct command error

Loop error

No DEFPROC

Description

A parameter for a command is too big or too small. If the
error is very large, error L results.

An attempt was made to tie too many notes together.
The mode specified does not exist

An attempt was made to execute a command within a
program that's meant to be executed directly from the
command line or to RUN a procedure definition
(DEFPROC)

Occurs in REPEAT...REPEAT UNTIL loops where a
matching REPEAT UNTIL or REPEAT cannot be found.

A PROC was found without a matching
DEFPROC...ENDPROC block

Storage Device Related Errors

Situation
PLAY

PLAY

LAYER

DEFPROC, ERASE,
LINE, LINE

MERGE, BANK
LINE MERGE

REPEAT...REPEAT
UNTIL, WHILE

PROC

The following are reports generated by NextZXOS for storage device errors. Those marked
in the left-hand column with RIC may be followed by the options Retry, Ignore or Cancel?

Some reports may occur with the code(s) shown or without them.

Code Report

e

Already exists

Bad file number

Description

The destination filename or directory already exists. Also occurs when
attempting to map a drive letter that is already mapped to another device.

An attempt was made to operate on a file which has not been opened. It is

unlikely that this error will ever be seen.

f Bad filename The filename used does not conform to the filename requirements for the
filesystem.

Bad parameters One of the values provided is out of range.

Code length error Trying to load a CODE file from the storage device that is longer than the value
given on the LOAD command.

Dest can't be wild Trying to give a wildcard file specification for the destination file in a COPY
command when the source also contains wildcard characters. In this case, the
destination can only be a drive letter.

Dest must be path The source filename in @ COPY command contains wildcard characters, but
the destination is only a single file name. In this case, the destination can only
be a path.

Dir full Unable to add further entries to the directory, or unable to remove a directory
because it contains files or subdirectories.

RIC Disk changed The disk in the drive has been changed without properly REMOUNTIng.
RIC Disk error An error has occurred accessing a storage device. If this error persists it may
indicate that the device is faulty.

Disk full Saving or copying files to a storage device has used up the free space. The
CAT command can be used to check that there is sufficient free space before
attempting such an operation. This may leave a partly-written file if there was
only space for some of it. This part should be erased, as any attempt to use it
will fail.

Dot command error The error that was trapped by ON ERROR was generated by a dot command.
This is seen only when ERROR is used to cause the last trapped error.

End of file An attempt has been made to read a byte past the end-of-file position.

g,h File not found The filename specifies a file that does not exist.

Fragmented — use .DEFRAG The fileis split into parts across the disk. Defragment it using the .DEFRAG dot
command.

In use An attempt has been made to unmap or re-map a drive that has files open on it,
or to access a file that is already open for another purpose.

Invalid attribute The attribute character following + or - in a MOVE command is not P, S or A (or
there is more than one character after the +/-).

Invalid device The physical device specified does not exist.

Invalid drive A drive letter that does not exist has been specified

Invalid partition The partition specified does not exist, or is the wrong type.

Invalid path The path specified does not exist

No rename between drives An attempt has been made to use the MOVE command specifying source and
destination filenames that are on different drives.

No swap partition An application attempted to access a swap partition, but couldn't find one.
Create a new swap partition with .MKSWAP and try again.

Not bootable An attempt has been made to boot a disk image without a boot sector or boot
program.

Not implemented An attempt was made to access a facility which isn't available.

324 ZX Spectrum Next — User Manual

NextBASIC Keywords and Functions

Appendix B — Reference

RIC Not ready
Out of handles
Partition open
RIC Read only
RIC Seek fail
Too big
RIC Unsuitable media

b Wrong file type

The storage device was not ready. This usually happens because it has been
removed.

There aren’t enough handles left to perform the current operation. Unmap a
drive and try again.

The partition you are trying to delete or map is already mapped to a drive.

An attempt has been made to write to a file or storage device which is read-only
or has been write-protected.

The device is unable to locate the sector that has been requested. If this error
persists it may indicate that the device or disk image is faulty.

An attempt has been made to write a file that is too large for the filesystem
(greater than 8MB for +3DOS filesystems, 2GB on FAT16 or 4GB on FAT32).

The device or disk image is formatted in a way that cannot be handled.

Trying to LOAD a file of the wrong type (eg trying to load a CODE file as a
NextBASIC program).

NextBASIC Keywords and Functions

The following is a list of all NextBASIC keywords in alphabetical order with a short descrip-
tion regarding their function.

Keyword

BANK 1346 FORMAT
BANK 1346 USR

BANK m COPY TO n
BANK m DPOKE o, list...
BANK m ERASE [o,] [v]

BANK m CLEAR
BANK m COPY o, | TO n,02
BANK m GOSUB n

BANKmM GOTO n

BANK m LAYER o|x,y,w,h
TO [rop] x,y,w,h|o

BANK m LINE x,y

BANK m LIST [n|PROC
name()]

BANK m MERGE
BANK m POKE o, list...

BANK m PROC name
([expressionlist]) [TO
paramlist]

BANK m RESTORE n
BANK NEW var
BEEP x, y

BORDER m
BRIGHT n

CAT [#n,] [[filespec
[EXP]] | TAB|ASN]

CD filespec
CIRCLE x, v, z
CLEAR [n]

CLOSE #n

CLS

CONTINUE

COoPY

COPY u TO SCREEN$

COPY u1 TO u2

Meaning

Reserve banks 1,3,4,6 for use by the RAMdisk again.

Allow banks 1,3,4,6 to be used by the BANK command.

Copy the contents of bank m to bank n

Double POKE a sequence of comma-separated values starting at offset o in bank m.

Fill bank m's optional | bytes (all if not specified) at optional offset o (0 if not specified) with
value (zero is used if value not specified).

Marks bank m as free for use by other parts of the system.
Copy | bytes starting at offset o in bank m to offset 02 in bank n.

GOSUB line nin bank m. To GOSUB the main program from a banked section, use m=255.
See also RETURN and GOSUB.

GOTO line n in bank m. To GOTO the main program from a banked section, use m=255.

Copies datato | from the screen (in the current mode) from | to offset in bank m. [rop] is an
optional symbol modifier which affects how the data is copied.

Copies lines x to y inclusive from the main program to bank m.
List lines (optionally from line n or procedure named name) in bank m.

Copy all lines back from bank m into the main program.
POKE a sequence of comma-separated values starting at offset o in bank m.

Calla procedure in bank m. To call a procedure in the main program from a banked section,
use n=255. See also DEFPROC.

Set the DATA pointer to line n in bank m
Reserves the next available free bank number and assigns it to the numeric variable var

Sounds a note through the loudspeaker for x seconds at a pitch y semitones above middle
C (or below if y is negative).

Sets the colour of the border of the screen.

Sets brightness of characters subsequently printed. n=0 for normal, 1 for bright. 8 for
transparent.Error Kif n not 0, 1 or 8

Produces an alphanumerically sorted catalog of files on screen or to an optional stream n
from the default drive or according to the optional filespec in standard or EXPanded form.
With the optional TAB and ASN modifiers produces information regarding partitions and
drive letter assignments.

Change the current drive and/or directory to the one specified in filespec.
Draws an arc of a circle, centre (x,y), radius z

Deletes all variables, freeing the space they occupied. Does RESTORE and CLS, resets the
PLOT position to the bottom left-hand corner and clears the NextBASIC Return stack.
Optional address n attempts to change the RAMTOP to that address

Marks stream n as being unattached to any channel.

(Clear Screen). Clears the display of the current layer

Continues the program, starting where it left off last time it stopped with report other than 0.
Sends (dumps) a copy of the screen display to a ZX Printer or compatible.

Displays the contents of a file defined by filespec u on the screen. Control characters (tabs,
line feeds, etc.) are replaced by spaces.

Copies file(s) defined by filespec u1 to the destination defined by filespec u2

ZX Spectrum Next — User Manual

325

Appendix B — Reference

NextBASIC Keywords and Functions

Keyword
DATA list ...
DEFFN? (?1,..., ?k)=¢e

DEFPROC name
([paramlist])

DIM #n,var
DIM?(n1,... nk)

DRAW x,y [,z]

DRIVER drid,callid[,n1[,n2]]
[TO vari[,var2[,var3]]]

ELSE

ENDPROC [= expressionlist]

ERASE [m,n]

ERASE filespec
ERROR [TO el,I[,s[,b]]]]

FLASH n
FOR ?=xTOy [STEP 2]

GOTOn
GO TO #n,m
GOSUB n

IFx THEN y [: ELSE Z]

INK n

INPUT [#n] [LINE]
inputitems

INVERSE n
LAYER AT xy
LAYER BANK n,m

LAYER CLEAR
LAYER DIM x1,y1,x2,y2
LAYER ERASE x,y,w.h[{]

LAYER m[,n]
LAYER OVER n

LAYER PALETTE n [BANK
m,0]| n,iv

LET [%]v = [%]e

LINE start, step|m,n TO
mm,nn

LINE MERGE first last
LIST [[#n]] [m|PROC

name]
LLIST [m]

Meaning

Part of the DATA list. Must be in a program, otherwise has no effect.

User-defined function definition; must be in a program. Each of ? and ?1 to ?k is either a
single letter or a single letter followed by $ for string argument or result. Takes the form DEF
FN a()=e if no arguments.

Defines a procedure, where name follows the same naming rules as standard numeric
variables. paramlist is an optional list of up to 8 variable names (simple strings, numeric
variables or integer variables, but not arrays of any type). See ENDPROC.

Returns the extent (or size) of stream n and stores it in variable var.

Deletes any array or string with the name ?, and sets up an array of characters or numbers
with k dimensions n1 ,...,nk. Initialises all the values to . This can be considered as an array
of strings of fixed length nk , with k-1 dimensions n1,...,nk-1 . An array is undefined until it is
dimensioned in a DIM statement.

Draws a line from the current plot position moving x horizontally and y vertically relative to it
while turning through an optional angle z

Call function callid in driver drid, where n1 and n2 are optional values to pass to the driver,
and var1, var2 and var3 are optional variables to receive results back from the driver.

See IF ... THEN ... ELSE

Ends execution of a procedure defined with DEFPROC and returns up to 8 local values via
the optional expressionlist to the calling PROC command.

Erases the entire NextBASIC program and leaves variables intact. If specified with the
optional m and n parameters, erases all program lines between m and n inclusive.

ERASES all files specified by filespec. Cannot erase entire drives

Regenerate the last error that was trapped by an ON ERROR command and store it in
optional variables e, |, s, b (for error code, line, statement number and bank)

Defines whether characters will be flashing or steady.

Deletes any simple variable ? and sets up a control variable with value x, limit y, optional
step z (or 1if STEP is not defined), and looping address referring to the statement after the
FOR statement. See NEXT.

Jumps to line n (or, if there is none, the first line after that). See also BANK...GO TO.
Sets the current position of stream n to m.

Pushes the line number of the GOSUB statement onto a stack; then as GO TO n. See also
RETURN and BANK...GOSUB.

If xis true (non-zero) then statement list y is executed, otherwise optional statement list z is
executed. ELSE must be on the same line as IF.

Sets the ink (foreground) colour of characters subsequently printed.

INPUTSs inputitems from the keyboard or optional stream n. Optional LINE modifier strips
the quotes from the input items

Inverts the next printed character(s) from INK to PAPER
Sets the display offset for the top-left of the screen for the current layer to x,y.

(Layer 2 only). Set current banks n..n+2 as frontbuffer (to be displayed) and banks
m...m+2 as backbuffer (for rendering).

Resets all layer information to the default values. Resets memory banks, mode, layer 2
enable, layer offsets and layer ordering. Also done by NEW

Sets the clip window for the current layer from (x1,y1) to (x2,y2). Areas of the layer outside
this window are not visible.

Fill region width w pixels, height h pixels, top-left corner x,y with optional value f. If f is not
specifed, 0 is used.

Selects the screen layer m and optional mode m.
Sets sprite/layer SLU ordering

Switch to using palette n (0 or 1) for the current layer and optionally sets palette from bank
m, offset o -or- defines index | for palette n as 9-bit colour v

Assigns the value of [optionally integer] expression e to the [optionally integer] variable v.
LET cannot be omitted.

Either renumbers an entire NextBASIC program starting with line start with an increment of
step -or- a section of the NextBASIC program, beginning with line m and ending with line n,
with the new starting line number mm and incrementing by nn.

Merges lines from first to last into a single line (separated by colons). Can only be used as a
direct command, not within a program.

Lists the current program to the screen or optional stream number starting with optional line
m -or- PROC name. See also BANK...LIST and LLIST

Like LIST but using the printer

326

ZX Spectrum Next — User Manual

NextBASIC Keywords and Functions

Appendix B — Reference

Keyword

LOAD filespec [BANK

m[,0[,n]]|CODE m[,n] | DATA

;rrayspec |LAYER|SCREEN
]

LOCAL variablelist

LPRINT
MERGE filespec

MKDIR filespec

MOVE filespect, filespec2
MOVE filespec TO attribute
NEW

NEXT ?

NEXT #n,v
ON ERROR [statementlist]

OPEN #n,channelspec
OUT m,n

OVER n

PALETTE CLEAR
PALETTE DIM n
PALETTE FORMAT n

PALETTE OVER n
PAPER n

PAUSE n

PLAY f1[,f2,...f9]
PLOT x,y

POINT x,y TO var
POKE a,valuelist
DPOKE addr,valuelist...

PRINT [#n,] [AT x,y;] items

PRINT POINT x,y

PROC name (expressionlist)
[TO paramlist]

PWD [#n]
RANDOMIZE [n]

READ v1,v2,... vk
REG n,v
REM ...

REMOUNT

REPEAT

statementlist

[WHILE y statementlist2]
REPEAT UNTIL x

RESTORE [n]

Meaning

If filespec is a drivespec: Makes the named drive the current default input device for all
subsequent disk operations (COPY, ERASE, MOVE etc.). If the drive letter specified is 'T:',
then all subsequent LOADs will default to tape else loads a NextBASIC program into
memory. With optional modifier BANK it loads the file as binary data into bank m at optional
offset o0 and optional length n. Optional modifer CODE does the same at address m an
optional length n. Optional modifier DATA loads stored data into the array specified by
arrayspec. Optional modifier LAYER attemps to load a screen into the current layer while
SCREENS$ does the same for Layer 0 screens. See also SAVE, MERGE, VERIFY. If a drive
letter is not specified in the filespec, the default drive will be used.

Defines a local variable inside a procedure defined with DEFPROC or a subroutine called
with GOSUB. One local command accepts up to 256 variable names, and multiple LOCAL
commands may be used.

Like PRINT, but using the printer.

Like LOAD filespec but does not delete old program lines and variables except to make way
for new ones with the same line number or name. If a drive letter is not specified, the default
drive will be used.

Create a new directory/folder specified by filespec on the current storage device. If filespec
includes a drivespec then that drive will be used

Renames and/or moves a file defined in filespec1 to filespec2 within the same drive.
Sets or resets attributes for the file(s) defined by filespec

Starts the NextBASIC system afresh, deleting any program and variables, and using the
memory up to and including the byte whose address is in the system variable RAMTOP.
The system variables UDG, P RAMT, RASP and PIP are preserved. Returns control to the
Startup menu, but does not erase files held on drive M: (the RAMdisk).

Finds the control variable 7, adds its step to its value and jumps to the looping statement or
exits if the limit has been reached. See also FOR.

Gets the next character of input from stream n and stores it in the variable v.

Turns off error trapping or if used with the optional statement list, the statementlist will
execute where an error report would normally appear.

Allows stream number to be attached to the channel identified by channelspec.
Outputs byte n at /O port address m.

Controls overprinting for characters subsequently printed.

Resets all palettes and related settings to defaults. This is also done by NEW.
Sets palette type as 8 or 9 bit.

Enables the EnhancedULA extended palette with n INKs (1,3,7,15,31,63,127 or 255) or
disables it (0)

Sets the global transparency colour to n (default value is 227).

Like INK, but controlling the paper (background) colour.

Stops computing and displays the display file for n frames.

Interpret up to nine command strings and play them simultaneously.

Draws a pixel in the current INK colour (subject to OVER and INVERSE) at the x,y coordinate
of the current layer.

Checks the pixel on the current layer at (x,y) and stores the value in variable var.

POKEs the list of values in valuelist to memory map address a. Se also BANK POKE.
Double POKEs the list of values in valuelist to memory map address a. Se also BANK
DPOKE.

Output items to the display or optionally to stream n. Optional AT modifier positions the
output at x,y

Set the print position to pixel coordinates Xx,y.

Call procedure defined with DEFPROC. The number of expressions and each of their types
must match those defined in the DEFPROC, otherwise a Q Parameter Error report will be
generated. TO paramlist will copy return values declared by ENDPROC to up to 8 variables.

Prints the current working directory to the screen, or the specified stream number.

Sets the system variable (called SEED) used to generate the next value of RND. If optional n
=0 or blank SEED is given the value of another system variable (called FRAMES).

Assigns to the variables using successive expressions in the DATA list.
Sets Next Register n with value v.
Remark. No effect. ' . . . ' can be any sequence of characters except ENTER.

Reinitialises the filing system, following a change of SD card.

Statement or statements in statementlist and statement list2 are repeated until x is true. The
loop is terminated skipping statementlist2 if y evaluates to false

Restores the DATA pointer to the first DATA statement in line optional line n or to the first
DATA statement.

ZX Spectrum Next — User Manual

327

Appendix B — Reference

NextBASIC Keywords and Functions

Keyword
RETURN

RETURN #n,var
RMDIR filespec
RUN [n]

RUN AT speed

Meaning

Takes areference to a statement off the NextBASIC Return stack, and jumps to the line after
it. See also GOSUB and BANK GOSUB.

Takes the current position of stream n and stores it in variable var.

Removes an already empty folder as specified by filespec.

CLEAR, and then GO TO optional line n or to the first line of the program

Changes the speed of the ZX Spectrum Next.

SAVE filespec [LINE n|BANK If filespec is a drivespec: Makes the named drive the current default input device for all
m[,o[,n]]|CODE m[,n] |DATA subsequent disk operations (COPY, ERASE, MOVE etc.). If the drive letter specified is T,

grrayspec | LAYER |SCREEN
]

SPECTRUM [filespec |
ATTR n|BRIGHT n|
CHR$ n|FLASH n|
INK n|PAPER n|
SCREENS n {]

SPRITE BANK b [,0,p,n]

SPRITE BORDER n
SPRITE CLEAR
SPRITE DIM x1 y1 x2.y2

SPRITE PALETTE n [BANK
m,o]| n,iv

SPRITE PRINT n

SPRITE s,xy,i.f

STOP

TILE w,h |AT xy [TO x2,y2]

TILE BANK n
TILE DIM n,offset,w,tilesize

VERIFY filespec

then all subsequent SAVEs will default to tape else saves a NextBASIC program into
memory with optional modifier LINE n that instructs subsequent LOAD operations to start
executing the program from line n. With optional modifier BANK it SAVES the file as binary
data from bank m at optional offset o and optional length n. Optional modifer CODE does
the same at address m an optional length n. Optional modifier DATA saves the array
specified by arrayspec. Optional modifier LAYER saves the current layer's display while
SCREENS$ does the same for Layer 0 screens. See also LOAD, MERGE, VERIFY. If a drive
letter is not specified in the filespec, the default drive will be used.

Sets the 128K ROM into Spectrum 48K compatibility mode. Optional filespec defining a
48K/128K/ZX80 and ZX81 snapshot loads and executes it. Optional ATTR modifier, sets the
colour scheme of NextBASIC Editor. Optional BRIGHT modifier, sets the BRIGHT bit of the
colour scheme of NextBASIC Editor. Optional CHR$ modifier, changes the mode to
32/64/85 columns. Optional FLASH modifier, sets the flash bit of the colour scheme of
NextBASIC Editor. Optional INK modifier sets the ink colour of the NextBASIC Editor while
the PAPER modifiers sets the paper colour of the NextBASIC Editor. The SCREENS$ modifier
adjusts the screensaver.

Defines all 64 sprite patterns using the 16K of data (256 bytes per sprite) in bank b or with
optional values o,p,n defines n sprite patterns starting with pattern p located at offset n.

Enable (n=1) or disable (n=0) sprites over the border
Resets the sprite attributes and global settings to defaults. This is also done by NEW.
Sets the clip window for sprites from (x1,y1) to (x2,y2).

Switch to using palette n (0 or 1) for the Sprite System and optionally sets palette from bank
m, offset o -or- defines index | for palette n as 9-bit colour v

Enable (n=1) or disable (n=0) sprites.

Set sprite s to image i, position (x,y) with flags f.

Stops the program with report 9. See also CONTINUTE

Draws a section of the screen from a tilemap. Optional AT specifies tile offset x,y in the
tilemap and optional TO specifies ending tile offset x2,y2

Define bank n as containing the tiles (up to 4 banks n..n+3 if 16x16 tiles).

Define bank n as containing the tilemap, starting at offset offset in the bank. The tilemap is
width w (1-2048) and uses 8x8 (tilesize=8) or 16x16 (tilesize=16) tiles.

Like LOAD (from tape), but the tape information is not loaded into RAM — instead, it is just
compared against what is already in RAM.If the filespec is a drive letter, then sets the
default drive. Only applicable to tape

The following is a list of all NextBASIC functions in alphabetical order with a short descrip-
tion regarding their purpose:

Function Meaning
ABS x Absolute Value of x
ACS x Arccosine of x in radians
ASN x Arcsine of x in radians
ATN x Arctangent of x in radians
ATTR (x,y) A number whose binary form codes the attributes of line x, column y on the display
CHR$ n The character whose code is n, rounded to the nearest integer.
CODE f The code of the first character in string f (or 0 if f is the empty string).
COS x Cosine (x in radians).
[BANK n] DPEEK a Reads a double-byte (16 bit word) from memory address a or bank n offset a.
EXP x Returns the natural exponential function of e to the power x.
FN a() FN followed by a letter calls up a user-defined function (see keyword DEF FN).
INn The result of inputting at processor level from port n
INKEY$ Reads the keyboard.
INT x Returns the Integer part of floating point expression x (Always rounds down)
INT {x} Returns an unsigned 16-bit integer expression, from any floating point expression x
LEN string Returns the length of string
LN x Natural logarithm (to base e).
328 ZX Spectrum Next — User Manual

The Decimal System

Appendix B — Reference

Function
[BANK n] PEEK o

[BANK n] PEEKS$ (0,len|1)

Meaning
Returns the byte at address o or if used with the optional BANK, the byte at offset o of bank
n

Reads memory region of length len stored in the addresses beginning with o and stores itin
a string —or— Reads the string terminated with a user specified terminator t beginning with
address o. With the optional BANK reads offset o of bank n.

Pl Returns and approximation of « (3.14159265...)

POINT (xy) Retruns 1 if the pixel at (x,y) is ink colour. O if it is paper colour.

REG n Reads state of Next Register n

RND [n]i] Returns the next pseudorandom number n in the range from 0 to 1 —or— the next
pseudorandom integer number in the range of 0 to i-1

SCREENS (%, y) Returns the character that appears, either normally or inverted, on the display at line x,
columnyy.

SGN x Signum; the sign (-1 for negative, 0 for zero or +1 for positive) of x.

SGN {i} Returns a signed 16-bit integer from integer expression i

SIN x Returns the sine of x in radians.

SQR x Returns the square root of x.

STR$ x Returns the string of characters that would be displayed if x were printed.

TAN x Returns the tangent of x in radians.

[BANK n] USR o Calls the machine code subroutine whose starting address is 0. With optional BANK does
the same for offset 0 in bank n. On return, the result is the contents of the bc register pair.

USRI The address of the bit pattern for the user-defined graphic corresponding to character |.

VAL f Evaluates string f (without its bounding quotes) as a numerical expression

VALS f Evaluates string f (without its bounding quotes) as a string expression.

The Decimal System

Most European languages count using a more or less regular pattern of tens — in English,
for example, although it starts off a bit erratically, it soon settles down into regular groups:

twenty, twenty one, twenty two, . . . twenty nine
thirty, thirty one, thirty two, . . . thirty nine
forty, forty one, forty two, . . . forty nine

This follows from using Arabic numerals, which have ten symbols 0 -9, in a placeholder
system where the position of each digit is multiplied by a power of ten. The reason for us-
ing ten as the basis of numbers is that we happen to have ten fingers.

The Binary System

Instead of using the decimal system, with ten as its base, computers use a system called
binary, based on two values 0 and 1. Like humans have ten fingers, computer circuits have
two states; low-voltage or off (0) and high-voltage (1). The two binary digits are called bits,
and a bit is either 0 or 1. Computers therefore write 10 to represent 2, 100 to represent 4,
1000 to represent 8, and so on for the powers of 2.

It is customary to “pad out” binary numbers with leading zeroes so that they always con-
tain at least four bits, called a nibble —for example, 0000, 0001, 0010, 0011 (representing
0 to 3 decimal). The reason for doing this is that it makes it easy to represent long binary
numbers more compactly using hexadecimal as we will see further below.

Throughout this manual we've written binary numbers either with the suffix of a lower case
b or with the prefixes of @ and BIN as supported by the NextBASIC Integer expression
evaluator.

Regardless of how useful it is to write numbers in the way computers understand them, we
have the obvious problem of representing them on paper; it's much easier for us to write
and understand

65535 + 65534 than 1111111111111111b + 1111111111111110b.
The Hexadecimal System

Binary numbers quickly become unwieldly because even modest quantities require long
strings of 0s and 1s to represent them. This is a natural result of only using two symbols to

ZX Spectrum Next — User Manual 329

Appendix B — Reference Bits, Bytes and Words

represent each digit. Hexadecimal (or hex for short) was adopted to easily and compactly
represent binary numbers. Hexadecimal is a base 76 numbering system with 16 symbols.
0 through 9 are used for the first ten symbols, representing decimal values 0 — 9, and the
last six symbols are A, B, C, D, E, F representing decimal values 10 — 15. What comes af-
ter F? Just as in decimal we write 10 for ten, in hexadecimal we write 10 for sixteen since
each position is associated with a power of 16.

The reason why hexadecimal is so well suited to representing binary numbers is that six-
teen is a power of 2. This means binary digits can be grouped together and directly con-
verted to a hexadecimal digit. Since sixteen is the fourth power of 2, four binary digits — a
nibble — can be represented by a single hexadecimal digit. Conversion between binary
and hexadecimal can then be done by sight and hexadecimal becomes a quick way to
represent large binary quantities as well as an easy way to visualize bit patterns.

The table below shows the correspondence between binary, hexadecimal and decimal
values:

Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
Hexadecimal 0 1 2 3 4 5 6 7 8 9 A B C D E F
Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

To convert hex to binary, change each hex digit into a nibble (four bits), using the table
above. Conversely, to convert binary to hex, divide the binary number into nibbles, starting
on the right, and then change each group into the corresponding hex digit.

Throughout this manual, we've written hexadecimal numbers suffixed by a lower case let-
ter h or prefixed by $ as the latter notation is the one supported by the NextBASIC Integer
Expression evaluator.

Bits, Bytes and Words

The bits inside the computer are mostly grouped into sets of eight — these are called
bytes. A single byte can represent any number from 0 to 255 decimal (11111111b or
FFh). A single byte can also represent any character in the ZX Spectrum Next character
set. Its value can be written with two hex digits.

Two bytes can be grouped together to make what is called a word. A word can be written
using sixteen bits or four hex digits, and represents a number from 0 to 65535 decimal.

Abyte is always eight bits, but words vary in length from computer to computer. In Sinclair
computer tradition, 16-bit numbers are called words while 32-bit numbers are called long
words.

Setting a bit means making a specific bit 1. Resetting a bit means making a specific bit 0.
In digital logic, there is also a concept of “active low” and “active high”. This means a sig-
nal becomes active when it is 0 or 1 respectively. The Z80n has an MREQ (or /MREQ) sig-
nal, for example. This is an “active low” signal; to distinguish them from “active high”
signals, we usually write active low signals with a bar over their names (Or prefix them with
a forward slash /). This means the Z80n indicates a memory cycle by making MREQ 0.

Using Binary and Hex in NextBASIC

Our first introduction to binary and hex was in Chapter 7 which introduced Integer Expres-
sions. Chapter 14 introduced the use of the BIN keyword. Chapter 16 showed us how
useful binary was in defining colours with the PALETTE keyword while Chapters 23 and 24
with the introduction of binary bitmasks for the REG and OUT keywords and the memory
address space showed the usefulness of hexadecimal.

In reality many keyword parameters are binary; As an example ATTR and RUN AT's deci-
mal parameters are really decimal “translations” of the bits that are being set inside the
computer's memory or the Next Registers that these keywords control.

330 ZX Spectrum Next — User Manual

/i Appendix

Machine Personalities,
Update, Configuration
and Troubleshooting

This Page Intentionally Left Blank

Overview Appendix C — Machine Personalities

Machine Personalities

Overview

Your ZX Spectrum Next computer is unique in the fact that unlike other computers that em-
ulate older machines using software, it changes its actual hardware to reflect the hardware
of an older ZX Spectrum model. This fact, is what allows it to achieve almost 100% com-
patibility with older models whereas even a ZX Spectrum 128K for example couldn't run a
lot of software originally made for the 48K.

The technology that makes all this possible is contained within a very large reconfigurable
logic device called a Field Programmable Gate Array (FPGA).

For all purposes, once your ZX Spectrum Next goes into an older ZX Spectrum model per-
sonality, it's almost identical to that model internally. Moreover, since FPGAs can be made
into almost any conceivable kind of digital circuit using a Hardware Description Language
(HDL), your ZX Spectrum Next can become other machines using different CPU models;
this is what we call multicore capability.

Before we examine what machine personalities are available on the ZX Spectrum Next, it is
a good idea to start with learning about how to update the machine's core(s), firmware and
system software.

The Cores and their update procedures

The ZX Spectrum Next is primarily a ZX Spectrum computer; its main core will always be
one of a ZX Spectrum compatible machine (albeit with many extra features) however since
it is also a multicore machine, it has two separate (but very similar) procedures to update
its main core and a third one for additional cores'.

Let us first clarify a few things about what a core is and what it isn't. A core is a bitstream
written in an HDL, “compiled” for the specific model of Xilinx™ FPGA the ZX Spectrum
Next uses and stored onboard a serial flash rom IC on the ZX Spectrum Next board. It con-
tains all the logic that allows the FPGA device to reconfigure itself into the individual com-
ponents that make up a ZX Spectrum Next. Every time you turn on your ZX Spectrum Next
the core gets tranferred to the FPGA almost instantaneously. It doesn't get etched perma-
nently inside the FPGA, instead the FPGA is empty every time the computer gets powered

up.

We may be talking about one ZX Spectrum Next core but in reality there are two; there's the
Anti Brick core (AB) and the regular core you get with every new System/Next™ update.
The AB core serves two purposes: The main is to perform the inital machine startup and
the secondary is to protect you from a botched attempt to flash a new core into the sys-
tem's flash rom (hence the name Anti Brick?).

Every time the computer starts it transfers the AB core onto the FPGA, then the AB core
loads the Firmware file from the root folder of the System/Next™ distribution and that in
turn loads the regular core into the FPGA, then loads the appropriate configuration and fi-
nally starts the machine.

The AB core does not get updated; only the regular core is. The AB core needs a special
procedure which is done at the factory to get updated so it won't be covered here.

There are two methods of updating the regular core; the first one is the normal one, and
the one you should use while the second one is reserved only if told so by the release
notes of a System/Next™ distribution or because your update somehow failed (for exam-
ple lost power while updating).

1 SpecNext Ltd does not offer additional cores at the time of writing; 3rd party cores are the responsibility of their
respective authors
2 Bricking is a term used for a failed update in digital electronics that leaves a device unusable; in other words

unmovable as a “brick”.

ZX Spectrum Next — User Manual 333

Appendix C — Machine Personalities Regular Core update

The regular core is contained within a file named TBBLUE.TBU. In order to update the
flash rom you need to place it on the root folder of your SD Card together with the file con-
taining the firmware: TBBLUE.FW. Both of these files need to be present for a successful
update. Regular operations, however , require only the TBBLUE.FW file to be present at all
times in the root of your System/Next™ distribution. Regardless of the update method you
need to have them both so make a note for that.

Just placing a TBBLUE.TBU file on the root of the card won't update the core; there are ad-
ditional steps you need to take. Let's examine the two update options below.

Regular Core update

Below you will may see references to function keys (F1... etc). These refer to PS/2
keyboard users. In order to press F1 on a ZX Spectrum Next keyboard you need to
press and hold the NMI button and then a numeric key on your keyboard. 1 is for F1, 2is
for F2 and so forth all the way to 0 for F10.

The regular core update method is quite easy. After you've made sure you have the
TBBLUE.FW and TBBLUE.TBU on the root folder of your card, press and hold U on your
keyboard and while doing that, hit F1. Do not release the U key until you see the following
screen:

pectrum Mext Configuration

Upda

Update file “TEELUE.TEU’ found!

Lo You want to upgrade? (4ron)

Fig. 57 — Core update screen

Release U and then press Y. The updater will first calculate the checksum of the core
bistream; once it finds everything is OK, it will start upgrading; first erashing the Flash
ROM and then, once done successfully, writing the core bistream from TBBLUE.TBU in
its place. Once the procedure has finished, you will receive an: Updated! Turn the power
off and on. message. Remove the power and if using an HDMI display, the display cable
as well. Wait a few moments and then reconnect everything. The machine should restart
with the new core.

AB Core update

If the process failed somehow; or if you're so instructed by the accompanying notes of
your System/Next™ distribution, you can do an AB core update to remedy the situation.
This is a bit more complicated and it's made so as to avoid entering this mode by mistake.

To enter AB core update; you will need to power off your machine, then press and hold the
NMI and Drive buttons together (on the side of the computer) and while doing that reat-

334 ZX Spectrum Next — User Manual

Multicore (Extra Cores) update Appendix C — Machine Personalities

tach the power cable. Wait a few moments then release both keys. You should see the fol-
lowing screen:

Pectrum Mext Configuration

Update file - 2 UE.TEBU’ Ffound!

Fig. 58 — AB Core update screen

If the display is blank, press F3 on the keyboard. Note that due to AB core using the NMI
and Drive buttons you cannot press F3 using the NMI + 3 shortcut so you must have a
PS/2 keyboard for that.

The display could be blank because the AB core works at 60 Hz in VGA mode only so if
you display cannot “lock” onto that mode and you have no PS/2 keyboard to attach, you
will need to do a so-called “blind update”. You can still press y and more than likely the up-
date will finish however if you have no display, the preferred method of performing said
update is by pressing the NMI button once which in AB core update is a shortcut for y
while the Drive button is a shortcut for n. If you do perform a “blind update” you should al-
low the machine adequate time to finish. The average update time is 2 2 minutes from the
time you press y so allow about 4 minutes before turning the power off.

Multicore (Extra Cores) update

The Extra Cores update deals with the optional third party cores the ZX Spectrum Next ac-
cepts. The process is similar with two exceptions. You will need a file called CORExxx.BIT
where xxx is a number from 001 to 031 instead of the TBBLUE.TBU placed in the root
folder of your System/Next™ distribution and you enter it by pressing and holding C in-
stead of U while in NextZXOS. Every other step is exactly the same. Your 3rd party core will
come with instructions on what to do and how to start the core. Generally speaking, files
specific to that core go under the ¢:/machines/ folder, into one subfolder specific to that
core. So if, for example, a QL core was released, you would find all pertinent files into
c:/machines/ql/.

Updating the firmware

In ZX Spectrum Next terminology, firmware is the file called TBBLUE.FW that's located in
the root folder of the SD card that holds your System/Next™ distribution. It is impossible
to start the machine without it, as it's a special program that configures all aspects of the
machine regardless of personality and core. To update it, you only have to copy the new
version over the previous TBBLUE.FW version. The current FW version is reported on the
boot screen. See Fig. 3 in Chapter 1 to see how the core gets reported while booting.
Updating the System/Next™ distribution

Every time a new version of NextZXOS with additional features gets released, it gets
pushed to the System/Next git repository. Same thing happens with every software tool,
firmware version and core that adds some feature or fixes a bug. A new System/Next™
will get released in a complete image form only when enough components have been up-

ZX Spectrum Next — User Manual 335

Appendix C — Machine Personalities Selecting and configuring a personality

dated as the process is very time consuming and only a large enough update on many
components warrants this. So your system updates may be complete (ie. replacing all the
components in the system in one go; firmware, core, operating system AND supporting
tools) or just partial. You can update your System/Next™ distribution partially by going to
the git repository at: gitlab.com/thesmog358/tbblue/ downloading the individual compo-
nent and replacing it on your card. When updating NextZXOS, refer to Chapter 20 to find
out which files are absolutely required because they all need to be updated together.

Alternatively you can choose to download the entire distribution from git in one go by se-
lecting the download button on the right top part of the distribution page.

If you do not feel adventurous however, the official home for the System/Next™ distribu-
tion is: www.specnext.com/latestdistro/ which also contains links to other forms of the
distribution such as complete SD card images in various sizes for direct burning onto SD
cards. Alternatively you have the option of purchasing a new SD card with the latest distri-
bution on it from the SpecNext Ltd store.

Otherwise, the proper way to update is to download the entire distribution from either git or
the specnext link above, decompress it on a hard drive on a PC, Mac or Linux machine
and copy the entire contents over your card. This will erase your configuration files and
your display choices so you will need to repeat the test screen procedure you did when
you initially set up your machine.

Selecting and configuring a personality

When powering up the system, you're presented with the boot screen, where, as we saw in
Chapter 1 you're presented with the option of entering the Test Screen or to Press
SPACEBAR for Menu.

Pressing SPACE (be quick or the option will disappear and booting will continue) will pres-
ent you with the following screen:

pectrum Next Configuration

Fig. 59 — Personality Selection Screen

By using the cursor keys and ENTER you can select a new personality which will then be-
come your default one and all subsequent boots will get you into that. Selecting however

336 ZX Spectrum Next — User Manual

Selecting and configuring a personality Appendix C — Machine Personalities

a personality and pressing E will allow you to configure the specific personality further. Do-
ing so will present you with another screen:

Spectrum Next Configuration

Move wit
ENTER=acc

Fig. 60 — Configuration Options Screen

Moving over each option with the cursor keys will provide (As seen in the figure above) a
helpful summary of what the option does.

There are a total of 13 personalities available and a few more may become available in a
future update pending on core changes, two of which are Native Next modes; one with the
standard 48K ROM and one with the Looking Glass 48K ROM which has the distinctive
advantage of normal typing instead of tokenised entry. For Next Mode usage however
both these are functionally equivalent and both provide access to dot commands in 48K
mode.

The Soviet timings and TC2048 ones are the most idiosyncratic ones; the first operating
only on 50Hz mode and was included to allow access to former Eastern-block countries'
specially timed Spectrum Software and the TC2048 being the Timex Portugal partially
Spectrum Compatible machine.

An important thing to remember is that for compatibility reasons the expansion bus is by
default off; this doesn't mean you can plug in interfaces while the machine is working but
that you will not have access to external peripherals unless you explicitly allow it via a se-
ries of OUT commands. This is to facilitate the usage of the onboard peripherals and the
extra speed afforded by the Next's enhanced Z80n processor. All Next features are avail-
able in every mode unless you explicitly turn them off (so for example you need to turn off
Timex modes via Configuration as above, if you don't want them) and you must install
esxDOS yourselves (see relevant section in Chapter 20 on how to do that) in order to ac-
cess the onboard divMMC. Remember that the usage of external peripherals will slow
down the machine personality to the 3.5MHz speed and only the onboard peripherals
support the higher speeds. If you study Chapter 23 and you know the specific ports your
hardware uses, you can enable it yourself with a few easy command sequences.

Standard Sinclair BASIC lacks the REG command, so as seen in Chapter 23 you will have
to issue a series of OUT commands to enable external peripherals. For example to enable
a ZX Printer (or Alphacom 32 or Timex Sinclair 2040) you will need to give:

aouT 9275, 136: OUT 9531, 219:
ouT 9275, 125 00T 9531, 128

which disables the DACs on port FBh and immediately turns on the Expansion Bus. (You
should however disable it afterwards so you can speed the machine up again).

ZX Spectrum Next — User Manual 337

Appendix C — Machine Personalities Troubleshooting

A slightly different example is the following which enables the Interface 2. This time the rel-
evant commands are:

auT 927s, 125 00T 9531,5:
ouT 9z2v¥s,.2 ¢ ouT 9551, 1

which does things a bit differently; first we select NextREG 128 (80h) as before but this
time we send it a value 8 which, as you can see from Chapter 23, is an instruction to enable
the Expansion Bus after a soft reset and not immediately (setting bit 4). The last two OUTs
are skipable because the soft reset they initiate can also be done by tapping on your
RESET button for less than 1 sec.

Troubleshooting

The Next team has taken every possible precaution and measure in order for your ZX
Spectrum Next to live for a long time; inevitably however problems do arise. These are
usually not related to the Next and the following paragraphs will hopefully assist you into
figuring out quickly what potentially went wrong.

If your screen is blank

* Check that your cables are connected and that your display is on and switched
into that input and that your ZX Spectrum Next is powered.

¢ If the above are working check if you pressed F3 by mistake or the program
you're running has switched modes to a frequency your monitor doesn't support
(eg. 60Hz). Press F3 to switch frequencies.

¢ Verify you don't have a monitor that does 60Hz and you switched to Soviet
timings which only work at 50Hz. Reset the computer and press SPACE upon
start to change personalities

* If you have a DVI monitor verify that your converter is working. Many HDMI to
DVI converters do not work with the ZX Spectrum Next. Ask other users at the
SpecNext forums for tested converters.

* |f you connect your ZX Spectrum Next to a TV or an older CRT monitor via
SCART, make sure that the line doubler feature is not turned on by mistake.
Attempt to remedy by pressing F2.

If you see a red screen

* Check the version of the core you're running if you see a message saying Core
3.xx.yy required and update your core.

* (Check for a mismatched file versioning of NextZXOS. Prepare the SD card
anew.

* |[f the above are okay, replace your SD card with a new card and repeat the
process

If your PS/2 keyboard is not working

* Check of in configuration mode, the PS/2 mode is set to Keyboard. Core v.3.00
and later machines have this setting default to Mouse. If you want to use a
keyboard, change tjos to Keyboard and if you want to use both, you will need to
set this mode to Keyboard and purchase a Y-Splitter adapter, then plug the
keyboard in its appropriate socket.

Other things to look for

Other than the display not being able to support one of the display modes your machine
may be in (which is approximately 90% of the cases), the other things to look for is connec-
tion/cable problems, SD card media failures or mis-configuration. As a general guideline,
we suggest you first study the manual in the relevant sections, and if you still cannot figure
out the problem, ask for help in SpecNext's forums, our Social Media accounts and the
various groups online. If everything else fails, contact SpecNext Ltd and we'll try to find you
a solution quickly!

338 ZX Spectrum Next — User Manual

/i Appendix

D

The Calculator

The Calculator
The ZX Spectrum Next can be used as a full function calculator.

Selecting the calculator

To use the calculator, call up the Startup Menu with EDIT and select the Calculator option.
(If you don't know how to select a menu option, refer back to Chapter 1.)

The calculator may be selected as soon as the ZX Spectrum Next is switched on.

Alternatively, if you are working on a NextBAS/C program, you may select the calculator by
choosing the Exit option from the Edit/Options Menu (which returns you to the Main Menu),
at which point you can select the Calculator option. Note that any NextBASIC program
which was being worked on (when you selected the calculator) will be remembered and
restored when you exit from the calculator and return to NextBASIC.

Entering numbers
When you have selected the Calculator option, the screen will change to:

Calculator _______ JESg |

Fig. 61 — Calculator Screen

and the ZX Spectrum Next's calculator is ready to accept your first entry. Type in:

S +4

As soon as you press ENTER, the answer 10 will appear on the next line. (Note that you
don't type = as you would on a conventional calculator.)

Running total

You will see that the cursor is positioned to the right of the answer, which is a running total
(like on a conventional calculator). This means that you can simply type in the next opera-
tion to be carried out on the running total (without having to type in a whole new calcula-
tion). So, with the cursor still positioned to the right of the 10 on the screen, type in:

~5
and the answer 2 appears.
Using built-in mathematical functions

The ZX Spectrum Next's calculator leverages the power of NextBASIC to provide more ad-
vanced functions to the user. For example, with the result of the previous operation in
place, type in:

Editing the screen Appendix D — The Calculator
*PI

This produces the result 6.2831853 on the screen. The ZX Spectrum Next has used its
built-in = function — all you had to do was type in PI. This applies to all the ZX Spectrum
Next's mathematical functions. To demonstrate, type in:

¥ATH E@
which will give you the result 9.7648943.

Editing the screen

To further enhance the calculator's flexibility, you may also edit the contents of the screen.
To demonstrate, move the cursor (using the cursor left key) to the beginning of the line
and then type in INT so that the line reads

IMNT 9.7545943

and as soon as ENTER is pressed, the answer 9 will appear. This also demonstrates that
the ZX Spectrum Next doesn't have to perform a calculation in order to print the value of an
expression. As another example, press ENTER and type:

1EE

which will return the value of that expression. Notice that before you typed in 1E6, you
pressed ENTER on its own — this tells the ZX Spectrum Next that you are about to start a
new calculation.

Assigning variables

One extremely useful feature of the ZX Spectrum Next's calculator is that it allows you to
assign values to variables and then use them in subsequent calculations. This is achieved
by using the LET statement (as you would in NextBASIC). To demonstrate, press ENTER
and type in the following:

LET ==1@

You must then press ENTER twice for the ZX Spectrum Next to accept the variable assign-
ment. Now verify that the variable x is being used, by typing:

= +98

then
+xEN

If you are using the calculator whilst working on a NextBASIC program, then any variables
used by the calculator should be chosen so that they do not conflict with those used by the
program itself. Note that NextBASIC keywords are not allowed to be used as variable
names.

User defined functions

Note that if you have set up any user defined functions (using the DEF FN statement)
whilst working on a NextBASIC program, you will be able to invoke that function when us-
ing the calculator. To illustrate this point, return to NextBASIC and type in (for example):

e LEF FMH cinl =n*n#*n

which sets up the user defined function FN c¢(n) which returns the cube of n (the number
you type into the parentheses). Now exit from NextBAS/C and return to the calculator —you
can now use this user defined function as if it were one of the ZX Spectrum Next's own

ZX Spectrum Next — User Manual 341

Appendix D — The Calculator Exiting from the calculator

built-in functions. For example, enter:

FH cC (3]
and the calculator will print the number 27 (i.e. the cube of 3).
Exiting from the calculator

When you have finished using the calculator, press the EDIT key. The screen will change
to:

Fig. 62 — Calculator Options Menu

Select the Exit option to return to the opening menu. If you were working on a NextBASIC
program before you started using the calculator, then you may return to the program by
selecting the NextBASIC option. (If you wish to continue using the calculator, then select
the Calculator option).

342 ZX Spectrum Next — User Manual

Table Of Contents

Table of Contents

Foreword 7 :NextBASIC functions within integer expressions. . . 76
Theearlydays 7 .
The pregursgr 7 8 B S“'UQS . ”
The Nextis born . - g iString slicing, using TO. 79
The road to crowdfunding g Exercise 80
Itldoes indeed getserious. 9 9 - Functions 81
chkstqrter rollercoaster 10 String functions — LEN, STR$ and VAL. 82
Stretching beyond the goals 10" Number functions — SGN, ABS, INTand SQR 84
1 - Introduction 13 iUser defined functions using DEF and FN. 84
DX Spectum Nex Plos. ... 13 10-Mathematical Functions 87
ZX Spectrum Next Accelerated. 16T and EXP 89
Setting It Up N 90
For FullMachines. 18Pl . . 90
For ZX Spectrum Next Board-Only. 16 : Trigonometry with SIN, COS, TAN, ASN,
Whatyou'llneed 16 IACS and ATN 91
The Keyboard. 20
Special keys and buttons. 21 :11-Random Numbers 93
The StartupMenu. 22 :RANDOMIZE, RNDand % RND 95
Menultems. 23
Entering and using the NextBASIC Editor 23 12 - Arrays 97
Differences from previous versions. 23 DM 99
Other editing keys and special combinations 2443 _ Conditions 103
NextBASIC Opt|onS Menu 25 AND, ORand NOT 104
TheScreen 26
The NextBASIC language 26 :14 - The Character Set 107
Startup Sequence 29iCHR$and CODE 108
2 - Basic Programming Concepts 31 ;Tﬁ g;%pGISC; SYMBOIS. 188
PRINT, LET, programs and fine numbers 33 POKEandPEEK110
Variables and Arrays B 33 Alternative Character Sets. 113
Using LIST, RUN and cursors to edit Character Graphics Mode. 113
andrun programs 34
REM, NEW, INPUTand GOTO 3515 - More about PRINT and INPUT 115
Using STOP, BREAK and CONTINUE 35 iCoordinate Systems. 116
Errortrapping. 39 :Screen Modes and Pixel Coordinates 116
. Changing the size of characters 17
3 " Decisions o 41 Using AT to print to a certain location. 117
Using IF/THEN to make decisions 43 {Using POINT to print to a certain location 120
BLSE . .. ISCREENSo 123
4 - Looping 45:TAB 123
Using FOR, TOand NEXT a7 CLS - 124
STEP . . o . 48 Scrolhng 124
REPEAT ... REPEAT UNTIL loops 49 Expanding on INPUT 125
WHILE. . . . 50 LINE input . . R AR 126
Error trapping within Usmg Expressions for ‘INPUT 126
Using control codes with PRINT 127
REPEAT ... REPEAT UNTIL loops 51 INKEYS 198
5 - Procedures and Subroutines 53
Branching using GO SUB and RETURN 5516 - Colours 129
LOCALkeyword 56 /An introduction to colour on the
Procedures (DEFPROC / ENDPROC / PROC).. . . . 56 éﬁssifsg?ggﬂm’\;ife-r o 121
Locallsed erfor-trapping+ 9 Colour organisation and representation 131
6-READ, DATA, RESTORE 61 :Spatial vs Colour Resolution 131
) Colour attribute display 134
7 - Expressions 65 :Extended colour attribute display 136
Mathematical operations +, -, *,/,MOD 66 : Palette-based hybrid linear bitmapped
Unary/Bitwise NOT () 66 colourdisplay 137
Integer bitwise, relational and logical operators . . . 67 | ayer 3 colour storage 138
Bitwise operators <<, >>, &, |, T 67 iLayer 2 priority colours 138
Expressions.o 67 :More on the LAYER command 138
Variable names and limitations. 67 :BORDER, PAPER, INK, BRIGHT and FLASH. . . . 140
Scientific notation. 68iBORDER. 142
Decimal, Binary and Hexadecimal numbers. 69 :{INVERSEand OVER. 142
More about Integer Expressions and Variables . . . 70 iUsing colour controlcodes 143
Signed vs Unsigned Integer Expressions T3IATTR. . o 143
ZX Spectrum Next — User Manual 343

Table Of Contents

PALETTE. o T44RMDIR. 213
. CD. . . 213
17 - Graphics 149 pwpo. 215
PLOT. . 150 Managing files and their attributes 215
DRAWand CIRCLE 181 icopy .. 215
POINT, POINTTO. 18 ERASE. 217
Using OVER and INVERSE MOVE 217
with graphics commands 153 File attributes 219
Using stippling patterns to The RAMdisk 220
generate additional colours. 154 Drive and Partition Management 221
Quick erase and fill using LAYER ERASE. 155 \CATTAB and CATASN 201
Clipping windows 155 'MOVE ... IN, MOVE ... OUT and REMOUNT 222
Tihing. .o 155 “virtual filesystem management
18 - Time and Motion 157 Pﬂ;ﬁﬁitga and.mkswap Sgg
PAUSE. B
Using POKE and PEEK at the System Variables . . 160 ghe S dP(E:CTtRUlM command.. ... oo
Retrieving information fromthe RTC 161 NgiteB ASIOCn gﬁiio'r a'n'd 'P}ogr'a m """"""
INKEY$ 162
Animation: a quick primer. 162 %J]ppBort commands. ggg
Mass Storage Frame Playback 162 The Browser W d """"""""" 208
Memory Based Frame Playback 164 U © FS]WSBer NAOW e 559
Animation with the Sprite System. 165 Cglr?f? ur?n rt(l)wvgsgrrévx)sér """""""" 230
Creating Sprites 165 The Cgomrr?and lne oo 531
Putting SpritesonScreen. 167 ROM Cartridge Load.er.s """""""" 231
Animating Spriteso 169 48K BASIC e LOAderS. . . 231
Moving Spriteson Screen. 171 NMI Menu 231
%ﬁ;oé“ggp'e} """"""""""" };g The NextZXOS folder structure 234
""""""""""" NextZXOS dot commands 234
19 - Sound and Music 177 :Modifying the startup — Autoexec.bas 235
Basic sounds with the BEEP command 179 CPMM. .o 236
Enhanced Sound and Music with PLAY 182 Preparing your ZX Spectrum Next for esxDOS . . . 240
gz'r?gﬂii?‘m COMMANG v 182 21 - Channels, Streams, Drivers and Windows241
gstrings. 183 Ch | 240
PLAY command summary 183 g annels 242
Seting epitch. . 183 Using Stearns. | L1 o
?ﬁ;eNdé?r%?sahd """"""""" lgg Stream control commands 244
Notevolume . . .o 186 The Variable and Memory Channels 247
Volume effec{s """""""""" 186 Installable device drivers and Driver Channels . . . 248
TeMpPO . -+ 187 Driver Channel support 249
Repeated phrases. 4g7 Windows. 249
The H command 188 System Windows vs User Windows. 249
Comments. oo 188 User charactersets 252
Crannel seiection . - - 1111 qgg Wndowinpul 252
Stereocontrol 1gg WVINAOW GBIINIIONS v
Digital Audio. SRR 188 .22 - Optional Features
Using the Pi accelerator for audio. 189 (RTC, WIFI, RAM and Accelerator) 253
External Audio Output. 190 Overview. . . 055
20 - NextZX nd alternativ 191 :Testing the add-ons' installation 256
G?Jide teo }\lexgigs d alternatives 1%2 Using the Real Time Clock hardware 259
NextZXOS main features 1gp Using the RTC together with the WiFi module . . . 260
Files, Drives, Partitions and Disks. 193 Using the rest of the add-ons. 260
Working with files 193 :23-IN, OUT and the Next Registers 261
Filenames 194 NandOUT 263
LOAD 195 ' Hardware address decoding 263
SAVE. 198 ‘The Next Registers 266
VERIFY. .o 203 Other portaddresses 272
ME,RGE ------------------- 204 he 7x Spectrum Next Hardware Ports List 273
Usmg NextZXOS 205 iThe Expansion BUS 274
Wildcards 205
Filesystems 205 :24 - The Memory 275
Partitions. 206 :0vVerview. 276
Storage devices and disks 206 i(ROMandRAM 276
Mounting 207 :TheMemoryMap 276
Drive cataloguing 207 iMemory Management. 277
Drive, Folder and User Reading and Writing to Memory 278
Area navigation and management 211 iNextZXOS and NextBASIC memory allocation . . . 280
MKDIR. o 212 :Memory Areas and theiruse 281
344 ZX Spectrum Next — User Manual

Table Of Contents

NextBASIC Data Structures 282 :NextBASIC Keywords and Functions 325
PEEK, POKE and theirvariants 284 iThe Decimal System 329
CLEAR. 287 iThe Binary System 329
Memory Bank management with BANK 288 iThe Hexadecimal System 329
Using BANK with graphics 290 :Bits, Bytesand Words. 330
Using BANK withfiles 293 :Using Binary and Hex in NextBASIC 330
Extending NextBASIC Programs with BANK 293) .
NextZXOS Paging Mechanism Overview 294 :C - MaCh'ne Personalities, Update,
MMU-Based Memory Management 297 :Configuration and Troubleshooting 331
Layer 2 Bank Switching 297 Overview. S 333
Paging method interactions. 2gg i The Cores and their update procedures 333
Pagingoutthe ROM. ogg iRegular Coreupdate 334
ABCoreupdate 334
25-The System Variables 299 :Multicore (Extra Cores) update 335
Overview. 301 iUpdating the firmware 335
System Variables 301 :Updating the System/Next™ distribution 335
) . Selecting and configuring a personality 336
26,' Using Maohlne Code 305 Troublesghooting . .g. . g . .p oo 338
Using Machine Code 307 Other things to look for« o 338
Using CLEAR to Make Space. 307
Using USR to run machinecode 308 :D - The Calculator 339
Calling NextZXOS from NextBASIC 309 :Selecting the calculator 340
Opcodes Prefixes 312 iEntering numbers 340
Runningtotal 340
A- Character Set, Z8ON Using built-in mathematical functions. 340
Mnemonics and Control Codes 313 Editing the screen. 341
_ Assigning variables 341
Eepgriearr?g(éﬁor Codes %2212 User defined functions 341
General Errors 390 Exiting from the calculator. 342
Storage Device Related Errors 324
ZX Spectrum Next — User Manual 345

L 2 "
No.#8994678, London, UK

“

