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Abstract
Artificial Intelligence as a Tool for
Understanding Narrative Choices

Peter A. Mawhorter

This document describes a research approach that uses artificial intelligence
(by way of a generative system) as a tool to explore the poetics of narrative choices
(e.g., those found in Choose-Your-Own-Adventure books). Building on lessons
learned from a rational reconstruction of Scott Turner’s Minstrel, Dunyazad is
a novel system which generates narrative choices. Developed in tandem is a
framework for analyzing choices based on player goals, as part of a broader theory
of choice poetics. Two experiments involving human subjects have confirmed
that Dunyazad is able to successfully generate a variety of choices, and both its
successes and failures have informed the theory that drives it.

The research questions addressed involve both computer science and poet-
ics, namely: “How can a computer automatically generate choices that achieve
specific poetic effects?” and “What poetic effects can choices accomplish within a
narrative and how can these be recognized by examining said choices?” Regard-
ing the second question, chapter 5 outlines a broad theory of choice poetics which
emphasizes the importance of player motivations. This theory asserts that in
interactive narratives, choices are an essential part of poetic effects like trans-
portation, agency, autonomy, responsibility, and regret. A method for analyzing
choices relative to player goals is also developed, which includes discrete steps
for understanding choices. By separating notions like player goals, outcome
likelihoods, and option expectations, this goal-based choice analysis method aims
to help dissect a player’s perception of a choice and give authors and critics a
tool for talking about how choices work within a narrative.

Regarding the first research question above, Dunyazad is a technical de-
monstration that a direct operationalization of goal-based choice analysis can
effectively generate narrative choices with specific low-level poetic effects, such as
obviousness. Dunyazad uses answer-set programming to encode the inferences
used in goal-based choice analysis as logical rules, and it can then solve for
choices which meet criteria specified in terms of analytical labels like “this choice
is a dilemma.” Because answer-set programming offers a direct path from theory
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to code, the choices that Dunyazad constructs can be understood in terms of the
rules of goal-based choice analysis which enabled them.

This last aspect is what allows Dunyazad to productively contribute back to
the theory of choice poetics: when it generates a choice which doesn’t live up to the
desired label, the answer set behind that choice serves as a proof that goal-based
choice analysis would mis-characterize similar choices. Any unaccounted for
aspects of that choice can then be noted as important considerations in the theory,
and corresponding rules can be added to Dunyazad to alter its generative space.
This process is amplified when the choices Dunyazad generates are evaluated
not just by its author, but in an experimental setting. Accordingly, this document
presents the results of two experiments involving 90 and 270 participants which
looked at how choices generated by Dunyazad were perceived in terms of their
options and outcomes. The results of these experiments confirmed Dunyazad’s
ability to generate relaxed, obvious, and dilemma choices, as well as choices with
both expected and surprising outcomes. However, Dunyazad was not exclusively
successful, and its failures were informative, emphasizing the importance of
moral reasoning in the case of conflicting goals and of relative goal analysis
when judging whether options seem balanced or not. These results point to
directions for improving the system, and these improvements correspond with
further developments of the theory of choice poetics.

In the broader context of research into generative systems, Dunyazad repre-
sents both a system with a novel domain and a new application for a generative
system. In following the rules laid out for it, Dunyazad makes no assumptions
whatsoever, in contrast to the ‘common sense’ and myriad biases that a human
would employ given the same instructions. Because of this, it acts as a check
against these assumptions, regularly coming up with examples which violate
them, and which thereby help elaborate the definitions of the underlying con-
cepts that it is using. If Dunyazad’s goal was to persuade or entertain, these
edge cases would be failures, but employed as a tool for reflection, they are suc-
cesses, because they lead to a deeper understanding of choice poetics. Hopefully,
Dunyazad is a convincing argument in favor of a new form of critical technical
practice, where technical progress can be seen as not merely in need of critical
contextualization but also as a tool that enables deeper critical insight.
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Chapter 1

Introduction

When I began the work described here, I was a computer scientist by training, and

having recently discovered the existing work on computer-generated narrative,

I had two initial impressions. First, I was intrigued at the idea of applying

artificial intelligence techniques to such an artistic domain (I had previously

done research in AI for robots and game-playing). Second, I was firmly convinced

that there was great potential for improvement in this domain. In particular, it

seemed to me then (as it apparently has to a variety of computer scientists since

at least the 1980s) that by capturing the underlying rules of what makes a story

interesting, a computer ought to be able to produce interesting, albeit formulaic,

stories. Certain pieces of writing advice and narrative theory reinforced this

second impression, and I saw one of the main goals of my dissertation as the

creation of a story generation system that would outperform existing work.

As it turned out, a new and improved story generator is not one of the main

contributions of my work (I have built new narrative generation technology, but it

isn’t a game-changer in terms of the quality of automatically-generated stories).

Working first to reconstruct Scott Turner’s Minstrel (Turner, 1993) and then

on my own Dunyazad, I have begun to understand a little about what makes
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automatic narrative generation such a difficult problem (although some of my

lessons are perhaps those that every student in the area will learn through

experience). In the end, rather than simply a generative system, the main contri-

bution of this document is actually an example of a hybrid research method which

advances both artificial intelligence and narrative theory at once by combining

the two. Said research method is applied to choice-based narratives,1 and in fact

I have built the first narrative generation system that creates choices via explicit

reasoning about how players perceive options and outcomes.

This research method is an extension of Phil Agre’s idea of critical technical

practice (Agre, 1997): engaging in technical AI research while addressing and

respecting the critical implications of that work. Rather than proposing that

Dunyazad as a generative system helps us understand human perceptions of

choices by accurately modelling how humans think (as someone like Herbert

Simon might advocate (Herbert A Simon, 2006)), I am using Dunyazad as a

tool to generate inhuman perceptions of choices, and by reflecting on how these

differ from human perceptions, finding a new perspective that illuminates the

assumptions and biases of the human perception of choices. In Agre’s words, I

am “[approaching] technical work in the spirit of reductio ad absurdum: faced

with a technical difficulty, [I am] diagnosing it as deeply as possible,” (Agre, 1997)

and in fact I am intentionally pursuing technical difficulties precisely because

interrogating them can help develop the details of an underlying theory.

In my case, I am using a formal model of narrative choices to test and explore

what I call “choice poetics:” a narrative theory of audience response to choice
1The output of Dunyazad and the focus of my narrative theory roughly corresponds to a Choose-

Your-Own-Adventure book. These books are young-adult fiction which contain choices at the
end of some pages, where directions state that the reader should turn to one of several pages
next according to what they wish to ‘do.’ They thus give the reader limited control over the
protagonist through explicit, discrete choices (usually on the order of dozens to perhaps a hundred
per book). This format thus combines narrative with explicit choices to function as what I term a
“choice-based narrative.”
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structures. Both the process of constructing such a formal model and the ex-
periments that can be performed with it can help develop the theory of choice
poetics. At the same time, the AI system relies on the theory, and the result of
the research is thus both an improved theory of choice poetics and a novel AI
architecture for generating narrative choices.

1.1 Contributions

As implied earlier, one of the contributions of my work is some general knowledge
about the strengths and limitations of certain approaches to story generation.
Working with Brandon Tearse on the Skald system, which is a rational recon-
struction of Turner’s Minstrel, I learned not only the limitations of that system,
but also some broad limitations of case-based story generation. In particular,
the ability of any case-based story generation system to recombine content is
effectively limited by the depth at which it can reason about its story domain.

Based on this limitation, I built Dunyazad, a choice-based-narrative generator
which focuses on deep reasoning about a narrow story domain using answer-set
programming. Dunyazad is also designed to generate narrative choices, rather
than linear narratives, as this problem has not received sufficient attention in the
literature until now. While developing Dunyazad, I also began to develop a theory
of choice poetics—a theory of how audiences respond to different choice structures.
The main contribution of my work is thus both a theory (choice poetics) and a
system (Dunyazad) which both explore new territory around choices in games.

Finally, as Dunyazad has reached a stage where it can generate individual
choices targeting some specific poetic effects, I have run two experiments to see
how people actually react to the choices it generates. The results of these experi-
ments have helped me improve the system, but they also have some implications
for the underlying theory. The lessons of these experiments, both for AI systems
and for choice poetics theory, are another contribution of this dissertation.
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1.2 Minstrel and Skald

At the time that I first developed an interest in story generation, Brandon Tearse

was working in my lab on a rational reconstruction of Scott Turner’s 1993 Minstrel

system (Turner, 1993). The project was motivated by the impressive quality of

the example stories given in Turner’s thesis (Turner, 1993): Tearse thought that

Minstrel would be a good foundation for developing an even-more-sophisticated

story generator. Minstrel used case-based reasoning to assemble new stories

by remixing pieces from a story library according to special transform-recall-

adapt methods (“TRAMs”). In particular, Tearse was interested in finding out

whether Minstrel could be used as a general-purpose story generation system,

with different kinds of stories being produced simply by switching out the story

library (and perhaps altering some of the TRAMs). I joined the project, and

over the next few years we built Skald by carefully reading Turner’s thesis and

reconstructing his system.

As a rational reconstruction project, one of our goals was to better under-

stand how Turner’s architecture worked not by re-coding every line of the original

source, but by building a new system using the principles of the original. This

technique can expose new information about the reconstructed system, for ex-

ample when a relationship which is invariant given the original architecture

requires explicit reasoning in the reconstruction. Building Skald, we found

ourselves unable to reproduce the quality of Minstrel’s example stories with

any regularity. After performing some experiments, we came to the conclusion

(supported, in retrospect, by the language of Turner’s dissertation) that Minstrel

was more a proof-of-concept for case-based story generation than a robust and

extensible system (see section 4.7).

Minstrel’s example stories were high-quality because Minstrel was carefully

tuned to produce examples of what was possible for case-based story generation.
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However, adding new stories to Minstrel’s case library or trying to get it to
generate different kinds of stories turned out to be a laborious and error-prone
process. A large part of this process was writing code to check for and correct
mistakes introduced when story fragments were combined in inappropriate ways.
We hoped that Skald would be a useful architecture for creating custom story
generators, and we started building a system called Problem Planets that would
use Skald to generate science fiction stories (which were also going to include
choices). Unfortunately, the difficulties we encountered led us to conclude that
Skald was not suitable for our purposes. Chapter 4 contains the details of our
rational reconstruction as well as the lessons we learned from building Skald

and from working on Problem Planets.
Ultimately, these experiences led me to focus on the kinds of consistency

constraints that we introduced to clean up Skald’s assembled stories. I reasoned
that if much of the work necessary to produce a consistent story was being done
by these constraints, then a generator that focused on them might be more
effective. My work on Skald was thus the impetus for building Dunyazad.

1.3 Dunyazad

Dunyazad is a choice-point generator that relies on answer-set programming
to build tailored choices. It generates individual choices aimed at provoking
specific reactions from the audience—that is, aimed at achieving specific (choice)
poetic effects. Each choice generated by Dunyazad takes place in an individual
scene during which a few actions takes place; these actions can be compared
to planning operators in that they have pre- and post-conditions. Dunyazad is
able to assemble individual choices into a tree with actions as edges between
states, but it does not currently reason about things like character development
or plot arcs that would be necessary to construct interesting stories consisting of
multiple scenes.
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Dunyazad builds its action trees by taking unfinished states and generating a

collection of options to create a choice, setting up new scenes as necessary. While

this high-level process is a simple iterative one, the construction of each choice

(and the setup for each new scene) is accomplished using answer-set programming.

Effectively, Dunyazad searches the space of all possible choice configurations for

those that are allowed by its constraints and picks one arbitrarily.

This means that for Dunyazad to work well, it needs to have a set of constraints

that captures information about story consistency and choice structures. These

constraints are effectively a theory of choice poetics, and because I am using

answer-set programming, this theory is encoded as a set of first-order logical

predicates and inference rules (as opposed to say, being implicit in the weights of

a neural network). In building Dunyazad, I thus necessarily created an implicit

theory of choice poetics. By making this implicit theory explicit and using craft

advice and exemplary choice-based narratives to inform it, Dunyazad’s generation

was improved. At the same time, the work on Dunyazad informed the theory: the

answer set solver inevitably found problems with my initial attempts at defining

various choice structures, resulting in malformed choices.

Dunyazad is thus a useful tool for developing the theory of choice poetics.

Alongside traditional techniques such as analysis of existing choice-based nar-

ratives and the critical dialogues surrounding them, the operationalization of

choice poetics as a component of a generative system has unique insights to offer.

Furthermore, by performing experiments with the system, the lessons from

building and debugging the system can be supplemented with empirical results.

Chapter 5 describes my theory of choice poetics and in particular a technique

for analyzing choices with respect to player goals that Dunyazad has helped

shape. While chapter 6 describes how Dunyazad works in detail, chapters 7

and 8 present the results of two empirical investigations.
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Two key results from these experiments are the importance of using relative

rather than absolute value judgements when comparing options, and the idea

that the perception of an outcome colors later assessments of the choice that

led to it. These results are consistent with existing research on real-world

decision making (see e.g., (Mellers, A. Schwartz, and Ritov, 1999; Shepperd and

McNulty, 2002)), but this work verifies them to some degree in a very different

context. Another important finding was that a simple high/low priority model

of player goals was insufficient to model player expectations even when faced

with relatively simple choices. Based on these findings, both future work for

Dunyazad as a generative system and revisions to the theory of choice poetics

are discussed in chapters 7 and 8.

1.4 Outline

Before diving into the main body of work, chapter 2 lays out the research method-

ology that has guided my work on Dunyazad, and chapter 3 introduces related

work to put what follows into context. Chapter 4 describes how Skald works and

its relationship to Minstrel, and section 4.7 goes into detail about the problems

we encountered building Problem Planets and the inspiration for Dunyazad.

Chapter 5 describes the foundations of a theory of choice poetics, and chap-

ter 6 goes on to describe how Dunyazad works and which parts of the theory

it operationalizes. Finally, chapters 7 and 8 present and analyze the results

of two experiments conducted using Dunyazad, and chapter 9 summarizes the

contributions of the entire document.
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Chapter 2

Methodology

My work on Dunyazad has used an approach that’s a little bit different from

many other computer science research projects. The problem I set out to solve,

namely “How can a computer automatically generate choices that achieve specific

poetic effects?” cannot be approached without first having an understanding of

what poetic effects choices can create and how they do so. However, when I began

my research, there was no existing literature focused on the specific poetics of

choices (several authors have extended narratology to deal with various forms of

interactive stories, but those projects are quite broad). Thus in order to build

my system, I would need to create my own theory describing how elements of a

choice come together to produce effects like regret or hesitation, which led to a

second research question: “What poetic effects can choices accomplish within a

narrative and how can those be recognized by examining said choices?” Rather

than simply hack away at my system until I got results that I liked and leave

a theory implicit in the code that I wrote, I decided to come up with an explicit

theory of choice poetics that I would develop alongside my system, thereby giving

both research questions equal ground. In the end, the system has become as

much a tool for the development of the theory as the theory is a tool for the
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development of the system, and my research methodology has become a hybrid of

AI systems development and narrative theoretics. As evidenced by the rest of this

document, and in particular chapters 7 and 8, this hybrid research methodology

has a lot to recommend it, and the Dunyazad project as a concrete example of

such a methodology in action is one of the key contributions of my work.

2.1 Two Approaches

Faced with the problem of coming up with a theory about how choices produce

poetic effects (a theory of choice poetics), a student of classical poetics might

begin by identifying key works of choice-based narrative. Given such a corpus of

important works, a theorist could study them carefully and attempt to observe

patterns in their choice structures to build a general theory of choice poetics.

Such a theory would be anchored by strong examples from particular well-known

choice-based narratives, and might also use comparisons between contrasting

choice structures to show the relationships between particular choice structures

and specific poetic effects. Individual contributors to such a theory might analyze

specific important works or look at particular affects across a range of works.

All of the techniques just mentioned are established approaches in the hu-

manities, and have been used to understand the poetics of linear narratives.

Together, they might be called the “classic approach” to the problem. In contrast,

the method described here might be called a “mechanical approach.” Instead

of relying on general principles extracted carefully from many examples via

human reasoning, the mechanical approach uses a mechanism for automatically

constructing examples based on principles in order to subject principles to broad

experimental testing. In other words, the mechanical approach takes intuitions

or nascent theories about how choice poetics work and validates or refines them

via experimentation based on the output of an artificial system.
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This artificial system constructs choices using initial principles, and then

experiments can use those choices in order to understand whether the principles

embedded in the system are working as desired. When mismatches are found

between what the experimenter expects and the choices that are generated, these

are used to refine the system’s underlying principles into a more robust theory.

Key to this process is a system that can generate choices from principles in a

manner that avoids human biases (hence the term “mechanical approach”). After

all, if the procedure for generating examples based on principles were simply “Ask

a human to apply the principles and construct choices,” the human creator would

employ not only the principles being tested but also their own common-sense

reasoning and biases to the problem, potentially hiding certain inadequacies of

the theory. Productive experimentation is thus enabled by inhuman reasoning

during example generation (such as that of an answer-set solver).

Note that this mechanical approach is similar to the approach a psychologist

might use to understand human responses to choice structures. However, while

a psychologist interested in studying human thought and perception might use

a carefully controlled experiment to show a link between one specific choice

structure and a particular poetic effect, it would take many such experiments to

build a broad theory of choice poetics. The mechanical approach proposed here

instead tests potentially dozens of interrelated assertions about the psychology of

choice structures at once by using a system of rules to construct choices and then

seeing whether those choices produce the predicted effects. The advantage of this

approach is that it can quickly validate a broad and complicated theory and also

provide rich feedback when things go wrong. The disadvantage is that positive

results are not as rigorous: a psychologist might hope to prove that a certain

mechanism underlies the connection between one kind of choice structure and a

particular emotional response, for example, and results of experiments following

the mechanical approach won’t be able to establish that kind of connection.

11
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Instead, the mechanical approach hopes to show merely that reasoning using a
certain theory is sufficient to produce choices which impact players in a certain
way, and proving why such reasoning works or establishing a strong causal
link between choice structures and poetic effects is left as a subject for further,
more detailed experiments. Ultimately, the mechanical approach is suitable
for initial investigations aimed at efficiently establishing a broad theoretical
framework that encompasses many different poetic effects, while investigating
the particulars of those effects calls for more refined tools.

The mechanical approach also has strengths and weaknesses compared to
the classic approach. The classic approach depends heavily on the insight of the
theorists who contribute to it, and often develops idiosyncratically according to
their particular interests. However, it has more potential to provide insight about
complex phenomena which may be difficult to capture in the kind of generative
system that the mechanical approach requires. On the other hand, the mechani-
cal approach requires effort to develop and maintain a generative system, and
sometimes ends up producing results that seem trivial in retrospect. The me-
chanical approach results in theories which are more specific, however, and tends
to discover caveats that the classic approach omits because they seem simple
or obvious. Ultimately, the classic, psychological, and mechanical approaches
are not exclusive: they can be pursued simultaneously and each benefit from
this arrangement. In the work describe here, although the mechanical approach
is foregrounded, aspects of the classic and psychological approaches are also
present, and many of the theories that I draw on were developed entirely using
classic or psychological approaches.

2.2 Hybrid Theory/System Development

Part of my research is straightforward from a computer science perspective: I
want to build a computer system that does something new (in this case generate

12
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choices). To do this I look for existing theories and craft wisdom about how to

put together choices, and start encoding rules into my system. However, as this

progresses, the hybrid research approach dictates that I also take what I find and

construct a formal theory of choice poetics, suitable for application by humans

to existing interactive narratives with the goal of understanding and analyzing

how their choices function. By applying my partially-formed theory to existing

interactive narratives I can see where it breaks down and start addressing those

problems in both the theory and the system that I’m building. This refinement

is a natural part of the nascent development of any theory, and corresponds to

debugging a computer program during development. In fact, one of the strengths

of the hybrid approach is that information flows both ways: refining the theory

helps me foresee and avoid problems in the development of my system, but

debugging my system also leads to improvements to my theory. By developing

both the theory and the system simultaneously, each can inform the other.

2.3 Exploratory Experimentation

Once a system reaches a certain stage of development it’s usual to begin experi-

menting with it formally, proposing hypotheses and collecting results in order

to prove the capabilities of the system. In the hard sciences, hypotheses are

usually directly derived from existing theories, and experimental evidence either

confirms or disconfirms these hypotheses, leading to changes in the theory where

appropriate. However, in my case, as the theory is still under development, many

of my hypotheses are exploratory: I have an idea about how, say, certain outcome

configurations will be more satisfying than others, and I can immediately try to

use my system to test it.

Because I’m developing both the theory and the system, the goals of my exper-

iments are not to confirm existing theories, but to help suggest whether proposed
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theories are viable. For example, although grossly incomplete or misguided

theories will fail to produce the expected results when used to generate choices,

some subtle confusions or ambiguity may work in the generative case but fall flat

when used in an attempt to analyze existing choices. While the exploratory ex-

periments described here establish my theory’s capacity to be used in generating

choices, they are not designed to measure its predictive or explanatory capacity.

Once the theory of choice poetics reaches a satisfying stability as demonstrated

by experimental successes in generating choices, further experiments designed

to measure its predictive and explanatory power would be in order. Of course,

the experiments described here also help test Dunyazad, so they serve a dual

purpose: they validate my system’s capabilities, and also provide high-level

feedback for theoretical development. Chapters 7 and 8 present the results of

two exploratory experiments, and the analysis in those chapters illustrates how

results can shed light on both the system and the theory that it implements.

2.4 System Development Drives Theory Refinement

One complaint that some computer scientists have about theories from the

humanities is that they are too vague to be implemented as a program. Creating

a computer system that generates predictions or content based on a theory

of narrative or the like is a difficult task, because such theories are largely

developed to serve humans interested in understanding and analyzing a work,

and computers don’t have the same common-sense reasoning capabilities as

humans. Unsurprisingly then, the system development half of my hybrid research

approach tends to contribute details and refinements to the theory half.

A concrete example is illustrative. One of the things that Dunyazad reasons

about is the impact of outcomes on player goals, and these in turn are defined

with reference to states of the world. For example, the “avoid threats” goal of a
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victim is negatively impacted when a “threatening” relationship targeting that

victim is created or persists. The same goal is advanced when such a relationship

disappears. This seems straightforward, but the system quickly figured out

that having the player simply exit a scene (thereby disposing of the contents of

that scene in preparation for creating a new scene) was a great way to cause

“threatening” relationships to go away. Thus when faced with some merchants

threatened by bandits, the system thought that players would perceive a “travel

onwards” option as unequivocally positive, when in fact it provokes serious

moral questions about the responsibility of bystanders, especially if the player’s

character is well-equipped to fight off the bandits. The solution at a system

level is of course to declare that states which change as a result of changing

scenes don’t have the usual effect on goals. Although this was clearly a bug

in my system, finding it also helped me add nuance to my theory: it reminded

me that perceptions of goal progress are not just dependent on states which

directly affect those goals, but also on other conditions that might make it more

difficult for a goal to succeed. A theory developed in the abstract might just talk

about “conditions that either positively or negatively impact a player goal,” but

as a result of having to define those conditions in a way that a computer can

understand, I can refine my theory by giving a list of some such conditions and

caveats to take into account during analysis.

Figure 2.1 illustrates the basic flow of joint system and theory development:

intuitions and existing theories seed a nascent theory of choice poetics, which

in turn informs the development of a generative system. That system produces

example choices based on the theory, which provide the material for experiments

that test the theory. These experiments produce concrete counterexamples—

cases where reasoning based on the theory produces an unexpected result—

and these counterexamples are used to both debug the choice-point generator

and refine the theory. Note that the production of concrete counterexamples is
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only possible because the choice-point generator’s operation is transparent: the

reasoning used to produce examples can be traced back to theoretical statements

when those examples lead to unexpected results.

2.5 Related Methodologies

The approach described here can be contrasted with existing methodologies in

artificial intelligence. One popular approach in the early days of the field was to

set computer programs up as models of human cognition and then test both how

well they corresponded to human thought processes and how they performed

overall as a means of discovering how intelligence works in general (see e.g.,

(Newell and Herbert A. Simon, 1976; Herbert A Simon, 2006)). My approach

maintains the program as explicitly separate from the theory, however, and

Theory of
Choice Poetics

Choice-Point
Generator

Theory-Based
Example Choices

Experimental
Validation

Informs
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Material for

Refine

Concrete
Counterexamples

 Produces

Debug

Intuitions and
Existing Theories

 Seed

Figure 2.1: The general flow of hybrid theory/system development.
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views the program not as a simple incarnation of the theory but as a potentially

distorted version which is nevertheless a useful tool for refining the theory.

While someone like Herbert Simon might claim that a program is a theory (of, for

example, cognition), I want to claim that my program operationalizes a theory (of

choice poetics) and can therefore be a useful tool for revising that theory despite

its differences. The distinction here has much to do with the efficiency of prose

as a means of capturing ideas too complex for formal code: If one compares the

theory (an idea) described in chapter 5 with the ideas latent in the code listed

in appendix B, it becomes obvious that the ideas invoked by the prose are much

more sophisticated and nuanced than those that could be captured by the code

(although of course they are less formal and specific). Especially when a theory

deals with something so inherently subjective as human emotional responses

to art, tying the theory to a purely formal and procedural structure such as a

program seems to impoverish it, and the many caveats to the program’s analysis

of human perceptions discussed in chapters 7 and 8 bear witness to this.

One major critic of the theory-as-program idea in artificial intelligence was

Phil Agre, who argued that the AI systems of his day were limited by the false

equivalences the set up between specific computer procedures and general aspects

of human thought (Agre, 1997). For example, the word “planning” denoted a very

specific kind of computational procedure in the AI literature of the 1970’s, but

this specific approach was often discussed as if it were equivalent to the common-

language meaning of the word in everyday life. Agre argues persuasively that

equating the two concepts limits the imagination of computer scientists, who

might otherwise be inspired to invent a variety of algorithms by the wide range

of activities to which humans apply the word “planning.” Agre advocated the

application of critical theory to AI and AI discourse: computer scientists should

defamiliarize their subjects of study, identify the centers and margins of the
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metaphors that they use, and seek to come up with new ideas and approaches

that can recenter the margins of existing theories.

Ultimately, I view my methodology as one inspired by Agre’s vision. Rather

than equate my system with a theory, I view the system and theory as joint

efforts which can inform each other, and the system’s role is not simply to model

what the theory describes, but also to inform the theory when its descriptions

are insufficient. In this respect the computer system has explicitly become a

tool for interrogating the theory, as opposed to a representation designed only to

validate it. Accordingly, when the system fails, the response is not simply “The

system has been found to be an imperfect implementation of the theory,” but a

process of blame assignment between the system and the theory which often

leads to changes in both.

Thus the results of working with a concrete system ultimately lead to a more

detailed theory. As evidence of this process, chapters 7 and 8 present results from

two experiments and include information on how the data gathered was used to

improve both Dunyazad (described in chapter 6) and the theory of choice poetics

(chapter 5). As you read the rest of this document, keep in mind that many of my

design decisions and experimental procedures wind up being influenced by the

goals of both research and system development, and that neither Dunyazad nor

choice poetics exist merely to enable the other.
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Related Work

The work described in this document derives mainly from the tradition in com-

puter science of building programs that generate narratives. While one aim of

this project is to build a program which can intentionally generate narrative

choices (a computer science concern: “How can we build a system that does X?”)

another is to use such a program to learn more about the nature of such choices

(a media theory concern: “How does the construction of narrative choices shape

player reactions?”). Because of this, it also owes much to narratological theories

which have nothing to do with computing, and to ideas related to the psychology

of reading, decision-making, and persuasion. The remainder of this chapter

discusses these ideas that Dunyazad builds on in depth, starting with theories

of narrative and moving on to computer systems that generate narrative.

3.1 Narrative Theory

3.1.1 The Foundations of Narrative Theory

Aristotle is one of the earliest scholars to discuss narrative theory, and his Poetics

is a treatise on the inner workings of Greek drama (Aristotle, 1917). Aristotle
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discussed which plot constructions were more effective than others, and identified

basic types of dramatic plot, including the comedy and the tragedy, attempting to

explain using examples what properties were important in these forms. Although

the idea that audience response is a simple function of the content of a narrative

work has been recognized as naı̈ve, the ideas of Aristotle sowed the seeds of

modern narrative theory. Along with other ancient critiques of drama, such

as Horace’s Ars Poetica (Horace, 1783), Poetics helped establish drama, and by

extension narrative, as cites of critical study.

An important next step in for narrative theory happened in 1894, when

Gustav Freytag published Technique of the Drama (Freytag, 1894). Freytag’s

ideas about the emotional arc of traditional dramas have become standard fare

in today’s classrooms when students first begin learning how to unpack meaning

in narrative. His work on the dramatic structure of the traditional 5-act drama

represents a further step from critique or craft advice towards more formal

theories of drama (and more generally, narrative).

3.1.2 Formalism and Structuralism

In the early 20th century, this formalization of narrative theory was taken even

farther by a group of Russian literary critics known as the Russian formalists.

These scholars were exemplified by Vladimir Propp, whose 1928 Morphology of

the Folk Tale (Propp, 1971) dissected common characters and scenes within a

group of Russian folk-tales to come up with an abstracted representation which

revealed fundamental similarities between the stories. Propp observed that

a simple grammar of a set of thirty-one basic ‘functions’ could account for the

plots of all of the stories that he was analysing, thus creating an abstract and

formal description of their common structure. Although this formal structure

has proved an attractive theory for computer scientists interested in creating

stories, some contemporary literary theorists disagreed with Propp, asserting
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that Propp’s analysis neglected many important aspects of a story, such as tone

and mood. In Prop’s (and the formalists’) attempts to understand similarities

common to diverse narratives, he (and they) are forced to ignore many of the

details that make individual stories stand out. Although these details may be

safely abstracted while still understanding the sequence of events embedded in

a particular story, they are often crucial to the audience’s experience of a story,

and thus to poetics.

The Russian formalists began a movement within literary criticism that gave

rise to the discipline of narratology. Rather than explicating the details of an

individual work or the works of an author or movement, scholars such as Greimas

and Barthes sought structural theories that could explain broad phenomenon

in many narrative contexts (Barthes and Duisit, 1975; Greimas, 1988). Central

to narratology is the idea that to some degree, narratives can be separated into

an abstract series of events (the fabula, or story) and a particular telling of

those events (the syuzhet, or discourse). While work like Propp’s focuses almost

myopically on story at the expense of discourse, some later narratologists focused

on discourse-related effects such as focalization. Narratologists created theories

and methods of analysis that could be applied to a broad range of narrative

contexts. Particularly because of the abstract nature of these theories and

methods, computer scientists interested in creating artificial story generators

have drawn on them as inspiration for their systems.

3.1.3 Cognitive and Psychological Narrative Theories

Although narratology grew out of literary criticism, in the late 20th century

researchers in fields such as psychology and cognitive science began to approach

narrative from new perspectives. Psychologists were interested in questions such

as “Why do humans enjoy stories?” or “How do humans comprehend stories?”

They put forth models of narrative comprehension (Kintsch, 1980; Brewer and
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Lichtenstein, 1982), and asked questions about why people liked stories (Iran-

Nejad, 1987). These researchers backed up their claims not with careful citation

of literary works, but instead with experimental data gathered by observing and

surveying human readers.

In the early 1990’s, this work accelerated, with work on suspense (Gerrig and

Bernardo, 1994), narrative inferences (Graesser, M. Singer, and Trabasso, 1994),

and emotion (Oatley, 1995). Models of comprehension continued to develop,

including the event-indexing model of Zwaan, Langston, and Graesser (Zwaan,

Langston, and Graesser, 1995), which has influenced several recent works in the

field of narrative intelligence (see below). This interest in narrative consumption

as a psychological phenomenon was largely separate from literary criticism and

theory, in large part because it dealt with much lower-level questions. However,

in the early 2000’s, works like Palmer’s Fictional Minds (Palmer, 2004) and

Zunshine’s Why We Read Fiction (Zunshine, 2006) began to connect literary

theory with psychology. Zunshine in particular draws on the work of psychologists

like Oatley (e.g., (Oatley, 1999)) to talk about how novels exercise our theory

of mind when we read them. Her work is at heart a work of literary criticism,

however, and she uses critical analyses of several well-regarded novels as the

basis of her argument. Why We Read Fiction is an example of cross-disciplinary

analysis: new theories from psychology inspired her to understand well-theorized

works from a new perspective. Zunshine has begun the work of combining

psychological and critical perspectives on narrative, but of course there is still

much unexplored overlapping territory between these two disciplines.

3.1.4 Craft and Literary Criticism

Although narratologists and psychologists have attempted to find a more ‘rigor-

ous’ and ‘objective’ understanding of narrative, more traditional literary criticism
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and practical advice provides another source of knowledge about narrative. Nov-

elists, writing teachers, and critics (who often wear more than one of these

hats) have written down their own views on narrative for both pedagogical and

critical purposes. Works like E. M. Forster’s Aspects of the Novel (Forster, 1974)

offer insight into how producers and critics view narrative. As someone who

is acknowledged as skilled at the craft of narrative composition, Forster is in a

unique place to observe and reveal underlying aspects common across different

narrative contexts.

Aspects of the Novel and other works like it critically provide practical advice

aimed at prospective authors attempting to create effects such as foreshadowing

or suspense. It should not be surprising therefore that these resources are

sometimes more useful than psychological analyses of the experience of these

effects for researchers interested in automatically generating narrative. Of

course, craft and critical advice also exists regarding interactive works, some of

which is discussed in section 3.2.3.

3.2 Theories of Interaction

Johan Huizinga’s Homo Ludens is a seminal work on the history and culture of

play which laid the foundation for the study of games as a medium (Huizinga,

1949). Huizinga focused broadly on play as a social phenomenon, but his major

philosophical points apply equally to games as a cultural medium. Ideas like the

transformation of norms afforded by the magic circle are just as applicable to

the culture of modern videogames as they were to the historical play contexts

that Huizinga studied.

Although interactive narratives are by no means a modern invention, the

rise of available leisure time in combination with the advent of the computer

drastically transformed them over the course of the 20th century. The rise of
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media like tabletop role-playing games and wargames (documented in (Peterson,

2012)) coincided with the development of gamebooks (predicted by the work of

Borges (Borges, 1956) and experimented with by writers like Queneau at the

Oulipo, see e.g., (Queneau, 1967)). Including both purely choice-based narratives

like the Choose-Your-Own-Adventure series and more complex books involving

dice and combat systems, gamebooks were the first interactive stories to enjoy

widespread popularity. Both gamebooks and multi-person tabletop role-playing

games gained popularity in the 1960’s and ’70’s which was also when the first

electronic games began to reach mainstream popularity (the original arcade

Pong appeared in 1972). By the late ’70’s and into the early ’80’s, a commodity

market for computer-enabled interactive fiction began to appear with titles like

Zork ultimately selling hundreds of thousands of copies (Infocom, 1980).

A fourth interrelated development during this period was the advent of

hypertext, which also drew inspiration from Borges’ The Garden of Forking

Paths. Originally developed with DARPA funding to explore computer-based

collaboration, rather than for artistic purposes, hypertext nonetheless eventually

attracted the interest of writers. Compared to the authors of gamebooks, these

writers were interested in the medium more as a new experimental form than

as an extension of existing forms like tabletop roleplaying and adventure novels.

Because of this, authors like Michael Joyce and Shelley Jackson, who were

sometimes also developers of hypertext systems, experimented extensively with

their work (Joyce, 1990; Jackson, 1995).

3.2.1 Theories of Interactive Fiction

Early Work

Brenda Laurel’s 1986 thesis titled Toward the Design of a Computer-Based In-

teractive Fantasy System is one of the earliest theoretical works that discusses
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computer-enabled interactive fiction (Laurel, 1986). Laurel’s thesis was a vision-

ary description of a future medium in which computers would enable a drastically

more interactive form of theater. Along with other early work like Sean Smith and

Joseph Bates’ 1989 Towards a Theory of Narrative for Interactive Fiction (Smith

and Bates, 1989) Laurel’s thesis was inspired by interactive fiction software and

looked forward to potential future forms of interactive narrative.

Marie-Laure Ryan’s Possible Worlds, Artificial Intelligence, and Narrative

Theory, published in 1991, makes a slightly different connection between narra-

tive and computers: it brings ideas from artificial intelligence (and philosophy) to

bear on narratology (M.-L. Ryan, 1991). Ryan’s work represents a link between

traditional narratology and the study of interactive narratives. Notably, she

cites early computer story-generation systems such as Tale-Spin and Universe

(discussed in section 3.3.1).

Foundations

As computer games became more main-stream, work that theorized about inter-

active narrative as a medium proliferated. In 1997, Espen Aarseth published

Cybertext: Perspectives on Ergodic Literature and Janet Murray published Hamlet

on the Holodeck: The Future of Narrative in Cyberspace (Aarseth, 1997; Murray,

1997). These two books are foundational to the study of electronic interactive fic-

tion, and they both include significant theoretical components based on analysis

of the interactive fiction of the preceding decades.

Aarseth’s Cybertext connects the dots between gamebooks, hypertext, and

interactive fiction. In all of these forms, he sees “ergodic literature:” narratives

which are not merely present to be observed, but which require work to traverse.

The theory of choice poetics presented here is concerned with one manifestation of

this phenomenon: choices as a site of player work within the context of interactive

stories. By focusing on choices as a specific form of interaction, choice poetics
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hopes to understand how authors set up interactive fiction so that the work that

players do contributes to their overall experience. In this sense, choice poetics fits

into the broader theory of ergodic literature as an in-depth study of a particular

form of player-work in interactive narratives.

Murray’s Hamlet on the Holodeck explores the concept of computer-driven

interactive theater envisioned a decade prior by Laurel, but in the context of

a vastly different ecosystem of computer games. Between 1986, when Laurel

published her thesis, and 1997, when Murray published her book, electronic

entertainment had undergone radical changes, including the advent of three-

dimensional graphics in games and mass-market personal gaming (in America,

the Nintendo Entertainment System was released in 1985; the Nintendo 64 was

released in 1995). Murray devotes an entire section of her book to aesthetics, with

chapters on immersion, agency, and transformation. These concepts, especially

agency, have become central in the study of electronic game aesthetics, and

choice poetics fits within this framework as well as a study of one microcosm

of interactive experience. While Murray talks broadly about the pleasures and

annoyances of interactive media, choice poetics is interested in investigating the

detailed mechanisms by which choices as a unit of interaction give rise to specific

feelings. In a sense, choice poetics as a study of detailed mechanisms is only

possible in a world in which authors like Aarseth and Murray have first explored

the larger shape of the space of interactive narrative.

Agency

Drawing on the work of Murray and Laurel, Michael Mateas published A Prelim-

inary Poetics for Interactive Drama and Games in 2001 (Mateas, 2001), uniting

ideas from Aristotle’s Poetics with Murray’s discussion of agency to propose the

idea of agency as a balance between formal and material affordances. By this,

Mateas meant that the player’s sense of agency in an interactive experience
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depends on a balance between actions that the system allows them to do and

agendas that the system encourages them to pursue. According to this analy-

sis, a game like Quake (id Software, 1996) is a high-agency game because the

actions available to the player (killing enemies and progressing through levels)

are aligned with the agendas that the fictional world suggests (killing the oth-

erworldly invaders and finding a way to end the invasion of Earth). Although

Quake may do a good job of providing agency, it only does so for players interested

in pursuing a violent agenda, and few games in 2001 provided agency for players

who were interested in social interactions. Mateas suggests an architecture for

an interactive drama which would provide agency in social interaction, and this

project was eventually published as Façade (Mateas and Stern, 2002).

This concept of agency was further developed in (Wardrip-Fruin et al., 2009)

and later extended by Stacey Mason in (Mason, 2013) to distinguish between

diegetic and extra-diegetic agency. Seen as one of the qualities of interactive me-

dia that distinguishes them from books and movies, agency in various conceptions

is an important topic in the theory of interactive narrative. In a context where

discrete choices are the only game mechanic, as in a Choose-Your-Own-Adventure

book, any agency present can be ascribed to the choice structures in a work, so

in some cases, agency is purely a product of choice poetics. However, because

agency as a phenomenon has been so thoroughly considered by other authors,

the theory presented in chapter 5 does not focus on agency as the primary goal

of choice construction, but instead sees it as one of many poetic effects.

Operational Logics

Another important concept in the theory of interactive media is that of operational

logics, first proposed by Noah Wardrip-Fruin in 2005 (Wardrip-Fruin, 2005) and

described in detail in (Mateas and Wardrip-Fruin, 2009). An operational logic is

a system of processes which work together to present a coherent domain of action
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or perception to a player. For example, a resource logic might include mechanisms

for buying, selling, trading, mining, and consuming resources within a game.

Each individual operation is backed by a distinct set of software routines which

each enforce their own logic, but taken together, the player perceives resources

as a coherent game element that can be manipulated in various ways. Another

example would be the two-dimensional graphical logics of platform games: on-

screen representations move in certain ways, affected by gravity but stopping

when in contact with a surface below. A host of internal logic supports these

behaviors, and together, they are perceived as expressing a virtual environment

which a character can traverse by running, jumping and falling.

As a theory focused on how computational commitments give rise to player

perceptions and conceptions, the idea of operational logics is similar to the

idea of choice poetics, which focuses on how choice structures encourage player

emotions and reactions. Although choice poetics is focused on the emotional

rather than conceptual implications of choices, choice structures within a work

can together form an operational logic, and the language of choice poetics can help

understand this. For example, if the player is consistently given options to travel

north, south, east, or west in certain circumstances, that can be understood from

the perspective of choice poetics as a recurring choice structure which presents

neutral (and presumably usually mysterious) options, encouraging an exploratory

mode of engagement (see chapter 5). At the same time, such regular choices

together form an operational logic which presents to the player the concept of

a navigable space, something that the same choices would not do if they only

appeared once or twice throughout a work. An analysis of choice structures from

the perspective of operational logics can thus be helpful for an analysis of their

poetics, and vice versa.
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Procedural Rhetoric

Related to the concept of operational logics (how low-level system logics combine

to form coherent representations) is the concept of procedural rhetoric: how

interactive representations can further rhetorical goals. Ian Bogost writes about

procedural rhetoric in his 2008 article The Rhetoric of Video Games (Bogost,

2008), and Mike Treanor expands on the concept in his thesis (Treanor, 2013).

Procedural rhetoric is the study of how interactive artifacts can advance rhetorical

goals through patterns of interaction, and choice poetics can be thought of as

a microcosm of procedural poetics. Of course, rhetoric and poetics inevitably

intermingle with each other: a rhetorical strategy such as an appeal to a shared

ethical principle falls flat without poetics which reinforce the sense of community

between the author and the reader. If procedural rhetoric is concerned with how

interactive experiences persuade, procedural poetics would be concerned with

how interactive experiences give rise to aesthetics, and choice poetics represents

a special case of that.

Motives in Play

In 1996, Richard Bartle wrote about different player types in multi-user dungeons

(MUDs) (Bartle, 1996). Bartle’s work represents a vein of inquiry that focuses on

players as active agents within interactive fiction, and has this in common with

theories of reader response in literary criticism. By attempting to categorize

players according to their approach to a game, critics can better understand why

different players might respond differently to a particular design element or

in-game situation. Building on this work in the context of massively multiplayer

online role-playing games, Nick Yee published Motivations for Play in Online

Games in 2006, analyzing play motives in a more recent multiplayer context

(Yee, 2006). Although these studies focused on games as social contexts, players
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of single-player games also exhibit a range of motivations, as shown in e.g.,

(Kallio, Mäyrä, and Kaipainen, 2011). Juho Hamari and Janne Tuunanen have

published a broad meta-analysis of work on player types (Hamari and Tuunanen,

2014), which identified five key dimensions of player motivation: achievement,

exploration, sociability, domination, and immersion. There has even been some

work that explores alternative modes of engagement, such as Mary Flanagan’s

book Critical Play, which explores the notion of play as critique of both games

and larger social structures (Flanagan, 2009).

Studies of player motivations are important for understanding choice poetics

because players with different goals will respond to choice structures differently.

In order to understand which outcomes of a choice a player will evaluate as

positive or negative, choice poetics is interested in which particular aspects of

play each player finds rewarding. Any attempt to discuss choice poetics must

acknowledge that player experience is subjective, and must therefore account for

differences in option and outcome evaluations between players.

The Player Experience

Like work on motives for play, theories about the player experience center player

behaviors rather than games. These theories often develop out of media psychol-

ogy or communication research instead of literary or film criticism. Studies on

specific effects like immersion (Douglas and Hargadon, 2001; Ermi and Mäyrä,

2005) and identification (Klimmt, Hefner, and Vorderer, 2009) are relevant be-

cause players of choice-based narratives experience these effects, and because

they may arise from both the gameplay and the narrative. Additionally, studies

of reasons for engaging with games (as distinct from reasons for specific behav-

iors within gameplay) such as (R. M. Ryan, Rigby, and Przybylski, 2006; Olson,

Kutner, and Warner, 2008) provide insight into some of the unique pleasures
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that games have to offer, such as autonomy. These studies often focus on dif-

ferences between games and traditional media such as literature and film, and

so choice-based narratives are an edge case in their analyses. However, they

also draw parallels between effects experienced by readers and players, and in

a choice-based narrative, an effect like immersion could be supported by both

story elements and choice structures.

One work that stands out in this category is Alex Mitchell’s dissertation on

re-reading in interactive fiction (Mitchell, 2012). Focused on player experiences

of re-reading in interactive narratives, Mitchell’s work draws in part on player

experiences with choice-based narratives, and helps untangle the complicated

topic of re-reading when choice is present. Although Dunyazad does not yet

enable or anticipate re-reading, it is an important part of the average player’s

experience of modern interactive fiction (in the obvious case through saving and

loading in digital games), and thus the topic is an important one to choice poetics.

3.2.2 Hypertext Theory

Parallel to the development of early theories about interactive narrative focused

on electronic games, researchers and critics interested in hypertext developed

their own theories about narratives with links. This particular subset of inter-

active narrative developed its own strong genre conventions, but among digital

narratives of the ’80’s and ’90’s, hypertext stories most resemble gamebooks in

the sense that they consist of connected blocks of text. If one views each virtual

page of a hypertext as presenting the reader with a single choice, where each

link on the page is an option, hypertexts can be analyzed in terms of choice

poetics (although such an analysis is distorted, as this view of hypertext is not

how readers usually approach it). By the same token, hypertext can be used to

implement a purely choice-based narrative such as a gamebook, and in fact most

of Dunyazad’s output formats work within a hypertext engine.
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At the end of the ’90’s, several scholars published on the aesthetics and

poetics of hypertext, including Mark Bernstein, Wendy Morgan, and Susana

Tosca (Bernstein, 1998; Morgan, 1999; Tosca, 1999, 2000). Of particular interest

to choice poetics are discussions of the suggestive nature of links, and of course,

of the links-as-choices pattern. In the context of hypertext literature, links are

often ambiguous, connecting a word or phrase with an obtusely-related scene. In

fact, figuring out the significance of the relationship between linked nodes is often

integral to reaching a full understanding of a work. Because of this, hypertext

scholars have talked at length about the potentials suggested by a link, and the

process of following a link and resolving what one finds on the other side with

one’s original expectations (see e.g., (Tosca, 2000)). The same process happens

at a discrete choice, although some aspects are magnified by the context: the

player generally considers the implications of each option, compares them against

one another, and then upon making a decision and seeing an outcome, has to

reconcile that outcome with the option chosen and the other options available.

3.2.3 Craft and Criticism of Interactive Narratives

Absent a vibrant body of theoretical work, much current knowledge about choice

poetics is contained in craft advice and criticism. Although there may be no

existing theory of how, for example, regret is created and functions in interactive

narratives, authors of interactive fiction certainly know how to evoke regret and

use it within plot structures. Through practice and experience, a trial-and-error

authoring process is honed into authorial instinct, and so when authors talk

about their craft, theorists should listen. Likewise, critics develop a sense for

why certain stories are better than others at achieving poetic goals, and can

describe in detail which elements of an interactive narrative contribute to or

detract from specific effects.
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Regarding interactive narrative, resources for the game masters of tabletop

roleplaying games provide a wealth of information about how players respond to

choices as well as how to manipulate them; see e.g., (Laws, 2001). Even more

relevant to Dunyazad as a project are blog posts on the Choice of Games website

that talk about game design (Choice of Games LLC, 2010). Choice of Games

is a company that publishes online gamebooks, and their authors and editors

understandably have good advice to give about constructing choices. Articles

like “5 Rules for Writing Interesting Choices in Multiple Choice Games” give

concrete advice about how to construct choices and in particular, highlight some

constructions that are likely to sustain players’ interest (Fabulich, 2010). Of

course sources like these are tailored to specific writing styles and reflect autho-

rial biases, but in some sense they represent known facts about choice poetics in

their particular contexts, and are thus invaluable to a project attempting to lay

the groundwork for a theory of choice poetics.

3.2.4 The Psychology of Decisions

Perhaps because digital games offer so many new interaction paradigms and

are in fact constantly inventing new ways to tell stories, there are few scholarly

resources dedicated to the study of choice-based narratives exclusively. However,

the subject of decisions in real-life behavior is of great interest to economists

and psychologists, and in these contexts decision-making has received a great

deal of attention. A full review of the literature on the psychology of choices is

beyond the scope of this work, but several studies that are key to choice poetics

are worth mentioning.

First, Amos Tversky has studied framing and context with several co-authors

including Daniel Kahneman (Tversky and Kahneman, 1981) and Itamar Si-

monson (Tversky and Simonson, 1993), famously showing that even when two

options are identical from an economic perspective (the opportunity to prevent
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a loss of $20 vs. the opportunity to gain $20, for example) they can elicit very

different reactions. Because framing has such important effects on preference, it

is necessarily important in the construction of choices designed to achieve poetic

effects. Tversky’s research also demonstrated that the idea of independence from

irrelevant alternatives doesn’t hold up in many situations, meaning that the

presence or absence of a non-chosen option can affect which option a person will

choose in various ways. This result is important for choice poetics because it

implies that the poetics of a choice depend on the entire set of options presented,

and suggests that analysis of a single option or a subset of options is insufficient

to understand the full cognitive impact of a decision. Because of this, systems

which generate choices passively by independently generating several possible

continuations of a plot and then letting a player choose between them will not be

able to reason about the poetics of the choices they create: alternatives and the

option text that introduces them must be considered simultaneously.

Context is not only important for options, but it can also change how out-

comes are perceived. Barry Schwartz, Andrew Ward, John Monterosso, Sonja

Lyubomirsky, Katherine White, and Darrin Lehman have proposed a theory

of ‘satisficing’ and ‘maximizing’ personalities, showing that some people feel

regret unless they are confident that they selected the best option at a choice

(maximizers), while others are happy as long as the outcome they got was good

(satisficers) (B. Schwartz et al., 2002). This again implies that considering the

full set of options at a choice is necessary for assessing it’s poetic impact, a finding

that is reinforced by the data presented in chapters 7 and 8 (see for example

section 8.5.4). It also stresses that individual players will react differently to

each choice, and authors must be aware of this.

Another psychological theory relevant to the results presented here is decision

affect theory (Mellers, A. Schwartz, Ho, et al., 1997; Mellers, A. Schwartz, and

Ritov, 1999). Decision affect theory broadly states that when faced with risky
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choices, humans make decisions that maximize their expected emotional reaction

to outcomes (accounting for various cognitive biases) rather than decisions that

maximize their expected overall payoff. One of decision affect theory’s specific

predictions is that unexpected results will be perceived as more positive than

expected results when they’re positive overall, but will be perceived as more nega-

tive when they’re negative (unexpectedness effectively amplifying the perception

of goodness or badness) (Shepperd and McNulty, 2002). The results presented

in this dissertation largely confirm this hypothesis, and the broad implication

for choice poetics is again that the perception of outcomes will be colored by the

structure of the choices that lead to them.

Although these various theories of decision making help inform choice poetics,

they should not simply be taken at face value in the context of choice-based

narratives. Because player motivations are often different from people’s motives

in real-life situations, and because norms can be substantially altered in the

context of playing a game, players may make in-game decisions differently than

real-life decisions and may have different responses to their outcomes. Studies

of the psychology of everyday choices are thus only a starting point for the study

of choices in interactive narratives.

3.3 Computational Narrative Systems

3.3.1 The Foundations of Computational Narrative

While the theories of both interactive and traditional narrative just discussed

mainly relate to the development of choice poetics, Dunyazad also includes a

system-building component. As a system designed to generate poetic choices,

Dunyazad is part of a long history of computer systems designed to create (or

help create) stories. The earliest example of such a system appeared in 1971, in

a technical report by Sheldon Klein, John Oakley, David Suurballe, and Robert
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Ziesemer titled A Program for Generating Reports on the Status and History of

Stochastically Modifiable Semantic Models of Arbitrary Universes (Klein, Oakley,

et al., 1971). Two years later another publication about the project was simply

titled Automatic Novel Writing: A Status Report, which made it a bit more clear

what the aim was (Klein, Aeschiliman, et al., 1973). Klein and his collaborators

created a computer representation of a mystery world that included some random

elements, and thus generated different output each time it was run. Although

presented as an “automatic novel writer” most of the plot structure in their

program’s output was hard-coded in the form of events or actions scheduled to

take place at particular times. Still, as an initial foray into narrative generation,

their system was impressive, especially given the limitations of the computing

systems available to them.

It did not take long for the idea of an artificial author to receive more attention.

In 1976, James Meehan published his thesis titled The Metanovel: Writing Stories

by Computer (Meehan, 1976). Influenced by Roger Schank (his advisor at Yale),

Meehan built a program that allowed autonomous characters to build and carry

out plans. Based on the idea that fables were stories about problem-solving,

his program would place characters in problematic situations and then narrate

their execution of a plan to resolve their problems. Much more dynamic than the

system built by Klein, Tale-Spin (as Meehan dubbed it) became an inspiration for

future work on narrative generation. Although Dunyazad is neither plan-based

nor character-driven, the echoes of these ideas are still present in the character

motivation system, and in its reliance on canned dramatic situations which drive

dynamic character reactions.

Following Meehan at Yale, Natalie Dehn proposed a different model of story

generation in 1981 (Dehn, 1981). Her proposed system Author would simulate

not the actions of characters, but instead the goals and plans of an author. Dehn

realized that for many plots, an explanation purely at the level of character
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motivations fails to account for many serendipitous events that make the work

interesting. However, if we appeal to an author who plans for things like suspense

or foreshadowing, it is much easier to explain why events occur as they do. Dehn

accordingly planned a system that would simulate an author, thus inspiring an

author-simulation-based model of narrative intelligence systems that remains

popular today.

Following Dehn, Michael Lebowitz published Creating a Story-Telling Uni-

verse in 1983, proposing a story-generation system for generating soap-opera

episodes called Universe (Lebowitz, 1983). Like Author, Universe worked at the

author level, but it focused more on character creation, and it used hierarchical

planning to assemble plots (Lebowitz, 1984, 1985). Most of Universe’s generation

activity consisted of picking plot fragments that elaborated on higher-level plot

fragments. For example, Universe might start with a high-level plot fragment

such as “Mary breaks up with John,” and then decide to instantiate this using

“Mary and John have a fight and Mary leaves John.” Both “Mary and John have

a fight,” and “Mary leaves John,” might themselves be abstract plot fragments

with multiple possible instantiations, and the choice of instantiations at any

level might depend on the character attributes of Mary and John. Lebowitz’

Universe approach is thus radically different from the forward-planning approach

of Meehan and Dehn, and in some ways can be compared to a grammar-based or

template-based system.

As mentioned above, Brenda Laurel’s dissertation on interactive theater

was published in 1986 (Laurel, 1986), so around this time the idea of computer-

generated narratives was supplemented by the idea of computer-mediate nar-

ratives. Dunyazad ultimately sits between these two traditions, as it includes

interactivity in the form of choices for the player to make, but focuses more on

offline generation than on-line mediation. Researchers have continued to develop

non-interactive story generators, and two more landmark systems debuted in
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the 1990’s: Scott Turner’s Minstrel in 1993 and Rafael Pérez y Pérez’ Mexica in

1999 (Turner, 1993; Pérez y Pérez, 1999).

Minstrel was in fact the impetus for the creation of Dunyazad , as explained

in chapter 4. It used the author-centric approach of Dehn and Lebowitz but

relied heavily on a mechanism called imaginative recall which worked to re-use

bits of remembered stories from a story library as parts of a new story. Although

Turner does not use the term, it was in large part a case-based reasoning system

for story generation.

Mexica took the author-centric approach and pushed it further, modelling

not just authorial planning but also reflection (Pérez y Pérez and Sharples,

2001). After Mexica creates an episode, it reflects on it, revising in much the

same way an author revises their work to create a finished product. Although

Dunyazad does not have a second-pass refinement step, nor does it explicitly

simulate an author, it does devote much of its processing to reasoning about

player perceptions. In this regard it is more similar to a system like Mexica than

it is to systems like Tale-Spin or Minstrel which do not explicitly reason about

audience reception.

3.3.2 Modern Computational Narrative

Story Generators

Following early efforts in computer-enabled story generation, a wide range of

methods have been applied to this challenge. Methods including case-based

reasoning (beyond Minstrel) (Gervás et al., 2005), computational analogy (Zhu

and Ontañón, 2010), evolutionary algorithms (Bui, Abbbass, and Bender, 2010),

and crowd-sourcing (Li et al., 2013) have been explored. One particularly prolific

vein of research has been planning-based story generators, exemplified by the

work of R. Michael Young and Mark Riedl, among others (R. Michael Young,
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1999; M. Riedl, 2004). These systems work at the author level, but nonetheless

use planning to decide which characters will carry out what actions in service of

author goals. This line of research has been able to accommodate formal models

of various narrative effects as additional constraints at the planning level, includ-

ing things like suspense (Cheong and R Michael Young, 2006), foreshadowing

(Bae and R Michael Young, 2008), and character conflict (Ware et al., 2014).

These planning-based story generators share a predicate representation of the

world with Dunyazad, and to some degree exhibit a similar reasoning process,

which is able to integrate relatively arbitrary declarative constraints into the

creation of stories. As is evident, this approach has provided fertile ground for

experimentation with particular psychological and critical theories of narrative

because these models can be integrated as declarative constraints on the output

without worrying about designing a process that can reliably produce specific

effects. Of course, Dunyazad at the moment is focused on constructing individual

choices, and so its capabilities for reasoning across multiple actions are much

more limited than those of a planner. Because of this, one promising direction

for future work would be to integrate Dunyazad with a narrative planner, letting

the planner specify choice structures at each choice point and later relying on

Dunyazad to construct the specifics of each choice. Such a setup would involve

solving some hard problems, however, such as how Dunyazad and the planner

would communicate about the actions and outcomes that correspond to each

option at a choice.

Interactive Narrative

One of the earliest and most successful projects in interactive narrative was

the Oz Project at Carnegie Mellon University. Spearheaded by Joseph Bates

(already mentioned in regards to theories of interactive narrative above, which

also came out of this project), the Oz Project was a decade-long investigation into
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interactive fiction focused on stories supported by believable characters that could

exhibit emotional reactions to a player’s actions (Bates, 1992). Using reactive

planning architectures, the Oz project created virtual characters and then used

these characters to tell stories. The most successful system that resulted was

Michael Mateas and Andrew Stern’s Façade (Mateas and Stern, 2002). Façade

was a true interactive drama that incorporated free-form text recognition input,

procedural character animation, and a beat-based drama management system,

putting players in the shoes of a visitor in the house of a pair of old friends as

their marriage falls apart (or doesn’t, depending on the player’s actions).

Façade combines multiple approaches including character simulation and

drama management into a single experience, but these ideas have been explored

by other projects as well. The idea of drama management as an AI technique

for improving player experience in interactive fiction was first proposed by Peter

Weyhrauch in 1997 (Weyhrauch, 1997). Façade incorporated some of the ideas of

drama management, and then in 2006 two projects proposed new approaches.

Mark Nelson, David Roberts, and Charles Isbell worked with Michael Mateas on

declarative optimization-based drama management, a perspective that saw the

drama-manager’s intervention in an interactive experience as an optimization

problem (Nelson et al., 2006). At the same time, Bradford Mott and James Lester

saw drama management as a decision problem, which they addressed using

dynamic decision networks in Crystal Island, an educational interactive narrative

(Mott and Lester, 2006). Mott and Lester’s work is notable because they used a

dynamic model of the player to inform their system’s decisions. Later approaches

to drama management have included case-based drama management (Sharma

et al., 2010), and collaborative filtering for personalized drama management (Yu

and M. O. Riedl, 2013). Even when not the focus of research, many interactive

narrative projects include some system for managing and directing player actions.
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Drama management usually takes the form of subtle manipulations of the

world state that make certain actions more- or less-attractive (or simply un-

available) to the player in order to guide them towards a system-preferred path

without taking away their agency entirely. In this context Dunyazad could be a

useful tool for drama management because it knows how to construct choices

that not only evoke particular feelings but which also encourage the player to

choose particular options. The work of Hong Yu and Mark Riedl (Yu and M. O.

Riedl, 2013) deserves further mention here because Yu and Riedl used Choose-

Your-Own Adventure stories as the basis for their drama manager. In order to

combat player frustration, Yu and Riedl gathered data from many playthroughs

of a digital version of a classic CYOA book and used player ratings to determine

which decision paths led to more satisfying experiences. At the same time, they

developed alternate text for the options at each choice, and learned a model

for which alternate option text was most enticing. Then, when a new players

interacted with their system, they could determine, based on the sequence of

choices a player had made so far, which option similar players had found most

rewarding in the path. Using this desirability metric, they were further able

to figure out which of their variant option texts would be most enticing for the

desirable option (and least-enticing for the non-desirable options) and substitute

those option texts, thus subtly influencing player choices. In this manner, with-

out ever changing the choices available to players, they were able to show that

players influenced by their system reported more positive experiences overall.

Results like those of Yu and Riedl strongly motivate my work on Dunyazad: If

this kind of choice manipulation can be used to increase player satisfaction,

a deeper understanding of choice poetics should be able to explain how they

successfully influenced players, and a choice-generating system has an obvious

use-case within interactive narrative.
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Another important influence on Dunyazad comes from Nicolas Szilas’ IDTen-

sion system (Szilas, 2003, 2007). Like Mott and Lester’s U-Director, IDTension

incorporates a formal model of the player in making judgements about story

construction. IDTension also uses predicates to represent its story states, and

reasons over them using logical rules.

Its player model is used to score possible actions, and includes components

for ethical consistency, motivation, conflict, and relevance. Note that IDTension’s

player model, like Dunyazad’s, is static: it is a projection by the author about

generic users, rather than an on-line measurement of an actual user.

The idea of player modelling has been taken further by other systems, includ-

ing David Thue, Vadim Bulitko, and Marcia Spetch’s PaSSAGE (Thue, Bulitko,

and Spetch, 2008), which tries to identify player preferences and select appro-

priate content in response to these. Other work has built on this approach, but

although Dunyazad could potentially make good use of on-line player modelling,

it’s current player model is static. The problem of recognizing and categoriz-

ing player behavior is a difficult one, but Dunyazad could also enable a new

approach: because Dunyazad deliberately constructs choices, one can imagine a

setup where it creates some choices designed explicitly to discriminate between

player categorizations, and uses these strategically to gain information about a

player unobtrusively. This potential synergy between online player-modelling

techniques and deliberate choice construction is a promising direction of future

work enabled by Dunyazad.

One final interactive system with significant similarities to Dunyazad is

Heather Barber and Daniel Kudenko’s dilemma-based interactive fiction system

(Barber and Kudenko, 2007a,b). Unlike most interactive narrative systems,

Barber and Kudenko’s project reasons explicitly about the choices it presents

to the user: its main process for event generation is a planning system that

continually tries to force the player’s character into dilemmas. Although Barber
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and Kudenko focus on only a single choice structure, they identify several specific

variants of the dilemma (such as “betrayal,” which pits the character’s needs

against those of a friend, and “favor,” which positions the player as king-maker

between two other characters). The five subspecies of dilemma that Barber and

Kudenko identify are used in their system as templates for story situations, but

their analysis is also a micro-theory within choice poetics. Dunyazad reasons at

a slightly higher level, using ‘dilemma’ as a unified label for one kind of choice

that it can produce, but extending it to distinguish Barber and Kudenko’s sub-

categories would be possible. Ultimately, the strategy of using dilemmas to drive

narrative engagement is one that Dunyazad should enable, along with strategies

involving other choice structures.

Studies of Narrative Choices

In the past several years there has been a movement within computational

narrative circles towards attempts to reproduce specific affects within generated

and/or interactive stories. Several of these have focused on topics that bear on

choice poetics, including the topic of agency. In 2012, Matthew Fendt, Brent

Harrison, Stephen Ware, Rogelio Cardona-Rivera, and David Roberts conducted a

study where participants played through a simple Choose-Your-Own-Adventure-

style game (albeit with only a few sentences per ‘page’) and answered questions

about their perceptions of agency afterwards (Fendt et al., 2012). They found that

techniques like explicitly acknowledging a player’s choice were quite effective

at increasing the perception of agency within their story, which reinforces the

notion that the poetics of an interactive narrative can depend on textual details

as much as abstract events. Although the applicability of their results to full-

scale interactive fiction is not clear, their research bears some resemblance to

the experiments presented in chapters 7 and 8.
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Another very similar study by Rogelio Cardona-Rivera, Justus Robertson,

Stephen Ware, Brent Harrison, David Roberts, and R. Michael Young explored

player perceptions of the divergence of outcomes (Cardona-Rivera et al., 2014).

Again using a simplified CYOA format, they found that when choices had clearly

diverging outcomes, they were perceived as more influential than choices whose

options indicated similar outcomes. Of course, this might be the case because

those choices were in fact more meaningful, but regardless, a link between

divergence of outcomes and agency is established. From the perspective of

choice poetics, these studies can be seen as investigations into individual facets

of specific poetic effects. While agency is a fascinating and important effect,

however, there are other effects, even some unique to interactive contexts (like

regret) that are deserving of study, and results like this also need to be placed

within a broader theoretical context. Accordingly, one of the goals of Dunyazad as

a project is to establish a broad context for choice poetics and lay down theoretical

foundations within which specific effects like agency or regret can be talked about

as parts of a larger space.

3.4 Dunyazad’s Position

As both a theoretical and practical project, Dunyazad inherits much from existing

systems and theories. It can been seen as a specialization or extension of several

existing theories, including procedural rhetoric, operational logics, formalist nar-

ratology, link poetics, and theories of agency. It also owes much to several related

fields, such as the psychology of real-world decisions, the cognitive psychology

of reading, and of course theories of interactive narrative. As a technical effort,

it grows out of rich traditions in both static narrative generation and interac-

tive narrative, and it further draws inspiration from craft advice and critical

resources directed at authors of both traditional and interactive narratives.
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What distinguishes Dunyazad from related projects is first a focus on choices

as a poetic form, and second, a commitment to simultaneous and mutually-

informative theory and system development. By privileging the explicit discrete

choice as the object of study, a variety of interesting effects and interactions

are brought into focus that do not necessarily seem important in broader con-

texts such as ‘interactive narrative’ or ‘hypertext.’ This focus also allows an

investigation of specific mechanisms, taking a question like “How can interac-

tive narratives bias players’ decisions?” and reformulating it as “What specific

arrangements of framings, options, and outcomes can cause a player to feel

that a choice is obvious?” Furthermore, the development of a generative sys-

tem which operationalizes the theoretical answer to produce obvious choices

allows the theory to be “field-tested,” and experimental results can be used to

directly inform the theory. Although there are many systems and theories that

resemble individual aspects of Dunyazad, as the following chapters demonstrate,

Dunyazad as a project is much more than the sum of its parts.
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Chapter 4

Minstrel and Skald

Skald is an open-source1 narrative generator that was created via a process

of rational reconstruction, using Scott Turner’s 1993 Minstrel as the object of

study. Like Minstrel, it has an underlying graph-based representation of stories,

and constructs new graphs via a case-based reasoning process that draws on

a fixed library of pre-authored story graphs. I worked on Skald with Brandon

Tearse, and together we re-created Minstrel’s original functionality and then

used Skald to study Minstrel’s strengths and weaknesses (Tearse et al., 2011,

2012, 2014). This section explains how Skald works, and then discusses what

we learned from building it, and ultimately, why I was unsatisfied with Turner’s

imaginative recall process for constructing stories.

4.1 Rational Reconstruction

Before getting into the details of Skald, first a brief note about rational recon-

struction, which was our methodology for constructing Skald based on Minstrel.

The “Rational Reconstruction as an AI Methodology” section of Patrdige and

Wilks’ The Foundations of Artificial Intelligence: A Sourcebook (Patridge and
1Skald’s source code is available at https://sites.google.com/a/soe.ucsc.edu/eis-skald/

47



CHAPTER 4. MINSTREL AND SKALD

Wilks, 1990) provides an introduction to this approach, and examples of it in

action include work by Ritchie, Haase, and Peinado & Gervás (Ritchie, 1984;

Haase, 1986; Peinado and Gervás, 2006). In fact, Peinado and Gervás’ work is

closely related to Skald as it also used Minstrel as source material. As a technical

approach in computer science, rational reconstruction begins with an in-depth

study of an existing system, so that it can be understood at an algorithmic level.

If the system is available for direct study, this includes inspecting the source

code and running the original system to see how it behaves. If not, descriptions

of the original system’s behavior are used to understand how it functions.

Once a system’s behavior is well-understood, rational reconstruction proceeds

by developing a new codebase to reproduce the functionality of the original. The

reason not to use the original code is that developing new code is a means of

exposing quirks in the original. Large software projects often contain implicit

architectural decisions that are the result of idiosyncrasies in the original code.

The original programmer(s) may have been unaware of these decisions, as in their

implementation the programming language, or some other feature of their code

design, precluded some alternatives. By developing a separate codebase, often

in a different programming language from the original, rational reconstruction

projects can expose these implicit properties of the original software, and thus

learn more about the algorithm being investigated. Rational reconstruction as

a technical approach thus echoes rational reconstruction as a philosophical or

historical approach in that it works “from the outside” and seeks formal systems

of representation that differ from those of its subject as a means of creating a

productive alternative perspective (see e.g. (Lakatos, 1971) for several examples

of how rational reconstruction has been applied to the history of science).

For our work on Skald, we got in touch with Turner, who graciously offered

to supply us with magnetic tapes containing Minstrel’s source code. Given that

we had neither a magnetic tape reader nor a machine that could run Minstrel’s
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LISP variant on hand, we decided to proceed without the source code, using
Turner’s dissertation as the reference for Minstrel’s design. Turner’s dissertation
includes detailed descriptions of all of Minstrel’s modules, in addition to several
appendices, one of which contains an annotated trace of a run of Minstrel.

4.2 Skald

Turner called Minstrel’s core operating principle “imaginative recall.” Humans
often make up new stories using pieces of stories they’ve heard in the past, and
Turner reasoned that a computer could operate using the same principle: sup-
plied with a story library, it could recall fragments from that library and modify
them to fit together into a new story. Turner was interested in computational
creativity, and set out to demonstrate that a computer program could exhibit
some of the same kinds of creativity as humans do when making up stories.

Besides imaginative recall, Turner’s Minstrel used a system of what he called
“author-level plans” (ALPs) to guide the story generation process. Each ALP
took a partially-finished story and helped move it towards completion in some
way, usually making use of imaginative recall to fill in some part of the story.
Turner’s ALPs were responsible for some of the higher-level story structures that
Minstrel could generate, but Minstrel also started each story from a template
which dictated a general moral or lesson that the story would convey.

4.3 Story Templates and the Story Library

As a case-based reasoning system, Minstrel relies heavily on its story library.
Furthermore, Minstrel starts each new story by importing a story template
from its template library, which is another source of human-authored content.
In Minstrel and Skald, both of these resources are represented in a unique
graph-based format which Minstrel uses to represent all story content.
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Figure 4.1: An example of a Skald story graph. It represents a story where
Lancelot plans to kill a troll, attacks it with his sword and kills it, but becomes
injured. After that, Lancelot wants to heal himself so he drinks a potion, but the
potion kills him instead.
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Minstrel’s story graphs are directed graphs where each node is a conceptual

dependency schema and edges are relations between these. The four core node

types are goal, act, state, and belief nodes, and they are usually found in

goal-act-state triangles linked by plans, intends, and achieves links. Essen-

tially, these goal-act-state triples each represent a single event (along with its

motivation and outcome) and they are linked to each other when the state of one

triple has a motivates link to the goal of another. Within each node, the details

of a particular goal, act, state, or belief are represented using conceptual

dependency schemas, as shown in fig. 4.1.

A few of the stories from Minstrel’s original library are described in Turner’s

dissertation, but Turner’s complete library was not available to us. Because of

this, we created our own ad-hoc story library by hand-authoring several stories

that we thought would provide interesting source material. One of the things we

learned from this was that Minstrel’s story library must be carefully managed

to avoid generating malformed stories (this point is discussed in more detail

in both (Tearse et al., 2012) and (Tearse et al., 2014)). In particular, whenever

there are multiple ways to represent the same concept in terms of story graph

nodes, if different stories in the library use different encodings, the results of

the imaginative recall process may be poor. The same was true of Minstrel’s

starting templates: the templates had to match the story library closely in order

to generate sensible stories.

4.4 Author-Level Plans

Minstrel’s author-level plans are essentially black-box code fragments that modify

a story during construction. Each plan is invoked in response to an author-level

goal (ALG) and can itself add new ALGs to the current generation process. There

can be multiple plans which can satisfy a single goal, in which case they are
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tried in a fixed order until one is found whose preconditions are met. ALGs are

stored in a priority queue, and if a selected plan fails to achieve the current goal,

that goal is re-enqueued at a lower priority level (until it falls below a priority

threshold at which it is marked as permanently failed).

This system allows the results of one plan to inform the operations of another

when they both consider overlapping regions of the growing story graph. Once

all goals have been achieved, the story is considered finished. The first goal of

the system (called simply “tell story”) is invoked after a story template has been

imported, and it assigns both an “instantiate” and a “check consistency” goal to

each node in the imported template. The plans invoked to achieve these goals

are responsible for most of the generated story, although there are a few plans

which run under certain conditions that add additional nodes to the imported

template as opposed to simply filling in empty schema fields.

One category of these template-expanding plans is the “make-consistent”

plans. These are triggered by consistency goals that arise when consistency-

checking plans (triggered by the “check consistency” goals added by “tell story”)

find an inconsistent node. For example, the CheckGoalConsistency plan (which

satisfied the “check consistency” goal for goal nodes) might find a goal which

is lacking a motivating state. In this case, it could trigger the MakeConsistent

MotivatingState plan, which adds a new state node linked to the goal node by

a motivates edge and adds a new “instantiate” ALG targeting the added node.

In this manner, the original story graph can be expanded during generation;

Minstrel is not simply a complicated mad-libs system.

Although Minstrel and Skald both contain more than 20 ALPs, the single

ALP that is responsible for most of the story content generated is the General

Instantiate plan. This plan is quite simple at the code level: it looks at the

node in consideration along with its neighbors in the story graph, and asks the

imaginative recall system to fill in the node based on the story library. Of course,
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the operation of the imaginative recall system (Minstrel’s case-based reasoning

engine) is quite complex, and it is mostly responsible for the creative aspects of

Minstrel’s stories.

4.5 Imaginative Recall

Turner’s goal in developing Minstrel was to demonstrate the creative potential of

imaginative recall, and in particular, how it could recreate elements of of human

narrative creativity. Working with stories represented in terms of graphs of

story schemas as described above, imaginative recall makes new stories using

a story library by taking an incomplete story fragment and filling it in using a

similar scene from the story library. For example, a scene where a knight slays

a dragon might be recalled when building a story in which a troll is killed, filling

in a knight as the protagonist in the new story. Intuitively, imaginative recall

recognizes that trolls and dragons are similar because they are both monsters,

and so it considers the scene where the knight slays the dragon appropriate

source material for the new story.

Imaginative recall actually works via a three-step recursive process: Trans-

form, recall, and adapt. First, an input query is transformed so that it can

more easily match story fragments from the story library. Second, a matching

fragment is picked out from the library, possibly by recursively applying another

transform-recall-adapt sequence. Finally, the matching fragment is adapted so

that it matches the context of the current story. In fig. 4.2, the query is a scene in

which a troll is killed. This is represented as an act node liked to a state node

with an intends link. The act node specifies the type of action (“fight”) and that a

troll is the target, but the actor and tool in this case are still unknown (otherwise

the story fragment would already be complete). The state node specifies that

the troll has a health value of “dead,” and it doesn’t have any unknowns.
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Figure 4.2: An example of imaginative recall using a Transform Recall Adapt
method (TRAM). The original query (top left) must be Transformed (bottom left)
before a match can be Recalled from the story library (bottom right). The match
is then Adapted to fill in the query’s target node (context nodes are discarded).
Note that each empty slot is potentially connected with others in the graph, so
that when “Lancelot” is chosen as the actor here other slots corresponding to
that same actor will also be changed to “Lancelot.”

Using this query, the imaginative recall system begins by searching for a

direct match in the story library: a graph fragment in which all of the fields

match with the query (for unknown fields of the query, any value can match).

Usually, there is no exact match, as would be the case here if the story library

didn’t contain any stories about trolls. At this point, the system would begin to

consult its library of Transform Recall Adapt Methods (or TRAMs). Each TRAM

specifies a specific transformation of a query, along with the steps needed to undo

that transformation during the adapt step. Various TRAM selection strategies

are possible, including anything from random selection to exhaustive search

through the space of possible TRAM applications. Because multiple TRAMs
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can be applied to a single query, there’s effectively a search space of TRAM
applications branching out from each starting query, and somewhere within that
space (hopefully) is a query that has an exact match with a fragment in the story
library. Ultimately, the odds of a match increase as more TRAMs are applied,
because each TRAM tends to generalize the query.

Coming back to our example, in the case of the troll being slain by an unknown
actor, one available transformation is the “GeneralizeActor” transformation. This
TRAM says that a specific actor, like “a troll,” can be replaced with a generic
actor of the specific actor’s type (using a simple type ontology of actors). In this
case, the TRAM replaces all occurrences of the troll in the query fragment with
“a generic monster.” After transformation, the new query is checked against the
story library, and this time, there’s a result: the scene where Lancelot the knight
kills a dragon now matches our fragment, because the dragon can match “a
generic monster.” Having Recalled a scene from the story library, the Adapt step
is triggered. In this case, the adapt part of the “GeneralizeActor” TRAM indicates
that the actor which matched the generalized actor from the story library scene
should be replaced by the actor that was generalized. So the fragment from
the library in which a knight slays a dragon is adapted by replacing the dragon
with our specific troll. If multiple TRAMs had been necessary to find a match,
their adapt steps would all have been applied in reverse order. The adapted
story fragment can be incorporated into the story, in this case our result is that
a knight kills the troll with his sword (see fig. 4.2). The TRAM process has
eliminated all of our initial unknowns, and this story fragment is now completed;
the ALP system takes over again to select a new target for imaginative recall.

4.6 Minstrel’s Potential

The promise of imaginative recall is that TRAMs can capture a notion of story
scene similarity, enabling any corpus can be turned into a story library and
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become a source for generating new material. Turner acknowledged that some

content-specific TRAMs might be needed, and some specific to his Arthurian

domain were included in Minstrel, but these were a minority. Turner also

demonstrated that the TRAM system could create stories that the system had

never seen before: it did not just regurgitate what was in the story library. For

example, Minstrel was able to “invent” suicide by taking a scene where someone

was killed and ultimately filling in the killer and the victim with the same person.

Because of the kinds of information embedded in Minstrel’s story graphs, this

process isn’t just chaos either: goal and motivating state nodes constrain how

their neighboring act nodes are filled in and enforce a measure of believability.

However, despite the potential of Minstrel’s imaginative recall process, it is

fundamentally not robust. When building Skald we imagined that after providing

a new story library containing roughly a dozen stories and doing some minor

tuning, we’d be able to have Skald generate dozens to hundreds of new stories

that included significant variations. Unfortunately, what we found was that the

story library, the story templates, and the particular TRAMs and ALPs all had

to be carefully balanced against each other to avoid nonsensical results.

In our early evaluations of the TRAM system (see (Tearse et al., 2011)), we

found that generating 1000 results for a single TRAM query using our new library

resulted in an average of only 35.2% sensible results: the remaining 64.8% of

results were somehow nonsensical (note that these numbers included duplicate

results). We tested several alternate configurations, and found that by removing

some TRAMs which generalized too strongly, we could increase the sense-to-

nonsense ratio and get an average of 92.4% sensible results (again including

duplicates). Unfortunately, the removal of these TRAMs reduced the number of

unique results per 1000 queries from an average of 69.4 to an average of 12, and

it accordingly reduced the average number of differences expected between any

two results from 6.9 to 3.1 (where a difference is something like the substitution
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of one character for another; see (Tearse et al., 2011) for methodological details).

This result was early evidence of the shape of the tradeoff between sense and

variety in results, but it only involved the TRAM system.

Once the full reconstruction of Minstrel was complete, including the ALP

system, we took some more measurements of TRAM query results in the context

of generating full stories (see (Tearse et al., 2012)). We compared a vanilla

version of Skald (which mimicked Minstrel as closely as possible) with a version

that used modified boredom and TRAM selection systems in an attempt to trade

off some variety for more consistency. The modified version was able to resolve

TRAM queries using much less effort (72.2% vs. 59% direct matches; 7.7 vs. 13.8

average TRAMs tried per successful query) largely due to the relaxed boredom

restrictions. However, the average number of TRAMs used in each non-direct

match fell from 2.38 in the vanilla configuration to 1.39 in the modified version:

in other words, the modified version’s stories were in general more similar to

story content in the library than the vanilla version’s results. Based on the

earlier experiment, this reduced usage of TRAMs translates to more narratively

consistent results at the expense of variety. We had thus successfully found a

mechanism for trading variety for consistency, but not a method for increasing

one without sacrificing the other.

In fact, in Turner’s dissertation, he mentions a trial run where Minstrel is

asked to generate stories repeatedly based on a single template, in which the

coherence of the stories decreases drastically after only 6 reasonable results (see

page 672 of (Turner, 1993)). Rather than a robust generation engine with the

capacity for creative feats, therefore, Minstrel is more like a carefully balanced

system designed to demonstrate the possibility of such feats. The process of

generating interesting stories while avoiding nonsensical ones using Minstrel

inevitably involves looking at its output and altering the ALPs, TRAMs, and/or

story library to correct errors.
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4.7 Problems with Problem Planets

In fact, this is exactly the issue that we ran into when we tried to build Problem

Planets, a Choose-Your-Own-Adventure-style game about climate change that
was going to use Skald for narrative generation. Brandon Tearse and I teamed up
with Aaron Reed to work on the project, which was the first major project where
we attempted to put Skald to use. Our plan was to set up some domain-specific
ALPs and TRAMs for Problem Planets’ domain (a science fiction domain in which
the protagonist travels from planet to planet solving climate-related problems on
each) and then have Aaron (a noted author of interactive fiction) create a story
library that we’d use to generate new stories for each player. Given this design,
Skald would have to be capable of generating stories unsupervised: we’d be able
to tune the system by changing the library or adding ALPs and TRAMs up to
release, but at that point it would ideally be able to produce stories we’d never
seen before which were nevertheless coherent and interesting.

What we discovered during this process was that Skald alone was incapable
of consistent unsupervised generation. Despite our ability to trade off coherence
and consistency to some degree, even when boredom and the TRAM system were
set up to maximize consistency, Skald would produce internally inconsistent or
otherwise incoherent stories within the first dozen or so it generated in a batch.
This was consistent with Turner’s result of 6 stories in a run before incoherence
and with the results of our earlier experiments of course, but our efforts to control
Skald led us to the conclusion that we needed to go beyond the imaginative recall
framework to achieve better consistency. In particular, we explored the idea
that expanding the story library might give Skald more reach, but the opposite
turned out to be true: expanding the story library only gave the TRAM system
more room to make mistakes.

Ultimately, we turned to the ALPs to fix things. When asking Skald to
generate a batch of stories in the Problem Planets domain, we would observe
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broken outputs and try to identify patterns. Sometimes, a single story or group

of stories in the story library could be re-written to eliminate a problem (this

was often the case when different stories in the library used the same pattern of

nodes in slightly different ways, and Skald crossed these senses during recall).

But this meant that Aaron had to be extremely careful in authoring stories for

the library, and in particular, the effort of maintaining the library’s internal

consistency grew quadratically with the size of the library, as each additional

story could potentially conflict with any of the existing stories. Furthermore,

problems that couldn’t be pinned on specific stories were patched using ALPs

that checked for and attempted to fix them.

Although Turner did include a few consistency-checking ALPs in Minstrel, as

we began to add more and more of them to Skald, we realized that imaginative

recall alone was no longer a driving force for story consistency. Our architecture

was shifting towards one in which imaginative recall supplied creative but often

incoherent results, and a complex system of rules implemented by a tangle of

ALPs tried to force these results to be consistent. Effectively, we were trying

to write a programmatic definition of what made a story consistent within the

ALP system. This problem is fundamental to case-based approaches to story

generation: either the case library must be rigorously maintained and developed

to account for the intricacies of how retrieved cases are joined into a story, or

some other system must fix up mis-matched cases after recall. In either case,

a limiting factor emerges: the effort required to maintain the story library in

the first case, or the system’s ability to understand and thus repair mis-matched

story content in the second.

Additionally, we wanted the stories to be interactive, and so we decided to

generate choices by simply having the story graphs branch and allowing the

user to select a path when this happened. We quickly found that this approach

required careful hand-selection of branching points to make the choices sensible.
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Only at very specific points in a story is it appropriate to present choices to the

player, and the range of options that are reasonable is tightly constrained. For

choices to be dynamically generated, a strong model of character motivation is

necessary, so that options can include a set of motivated actions without including

unmotivated or irrelevant ones. Furthermore, interesting options at a choice

point can’t simply be generated sequentially by a system designed for generating

linear stories. Instead, the system must generate all of the options are presented

to the player at once, so that the option set avoids repetition and redundancy.

As we struggled with these difficulties in building Problem Planets, I came

to the conclusion that focusing just on rules of story consistency would be more

productive. Seeking to build a story generator that could provide robust variation

and also deal with embedded choices, I turned to answer-set programming (ASP),

which would allow me to write rules of story consistency as logical statements

and let a solver use them to generate concrete stories. In particular, encoding

consistency rules as logical formalisms to be obeyed rather than a complex

structure of imperative consistency-checking procedures was much more natural.

In addition, building a new system would allow me to address from the start the

issues with choice generation that I had observed in Problem Planets. Thus the

idea for Dunyazad was inspired by the difficulties of Problem Planets.
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Chapter 5

Choice Poetics

The aim of this chapter is twofold—first, to establish a framework for talking

clearly and precisely about choices and their outcomes, and second, to introduce

a method for analyzing choices based on how they relate to player goals. Choice

poetics should be able to address questions like: “What is it about a choice that

makes some players feel regret after picking a particular option?” This chapter

attempts to establish terminology and formal perspectives that can be used to

talk about choices, but it’s far from a “complete” theory of choice poetics: it only

deals with explicit, discrete choices, for example. Some parts of the theory are

more developed (those that supported and were influenced by the development

of Dunyazad), but the ideas here are merely a foundation for an in-depth study

of the poetics of narrative choices.

Note that here I define “poetics” broadly as the compliment of hermeneutics:

if hermeneutics is the study of the meaning of a text, poetics can be understood

as the study of its non-meaning-related qualities, such as the emotions or themes

it evokes. Poetics deals with the feelings that a player has before, during, and

after making a choice, including simple feelings like the impression that a choice
Note: a preliminary discussion of some of the material in this chapter can be found in

(Mawhorter, Mateas, Wardrip-Fruin, and Jhala, 2014).
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is difficult to make, but also complex feelings like regret. It is also concerned

with how these feelings help a work express themes or otherwise enhance the

player’s experience of a narrative, although the work presented here focuses

mainly on the specifics of how choice structures engender feelings in the players

who experience them.

5.1 Inspirations

Chapter 3 contains a full review of literature related to choice poetics, but some of

the most relevant sources are worth reiterating here. While choice poetics clearly

has roots in the work of Aristotle (Aristotle, 1917) (and more recent narrative

formalists like Freytag (Freytag, 1894) and Barthes (Barthes and Duisit, 1975),

to name only a few) choice poetics is also inspired by investigations into the

psychology of both reading and decisions. In the first camp, psychologists have

studied specific narrative effects such as transportation (Melanie C Green and

Timothy C Brock, 2000), surprise (Iran-Nejad, 1987), and identification (Oatley,

1995). In the second camp, researchers have studied how things like framing

(Tversky and Kahneman, 1981; Tversky and Simonson, 1993), and personality

(B. Schwartz et al., 2002) affect decisions and preferences.

Including craft wisdom from places like the Choice of Games development

blog (Choice of Games LLC, 2010), existing sources already contain a lot of

information about how narrative choices function. However, much of it is focused

on either linear narratives or real-world choices, and the resources that do

explicitly deal with narrative choices lack a solid theoretical foundation. Some of

the work of this chapter is therefore synthesizing this existing information into a

theory concerned primarily with discrete, explicit choices in narrative contexts.
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5.2 Modes of Engagement

In developing a theory of choice poetics, one must respect the lessons of the

development of traditional poetics. In particular, modern scholars have largely

rejected “objective” narrative analysis and concluded that the experience of the

individual reader must be taken into account. Unlike Aristotle, who stated au-

thoritatively what was good and bad about this drama or that, modern narrative

scholars will analyze a work from a particular perspective, without claiming that

this perspective is universal, perhaps performing a feminist or Marxist reading

of a novel to see what insights a particular lens has to offer about the work.

Choice poetics must also respect the perspective of the reader, but it is in

a slightly different position, as its readers are also players. Insofar as the

narrative that contains choices is experienced through the fabric of a game, the

reader/players (henceforth players) are stepping into the magic circle of the game

(Huizinga, 1949) and intentionally taking on certain attitudes. A narrative

experienced within the framework of a game thus implicitly biases the attitudes

of its readers, for example by setting up a score counter which players can try to

maximize. Counter-play is of course possible and important, but even counter-

play is influenced by the rules of the game by virtue of being set against them.

The formal structures of the game rules that accompany a narrative-with-choices

thus allow the theoretician to make an educated guess about the attitudes of

players interacting with a piece.

There are still a range of attitudes that players can take on, however, and

some understanding of this range is important before any analysis of choices in

a narrative. This range of attitudes has to some degree been studied by others

interested in player types, although such studies are mostly focused on games

without regard to narrative. From simple binary “casual/hardcore” distinctions

to more complex typologies such as Bartle’s “achievers,” “explorers,” “socializers,”
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and “killers,” player type classifications to some degree incorporate notions of

player intent or attitude (Bartle, 1996). However, player type classifications also

focus on player actions or approaches within the game, for example a distinction

between those who enjoy stealth or direct combat more. These player content

preferences are as important as any other player preferences when it comes to

how players approach choices, but they’re less important than player motivations,

which establish entire contexts within which preferences can be expressed. For

example, if one’s motivation to play is a desire to act out a role, one’s preferences

might be expressed in terms of the kind of role one is trying to act out. If one’s

motivation to play is to score points, on the other hand, preferences might be

expressed in terms of different strategies for doing so.

The idea of “modes of engagement” captures these different player motivations.

Modes of engagement are different ways in which a player can approach a game.1

At this point it is important to note that modes of engagement are neither

exclusive nor permanent: players often engage in several modes at once (to

varying degrees) and may change their modes of engagement during the course

of play. The modes of engagement presented here are also not intended to be

comprehensive: these are some of the most common modes, but others may

be possible and even the norm for certain games. All of that notwithstanding,

consideration of the mode(s) of engagement that players bring to a work is the

first step in analyzing the choice poetics of a work.

This can take the form of assuming a particular mode: much as one can

perform a feminist reading of a novel, one could perform a power-playing play-

through of a game. This could also take the form of analyzing the game itself

to determine which mode(s) of engagement it encourages and rewards. It could

even take the form of a qualitative study of actual players, to determine which
1Note that the idea of modes of engagement is not unique to games: different audience ap-

proaches have been acknowledged as important in areas such as education and music composition
(Langer, 1995; Brown, 2001).
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mode(s) of engagement they are employing. In any case, an analysis of choice

poetics that does not consider modes of engagement is incomplete.

Table 5.1 lists some of the most common modes of engagement, and gives

examples of decisions that employ them. The last column references Nick Yee’s

work on motivations for play in massively-multiplayer online role-playing games

as a comparison (Yee, 2006). The grouping of Yee’s motivation components into

these modes of engagement has to do with a difference in focus: Yee is focused

primarily on aspects of play, including a strong focus on online social interaction,

whereas choice poetics is interested primarily in single-player offline engagement

with an emphasis on narrative. For example, Yee makes fine distinctions between

different motivations grouped into the “power play” category here, but from a

choice poetics perspective, whether someone is trying to maximize score or

compete with an opponent doesn’t matter, because both motivations are equally

orthogonal to the narrative, and thus they have a similar effect on the player’s

experience of the narrative.

Although modes of engagement are important to choice poetics, in my work

with Dunyazad I have not given them great attention: Dunyazad encourages

avatar play and all of its evaluations assume that players will engage primarily

in this mode. Extending Dunyazad to support power play and role play better,

and to account for these possible approaches when evaluating choices, would be

a very interesting line of future work. Developing Dunyazad in that direction

would allow it to be used as a tool to study modes of engagement in more detail.

5.3 Dimensions of Player Experience

When using choice poetics to analyze a narrative or even just a single choice,

one must consider the range of expressiveness of narrative choices. Aristotle

devoted much of his analysis of emotion in Poetics to tragedy and the heroic
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Mode Decision Process Example (Yee, 2006)

Avatar
Play

Decide as if you were
in the character’s
situation.

When picking a pet,
pick the cat because
you like cats.

Role-Playing,
Customiza-
tion,
Escapism

Role Play Decide in order to act
out a persona.

Choose the wizard
character class
because you want to
play a shy, bookish
person.

Role-Playing,
Customiza-
tion,
Escapism

Power
Play

Choose options that
advance game metrics
like score, beating
other players, or
quick completion.

Sacrifice an ally to
obtain a powerful
item because it helps
you beat the game
more quickly.

Advancement,
Mechanics,
Competition,
Teamwork

Explora-
tory Play

Choose options to see
what will happen.

Turn away from the
path of your quest to
explore the world.

Discovery

Social
Play

In a multiplayer
situation, choose
options because of
social considerations.

Turn down a
high-level quest in
order to accompany
your friend on a
lower-level quest.

Socializing,
Relationship

Analytical
Play

Make decisions in
order to analyze the
work.

Repeatedly load a
saved game to
explore every option
at a choice.

none

Critical
Play

Make decisions as
performance to
deconstruct or
criticize a work.

Drive your character
into poverty in order
to demonstrate a
game’s biased
depiction of the poor.

none

Table 5.1: Some modes of engagement relevant to choice-based narratives.

66



5.3. DIMENSIONS OF PLAYER EXPERIENCE

Dimension Description Potentially Supported By

Immersion The degree to which the
player’s attention is focused
exclusively on the game.

Outcomes that are believable
given options; option coverage
of desired actions.

Identifica-
tion

How comfortable the player
feels in the role they play as
their avatar.

Options that support player
self-expression.

Transpor-
tation

The degree to which a player
thinks in terms of the game
world rather than the real
world.

Choices which force the
player to reason from a
character’s point of view.

Agency Alignment of player goals with
game affordances.

Transparent choices where
outcomes align with player
goals.

Influence Degree to which the player
feels they influence in-game
events (even if they do not
control them).

Choices where outcomes are
divergent and impactful.

Autonomy The player’s ability to choose
and pursue a variety of goals
at their own discretion.

Choices between goals rather
than between methods of
pursuing a fixed goal;
non-exclusive outcomes.

Responsi-
bility

Player feelings of
responsibility for the actions
of their avatar.

A mix of intentional outcomes
that are good for and bad for
other game characters.

Regret Player feelings of regret for an
in-game decision.

Negative outcomes that
result from tempting options
but which are still believable.

Table 5.2: Some aspects of player experience that are influenced by choice poetics,
along with hypotheses about what kinds of choices might support them.
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epic as these were traditional forms in his day, but the full range of poetic

effects is very broad, and includes both momentary impressions such as a single

phrase that provokes disgust, and overall feelings, such as sympathy for a tragic

figure. To some degree, more complex effects depend on simpler ones, for example

when an overall experience of sympathy depends on many individual positive

evaluations of a character, along with negative reactions to bad things that

happen to that character. Of course, once choices are involved, the repertoire

of effects is expanded, and it’s important to have some understanding of what

poetic effects a choice can possibly have. Although no summary of possible poetic

effects could hope to be complete, I have tried to list a collection of important

high-level aspects of narrative experience that are strongly influenced by choice

structures, including some which I believe are unique to interactive narratives.

Table 5.2 provides a brief overview of these important dimensions of player

experience. Except for identification, transportation, and immersion, each of

these possible poetic qualities are unique to interactive narratives: without

choices, they simply aren’t possible. Because of this, figuring out how choice

structures contribute to these effects is an important task for choice poetics. Of

course, some of these effects, like agency, have already been extensively studied,

often in broader contexts than just choice-based interactive narrative. But it will

still be important to understand how choice structures specifically contribute

to these poetic qualities. What follows is a preliminary analysis of each quality,

based on craft wisdom and existing studies of games and real-world choices.

• Immersion—There are several different phenomena that the word im-

mersion can refer to in games, including sensory immersion, mechanical

immersion, and narrative immersion (see (Ermi and Mäyrä, 2005)). Nar-

rative choices of the kind studied here bear most on narrative immersion,

although they could also be a source of mechanical immersion in some
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cases. Immersion goes hand-in-hand with effects like identification and

transportation. Although counting immersion as a poetic quality discounts

the role of the reader to some degree, immersion isn’t independent of the

structure of a narrative either. In particular, it is possible for a narrative

(choice-based or otherwise) to disrupt player engagement when it contains

contradictions or otherwise complicates the reader’s ability to understand it

(see e.g., (Douglas and Hargadon, 2001)). This is particularly relevant when

choices become involved, as they can easily become a source of frustration,

either because the player wants to take an action which isn’t provided as

an option, or because the player views an outcome as inconsistent with the

option that led to it.

• Identification—Identification in traditional narrative is a key property

and is heavily influenced by the actions and attitudes of characters (see

e.g., (Feilitzen and Linné, 1975; Oatley, 1995)). In narratives that include

choices, the player usually has some control over the actions of one or more

character(s), although this control is often incomplete, especially when it

comes to attitudes rather than actions. This degree of control can enable

a different type of identification in which the player actually assumes the

psychological perspective of a character, as opposed to viewing them as

a role model (see (Klimmt, Hefner, and Vorderer, 2009)). Choices could

have a big impact on identification if they fail to include options which the

player believes are reasonable and which correspond to the choice that

the player would be most comfortable with in a given situation, simply

because such a situation is an explicit manifestation of a difference between

the player and the character (see e.g., (Busselle and Bilandzic, 2009)’s

discussion of identification in linear narratives). For example, if the player

is a pacifist, but there are never options for negotiating with enemies or
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otherwise resolving conflicts peacefully, one would expect identification

to be hindered. This is complicated by role-playing, however: there is no

reason that a player who is a pacifist in real life cannot enjoy the opportunity

to play a bloodthirsty character in a game.

• Transportation—Transportation is the re-centering of a player’s perspec-

tive from the real world into a fictional world, and is closely linked with

narrative immersion (see (Melanie C Green and Timothy C Brock, 2000;

Melanie C. Green, Timothy C. Brock, and Kaufman, 2004)). Although

the original research on transportation focused on linear narratives (both

textual and visual), a similar phenomenon called presence has been studied

in interactive contexts (Witmer and M. J. Singer, 1998). Unlike immer-

sion, transportation is exclusive to contexts that involve fictional worlds.

Transportation is also to some degree linked to identification, as when one

identifies with a character it becomes easier to project oneself into that

character’s world (see (Busselle and Bilandzic, 2009) on this point). Again,

the believability and completeness of options and outcomes is important

when choices come into the picture. In particular, feelings of control and

an ability to successfully predict developments have been implicated as

contributing to presence (see (Witmer and M. J. Singer, 1998)).

• Agency—Agency has been an important subject for games studies as a

feeling uniquely enabled by interactive media (see e.g., (Murray, 1997;

Mateas, 2001; Wardrip-Fruin et al., 2009; Mason, 2013)). The feeling of em-

powerment that results from being able to achieve one’s goals contributes

to agency, and an alignment of player goals with player-influenced out-

comes is a powerful formula for agency (Mateas, 2001). Obviously, such

an alignment relates intimately to choice structures, as choice structures

establish which outcomes can be influenced by the player and also help set
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player expectations as to their goals. Given this, opaque choices—where

the player is not able to foresee consequences given the setup and options—

may decrease agency, because even if an outcome advances player goals,

the player may not feel responsible for their success. Additionally, choices

where outcomes are tangential to a player’s goals can frustrate agency: if

you’re told to save the princess but then given only choices about which

commodities to buy or sell, your ability to proactively pursue your goal has

been stifled.

• Influence—If diegetic agency is an ability to proactively exert control

over the story world (see (Mason, 2013)) then influence is half of that:

players’ feelings of being influential in the narrative world. Influence is

important because fantasies of being powerful are one of the pleasures

of both traditional and interactive narratives (see e.g. (Olson, Kutner,

and Warner, 2008)). While the experience of agency also requires that

players are able to use their influence proactively (they must have enough

information to make informed decisions, for example), there are plenty

of games where the player characters are influential but players cannot

freely exercise this power to do whatever they choose. For example, a game

like Final Fantasy (Square, 1987) fully supports player fantasies of being

heroic and influential, and if the player makes a mistake this role can

be jeopardized, but the protagonists do not have any capacity to control

the outcome of their story beyond fulfilling (or failing to fulfill) their fixed

destiny. Such a game does not offer players the pleasures of diegetic agency

that are uniquely afforded by an interactive format, but it may still offer the

pleasure of a power fantasy (a pleasure that is common to both interactive

and traditional narratives). Interactivity takes such power fantasies one

step further by making them participatory: even when denied agency and
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thus unable to decide how their character’s influence is applied, players

are responsible for their character’s achievements by virtue of “pulling the

trigger:” without their input the story cannot move forward, even if that

input is a simple “yes” or “no.” Of course, the choices that a player has can

serve to advance or undermine this feeling of influence, especially when,

for example, a player re-plays to explore multiple paths in a narrative and

finds that nothing changes. Divergent outcomes which matter within the

story world are critical for maintaining a sense of influence across multiple

playthroughs, although a mere suggestion of such can be sufficient when

players do not re-play. Important blind choices (where the player must pick

an option knowing that the choice will be momentous but uncertain about

the exact effects) are a common source of narrative tension which makes

players feel influential without giving them a real sense of agency.

• Autonomy—Autonomy is another relative of agency and influence, and

can be summarized as the player’s ability to choose and pursue their own

goals within a game (see e.g., (R. M. Ryan, Rigby, and Przybylski, 2006)).

Some amount of active influence is required to have autonomy, but whereas

influence is concerned with outcomes, autonomy is concerned with goals.

Autonomy is also distinct from agency: when a game sets up nicely-bal-

anced formal and material affordances, agency can be experienced even if

autonomy is absent, as in a game like Quake. The converse is also possible:

an overabundance of autonomy can leave players uncertain about what to

do, undermining feelings of agency. A game that supports player autonomy

provides a play-space within which players can choose their own goals. To

the extent that a narrative-focused game can provide this, it will appear

more as a space for player-created stories than a fixed story that affords

the player some choice. Games like Sim City (Maxis, 1989) and The Sims
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(Maxis, 2000) provide play spaces within which players can create their

own narratives, and this is achieved by offering non-explicit non-discrete

choices which give the player a huge amount of options. A lesser degree of

autonomy can be present in more linear narratives when the player has

choices which affect the goals and priorities of characters within the story.

• Responsibility—A feeling of responsibility for one’s own actions (as dis-

tinct from empathizing with a character who feels the burden of respon-

sibility) is something uniquely afforded by interactive narratives (see e.g.

(Murphy and Zagal, 2011)). Choice structures are key to creating this, and

there are several conditions for enabling responsibility. First, the player

must be given moral agency within the story world, which means that

different outcomes at a choice must have consequences which have morally

distinct outcomes. Second, the player must be willing to take responsibility

for their actions, and this can be impeded when they feel that the outcomes

of their actions were unforeseeable or otherwise out of their control (of

course, the feeling of a player who mentally justifies their lack of culpability

for an in-game consequence is also an interesting poetic effect). Note that

this direct player-responsibility is different from role-played responsibility:

it’s possible for a player to role-play responsibility even when the actions

they are assuming responsibility for were completely outside their control.

An example of responsibility (or the shirking thereof) as a poetic effect

happens in the game Portal (Valve Corporation, 2007), when the player

is forced to incinerate their companion cube in order to progress within

the game. The complex emotions that arise at that moment are the result

of a forced choice between two bad outcomes (being unable to progress

and incinerating the companion cube2), and the moment has emotional
2Note that this analysis makes assumptions about the player’s goals and feelings: some player

communities see the companion cube itself as an obstacle worthy of hatred rather than a helper
who deserves pity, and so view this choice in a very different light.
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resonance later in the game when the player has the opportunity to destroy

GLaDOS—the agent which forced the decision upon the player—using

similar means.

• Regret—Like responsibility, the capacity to make players feel regret is

mostly unique to interactive narrative (see (Frome, 2006; Zagal, 2009)). In

linear narrative it is possible to sympathize and empathize with a character

who is feeling regret within the story, but that’s a different feeling than

personal regret for one’s own actions.3 As with responsibility, making a

player feel regret is quite delicate: the player not only has to achieve some

level of transportation and identification, but the choices involved must

be structured to resist the player’s natural tendency to reassign blame.

With a negative emotion like regret, the basic psychological mechanisms

of denial are the brain’s first line of defence, and so naturally the narra-

tive and choices leading up to a moment of regret will be scrutinized for

interpretations that leave the player blameless. In particular, if the player

can convince themselves that the game forced them to make a choice that

led to a negative outcome, or that the outcome was unforeseeable given the

option that led to it, they can often avoid regret. Of course, this process of

denial is an interesting poetic effect in its own right, and in some cases is

exactly what an author wants (perhaps so they can later force the player

to re-examine their denial and admit blame, thus experiencing even more

poignant regret). A game like The Walking Dead (Telltale Games, 2012)

forces the player to make many difficult decisions between options with

divergent but uniformly negative consequences, and this pattern engenders

feelings of desperation and regret.
3A book or film might also cause one to revisit a personal regret, but that is still different from

being a source of regret.
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The dimensions of player experience listed above could each be (and some

have already been) the topic of dedicated research. However, they are presented

here merely to demonstrate how much there is to learn about choice poetics—

Dunyazad as a system does not focus on any of these, but rather attempts to get

at some simpler phenomena, such as what makes an individual choice obvious,

or what is required for a choice to be seen as a dilemma. Patterns of choices

with specific properties such as obviousness or unexpectedness of outcomes come

together to produce higher-level poetic effects like those described here, and a

better understanding of these low-level effects is required in order to aim at

higher-level effects. The poetic details that Dunyazad actually operationalizes

are based on player goals, and the perceived relevance of options and outcomes to

them. As Dunyazad only reasons about one choice at a time, its logic effectively

comprises an analysis technique for examining the basic poetic properties of an

individual choice. The next section describes this technique and how a human

would apply it to an individual choice within an interactive narrative, while

chapter 6 describes how Dunyazad operationalizes this theory, and chapters 7

and 8 describe how results from two experiments using Dunyazad have informed

both the theory and the system.

5.4 Goal-Based Choice Analysis

When authoring a choice or attempting to understand an existing choice, the

method of analysis presented here can help tease out how a choice might be

perceived by players. This method is grounded in player goals: it views each

option and outcome through the lens of what the player wants, and then tries

to synthesize this information to understand how an entire choice is perceived.

Figure 5.1 gives an overview of the technique described in this section, which

consists of seven steps. The basic idea is to carefully break down how the options
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and outcomes relate to player goals, attempting to consider as many details as

possible, and then synthesize those detailed assessments back into high-level

assessments of the choice as a whole. The next section describes the methodology

used to come up with this analysis method, while the following section describes

in detail how a discrete, explicit choice is represented for this analysis, and the

seven analysis steps are described in the remaining sections. Finally, an example

of the application of the analysis technique is presented in section 5.4.10.

5.4.1 Methodology

It is worth reiterating the process used for the creation of this analysis technique.

A traditional approach might start with a critic observing regular patterns in

choices, and invent a rudimentary framework for recognizing these. Such a critic

might then attempt to apply this nascent analysis technique to choices in a few

well-known games, and then refine it based on these results, continuing this

cycle until the method was deemed satisfactory.

Instead, this technique has been developed with reference to the generative

system described in chapter 6. Using the desire to generate poetic choices as

motivation, the question “What aspects of a choice need to be understood by

the system?” was posed, and a combination of existing systems, craft advice,

and theories of both psychology and narrative were consulted to come up with a

preliminary answer (see chapter 3; e.g., (Shepperd and McNulty, 2002; Mott and

Lester, 2006; Wardrip-Fruin et al., 2009; Fabulich, 2010)). This initial approach

pointed to several important factors: player goals, players’ evaluations of the

relationship between outcomes and these goals, and things like expectations

and likelihoods. These are factors that have been used by existing systems,

are the subject of craft advice, appear as variables in psychological studies of

decision-making, and are components of theories of interactive narrative.
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Figure 5.1: Goal-based choice analysis for a single choice—an overview of the
different steps and the information produced.
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After identifying these factors as important, the next step was a technical
one: using these factors as underlying variables, an answer-set programming
framework for representing choices was developed (see chapter 6). Technical
development proceeded until the system could manipulate these variables and
generate rudimentary choices. Of course, the choices it generated at first were
flawed, and development of both the theory and the system proceeded through
several rounds of revision, using flawed results from the system to motivate
elaborations of the theory.

The end product of this methodology for theory development looks a bit dif-
ferent than the results of the traditional approach. For one thing, it is more
detailed: because the theory was operationalized early in its development, it
naturally contains enough specifics to be evaluated mechanically without neces-
sarily depending on human ‘common sense’ to apply complex criteria.4 Another
result of the system’s unique development path is modularity: each step of the
analysis is designed to move from one set of evaluations to another without
depending directly on the details of any other step. This modularity is not neces-
sarily beneficial for the resulting analysis technique as a technique, but it does
help when attempting to diagnose problems with the system (and thus also with
the theory). The separation of modules also allows the theory to be subject to
incremental change: an improved method for a specific step could be proposed
without needing to overhaul the entire approach.

5.4.2 Choice Representation

This method is developed primarily for the analysis of explicit discrete choices, and
for these choices a detailed breakdown of their structure is possible. Figure 5.2

4Of course, humans are still better at applying even the specific criteria of this analysis method,
for example when comparing the impact of outcomes they can discern many differences that the
generative system cannot. As seen in the following chapters, there is no substitute for humans
when it comes to understanding how humans feel; the technique developed here only allows
Dunyazad to guess correctly in some situations, although refinements suggested by experimental
results may been able to improve things.
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shows how a choice (in this case one generated by Dunyazad) can be broken down

into framing, options, and outcomes. Note that it can be useful to further break

down outcomes into individual outcome components: individual changes that

result from choosing an option which are significant on their own. By doing so,

the impact of each outcome component on individual player goals can be analyzed

separately, which helps understand outcomes that involve complex trade-offs

between multiple goals. Not shown in fig. 5.2 are unrealized outcome components

which nevertheless factor into the choice analysis. For example, if the player

were unlucky, the third option might not have resulted in the bandits calming

down, and one could even imagine a situation where the bandits might turn

on the player. Separate analysis of potential outcome components, such as “the

bandits calm down” or “the bandits become angry with the player” can be used

to examine in detail how each option differs from alternatives, even when some

outcome components are exclusive of or linked to each other. It’s also the case

that understanding what the player thinks might happen as a result of choosing

a given option is just as important as recognizing what does happen as the story

unfolds. Finally, this idea of potential outcome components can also help analyze

cases where a system is nondeterministic, and the outcomes of a choice vary

between playthroughs. Each part of a choice is subject to scrutiny using the

methodology presented here, and having precise language to talk about these

choice components is necessary for detailed analysis.

5.4.3 Goal Analysis

As already mentioned, poetic analysis of a choice depends on some understanding

of the player’s approach to the choice. For goal-based choice analysis, this is taken

into account by coming up with a list of player goals. Depending on the objective

of analysis, there are different ways to come up with this list. One method is to

simply list the goals that the analyst themselves would have when approaching
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You are about to set out on an epic journey. You are are heading towards 
the distant country of Tucumán, hoping to earn fame and fortune.

You have some perfume, a ring, and an ancient grimoire, and you have 
skill: literacy, you have skill: negotiation, you have skill: storytelling, and 
you have skill: sorcery.

Eager to be on your way, you set off on the road towards Tucumán.

You come across some bandits attacking a merchant. The bandits are 
threatening the merchant. What do you do?

You offer the bandits your perfume (You have skill: negotiation).

You bargain with the bandits and reach a deal.  You have lost your 
perfume, the bandits are not threatening the merchant any more, and 
they now have some perfume.

You cast a spell on the bandits, and the bandits are cursed with the 
form of a chicken. The bandits are no longer threatening the 
merchant, they have become a chicken, and they are now not sentient.

You transform the bandits into a chicken (You have skill: sorcery. You 
have your ancient grimoire).

You talk the bandits down (You have skill: negotiation, and you have 
skill: storytelling).

You reason with the bandits and the bandits calm down. The bandits 
are not threatening the merchant any more.

Figure 5.2: Anatomy of a choice (using one generated by Dunyazad).
a Framing—sets up the narrative situation at the choice. b Options—discrete

options available to the player. c Outcomes—Not initially visible to the player,
but revealed after a decision is made. Each option has a single corresponding
outcome. d Outcome components—Individually significant changes that result
from picking a particular option.
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the choice. Another is to try to put oneself in the shoes of a particular type of

player, perhaps according to one of the modes of engagement listed above. This

can be useful for an author trying to figure out how different types of players

will perceive a choice: just come up with goal lists corresponding to each player

type of interest and perform separate analyses using each list.

In any case, coming up with these lists should take into account not only the

desires of the actual or imagined player, but also what aspects of the framing

of the choice and previous content encourage which player goals. Based on the

options available at previous choices and the narrative content, games can not

only encourage certain general modes of engagement, but can establish and

encourage the pursuit of specific goals. This encouragement itself often depends

on a player’s mode of engagement to function as intended, however. For example,

game rules directly establish goals for power gamers, but players who have a

different mode of engagement may not care about those goals.

If an important goal is missing from the goal list, the entire analysis may

be skewed, so it’s important to consider the full set of probable player goals.

On the other hand, it’s always possible to come back to the goal analysis if one

realizes during a later step that there’s an additional goal that might be relevant.

This is not uncommon, as the particular set of options and outcomes at a choice

determines which goals are relevant. However, part of the point of performing

goal analysis before even considering the structure of the choice in question is

to avoid bias. This also means that the results of goal analysis can be re-used

when analyzing multiple choices. Of course, player goals may change over the

course of a game, and this must be taken into account, but performing a full goal

analysis from scratch for each individual choice is generally not necessary.

Besides just listing player goals, a goal analysis must give some notion of

their relative priorities. This can be as simple as sorting the goals into “high”

and “low” priority tiers, but a more detailed representation of priorities can
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also be used. This priority information is used when combining information

about multiple options and outcomes during the relative option analysis and

full outcome analysis steps. Because goal priorities are even more volatile and

difficult to estimate than goals themselves, sometimes it’s simplest just to wait

until the later analysis steps to consider goal priorities, as there will likely be only

a few specific goals (those relevant to the choice in question) for which priorities

actually affect the analysis.

5.4.4 Likelihood Analysis

The second step of analysis is to figure out which potential outcome components

are made to seem likely by the framing and option text of the choice, and assign

each component a label of likely, neutral, or unlikely. For each option, this

step starts by identifying a set of outcome components that seem plausible,

and then figuring out which of those are likely and unlikely. The goal of this

step is to identify outcome components that the player can presume will result

from each option, so if there are actually multiple conflicting likely scenarios

(combinations of outcome components), only outcome components present in all

probably scenarios count as likely. For example, if one option involves rolling

a six-sided die, but the player has been given a prophecy that the result will

be either a six or a one, then the outcome components associated with rolling

a six and those associated with rolling a one are all neutral in this analysis,

while outcome components associated with other rolls are unlikely. Any outcome

component that’s associated with both rolling a six and rolling a one would still

be marked as likely: given the information the player has, they can assume that

such an outcome component will happen if they choose to roll the die.

The outcome likelihoods produced by this step are used during option analysis

in combination with the player goals from goal analysis to figure out how each

option portrays itself as affecting each goal. Figure 5.1 displays these assignments
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in the ‘Outcome Likelihoods’ box: the choice has two options, O1 and O2, and O1

suggests outcome components A and B, while O2 suggests outcome components C

and D. Components A and B are both neutral (indicated by a ‘?’), while component

C is unlikely (a ‘U’) and component D is likely (an ‘L’). Note that it’s possible

and even common for the same outcome component to be a plausible result of

multiple options, although such a situation is not shown in fig. 5.1.

During this step, the actual outcomes of each option are irrelevant; what’s

important are the cues present in the framing and options that hint at what

might happen if an option is elected. This often includes a large body of implicit

player knowledge that depends on player experience with a game: players who

have played a game already (or even just games from the same genre) may build

strong expectations from minimal cues. Much like player goals, potential and

likely outcomes from a player’s perspective can be difficult to predict perfectly.

However, from a designer’s perspective, each choice is usually explicitly crafted to

present certain outcomes as most salient, and in that case, this step of analysis

is mostly focused on double-checking the framing and options to ensure that they

highlight the intended outcomes properly.

5.4.5 Option Analysis

Given the player goals and estimates of likely-seeming outcome components,

option analysis proceeds by analyzing how each option seems likely to impact each

goal, aggregating information across outcome components at each option. First,

all possible outcome components are considered, to come up with an estimate of

the goals that could possibly be impacted by each option. These evaluations are

enables and threatens—which goals each option might possibly advance, and

which goals it might possibly impede. In fig. 5.1 the ‘+’ and ‘-’ symbols in the

‘Option Expectations’ box are these enables and threatens assignments.
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Essentially, these enables and threatens evaluations are produced by con-

sidering the impact of each outcome component on each goal. If any possible

outcome component of an option could negatively impact a particular player goal,

it is said that that option threatens that goal. Likewise, if an outcome component

can positively impact a goal, it is said that that option enables that goal. It

is possible and even common that an option both enables and threatens the

same goal, and of course it’s also possible that it neither enables nor threatens

a particular goal (or even any goal at all). For example, an option to “attack the

dragon” presumably both enables and threatens the goal of preserving one’s life,

as both being killed and surviving are possible outcome components (even if one

seems more likely than the other).

Besides possible impacts of each choice, option analysis is also concerned with

likely impacts. Using the same procedure, but this time only considering likely

outcome components, advances and hinders option expectations are assigned to

each option/goal pairing (these are the ‘*’ and ‘!’ symbols in the ‘Option Expecta-

tions’ box of fig. 5.1). In other words, when an option’s likely outcome component

positively impacts a goal, that option is said to advance that goal, and a similar

negative impact results in a hinders label. If it’s not clear whether an option

advances or hinders a goal (perhaps because of multiple conflicting outcome

components), neither label should be assigned: the enables and threatens labels

should already be present and serve to indicate the possible but uncertain out-

come relative to that goal. On the other hand, if contrary indicators are present

but one is clearly stronger or much more likely than another, the label more

strongly indicated can be assigned, but this should only be done if the player can

safely assume that the goal will be affected as indicated, as that is the purpose

of these labels. Note that an advances label can only be present if there is an

enables label, and similarly a hinders label requires the presence of a threatens

label. The combination of enables, threatens, and one of either advances or
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hinders is common, and indicates an option that will probably advance or hinder
a goal but with some risk involved. For example, the hypothetical “attack the
dragon” option discussed above might not only enable and threaten the goal of
self-preservation but also hinder it, if the player believes that being killed is a
likely outcome component and that staying alive is not.

The separate analysis of all vs. likely outcome components and the four labels
that result allow a wide range of choice structures to be accurately described
in simple terms, especially when comparing labels assigned between one op-
tion and multiple goals. The analysis of all possible outcome components for
the enables/threatens labels captures a broad view of option/goal relationships
while the advances and hinders labels based on only likely outcome components
capture information about the perceived “most likely scenario.” Patterns across
multiple goals (for example a “tradeoff” when one goal has an advances label
while another has a hinders label at a particular option) are easily recognizable,
and this is the basis for the relative option analysis step.

Remember that this step still makes no use of the actual outcomes of an
option: it is just concerned with how the player views each option before making
a decision. It can also ignore the goal priorities because each goal is considered
separately. The option expectations produced by this step are used in the relative
option analysis and retrospective analysis steps as a formal representation of
how the player views each option. During those analyses more fine-grained
evaluations of player perceptions may be required on a case-by-case basis, but
the enables/threatens/advances/hinders labels allow such complicated cases to
quickly be separated from the simple cases.

5.4.6 Relative Option Analysis

After producing option expectations for each goal/option pairing, a full-blown
analysis of the choice from a pre-decision standpoint can be produced by com-
paring the options available. A set of prospective impression labels can be used
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to identify common option structures, and choices that don’t easily fit into a

known category can be examined more closely. This step uses not only the option

expectations from the option analysis step, but also the goal priorities that were

produced during goal analysis.

Certain common patterns of option expectations create well-understood

prospective impressions. For example, a dilemma has a specific feel, and several

types of dilemma can be easily identified by comparing option expectations. If

there are exactly two options at a choice, each has overall negative impacts on

high-priority player goals (and these impacts are roughly balanced), and each

option negatively impacts a different set of goals, then the choice is a classic

dilemma. All of this information (besides the balance of impacts) is directly en-

coded in the goal analysis (priority information) and the option analysis (hinders

labels) results, so classic dilemmas are easy to identify using this analysis method.

From a design standpoint, it’s also easy to identify when an option isn’t a classical

dilemma and which aspects of that option would need to change to make it one.

Given the detailed language of choice analysis it’s further possible to describe

other kinds of dilemmas: a two-option choice with balanced positive outcomes, or

a three-option choice that still has balanced outcomes, or even a tradeoff choice

where each option has positive impacts on one of two goals and negative impacts

on the other. This is one of the benefits of a detailed analysis technique, in

fact: developing the precise language necessary for describing choices formally

establishes a framework within which variations on a common pattern can be

identified and enumerated.

Table 5.3 gives an overview of some prospective impression labels and the

criteria for applying them based on goal priorities and option expectations. Note

that the criteria are designed to be sufficient for applying the label, but not

necessary—there are certainly some obvious choices which do not meet the strict

criteria set out here, but from a design standpoint, if the criteria are met, a
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Label Description Criteria

Depressing A choice where no mat-
ter which option you
choose, there’s a goal
that’s hindered .

Each option hinders at least one
top-priority goal. No option should
enable or advance any top-priority
goals.

Dilemma A difficult decision be-
tween two strictly nega-
tive outcomes. (A partic-
ular kind of depressing
choice.)

Exactly two options, each of which
hinders one of two different top-
priority player goals. The priori-
ties of the goals and the severity
of the consequences should be bal-
anced and neither option should en-
able or advance any goals (even
low-priority ones).

Empowering A choice where every op-
tion has a positive im-
pact.

Every option advances a player
goal, and may threaten one or more
goals but does not hinder any.

Obvious A choice that has one op-
tion which is clearly bet-
ter than the rest.

One option that advances a top-
priority player goal without hinder-
ing any (although it may threaten
some), while none of the rest of
the options enable any top-priority
goals, and each of them threatens
some goal.

Relaxed A choice that has no im-
pact on any high-priority
goals and where no goals
are threatened.

There are no option expectations
involving high-priority goals (pos-
itive or negative), and there are no
threatens expectations (and thus
no hinders expectations).

Mysterious A choice where there is
no indication of which
option is best or how the
outcomes might affect
things.

There are zero option expectations,
including enables and threatens
expectations.

Table 5.3: Several different prospective impression labels, with formal criteria
based on option expectations and goal priorities.See section 8.11 for a detailed
discussion of some of these labels informed by experimental results.
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choice is almost certainly obvious (assuming also that the goal and outcome

analyses are accurate of course). The labels in table 5.3 and their criteria were

developed as part of Dunyazad’s choice analysis component, and some of them

(the depressing, empowering, obvious, and relaxed labels) were refined based

on experimental results (see chapters 7 and 8).

As a preview of those results, one caveat that applies to the relaxed label

is that some people will always seek a best possible outcome when given a

choice, and thus even at a choice among supposedly positive outcomes, options

which appear to lead to relatively worse outcomes may be seen as bad options

(B. Schwartz et al., 2002). See section 8.11 for further discussion of some extra

considerations for applying these labels.

The labels presented here give an idea of how players will feel when faced

with this choice before they make a decision. Classic dilemmas, for example, are

stressful decisions which are difficult to make: they represent significant negative

events and are a source of narrative tension (see (Barber and Kudenko, 2007b)).

In linear narrative, dilemmas and their consequences are commonly used as

low points in a story, and are themselves often a result of a character’s previous

poor decision, in effect serving as extended punishment: the character must not

only suffer a negative consequence, but must also choose which consequence to

accept, thereby being forced to reflect on their initial decision while agonizing

about their present options. Despite being negative moments, dilemmas can also

serve as moments of clarity: when a character finally confronts the bad options

available to them and makes a decision, this can mark the end of denial about

their situation and ultimately the beginning of redemption.

In an interactive narrative, presenting the player with a dilemma can serve

the same purposes: to accentuate an earlier mistake and punish the player, while

perhaps also establishing a new goal of moving towards atonement. A classic

dilemma is a moment of heightened tension, and when a player is forced to make
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the decision it also represents a pause in the action, although a dilemma where

the player has limited time to choose can also be used to accentuate feelings

of urgency and haste (The Walking Dead makes effective use of both kinds of

dilemmas (Telltale Games, 2012)). Additionally, when a player is confronted

with a diegetic dilemma, any reasoning about which option is best is done from a

point of view within the narrative, which may serve to heighten transportation.

At the same time, since diegetic dilemmas can force the player to make an

important decision for their avatar and to “think as” their avatar, they may

promote identification.

Dilemmas can be very fragile, however, because if the goals hindered by the

two options are not balanced, the choice can become obvious (this impacted the

experiments described in chapters 7 and 8). A dilemma may also force a player

to re-evaluate their priorities, especially when the player goals involved relate

to different modes of engagement. For example, if one option hinders a player’s

ludic goal of becoming more powerful (without necessarily affecting a similar

diegetic goal) while another hinders the diegetic goal of preserving the safety of

their avatar’s ally, many players may simply make a decision to prioritize one

mode of engagement (avatar play or power play, in this example) over the other,

and thus avoid the dilemma. Of course, a choice like this that forces the player to

decide between orthogonal goals can be used intentionally by an author to build

divergent experiences for players who presumably prioritize different things.

Such a choice not only measures a player’s priorities but also probably affects

them: human cognitive biases related to self-consistency and rationalization

mean (see e.g., (Hall, Johansson, and Strandberg, 2012)) that once a player

commits to a certain set of priorities they are likely to stick with that decision.

A label like dilemma can thus be unpacked into a rich understanding of

the poetics of a choice. Beyond assigning such well-understood labels, however,

relative option analysis can also find choices which don’t strictly conform to any
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labels, and analyze them on a case-by-case basis. In these cases it is useful

to compare a specific choice structure to a known structure and focus on the

differences. For example, a choice that meets all the criteria for being obvious,

but where the best option also hinders a top-priority goal, could be compared to

an obvious choice. In this case, the relative merits of the goals advanced and

hindered by the best option might mean that the decision is still straightforward,

but even so the player may feel some reluctance that a normal obvious choice

would not create. Alternatively, because of the hindered goal and despite the

advanced goal, an option which threatens some unimportant goal and has no

other expectations might be more desirable than the ‘best’ option if the player is

risk-averse, creating a very different impression. The relatively narrow labels

presented here thus serve as anchor points for the analysis of more complex

choices. Of course, it’s possible to establish many more clearly-defined labels than

those presented in table 5.3, and doing so is a straightforward way to increase

our understanding of choice poetics.

5.4.7 Outcome Component Analysis

While the results of relative option analysis give a sense of how a choice is

perceived just before the player makes a decision, more work is necessary to

understand how a player feels after experiencing an outcome. This begins with

outcome component analysis: Using the list of player goals and the actual outcome

components at each option (as opposed to the potential components identified

during likelihood analysis), a breakdown of the actual impact of each outcome

component on each player goal is created (unlike the option analysis step, this

step does not aggregate information across outcome components at each option,

instead evaluating each outcome component/goal pairing individually). Recall

that the option analysis step already summarized how the framing and options

of a choice indicated goals would be affected, but during this step, actual effects
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based on actual outcome components are considered instead of hypothetical

effects based on potential outcome components.

An example of this distinction can be helpful: let’s say the player has been

flung off of a cliff and faces a choice between grabbing a nearby branch to save

themselves or grabbing the outstretched hand of their avatar’s only child, who is

also falling. As presented, the outcomes look grim: sacrifice any hope of saving

one’s child to save oneself, or catch one’s child and at least suffer the same fate.

Assuming that the player can’t reasonably expect some sort of miracle to save

them (even given the full implications of genre conventions, etc.) both options are

portrayed to have likely negative impacts on several player goals (assuming an

avatar play mode of engagement). But perhaps if the player chooses to grab their

child, the actual outcome is that a freak gust of wind blows them both to safety,

while if they choose to grab the branch, their child falls and dies. This outcome

component of being blown to safety would not appear during likelihood analysis

and it would thus not be considered during option analysis, but as it is an actual

outcome component, outcome component analysis would evaluate it (see outcome

component ‘E’ in fig. 5.1). The goal of outcome components is to analyze the

valence of actual outcome components with respect to each player goal, including

any components that weren’t suggested by the framing and options of a choice.

The method is simple: for each outcome component that actually happens at

each option (or when outcomes are non-deterministic, for each outcome compo-

nent that could happen), estimate its impact on each player goal. The ‘Outcome

Evaluations’ table in fig. 5.1 that results from outcome component analysis il-

lustrates this, using ‘↑’, and ‘↓’ for minor positive and negative consequences,

and ‘↑↑’ and ‘↓↓’ for major consequences respectively. Of course, a finer gradation

of consequences could be used if desired, and certainly should be employed on

a case-by-case basis where specific consequences must be compared, but gross

distinctions are often sufficient to analyze straightforward choice structures.
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Note that even though the outcome component ‘C’ of outcome ‘U2’ does not
actually occur according to the ‘Actual Outcomes’ table, it is still analyzed in this
example, perhaps because it might occur depending on the circumstances. In
contrast, the suggested outcome component ‘D’ of option ‘O2’ does not appear in
the analysis of ‘O2’s outcome ‘U2,’ presumably because although implied as a
possibility, it will never actually occur. Outcome component ‘E’ is the opposite:
it was not implied, but does occur, and so must be analyzed. There are thus
several categories of outcome components: suggested components that are hinted
at by the framing and option text of a choice, but which may or may not even be
possible, potential components which are possibilities given a specific decision,
actual components which actually happen in a given play-through, and unrealized

components which could have happened given a particular decision but did not.
In the example analysis from fig. 5.1, outcome components ‘A,’ ‘B,’ and ‘C’ are
both suggested and potential, while component ‘D’ is only suggested. Meanwhile,
components ‘A,’ ‘B,’ and ‘E’ are actual, while ‘C’ is unrealized; note that component
‘E’ is not a suggested component.

Depending on the interactive narrative, complex rules may exist that estab-
lish what configurations of actual outcome components out of the set of potential
outcome components are valid, and the player may or may not be aware of these
rules. If analysis is being conducted without a specific playthrough in mind, then
in latter stages the different possible combinations of potential outcome compo-
nents will have to be considered separately, as each may give rise to a different
player experience. Of course, player experiences must already be separated based
on which option is chosen, but this does add some complexity to the analysis. In
the rest of this chapter outcomes are assumed to be deterministic, as that is the
case for choices generated by Dunyazad, and it generally makes analysis much
more straightforward. Once an understanding of how each potential outcome
component affects each goal is reached, this information can be used to analyze
the possible outcomes.
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5.4.8 Full Outcome Analysis

By combining information from the goal analysis, likelihood analysis, and out-

come component analysis steps, as well as information on which outcome com-

ponents are actual for each option, a full picture of the effects of choosing each

option can be assembled. This stage of analysis summarizes some details of

earlier stages to make common choice configurations easy to recognize, although

for complicated structures these summaries may be insufficient and the results

of earlier analyses will need to be used directly by the final retrospective analysis.

The goal of this stage of analysis is to establish two main evaluations for each op-

tion (and the corresponding outcome components): first, to what degree was the

result expected, unexpected, or unpredictable, and second, was the outcome

overall a good one, a bad one, a tradeoff, or irrelevant.

The evaluation of expectedness relies on comparing option likelihoods from

the likelihood analysis step with actual outcomes. First, however, each outcome

component is established as either important or unimportant based on whether

or not it affects any top-priority player goals (using actual outcome components,

not merely suggested components). Any outcome which is established as an

alternative to an important outcome is also important, even if that outcome does

not itself interact with a top-priority player goal. When judging expectedness

and valence of outcomes, unimportant outcome components are ignored (for a

more detailed analysis using graded goal priorities, just factor goal priority into

the expectedness and valence judgements as a weighting factor).

Given important outcome components, the results of an option can be said

to be completely predictable if every important actual outcome component at

that option was identified as a likely component by the likelihood analysis. Op-

tions where the important outcome components have a mix of likely and neutral

likelihood fall somewhere between predictable and unpredictable, with options

where all important components have neutral likelihood are fully unpredictable.
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If any important outcome component was marked as unlikely, however, the re-
sults are unexpected, and the same is true if there is an important outcome
component that was not a suggested component at all (and thus does not appear
in the likelihood analysis). A simple analysis can use these three evaluations
as exclusive labels, while a more nuanced analysis might represent the space
between predictable, unpredictable, and unexpected outcomes as a continuous
triangle as shown in the ‘Per-Option Assessments’ block of fig. 5.1 (in this case
only the assessment for the first option is shown).

Besides predictability, outcomes have valences, which represent whether
they are overall good, bad, or somewhere in-between. Shown in fig. 5.1 is a
simple good/bad/irrelevant/tradeoff scheme, but finer distinctions can be made
within each category (for example whether a tradeoff is generally worth it or
not). Essentially, these evaluations summarize all goal impacts of the actual
outcome components of an option, taking into account the relative strengths of
each impact and the relative priorities of the associated goals. Although this
summarization step may muddle things in more complicated cases, it can be
helpful for quickly identifying the simple cases: often the results of each option
are simply purely good or bad in terms of important player goals, and their
impact on the player can be judged accordingly.

By assigning a single predictability value and valence to each option at
a choice, it becomes much easier to get an overall picture of how the choice
might look in retrospect given a particular decision. Along with the prospective
impressions established by the relative option analysis step, these per-outcome
assessments are used by the final retrospective analysis step to understand how
the player perceives an option after they’ve made a decision.

5.4.9 Retrospective Analysis

Retrospective analysis is the final step in the goal-driven option analysis frame-
work presented here, although the results of the relative option analysis step can
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sometimes be used in isolation. Retrospective analysis complements relative op-

tion analysis by providing an understanding of how the player feels after making

a decision and experiencing the outcome of a particular option at a choice. Note

that further comparative analysis of outcomes would be necessary to understand

how a player might view a choice after experiencing multiple outcomes, but this

is unnecessary in the common case where a player only experiences a single

outcome at each choice.

As with the relative option analysis, this step is focused on matching against

a set of characteristic option structures. Note that each option is treated indepen-

dently, although prospective impressions of the entire option set apply no matter

which option is under scrutiny. Table 5.4 lists some retrospective impressions

identified during the creation of Dunyazad and the formal criteria for each.

As with the prospective impression labels, retrospective impression labels

are fairly narrow, but “near misses” can often be analyzed as a variant of a

known case. For example, an option that almost fits the “bad gamble” profile

but for which there is another option that seemed distinctly better has a slightly

different feel from a normal bad gamble, but the difference isn’t drastic (mainly,

the player may place more blame for the failure on their own decision-making

than on simple bad luck). A full picture of how player feels after a choice combines

prospective and retrospective impressions, for example: An obvious choice at

which the player chose the ‘best’ option which resulted in an expected success.

Options other than the chosen one can still influence the overall impression,

especially by accentuating bad results (when multiple options seemed promising)

or good results (when all options seemed bad). Regret in particular is an example

of a poetic effect that depends heavily on the nature of options-not-chosen (this

is backed up by experimental data presented in chapter 8; see for example the

discussion of regret in section 8.6.5).
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Label Description Criteria

Expected
Success

A predictable outcome
that advances player
goals.

The selected option was expected to ad-
vance a player goal without hindering
any, and its outcome is both predictable
and good.

Expected
Failure

A predictable outcome
that hinders player
goals.

The selected option was expected to hin-
der a player goal and not advance any,
and its outcome is predictable and bad.

Nice
Gamble

An option that seemed
like a gamble but that
turned out well.

The selected option was not expected to
advance or hinder any player goals, or it
was expected to both advance and hin-
der goals that were approximately bal-
anced. The outcome is unpredictable,
but also good. The selected option was
not distinctly worse-seeming than any
other options.

Bad
Gamble

An option that seemed
like a gamble and did
not pay off.

As above, but with a bad outcome.

Unfair An option that seemed
good but had unex-
pected negative conse-
quences.

The selected option was expected to ad-
vance at least one top-priority player
goal, while not hindering any. It has an
unexpected and bad outcome.

Miracle An option that seemed
like a lost cause but
that turned out well
against expectations.

The selected option was expected to hin-
der at least one top-priority goal, while
not advancing any. It has an unex-
pected and good outcome.

Table 5.4: Several retrospective impression labels, with formal criteria based
on option expectations, prospective impressions, and option assessments. See
section 8.11 for some caveats based on experimental results.
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5.4.10 Analysis Example

To help understand the analysis technique presented here a bit better, it’s useful
to look at an example of its application. Consider the choice shown in fig. 5.3,
from the game Papers Please (Pope, 2013). In Papers Please, the player takes
on the role of a border security worker in charge of approving or rejecting entry
applicants in a fictional dictatorship. Complicating the player’s role is the fact
that their job is their only means of earning money to support their family, whose
food, shelter, and medical needs become more pressing as the game progresses.
By processing applicants, the player earns credits (regardless of whether an
application is approved or denied), so there is an incentive to make decisions
quickly (and to avoid accepting travelers who don’t meet the entry requirements,
as this will result in penalties). The game focuses heavily on ethical gray areas,
and the construction of its choices is central to this. Although the game has
various elements that go beyond explicit choices, for each applicant the player

Figure 5.3: A screenshot from Papers Please showing the interface as the player
makes a decision about whether to approve or deny a visa application.
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must ultimately choose to either approve or reject their visa request, and these

explicit choices can be analyzed using the framework developed here.

Figure 5.3 shows the screen as the player is considering an entry application

from a potential refugee. The conversation transcript in the middle of the screen

shows that this applicant claims that they will be killed if they return to their

country of origin, and because of this, they seek entry despite lacking the required

documents (an entry permit in this case). However, the tenor of the game and

the presence of applicants who will try to trick the player in various ways creates

an atmosphere of suspicion, and so the player might suspect that this applicant

is lying in order to gain entry. As a closer analysis will show, this suspicion has

interesting implications for the player’s perception of this choice.

Goal Analysis

The first step of goal-based choice analysis is goal analysis, and in the absence of

a real player to observe, a model player will have to suffice. For the purposes of

this analysis, we will assume that our model player is engaged mainly in avatar

play and has the following goals (with the listed priorities):

• [high] Provide for their family—the player wants to earn credits and avoid

penalties in order to pay for food and shelter at the end of the round.

• [high] Act ethically—as much as possible, the player wants to treat ap-

plicants ethically and avoid acting in ways that would intentionally harm

them without reason.

• [medium] Avoid being scammed—separate from their desire to earn credits,

the player actively wants to identify applicants who are trying to trick them

and deny their applications.
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• [low] Admit approved travellers—in line with ethical treatment in life-

or-death scenarios, the player generally wants to treat travellers fairly by

letting them in if they meet the requirements for entry. This goal has a

lower priority, however.

Of course not all players will have these exact goals with these exact priorities,

but we can assume that many players will incorporate similar goals, and use these

to develop an initial impression which can be refined further if deemed necessary.

In particular, an initial analysis can be modified to account for differing goal

priorities or the addition or subtraction of goals, and contrasting the resulting

analysis can provide further information about a choice. As analysis moves

forward using this list of goals, there will be opportunities to judge the results

that it produces at each step and refine it if that seems necessary.

Likelihood Analysis

After analyzing goals, the next step is to analyze outcome components. To

simplify the analysis, we will assume that there are only two options available to

the player: “approve” and “deny” (in the game, other actions are possible, but

but they all either simply defer the approve/deny choice or implicitly deny the

application). Table 5.5 shows outcome components and their likelihoods for this

choice; this assumes that the player is already familiar with basic gameplay in

Papers Please. In particular, the player knows that if they let this traveller in,

their ‘mistake’ will not go unnoticed, and they will both fail to earn a credit and

receive a punishment for their transgression (for the first mistakes of a round

the punishment is merely a warning, but the player still doesn’t earn credit for

the mistaken approval or denial). The player’s doubts about the sincerity of the

applicant are represented here as neutral likelihood estimates of four opposing

outcomes. If the applicant is telling the truth, then they are a refugee, and they
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Approve Deny
[unlikely] Earn a credit [likely] Earn a credit
[likely] Don’t earn a credit [unlikely] Don’t earn a credit
[likely] Get punished [unlikely] Get punished
[unlikely] No punishment [likely] No punishment
[neutral] Refugee is saved [neutral] Refugee is saved
[neutral] Refugee is condemned [neutral] Refugee is condemned
[neutral] Scam is rewarded [neutral] Scam is rewarded
[neutral] Scam is thwarted [neutral] Scam is thwarted

Table 5.5: Likelihood analysis for the example choice shown in fig. 5.3.

are either saved by approval or condemned by denial. At the same time, if they

are lying, they are trying to gain entry unlawfully, and thus approving their

petition has different connotations.

This is an example of how uncertain outcomes can’t always be mapped directly

as outcome components. If “applicant is lying” and “applicant is telling the

truth” were used as outcome components, these wouldn’t have straightforward

relationships to the player’s goals, as they would be mediated by “applicant gains

entry” and “applicant is denied entry” outcomes. Binding the truth status of the

applicant’s claims together with the end result for the applicant will simplify the

goal analysis step as seen in the next section.

Option Analysis

Given the provide-for-family, act-ethically, avoid-scams, and admit-approved

goals identified during goal analysis and the outcome components from likelihood

analysis, the next step of goal-based choice analysis is to combine this information

in an assessment of each option’s perceived relationship to each player goal. Ta-

ble 5.6 shows the results, using the enables, threatens, advances, and hinders

labels described in section 5.4.5. Note that the provide-for-family goal exhibits

a strong distinction between the two cases, based on the likely and unlikely
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Goal Approve Deny

provide-for-family threatens enables
hinders advances

act-ethically enables enables
threatens

avoid-scams enables enables
threatens threatens

admit-approved <none> <none>

Table 5.6: Option analysis for the example choice shown in fig. 5.3.

credit and punishment outcome components. In contrast, the act-ethically and

avoid-scams goals have only weak expectations, because the associated outcome

components are uncertain. The admit-approved goal is irrelevant here, because

the applicant in question is not an approved traveller.

The assignments in table 5.6 are based on individual outcome-component/goal

relationships: the credit- and credit-related outcome components are relevant to

the provide-for-family goal, while the other four outcome components relate to the

act-ethically and avoid-scams goals. As stated above, the breakdown of outcome

components was chosen so that their relationships to player goals would be

straightforward. This allows the likelihood labels to capture any uncertainty in

the situation, as opposed to having unclear or conditional relationships between

outcome components and goals.

Relative Option Analysis

The relative option analysis step looks for patterns in the results of option

analysis, but in this case, the option analysis doesn’t fit any established patterns

(see table 5.3). In this case, known patterns can still be used as guideposts if we

can figure out a known pattern that almost fits and analyze why it doesn’t. For
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this particular choice, it turns out that the dilemma pattern is a near match if

the option analysis is a bit different.

In fact, the player’s doubt of the applicant’s story has a pivotal effect on their

perception of this choice. Table 5.7 shows an alternative option analysis if the

player assumes that the applicant is telling the truth. Such an alternate assump-

tion changes the likelihood analysis (not shown), making the refugee-related

outcomes likely/unlikely, and the scam-related outcomes universally unlikely.

The results for the option analysis in table 5.7 show that the advances/hinders

dichotomy of the provide-for-family goal is now reversed at the act-ethically goal.

The resulting pairing of opposed hinders labels almost meets the requirements

for the dilemma pattern, except that it also includes enables/advances assign-

ments. In fact, the dilemma pattern criteria in table 5.3 is specific to a classic

dilemma where neither option has redeeming qualities, but in this case we have

a dilemma where the choice is between two conflicting goals and in either case

the one that isn’t hindered will be advanced.

Despite the caveats, we can see that if the player trusts the applicant they face

a kind of dilemma. This means that the original choice is like a dilemma, except

for the issue of doubt: if the player trusts the applicant, they face an ethical

quandary—a decision between feeding their family and sheltering a refugee.

However, if the player begins to doubt the applicant, the results of option analysis

indicate that denying the application is clearly superior to approving it: denying

the application advances a high-priority goal that approving it would hinder,

and no other high-priority goals include such a clear distinction in terms of

expected outcomes.

Looking at this result, we can see a broader message that Papers Please is

trying to convey. In this choice and others through the game, would-be ethical

dilemmas are tilted by doubt, and the overall formula becomes “dilemma + doubt

→ complicity”—by introducing doubt about the people who want to cross the
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Goal Approve Deny

provide-for-family threatens enables
hinders advances

act-ethically enables threatens
advances hinders

avoid-scams <none> <none>
admit-approved <none> <none>

Table 5.7: An alternate option analysis for the example choice shown in fig. 5.3.
This analysis assumes that the applicant is telling the truth about their situation
(compare this table to table 5.6).

border, while making the risk/reward situation clear with respect to the player’s

prospects for feeding their family, the player’s choices are tilted towards complicity

with the regime’s calculating but ultimately inhumane priorities. The callous

response—leaving the potential refugee to their fate—becomes the rational one,

and every would-be smuggler further justifies these decisions. Through its choice

structures, Papers Please is showing the player what it feels like to be in this

kind of situation and thus demonstrating why someone in that situation might

make a particular set of decisions. The poetics of its choices, particularly when

they give rise to feelings of moral uncertainty or doubt of the applicants, are an

important part of this.

Outcome Component Analysis

Although the prospective analysis of our example choice has revealed something

interesting about its structure, analyzing how the actual results are perceived is

also important. For outcome component analysis, each actual outcome component

should be analyzed with respect to each player goal. If desired, this can focus

only on the outcome components of a single option to understand what players

who choose that option will feel.
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Focusing then on the option to approve the applicant’s petition for entry, what

are the actual outcome components? In Papers Please, whenever someone is

let through who does not meet the technical requirements for entry the player

accrues a citation, the first two of which in a given round result in warnings with

the third and subsequent citations resulting in a fine equal to the amount of

credits earned for processing one applicant. At the same time, letting in someone

who should not be admitted does not earn credit towards one’s salary (although

interestingly, denying someone who deserves entry does, even when a citation

is issued for an erroneous denial). In this specific case, even assuming that the

player has not made any mistakes in the current round, a warning means that

future mistakes are more risky, so accruing one has a minor negative effect on the

player’s provide-for-family goal. At the same time, the no-credit-earned outcome

of an approval has a major negative impact on the player’s provide-for-family goal:

a denial would have earned credit for the time spent considering the application,

and time is a very limited resource in the game.

Although these two outcome components (the citation and lack of credit) are

straightforward, what about the outcome components related to either saving

a refugee or catching a scammer? In Papers Please, after approving entry, one

does not magically get to know whether the applicant was honest or not. In other

words, even once a decision is made in this case, the player still doesn’t find out

whether they were justified or not. These outcome components remain uncertain:

the applicant was let in, but was that a good thing or not? The player can only

rely on their judgement of the sincerity of the applicant’s claims in this case.

Although goal-based choice analysis has no explicit suggestions as to how to

handle this case of post-decision lingering uncertainty (perhaps this could be

a direction for future work), we can think about what impact it might have in

this specific case. To handle the outcome component analysis step, it suffices to

simply analyze both components separately and keep in mind that the player
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doesn’t know which of them occurs. Doing so results in the outcome component

judgements shown in table 5.8.

Recall that our choice of outcome components made the option analysis step

simple; in this case that has in turn made the outcome component analysis

step complex. Because the example choice is complicated by doubts about the

applicant’s honesty, its structure is not easy to represent in terms of outcome

components with direct relationships to player goals, but breaking it down into

outcome components is still useful in order to identify where the complexity

resides. An alternate analysis would simply use “applicant admitted” as an

outcome component, and label its goal-impacts on both the act-ethically and

avoid-scams goals as uncertain (labels which have not been considered in this

chapter). The breakdown used here instead provides more detail by showing

the evaluations corresponding to each potential player belief (in other words, by

showing what possibilities the player is uncertain about).

no-credit-
earned

citation-
issued

refugee-
sheltered*

scam-
rewarded*

provide-
for-family

major
negative

minor
negative

act-
ethically

major
positive

avoid-
scams

major
negative

admit-
approved

Table 5.8: Outcome component analysis for the approve option at the example
choice shown in fig. 5.3. Each entry lists the impact of an outcome component on
a goal. The outcome components marked with asterisks are opposing potential
components that the player is uncertain of even after making a decision.
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Full Outcome Analysis

Based on the results of outcome component analysis, full outcome analysis sum-

marizes each option as overall good/bad and expected/unexpected/unpredictable

with respect to player goals. Focusing again on the approve option, we can see

that its outcome is mixed but mostly negative. It has definite negative impacts

on the high-priority goal of providing for the player’s family, but it also has an

uncertain positive impact on the high-priority goal of treating applicants ethi-

cally. Even if the uncertain impact on the avoid-scams goal is ignored because

that goal has a lower priority than the two just mentioned, the positive impact

on the act-ethically goal is less certain than the negative impacts on the provide-

for-family goal, and so the overall impact can be summarized as a tradeoff with

both good and bad components which leans towards the negative.

In terms of predictability, there’s nothing surprising about this outcome (all

of the actual outcome components were expected) so it falls into the expected

corner, although we have to keep in mind the persistent uncertainty about

whether the applicant was being truthful or not, which adds an element similar

to unpredictability. As a whole then, the “approve” option is an expected tradeoff

which leans negative, and which comes with a lingering uncertainty about its

actual outcomes. The “deny” option sustains a mirrored analysis (omitted here

for brevity), and appears as an expected tradeoff which leans positive, again with

some uncertainty over actual outcomes.

Note that the psychological implications of these outcomes are interesting

given the human tendency to rationalize one’s decisions (see e.g., (Hall, Johans-

son, and Strandberg, 2012)). One might expect players who chose to approve

this applicant’s entry to believe more strongly after-the-fact that the applicant

was telling the truth, and vice versa for those who chose to deny entry. This

is one mechanism by which making a decision can actually influence players’
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perceptions of the structure of a choice. This is also a mechanism which rein-

forces complicit behavior as mentioned above, and Papers Please is intentionally

creating these choice structures in order to force the player to experience exactly

this kind of fraught decision-making.

Retrospective Analysis

Having analyzed each outcome as a unit, the final step in goal-based choice

analysis is to try to understand a particular choice in terms of existing choice-

structure patterns. In this case, none of the retrospective impression labels

in table 5.4 apply to either option at this choice, because they are all aimed

at clearly-good or -bad outcomes, and the outcomes of both options here are

tradeoffs which involve additional uncertainty. Even without matching against

a known structure however, the breakdown of outcome evaluations has already

been informative.

As mentioned above, Papers Please’s illustrates how uncertainty can lead to

complicity when ethically-questionable decisions are seen as having uncertain

results on one side and guaranteed results on another. In order for this to

be clear, the player must experience both moral doubt and uncertainty, and

these feelings arise from the structure of choices such as the one analyzed here.

The uncertainty that the player experiences can be seen as having two parts

which have been identified by this analysis: before making a decision, the player

is uncertain about the applicant’s honesty, and afterwards, this translates to

uncertainty about the true outcome of their decision.

The player’s initial uncertainty is due to a pattern of options and outcomes

established across many choices by the game. As the player plays, they face

many applicants who attempt to lie or bluff their way past the checkpoint despite

having suspicious documents. Other events, such as a terrorist attack on the

checkpoint, set a grim mood, and this pattern of events serves to make the player
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generally suspicious (the interface and basic interaction loop of identifying and

questioning discrepancies also contribute). Altogether, this suspicion leads the

player to question the moral character of applicants in general, and in the specific

choice discussed here this results in an uncertain likelihood analysis which views

the applicant’s refugee status as an unknown variable.

This suspicion-of-the-applicant then translates to a questioning of the player’s

decision once it has been made. Whether the player approves or denies the appli-

cant’s entry petition, concrete results (in terms of earning or not earning credits

to help support their family) are contrasted with lingering doubts about whether

the applicant deserved entry or not. Papers Please intentional leaves the true

outcomes of the player’s actions ambiguous with respect to their goals, creating

lingering doubt which builds as the player continues to make questionable de-

cisions. This creates a situation where the player can come to doubt their own

judgements and second-guess themselves, which adds a second layer of uncer-

tainty. Especially when confronted with similar choice structures repeatedly

throughout the game, this second-guessing can help push the player to confront

their decisions and thereby think about what message the game is trying to

convey in this regard.

In this case, even though the elements of choice structure identified did not

fit the pattern of any already-identified retrospective impression, identifying

elements such as uncertainty and moral ambiguity was enough to gain insight

into how this choice functions within Papers Please. Breaking things down also

allows us to understand why the choice produces the effects that it does, and

which specific elements of the choice are necessary for it to function as intended.

For example, the analysis presented here makes it clear that this choice functions

as it does because it brings two ethical imperatives into conflict (supporting those

who depend on you and avoiding harm to innocents) but then has uncertain

outcomes in terms of one of them (avoiding harm). Altering one of these elements
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(for example, making it so that earning credits is random, and thus the reward in

terms of supporting one’s family is also ambiguous) would change the character

of this choice.

5.5 Overview & Future Work

As just demonstrated, goal-based choice analysis breaks down a choice into

individual options and components, analyzes them with respect to a specific set

of player goals, and by doing so helps present a clear picture of how the structure

of a choice contributes to its poetic function5 within a work. The analysis method

presented here is heavily dependent on identifying well-understood prospective

and retrospective impressions and good criteria for their application. However,

this chapter only presents a few of these impressions, and it does not contain a

comprehensive analysis of the poetic effects that they can create. In other words,

the theory of choice poetics described here is still preliminary. However, this

goal-based choice analysis is a strong framework for understanding nuanced

choices, because decomposing options and outcome components can help untangle

complex choice structures. Additionally, by separating player goal analysis from

the main choice analysis and taking modes of engagement into account, this

method makes the dependencies between desired impressions and particular

player goals visible to designers. Without such visibility, the confusion of players

faced by a choice that pits two modes of engagement against each other might be

mysterious to a designer who favors one of the modes and doesn’t realize that the

other is relevant. Goal-based choice analysis could thus be helpful for debugging

key choice structures that aren’t producing a desired impression, and for figuring

out whether a game supports specific modes of engagement.
5As demonstrated such analysis may also be useful for understanding a choice’s rhetorical

and/or hermeneutic functions.
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The few impressions that have been presented here have also been verified

to some degree by the experiments presented in chapters 7 and 8. In fact, the

results of those experiments did not unanimously confirm my hypotheses, which

has led to refinements in the analysis technique presented here. In particular,

tables 5.3 and 5.4 are revisited in tables 8.20 and 8.21 in section 8.11. These

revisions and others that were made as I built Dunyazad are the primary product

of my hybrid research method: a more nuanced understanding of choice poetics

obtained by attempting to operationalize it.

One might wonder what advantage this analysis technique has over similar

theories that could be applied to narrative choices, such as decision affect the-

ory6(Mellers, A. Schwartz, Ho, et al., 1997). One difference lies in specificity

and directness: while decision affect theory could be consulted to come up with

a set of hypotheses about audience response to a choice, it does not provide

a list of specific steps to follow in doing so. Another difference is the aims of

the theories: decision affect theory has been shown to have explanatory and

predictive power: it can be used to explain observed reactions to choices, and it

can be used to predict reactions given a choice. In contrast, goal-based choice

analysis as presented here was designed to have generative power: it can be used

to construct a choice that produces a specific reaction. Although further studies

could hopefully demonstrate that goal-based choice analysis has explanatory

and predictive power as well, the results presented in chapters 7 and 8 are a

validation of generative power. Of course, if one is interested in generating rather

than evaluating choices, this evidence is encouraging.

The next step in developing goal-based choice analysis would be to greatly

expand the number of prospective and retrospective impressions scrutinized. An

efficient approach would be to take a well-known interactive experience built
6Complicating such a comparison is the fact that the analysis technique presented here is in

part based on decision affect theory.

110



5.5. OVERVIEW & FUTURE WORK

around explicit discrete narrative choices and analyze it from the beginning,

breaking down each choice within this framework and looking for patterns in

their usage. Dunyazad could then be used to double-check and refine the insights

generated by this process: take each impression identified during the initial

analysis, encode it in Dunyazad, and ask Dunyazad to generate choices that

involve that impression. Some of the choices generated will likely not appear to

give that impression upon initial inspection, and Dunyazad’s full output can be

used to figure out exactly how the criteria that were developed technically fit the

generated choice. With this information, refinements to Dunyazad and/or the

underlying theory can be made, eventually producing both an analytical and a

generative model of the impression in question, and completing the analysis→

theory→ generative model→ experimentation cycle.

The next chapter describes in detail how Dunyazad operates, and part of it

mirrors this one: an automated version of the analysis technique described here

forms the core of Dunyazad’s reasoning capabilities. After that, chapters 7 and 8

discuss the results of two experiments that showed outputs from Dunyazad to

humans and gathered feedback about their impressions. Chapter 8 includes

some updates to the material presented here (mainly tables 5.3 and 5.4; see

section 8.11), as these refinements make the most sense when presented alongside

the experimental results that led to them.
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Chapter 6

Dunyazad

As stated in the introduction, Dunyazad has two purposes as a project: first, to

produce a system, and second, to produce a theory. The system is a novel story

generator that is focused on generating interesting choices, and on providing

fine-grained control over the kinds of choices it uses. The theory is a theory of

choice poetics: a theory about how specific choice structures give rise to certain

feelings, such as regret. In order to satisfy these two goals, Dunyazad uses an

answer set solver to turn a logical criteria for a certain kind of choice into an

instance of such a choice—this is its core operating principle.

Dunyazad’s code therefore largely consists of a set of logical statements

describing what a choice structure is and when choices fit into one of several

categories. For example, there are statements that define a “relaxed” choice, and

these rely on statements about what it means for an outcome to seem good or

bad, and important or unimportant, and so on. Answer sets that satisfy these

constraints are found using Potassco Labs’ clingo solver (Gebser et al., 2011).

Besides these rules, there is an external control structure which invokes the

Note: a much less detailed description of how Dunyazad works has been published as
(Mawhorter, Mateas, and Wardrip-Fruin, 2015b).
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solver repeatedly, generating multiple choices and connecting them into a story.1

The focus of development so far has been on individual choices, but the capacity

exists for Dunyazad to generate a full branching story. Of course, there is also

some imperative code for turning a logical choice structure into English text, in

the form of a template-based generation system. The English-generation code

and the control code are both written in Python.

The goal of this chapter is to describe in detail how Dunyazad functions.

First, section 6.1 describes why Dunyazad uses answer set programming in a

bit more detail, and how answer set programming (ASP) helps with the theory

development goal. Section 6.2 then describes how Dunyazad generates individual

choices, while section 6.3 describes the higher-level control mechanism. Finally,

section 6.4 summarizes the entire system and works through an example of how

Dunyazad generates a choice from beginning to end. Note that the template-

based English generation system is described separately in appendix A.

6.1 ASP and Critical Technical Practice

The idea of critical technical practice started as a call for technical practitioners

(and especially AI researchers) to be more aware of the limits placed on their

technical approaches by the central metaphors of their fields. In Phil Agre’s 1997

Computation and Human Experience he describes a process of critical exami-

nation to identify core metaphors and what those core metaphors marginalize,

followed by an inversion that makes those marginalized concepts central (Agre,
1The model for Dunyazad’s output is the Choose-Your-Own-Adventure book. These books

are young-adult novels which contain explicit choices: at the end of certain pages, the reader is
instructed to choose an action for the protagonist, and continue reading at one of several different
pages depending on their choice. This combination of traditional linear narrative with intermittent
discrete choices is one of the most straightforward examples of what I call “choice-based narrative.”
Note that in contrast to Choose-Your-Own-Adventure books, choices in Dunyazad are separated
by only a few sentences, rather than pages of text.
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1997). This process can be used to drive innovation and find hidden limitations

in a technical field by scrutinizing it using the tools of critical theory.

One common AI practice identifies a motivating theory from another disci-

pline and then attempts to build a system that faithfully operationalizes that

theory, taking the theory for granted as a known truth. In contrast, critical tech-

nical practice seeks to question common assumptions (in particular through the

application of critical theory) and then embark upon technical projects that use

non-standard assumptions, thereby broadening the technical field. Dunyazad as

a project pursues a different relationship between theory and practice by seeing

its driving theory (choice poetics) as both a product of technical practice and a

precursor to it, integrating theory development tightly with system development

so that both the theory and the system are developed in dialogue with each other.

Dunyazad thus questions its theoretical assumptions as a matter of course and

in fact uses difficulties encountered during technical development to prompt

changes in the theory of choice poetics. In fact, Dunyazad can be seen as using

artificial intelligence as a tool of criticism in the refinement of a theory, just as

much as it uses theory to guide the development of an artificial intelligence.

In order to jointly develop Dunyazad as a system and choice poetics as a theory,

a special technical approach is required—this is where answer set programming

comes in. One could imagine choice-point generators constructed using many

different technologies, from case-based reasoning to something as complicated

as neural networks. However, most of these would fail to achieve the level of

transparency required for the system to provide useful feedback to the underlying

theory. In a neural-network based approach, for example, it would be very difficult

to understand which part of the underlying theory is responsible for a particular

generated choice structure, and even more difficult to use experimental results to

inform changes in the theory. Answer-set programming as a technical approach
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is thus motivated by the goal of developing choice poetics in tandem with a

technical system for generating choices.

The reason that answer-set programming is useful for critical technical prac-

tice is that answer set programs consist of a series of logical statements which

dictate which combinations of predicates are allowed in the output. This means

that every predicate in the output set can be traced back to a set of rules in the

program which allowed it to be present. Sometimes this process is laborious,

as many rules may chain together to allow a predicate, but ultimately, every

aspect of an answer-set program’s output can be analyzed to figure out which

specific statements were responsible for its presence. Furthermore, because

those logical statements correspond directly to elements of the underlying theory,

the relationship between that theory and the program’s output is visible.

As an example, Dunyazad has rules that define one way in which a choice

can be obvious—by having exactly one option which suggests a positive outcome

and one or more options all of which suggest negative outcomes. Originally, the

criterion that the other options must suggest negative outcomes was not present,

but upon looking at generated choices, some clearly didn’t fit an intuitive test

for obviousness because of their inclusion of neutral options. Identifying the

inclusion of these neutral options as the problem was easy, and it was also clear

from inspection of the code that without a clause in the definition of “obvious”

prohibiting neutral options, they would be allowed. The fix at the system level

was the extra clause requiring that all options at an obvious choice except the

“correct” option should suggest negative outcomes. Of course, this was not only a

change in the code, it was also a change in the theory, because Dunyazad’s code

is a direct operationalization of choice poetics. Obvious choices don’t just have

“only one good option,” instead they have “one option which stands out from the

rest as significantly better.”
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In contrast with many techniques that could be applied to the problem of

generating choice points, answer-set programming uniquely enables a tight

integration of system development with theory development. The use of answer-

set programming as a design choice is thus driven not only by considerations at

the system level, but also at the project level: in order for Dunyazad to produce

both a system and a theory, the use of answer-set programming is critical. In

Dunyazad, answer-set programming helps support the aims of critical technical

practice by helping make the system’s underlying assumptions clearly visible,

and by making every change to the system suggest a parallel change to the theory

that it implements.

6.2 Choice Generation

Dunyazad generates choices by solving complicated logic problems. These prob-

lems are set up so that any solution will take the form of a choice, and further

constraints can dictate certain properties of that choice (for example, that it

must be an obvious choice). Broadly, Dunyazad’s constraints can be split into

four categories:

• Representational constraints establish the basic elements that Dun-

yazad arranges to form choices and stories.

• Constituent constraints define the most basic rules for configuring rep-

resentative elements to construct choices and stories.

• Aesthetic constraints carve out a region within the space allowed by

the constituent constraints, excluding gibberish and other categorically

undesirable configurations.

• Poetic constraints make distinctions between different desirable configu-

rations and are selectively activated to produce different kinds of choices.
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To understand how Dunyazad functions, it is first necessary to understand

Dunyazad’s (rather limited) view of what a choice is, and how choices fit together

to form stories. These things are defined by Dunyazad’s representational and

constituent constraints.

6.2.1 Story Representation

In Dunyazad, a story is represented as a sequence of actions, each drawn from

a pre-determined set. Besides actions, each timepoint in a story has an initial

state, which can include characters, items, and relations between them. Dun-

yazad also has “setups,” which are used to establish interesting situations that

motivate action. This kind of representation is amenable to logical reasoning

and similar to representations used in planning-based story generation systems.

It is sufficient to represent a wide variety of simple stories focused on action (as

opposed to say, character growth or the development of relationships). Luckily,

many of the original Choose-Your-Own-Adventure books are focused on actions

and consequences, and the format of choice-based narrative lends itself to such

stories, because they give rise to interesting choices.

States

Dunyazad’s representational constraints define predicates for “instances,” which

may be either “actors” or “items,” as well as “states” (binary properties of an

instance), “properties” (instance properties which can be multi-valued), and

“relations,” (named directional instance-to-instance links). Besides these things,

which can change from one state to the next as a result of the outcomes of actions,

instances can have timeless “surface properties” like a name, which is stored but

cannot be changed by events in the story. Figure 6.1 gives examples of each of

these and fig. 6.2 shows how they come together to describe a situation.
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Core states in Dunyazad describe characters and any items or skills that

they possess. Beyond these are states describing transient relationships that

set the stage for action; these are called “potentials.” Potentials include things

like “injured,” and “threatening,” and each is classified as either a “problem”

or an “opportunity.” Although these special potential states are represented

using normal “state,” “property,” and “relation” predicates, actions which get

rid of them must specify whether each potential is “resolved,” “manifested,”

or “nullified.” Additionally, extra predicates specify whether a potential is

“problematic_for” one or more of the characters involved (for example, the

“injured” state is “problematic_for” any character to which it applies).

inst(actor, merchant_14)

fundamental type
(either ‘actor’ or ‘item’)

unique identifier

state(injured, inst(actor, merchant_14))

state value instance

property(has_skill, inst(actor, merchant_14), fighting)

property name property valueinstance

relation(has_item, inst(actor, merchant_14), inst(item, book_17))

relation name ‘from’ instance ‘to’ instance

surface_property(name, inst(item, book_17), “ancient grimoire”)

property name property valueinstance

Figure 6.1: Predicates used to describe states in Dunyazad.
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Dunyazad understands based on this information whether the action which

eliminated a potential was good or bad for different characters. For example, an

action that “resolves” an “injured” state is good for the actor who was injured,

and thus taking that action makes sense for that character. States themselves

thus directly encode some of the information used to decide which actions are

viable. This not only helps the system reason about motivation, but it also makes

the design of actions and setups easier by providing a standard set of states that

trigger certain actions.

Scene:
A merchant carrying some perfume is being threatened by bandits.

Representation:
inst(actor,businessperson_4).

inst(actor,tough_3).

inst(item,treasure_5).

property(type,inst(actor,businessperson_4),merchant).

property(type,inst(actor,tough_3),bandits).

property(type,inst(item,treasure_5),perfume).

relation(

has_item,

inst(actor,businessperson_4),

inst(item,treasure_5)

).

relation(

threatening,

inst(actor,tough_3),

inst(actor,businessperson_4)

).

surface_property(name,inst(item,treasure_5),"perfume").

Figure 6.2: An example scene description using Dunyazad’s internal represen-
tation, showing the most-relevant predicates. In real output, each of these
predicates except the “surface_property” would be tied to a specific timepoint,
and there would be many more “surface_property” predicates describing things
like the name of each instance and whether it is plural or singular. Note that
each instance is assigned a unique identifier that ends with a number.
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Figure 6.2 is not quite accurate, because Dunyazad’s non-surface state predi-

cates are never encountered alone. Instead, they are always wrapped in “st(<T>,

<state>)” predicates, to define different states of the world for each timepoint T

in the story. The timepoints in a story form a directed acyclic graph that branches

out from a single root node. This graph is defined using “successor(<previous>,

<option>, <next>)” predicates which specify that the result of choosing option

“<opt>” at timepoint “<previous>” is the state designated “<next>.” The root

timepoint is named “root,” and each successor is named for its parent plus the

number of the option that leads to it, so for example, if there were three options at

the “root_2” node, they would lead to timepoints labelled “root_2_1,” “root_2_2,”

and “root_2_3.” The timepoints do not necessarily form a tree, however: if two

outcomes lead to identical states, as long as it would not form a cycle in the

graph, Dunyazad may connect them to the same timepoint.

Actions

As mentioned above, timepoints in Dunyazad are connected by options. Each

option is associated with a single action, and arguments describe the details of

that action (for example, who initiated it or who the target is). If a timepoint has

more than one option, it represents a choice to be made by the player, otherwise

it is simply an event that happens. Actions specify lists of outcome variables with

values for each variable. For each outcome variable that an action has, a single

outcome value is assigned to each option that uses that action, thereby defining

the entire impact of that option on the world state. These assignments have a

shorthand notation “o(<variable>, <value>)” which indicates that the outcome

variable “<variable>” takes on the value “<value>.” Each such assignment is

an outcome component, and together, all such assignments for an action are

the outcome of that action. Figure 6.3 shows an example where at timepoint

“root,” the action associated with option 1 is “talk_down,” with two outcomes:
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“o(attitude, convinced)” and “o(is_enraged, not_enraged)”. Note that each

outcome variable is responsible for deciding whether or not a particular state

change occurs (or between several possible state changes one of which must

occur). The consequences of an action in terms of the world state are thus fully

determined by the values of its outcome variables.

Each action thus has multiple possible outcomes. For the “talk_down” action,

there are theoretically four: the “attitude” outcome variable has two exclusive

values “convinced” and “unconvinced,” while the “is_enraged” outcome variable

has two more values: “enraged” and “not_enraged.” However, the definition

of “talk_down” stipulates that the outcome “o(is_enraged, enraged)” is only

possible if the outcome “o(attitude, unconvinced)” is also present, so there are

only three possibilities:

1. The target is persuaded to calm down (“o(attitude, convinced)” and

“o(is_enraged, not_enraged)”), in which case they stop threatening who-

ever they were threatening.

2. The target cannot be persuaded to calm down, so they continue threaten-

ing their target (“o(attitude, unconvinced)” along with “o(is_enraged,

not_enraged)”).

3. The target is unconvinced, and furthermore gets mad at the person who

tried to convince them (“o(attitude, unconvinced)” along with “o(is_

enraged, enraged)”).

Note that each action could be broken into several sub-actions with fixed

pre- and post-conditions, with the current actions each becoming a mix of sev-

eral primitives depending on their outcome variable values. The advantage of

grouping primitives together conceptually is that this represents the player’s

view of things: the text introducing an option doesn’t indicate the values of its
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Option:
You try to talk the bandits down.

Outcome:
You talk to the bandits and convince them to back off.

Representation:
at(root, action(option(1), talk_down)).

at(root, arg(option(1), asking, inst(actor, you))).

at(root, arg(option(1), listening, inst(actor, tough_3))).

at(root, arg(option(1), victim,

inst(actor, businessperson_4))).

at(root, outcome(option(1), o(attitude, convinced))).

at(root, outcome(option(1), o(is_enraged, not_enraged))).

at(root, consequence_of(option(1), o(attitude, convinced),

_not, relation(threatening,

inst(actor, tough_3), inst(actor, businessperson_4)))).

at(root, consequence_of(option(1), o(is_enraged, enraged),

relation(threatening,

inst(actor, tough_3), inst(actor, you)))).

at(root, consequence(option(1),

_not, relation(threatening,

inst(actor, tough_3), inst(actor, businessperson_4)))).

Figure 6.3: An example of action representation in Dunyazad. Note that even
outcomes which do not occur (“o(is_enraged, enraged)” in this case) have their
potential consequences noted via “consequence_of” predicates (so that the sys-
tem can reason about counterfactuals), but only outcomes that do occur (as
specified by the “at(<T>, outcome(option(<opt>), o(<outvar>, <outval>)))”
predicates) have actual consequences. The “o(attitude, unconvinced)” and
“o(is_enraged, not_enraged)” possible outcome components are not listed be-
cause they make no changes to the world state when they occur (they each
represent the omission of a change).
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outcome variables, and so the player can never be completely sure what outcomes

an action will have. This way of representing actions thus helps the system

reason about how the player might perceive actions; this is the same reason that

possible but unrealized state changes are explicitly represented by the system

using “consequence_of” predicates (see fig. 6.3).

accuse explain_innocence play_song talk_down

arrive flee polymorph tell_story

attack gossip pursue trade

buy_healing leave reach_destination travel_onwards

deny_blame pacify shift_blame treat_injury

dispel pay_off steal

Table 6.1: The 23 actions currently defined in Dunyazad. The “arrive,” “leave,”
and “pursue” actions aren’t currently used because the system has no setups
that motivate them. Appendix B.4 contains listings of the source files that define
each action.

Besides defining outcomes, actions also define how skills affect their outcomes,

by asserting that certain outcome values are linked to the presence or absence

of particular skills on the part of one or more participants of the action. These

links are denoted by “skill_link” predicates, and tools may also be involved. For

example the “attack” action has an outcome variable “success” with three val-

ues: “victory,” “defeat,” and “tie.” It specifies that the outcomes “o(success,

victory)” and “o(success, defeat)” are both linked to the “fighting” skill as

alternate outcomes of a skill contest between the “aggressor” and “target” of

the action, where tools are advantageous. This means that if the aggressor of

an attack action has both the “fighting” skill and a tool for that skill, while

the target of the attack has neither (or even if they’re just missing a tool) the

“o(success, victory)” outcome is more likely, and the “o(success, defeat)”
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outcome is less likely (the exact consequences of these assignments will be dis-

cussed in section 6.2.4). Effectively, the definition of an action thus includes

enough information for Dunyazad to consider both possible consequences of an

action and what initial states might best foreshadow each different outcome.

Dunyazad currently has a total of 23 different actions, listed in table 6.1.

Given the setups that exist, however, the “arrive,” “leave,” and “pursue” actions

are never motivated and thus impossible to use, so there are effectively 20 possible

actions. The actual definitions for each action are listed in appendix B.4. Most

actions have at least two possible outcome configurations, and a few (such as

“attack”) have four or more. However, the number of actions that are possible in a

given state are limited by the constituent and aesthetic constraints. This is where

the setups come in: most actions require some sort of motivating state to make

sense (the “talk_down” action, for example, requires that either a “threatening”

or an “accusing” relationship be present). Setups represent existing situations

that the player might encounter while travelling, and each sets up conditions for

a particular subset of actions.

Setups

Besides the initial state of the world having to do with the protagonist(s) and

their starting skills and equipment, most of the state in Dunyazad comes from

setups. The situations Dunyazad creates are designed to fit into an overarching

travel narrative: the protagonist(s) are on a journey, and encounter various

obstacles. This provides an excuse to repeatedly clean up the world state by

having the main character(s) “travel onwards,” getting rid of any states except

those pertaining to the main character(s) and introducing a new setup. When

putting multiple timepoints together into a complete branching story, Dunyazad

starts by introducing a setup and then adding a few timepoints which resolve any

outstanding potentials in that setup. It then adds a “travel_onwards” option to
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each branch where potentials have been resolved, and adds a new setup to the

timepoint that follows this option.

Setups are thus expected to set the stage for action: they provide a situation

that contains the potential for something interesting to occur. Some setups are

quite flexible while others are specific. For example, the “healer” setup simply

adds an actor with the “healing” skill and a tool for healing who is offering to treat

injuries for a price; it may only be used when a protagonist is injured. In contrast,

the “market” setup potentially includes a lowlife, a healer, a laborer, an aristocrat,

and up to two merchants. These characters can have several potentials between

them: the lowlife can be threatening one of the merchants, the noble might be

accusing the peasant or one of the merchants, or perhaps the merchants are

simply selling things and the noble or laborer knows some gossip. The wide range

of possibilities allowed by the “market” setup lets Dunyazad create a variety of

situations in service of creating particular choice structures, whereas the “healer”

setup is designed to be deployed in a very particular circumstance. Although

the “market” setup eclipses the “healer” setup in terms of actions enabled, the

“healer” setup’s lack of extraneous characters provides a very different feeling to

the player, and its surface text is more specific.

As mentioned above, not every timepoint includes state changes that are

induced by a setup: they only occur for the “root” node and for timepoints that

follow “travel_onwards” actions. Internally, Dunyazad refers to everything that

occurs between one setup and the “travel_onwards” events which follow that

setup on each branch from it as a vignette. The states associated with a setup are

introduced after the “travel_onwards” action first removes all states associated

with the old location—only states directly associated with a protagonist (such

as an injury sustained or an item acquired) are retained. Because Dunyazad

effectively solves entire timepoints at once, however, the particular configuration

of a setup’s flexible elements can be changed at the same time that the actions,
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arguments, and outcomes of options are being decided. This means that Dun-

yazad has the freedom to consider all possible setups as well as all configurations

of actions given those setups when trying to build a particular choice structure,

unless a certain setup is mandated by outside restrictions.

6.2.2 Constituent Constraints

Dunyazad’s representation of stories as a graph of timepoints leaves lots of

room for structures that don’t make any sense. This is where the constituent

constraints come in. While the basic predicates that define representational

elements ensure things like continuity of states between timepoints, constituent

constraints help ensure that actions get assembled into a story, instead of just

a random sequence of unrelated events. For example, rules that prohibit the

same action from happening twice in a row, or that require that each action be

motivated, are constituent constraints.

While there is sometimes a gray area between constituent and aesthetic

constraints, constituent constraints can often be identified as being concerned

with getting Dunyazad to produce stories at all, while aesthetic constraints help

defined Dunyazad’s particular flavor of story. If constituent constraints are

removed, the results are often nonsensical; if aesthetic constraints are removed

results still make sense, but they no longer fit with other stories that Dunyazad

constructs. Table 6.2 lists all of the source code files from Dunyazad’s main

answer set problem definition code and briefly indicates what rules each file

contains from each constraint type.

The major topics covered by the constituent constraints are as follows:

• Incapacitation—constraints that prevent injured actors from taking vigor-

ous actions like fighting, and prevent dead actors from doing anything.
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actions.lp

[representational] Action represen-
tation; consequences.
[constituent] Incapacitation.
[poetic] ‘Surprising’ outcomes based
on likely/unlikely outcomes.

actors.lp

[representatonal] Unpacking for ac-
tors; top level of actors ontology.

choice_structure.lp

[constituent] Motivation; relevance;
redundancy; repetition.
[aesthetic] Setup variety; bans bore-
dom and trick options; narrative per-
spective (second-person).
[poetic] Story length and pacing.

core.lp

[representational] Basic structure
(options, events, choices, etc.); exclu-
sivity for states; reflexivity for ac-
tions; ontology basics (inheritance).

eval.lp

[poetic] Expectations; stakes; option
feels; option structures; outcome
perceptions; outcome predictabili-
ties; outcome feels.

goals.lp

[poetic] Player goals; guilt.
grow.lp

[representational] Timepoint order-
ing and links; timepoint creation
and state transfer; state matching.

items.lp

[representational] Unpacking code
for items; tool possession for skills;
communal ownership for trading.

potential.lp

[representational] Resolution meth-
ods, initiators, urgency/immediacy,
and importance of potentials; unre-
solved and hidden potentials.

settings.lp

[content] The possible settings.
[representational] Setting assign-
ment; setting continuity.

setup.lp

[representational] Unpacking for se-
tups; setup state creation.

skills.lp

[content] The list of skills.
[representational] Relevance defini-
tion for skills and tools.
[constituent] Outcome likelihoods.

surface.lp

[representational] Surface proper-
ties like names and genders.

the_party.lp

[content] Rules that define the start-
ing state of the protagonist(s).

utils.lp

[other] Helpers; name assignment.
vignettes.lp

[constituent] Scoping of vignettes
(actions in a single location).

content/*

[content] These files define the ac-
tions, goals, potentials, and setups
that Dunyazad can use, along with
its ontology of actors and items.

Table 6.2: An inventory of Dunyazad’s constraints organized by file and by
constraint type. Code listings can be found in appendix B.
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• Motivation—these constraints require that the actor that initiates each

action have a motivation for taking that action.

• Relevance—constraints which require that actions address an existing

important potential. These get rid of situations where someone fighting for

their life might stop to buy fruit, for example.

• Redundancy—these constraints prevent two options at the same choice

from being redundant.

• Repetition—constraints preventing direct repetition: repeated actions at

consecutive timepoints and repetition of a setup in consecutive vignettes.

• Outcome likelihoods—these constraints describe how skills and tools make

certain outcomes more or less likely. Without them, outcomes would have

no relation to the skills and tools of the participating actors.

• Vignette scoping—constraints that determine when “travel_onwards” ac-

tions are appropriate and thus where new setups should be applied.

Along with the representational constraints discussed above, these constituent

constraints force answer sets to represent something that resembles a story,

as opposed to a random mish-mash of incomprehensible actions. The aesthetic

constraints take things one step further and isolate a particular kind of story

that Dunyazad tries to create.

6.2.3 Aesthetic Constraints

Dunyazad’s aesthetic constraints go beyond the basics required to produce actions

that make sense and can be read as a story. Effectively, aesthetic constraints

define what kinds of stories Dunyazad will produce. As shown in table 6.2 there

are several different categories:
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• Narrative perspective—these constraints require that all actions at choice
points be initiated by the protagonist(s) and that all other actions are
initiated by non-protagonists, effectively establishing a loose second-person
narrative perspective.

• Setup variety—These constraints force Dunyazad to use a variety of setups
over the course of a story, rather than just revisiting a few. This goes be-
yond prohibiting direct repetition and establishes a “breadth” requirement:
before you can repeat a setup for the nth time, you must have used a total
of at least n + 1 unique setups (including the setup in question). Given
the limited number of setups this equation does currently place an upper
bound on the length of stories Dunyazad can generate, but until more work
is done on long-term plot structures, this limit is largely theoretical.

• Boredom—Beyond the repetition constituent constraints, these constraints
target things like repeated failed attempts to solve the same problem, or the
recurrence of a problem within a single scene. Although not something that
would seem obviously broken to readers, these possibilities were deemed
less interesting and prohibited.

• Trick options—If there are multiple protagonists and one has the skill
necessary to perform a certain action while another lacks it, giving the
player the option of having the unskilled protagonist perform that action is
a kind of trick and this can feel very bad for the player as they’re essentially
not given the most rational option (which would be to have the skilled party
member perform the action) but at the same time reminded of its presence.
These constraints simply rule out this possibility, even though one could
imagine using it for dramatic effect.

These aesthetic constraints are admittedly a bit underdeveloped. In partic-
ular, there are not enough related to ensuring that long-term actions form a
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coherent plot, and this is one reason2 that the experiments discussed in chap-

ters 7 and 8 focus on single choices rather than entire stories. This is an open

area of future work for Dunyazad: developing stronger plot structures across

multiple actions would allow it to produce interesting short stories and thus to

support more complicated experiments.

6.2.4 Poetic Constraints

Dunyazad’s poetic constraints are mechanisms for authorial control. Together,

they establish a set of predicates which can be required or forbidden in order

to drive the creation of different kinds of choices. These constraints are thus

not about declaring what is universally acceptable or unacceptable, but rather

about distinguishing between multiple interesting possibilities and providing

the author the ability to make choices between these at a high level. The bulk of

these constraints form Dunyazad’s operationalization of choice poetics, but a few

are concerned with other effects:

• Surprising outcomes—Using the notion of likely and unlikely outcomes

based on skills and tools, Dunyazad labels outcomes which are deemed

unlikely as ‘surprising.’ In an earlier version, ‘surprising’ outcomes were

prohibited; now it’s up to the author whether or not to allow them.

• Story length and pacing—Dunyazad has rules for constraining how many

actions must occur before a story ends, and how many of these must be

choices as opposed to simple events.

Besides these two categories of constraint, Dunyazad’s poetic constraints are

focused on choice poetics, and in particular, implementing the goal-based choice

analysis method described in section 5.4 and illustrated in fig. 5.1. These con-

straints are the focus of the experiments described in chapters 7 and 8, and
2A more important reason was the elimination of confounding factors.
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they have also been the focus of development on Dunyazad so far: these are the

constraints that allow Dunyazad to attempt to create specific poetic effects when

constructing choices. Although the details of goal-based choice analysis were

the main subject of chapter 5, the following section provides a walk-through of

Dunyazad’s technical implementation of the technique.

Choice Poetics

Dunyazad’s choice poetics constraints rely on a few underlying properties of its

stories that were just discussed, most notably the concept of likely and unlikely

outcomes based on skills and tools. In Dunyazad’s code it is assumed that players

will be roughly aware of these things, and the surface text code does its best

to ensure this. If this assumption is violated, Dunyazad’s choices may have

unintended poetic effects, just as when an author fails to clearly communicate

and leaves some of their audience confused. Results so far seem to indicate

that this assumption is mostly correct, however, so Dunyazad’s conflation of its

internal likelihoods with players’ perceptions of such seems to be acceptable.

It is no accident that the breakdown of choice structures described in sec-

tion 5.4.2 corresponds exactly to Dunyazad’s internal representation of a choice

as having an initial state, several options, and several outcomes at each option.

When a choice occurs directly after a setup (which always happens when Dun-

yazad generates a single choice) the setup becomes the framing. The options

are each a single action, described to the player before a choice is made with-

out mention of any outcomes. Once the player chooses, they see the outcome

for the option they selected, which is a description of each outcome component

(an “o(<variable>, <value>)” pair) of that action. The idea of potential out-

comes also has a direct analogue: these are the other possible values of outcome

variables for an action.
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Each of the seven steps of choice analysis described in section 5.4 has a

corresponding set of rules in Dunyazad which are defined using the rules for

earlier steps:

1. Goal Analysis

This step is quite simple in Dunyazad: the file goals.lp includes rules that

directly state the player’s goals in every situation (a listing can be found in

appendix B.2). Of course, forcing the author to estimate the player’s goals

like this is not perfect, but results so far indicate that it works tolerably well.

Individual files in the content directory specify how each goal works and

provide rules for determining the priority of a goal in a given situation (this is

binary, either ‘high’ or ‘low’). These files also define at least one state that is

“good_for,” “bad_for,” “great_for,” or “awful_for” the goal. For example, the

“preserve_health” goal always has high priority and specifies that the states

“injured” and “killed” both “fail” the goal when true of the goal’s target.

goals.lp then specifies that at every timepoint, the player has a “preserve_

health” goal for each protagonist, allowing Dunyazad to understand that an

action which might have an outcome that kills a protagonist will be viewed

by the player as carrying some risk. The full list of player goals assumed by

the system is as follows:

• The player always has a “preserve_health” goal for each protagonist. As

mentioned above, these goals are always high-priority and are failed by

the “injured” and “killed” states.

• The player always has an “avoid_threats_to” goal for each protagonist.

Actions which cause “threatening” relationships with a protagonist as

the object “hinder” these goals, as do actions which allow such a state to

persist (i.e., actions which don’t have a consequence that resolves such a

state when one exists). These goals are always high-priority.
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• The player always has an “avoid_accusations” goal for each protago-

nist. These goals work just like “avoid_threats_to” goals but for the

“accusing” relationship, which indicates that someone is being accused

of a crime. As with “avoid_threats_to”, these goals are high-priority.

• The player always has a “preserve_original_form” goal for each protag-

onist. The “polymorph” action represents a magic spell that can turn

someone into a chicken; these goals assume that this is a state to be

avoided and/or reversed whenever possible. These goals are high-priority.

• Whenever an item has been stolen from a protagonist, the player has a

“reclaim_property” goal for that item/protagonist. This goal is achieved

when the “has_item” relation holds between the original owner and the

item, and it it always high-priority.

• The player always has an “as_intended” goal for each protagonist. These

goals make use of the “default_intent” predicates specified in the def-

inition of each action. Essentially, each action declares one or more

outcome components to be its default intent: the outcome that the ini-

tiator of the action is hoping for. In the case of the “attack” action, for

example, the outcome component “o(success, victory)” is a “default_

intent”. When a “default_intent” outcome component is present, the

“as_intended” goal of the action’s initiator is achieved, when absent, the

goal is failed. These goals are always low-priority, because they don’t

represent any particular bad or good states: there are many situations

where an unintended outcome can be good for a character, and actual

good or bad results are more important than things going as intended.

• The player always has a “have_tool_for” goal for each skill of each

protagonist. These goals are achieved by possessing an item which

counts as a tool for a particular skill, and they are always low-priority.
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The assumption that the player will have these goals is probably the
weakest such, as players may not always remember at each moment
what skills they have and which ones they have tools for. However, the
presence of these goals means that trading items for goods or services
can have value, and they can differentiate good trades from bad ones. In
situations where players had a chance to play multiple stories, players
would be more likely to consider these goals when making choices.

• The final goals assigned to the player presume that players are generally
sympathetic: unless a character is actively threatening or accusing an-
other (deemed ‘guilty’ by the system), the player is assumed to have both
“avoid_threats_to” and “avoid_accusations” goals for that character.
These goals mean that when the player encounters non-protagonists
threatening or accusing each other, the system assumes that the player
will want to help the victim. As above, these goals are high-priority.

The predicates created by goals.lp include “at(<T>, player_goal(<goal>))”
predicates, which specify the goals of the player for each timepoint, and “at(
<T>, goal_stakes(<goal>, <priority>))” predicates, which assign priori-
ties to each goal.

Although this static goal analysis works reasonably well, an interesting
opportunity for future work presents itself here. Not only could Dunyazad

benefit from dynamic goal analysis (perhaps along the lines of the user model
used for dilemma generation in (Barber and Kudenko, 2007a)), as a system
that produces choice-based narratives, it could incorporate explicit choices-of-
goals as part of the stories it generates, and use the results of these choices as
direct statements of player intent rather than relying on authorial guesswork.
This would require a major overhaul of the goals system, however, and goals
might have to be represented as mutable states of the world, which would
place an additional burden on the solver.
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One thing that should be mentioned here is that Dunyazad’s goal assump-

tions are targeted at players whose mode of engagement is a mix of avatar

and power play. There are no goals related to character believability of the

protagonist, nor are there goals related to things like curiosity. These could

in principle be declared just like the current goals, but Dunyazad focuses on

avatar and power play because these are the modes that its genre traditionally

encourages (and in fact, these were the most popular modes of engagement

among experiment participants; see section 8.8).

2. Likelihood Analysis

This step is already performed by Dunyazad’s constituent constraints, using

the “skill_link” predicates supplied by action definitions along with infor-

mation on the skills and tools available to the actors involved in each action.

Recall that individual outcome components are labelled as likely or unlikely,

rather than entire outcomes (section 5.4.4). This step produces the “at(<T>,

likely_outcome(<option>, <outcome>))” and “at(<T>, unlikely_outcome(

<option>, <outcome>))” predicates. Figure 6.4 shows an example of output

from this step based on just the single option shown in fig. 6.3 (normally each

option at a timepoint would have a similar set of likelihood predicates).

3. Option Analysis

The option analysis step uses the results of goal and likelihood analysis to

attach expectations to each option. Goal predicates specify which state(s)

affect them, and the likelihood of all outcomes is known, so option analysis

is straightforward. First, all possible outcome components of an option are

considered and if any of them negatively impacts a goal, that option threat-

ens that goal. Similarly, any positive impact entails an enables relationship.

Since each option has multiple outcome components, a single goal may be both

threatened and enabled by the same option, of course. For the advances and
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Scene:
A merchant carrying some perfume is being threatened by bandits.

Option:
You try to talk the bandits down (You have skill: negotiation and you
have skill: storytelling).

Likelihood Predicates:
at(root, action(option(1), talk_down)).

...

at(root,

likely_outcome(option(1),

o(attitude, convinced))

).

at(root,

likely_outcome(option(1),

o(is_enraged, not_enraged))

).

at(root,

unlikely_outcome(option(1),

o(attitude, unconvinced))

).

at(root,

unlikely_outcome(option(1),

o(is_enraged, enraged))

).

Figure 6.4: An example of likelihood analysis predicates for the action shown in
fig. 6.3 at the state shown in fig. 6.2, assuming that the player has the negotiation
and storytelling skills. The “action” predicate is included for clarity. Note that
the full definition of the “talk_down” action including the associated “skill_link”
predicates can be found in appendix B.4.

hinders evaluations the same logic applies, but considering only outcome com-

ponents marked as “likely”. The result of the option analysis constraints is

a set of “at(<T>, expectation(<option>, <expectation>, <goal>))” pred-

icates that list the expectations for each option/goal pair. Figure 6.5 shows

an example of these “expectation” predicates for the same option whose

likelihood predicates are shown in fig. 6.4.
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Scene:
A merchant carrying some perfume is being threatened by bandits.

Option:
You try to talk the bandits down (You have skill: negotiation and you
have skill: storytelling).

Expectation Predicates:
at(root,

expectation(

option(1),

advances,

as_intended(inst(actor,you))

)

).

at(root,

expectation(

option(1),

advances,

avoid_threats_to(inst(actor,businessperson_4))

)

).

at(root,

expectation(

option(1),

enables,

avoid_threats_to(inst(actor,businessperson_4))

)

).

at(root,

expectation(

option(1),

threatens,

avoid_threats_to(inst(actor,you))

)

).

Figure 6.5: An example of option analysis predicates for the action shown in
fig. 6.3 at the state shown in fig. 6.2, assuming that the player has the negotiation
and storytelling skills. Note that the full definition of the “talk_down” action
can be found in appendix B.4, while the definitions of each goal can be found in
appendix B.3. The “irrelevant” expectations have been omitted for brevity.
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4. Relative Option Analysis

Integrating goal priorities and option expectations, relative option analysis

produces “at(<T>, option_feel(<option>, <feel>))” predicates, which col-

lapse the various expectations across goals at each option to produce a general

evaluation of that option. For example, if an option has at least one “advances”

expectation and it has no “threatens” or “hinders” expectations across all

goals (only counting goals tied for highest priority at that option) an option is

labeled as a “sure_thing.” These rules establish one or more “option_feel”s

for each option, and these are further aggregated into “option_structure”

assignments, which are the prospective impressions show in table 5.3 (that

table defines “option_structure” labels directly in terms of “expectation”

labels for simplicity). Although “option_structure” labels could be assigned

directly based on “expectation” predicates, the “option_feel” labels act as an

intermediate level of representation, summarizing the “expectation” pred-

icates across all goals at a particular option. There are nine (sometimes

overlapping) “option_feel” values:

(a) “safe”—An option where there are no “threatens” or “hinders” expecta-

tions, and there is at least one “enables” or “advances” expectation.

(b) “sure_thing”—Any “safe” option that includes an “advances” expecta-

tion (instead of merely having “enables” expectation(s).

(c) “hopeful”—An option which “advances” some goal, but may “threaten”

a goal as well, although it doesn’t “hinder” any goals.

(d) “risky”—An option which at least has both “enables” and “threatens”

expectations, but no “advances” or “hinders” expectations.

(e) “tradeoff”—An option which “advances” one goal but “hinders” another.

(f) “irrelevant”—An option which has no expectations associated with it.
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(g) “longshot”—The converse of “hopeful”: an option which “hinders” some

goal but also “enables” a goal (although it does not “advance” any).

(h) “bad”—An option which “threatens” and/or “hinders” at least one goal

and neither “enables” or “advances” any goals.

(i) “doomed”—Any “bad” option which “hinders” a goal (as opposed to merely

having a “threatens” expectation).

The “option_structure” assignments derived from these “option_feel”

labels are the subject of the experiment described in chapter 7 and provide one

primary means of controlling Dunyazad’s output. Although they are discussed

here as being ‘assigned’ based on existing choice structures, because they’re

just predicates in an answer set program, they can be required and the

solver will solve for answer sets that include them. Requiring these “option_

structure” predicates thus allows an author (or experimenter) to generate

choices that (hopefully) make a desired prospective impression on the player.

Figure 6.6 shows an example of relative option analysis results. Based on

having one “hopeful” option and one option which is both “bad” and “doomed,”

the choice in question is both “obvious” and “pressured” from a prospective

standpoint. While formal definition of the “obvious” label was described in

table 5.3, “pressured” is not explained there. The “pressured” label applies

to choices where there are neither “safe” nor “irrelevant” options but there

is at least one “hopeful” or “tradeoff” option, and it indicates a choice where

risk is inevitable but success still seems possible. Note that exact definitions

for these labels can be found in the file eval.lp listed in appendix B.2.

5. Outcome Component Analysis

Using information about player goals and the outcomes of each action, outcome

component analysis maps the relationships between every possible outcome
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component and each goal. These are represented using “at(<T>, outcome_

perception(<option>, <perception>, <goal>))” predicates and have four

basic “<perception>” values, similar to the “expectation” predicates from op-

tion analysis: “good_for,” “bad_for,” “great_for,” and “awful_for.” Outcome

component analysis directly deduces these labels from the definitions of each

goal and the states that a particular outcome component adds or removes. So

for example, the “o(success, dispelled)” outcome component of the “dispel”

action has a consequence which removes the “polymorphed” property from

the action’s target. Accordingly, any option that consists of a “dispel” action

with a polymorphed target will be “good_for” the “preserve_original_form”

goal of its target, (because the “polymorphed” state which is being removed is

“awful_for” the “preserve_original_form” goal3).
3Although the counterpart of “awful_for” is “great_for” rather than “good_for,” the inference

here softens the expectation. The stronger “great_for” and “awful_for” perception labels are
reserved for situations where they explicitly apply (i.e., a state which a goal labels as “great_for”
or “awful_for” itself is the consequence of an option).

Scene:
A merchant carrying some perfume is being threatened by bandits.

Options:
1. You try to talk the bandits down (You have skill: negotiation and

you have skill: storytelling).
2. You travel onwards (No relevant skills).

Prospective Predicates:
at(root, option_feel(option(1), hopeful)).

at(root, option_feel(option(2), bad)).

at(root, option_feel(option(2), doomed)).

at(root, option_structure(obvious)).

at(root, option_structure(pressured)).

Figure 6.6: An example of relative option analysis predicates for a choice at the
state shown in fig. 6.2 between the action shown in fig. 6.3 and an alternative
of simply travelling onwards. Definitions of these “option_feel” and “option_
structure” values can be found in the listing for eval.lp in appendix B.2.
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Scene:
A merchant carrying some perfume is being threatened by bandits.

Options/Outcomes:
1. You try to talk the bandits down (You have skill: negotiation and

you have skill: storytelling).
→ You talk to the bandits and convince them to back off.
The bandits are no longer threatening the merchant.

2. You travel onwards (No relevant skills).
→ You continue your journey.
You have traveled to a new location.

Outcome Perception Predicates:
at(root,

outcome_perception(

option(1),

good_for,

avoid_threats_to(inst(actor,businessperson_4))

)

).

at(root,

outcome_perception(

option(1),

great_for,

as_intended(inst(actor,you))

)

).

at(root,

outcome_perception(

option(2),

awful_for,

avoid_threats_to(inst(actor,businessperson_4))

)

).

Figure 6.7: An example of outcome component analysis of the choice shown in
fig. 6.6. Definitions for these “outcome_perception” values can be found in the
listing for eval.lp in appendix B.2.
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Because of the way that goals are defined in Dunyazad this step of analysis
is fairly trivial. Of course, not all goals are simple to define in terms of a
globally applicable set of states that triggers them. For example, the “as_
intended” goal deals directly with outcomes as opposed to world states, which
may be different depending on the context of an action. Because of this,
the “as_intended” goal definition has custom code which directly creates
“expectation” and “outcome_perception” predicates by considering which
outcomes are likely (and which is the “default_intent,” as mentioned above).
The “avoid_accusations” and “avoid_threats_to” goals also have a bit of
custom code to make them more urgent: when an accusation or threat state
is present, actions which have no effect on that state are given “hinders”
expectations and “bad_for” outcome perceptions. All other goals simply specify
one or more states that are “good_for,” “bad_for,” “great_for,” or “awful_for”
them, as described above.

Figure 6.7 shows the “outcome_perception” predicates that arise from
analysis of the same choice presented in fig. 6.6 (this time with specific out-
comes). Note that the “avoid_threats_to(inst(actor, you))” goal which
generated a “threatens” expectation in fig. 6.5 was not affected by any actual
outcomes: the imagined threat did not manifest itself.

6. Full Outcome Analysis
Full outcome analysis concerns the expectedness and overall valence of the
entire outcome of each option. In Dunyazad, valence is represented by “at(
<T>, outcome_overall(<option>, <evaluation>))” predicates, while “at(
<T>, overall_predictability(<option>, <predictability>))” predicates
represent predictability. The predictability of individual outcome components
is represented by “at(<T>, outcome_predictability(<option>, <outcome>,

<predictability>))” predicates. The “outcome_overall” predicates summa-
rize the individual “outcome_perception” predicates across all player goals
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and across different outcome components at an action. There are eight possi-

ble “outcome_overall” values:

(a) “great”—Reserved for options which are “great_for” at least one player

goal and neither “bad_for” nor “awful_for” any.

(b) “good”—Options which would be “great”, except that they are merely

“good_for” at least one player goal as opposed to being “great_for” any.

(c) “tradeoff”—Options which are both “great_for” one goal and “awful_

for” another, or which are both “good_for” one goal and “bad_for” an-

other (without being either “great_for” or “awful_for” any).

(d) “worth_it”—Options where the best outcome is “great_for” a goal, but

the worst outcome is “bad_for” a (presumably different) goal.

(e) “not_worth_it”—Options where the worst outcome is “awful_for” a goal,

while the best outcome is merely “good_for” a goal.

(f) “bad”—Options which are neither “good_for” nor “great_for” any goals,

and where the worst outcome is “bad_for” a goal.

(g) “awful”—as “bad” options but “awful_for” some goal rather than merely

“bad_for” it.

(h) Neutral—Options where no outcome is relevant to any player goal.

Note that for all of these evaluations, only top-priority goals are considered

(i.e., if there is at least one high-priority goal, only high-priority goals count; if

not then low-priority goals can come into play). Summarizing the potentially

complex per-outcome-component evaluations from the outcome component

analysis step like this helps make the retrospective analysis more tractable

(both for humans and for the solver). Most common cases avoid the ambiguous

“tradeoff” label anyways, so not much information is lost.
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Scene:
A merchant carrying some perfume is being threatened by bandits.

Options/Outcomes:
1. You try to talk the bandits down (You have skill: negotiation and

you have skill: storytelling).
→ You talk to the bandits and convince them to back off.
The bandits are no longer threatening the merchant.

2. You travel onwards (No relevant skills).
→ You continue your journey.
You have traveled to a new location.

Overall Outcome Predicates:
at(root,

outcome_predictability(

option(1),

o(attitude, convinced),

predictable

)

).

at(root,

outcome_predictability(

option(1),

o(is_enraged, not_enraged),

predictable

)

).

at(root,

outcome_predictability(

option(2),

o(onwards, onwards),

predictable

)

).

at(root, overall_predictability(option(1), predictable)).

at(root, overall_predictability(option(2), predictable)).

at(root, outcome_overall(option(1), good)).

at(root, outcome_overall(option(2), awful)).

Figure 6.8: An example of full outcome analysis of the choice shown in fig. 6.7. Def-
initions for these “outcome_predictability,” “overall_predictability,” and
“outcome_overall” values can be found in the listing for eval.lp in appendix B.2.
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Along with “outcome_overall” labels, this step assigns one of the following

six “outcome_predictability” values to each outcome component and also

(as “overall_predictability” predicates) to each option:

(a) “predictable”—An outcome component is “predictable” when its value

is the sole likely value for its variable. An entire option is “predictable”

when every single important outcome component (an outcome compo-

nent that affects one or more goals tied for the highest priority) is

“predictable”, and there is at least one such outcome component.

(b) “expected”—An outcome component is “expected” when it is one of sev-

eral likely values for its variable, at least one which is important. An

entire option is “expected” when every outcome at that option is either

“predictable,” “expected,” or “average,” and they’re not all “average.”

(c) “average”—These outcome components aren’t likely, but neither are

they unlikely, and no other values for their variable are likely, while at

least one is unlikely. In other words, an outcome component is “average”

when a variable avoids an unlikely value but the value that it takes

on isn’t deemed likely. An entire option is “average” if every one of

its important outcome components is average, and it has at least one

important outcome.

(d) “unpredictable”—An outcome component is “unpredictable” if for its

variable, there are no likely or unlikely values, or if all values for its

variable are unlikely. An option as a whole is “unpredictable” if it has

at least one “unpredictable” component and no “unexpected” or “unfair”

components (counting only important outcome components).

(e) “unexpected”—An “unexpected” outcome component is one where an

“unlikely” value is selected despite the presence of at least one “neutral”

value, but no actually “likely” values are possible. For an option to be
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labeled “unexpected” as a whole, it must have at least one important

“unexpected” component and no “unfair” components.

(f) “unfair”—An “unfair” option component is one where an “unlikely”

value has been selected for a variable over a possible “likely” value.

Every option that has an important “unfair” outcome component is

considered “unfair” as a whole.

There are actually two other predictability values that are used only for

entire options: “irrelevant” (used for options that are entirely lacking in

“outcome_perception” predicates) and “unrecognized” (used as a catch-all

for situations that don’t fit any other label). As with the “outcome_overall”

summarization, building “overall_predictability” predicates reduces the

complexity of possible “outcome_predictability” configurations to a few cases

which cover common situations. In the same way that this is useful for effi-

cient analysis (and more detailed analysis is always possible when necessary),

it is helpful when authoring constraints (and likewise, constraints directly

targeting complex “outcome_predictability” situations can be written if nec-

essary). The “outcome_overall” and “overall_predictability” predicates

from this step are used alongside the “outcome_feel” predicates from relative

option analysis as inputs for retrospective analysis.

Figure 6.8 shows an example of these constraints using the same choice

shown in 6.7. In this case, the outcomes were uniformly “predictable,” and

their aggregate positive/negative evaluations were simple as each had either

all-good or all-bad outcome perceptions4. As above, the full conditions under

which the predicates shown here apply are available in the source listing of

the file eval.lp in appendix B.2.
4If this choice strikes you as a bit more complicated than the labels assigned by Dunyazad

suggest, see the discussion of similar choices in sections 8.5.3 and 8.5.5.

147



CHAPTER 6. DUNYAZAD

Outcome Feel Option Feels Overall
Predictabilities

Overall
Outcomes

“expected_success” “sure_thing”
“safe”
“hopeful”

“predictable”
“expected”

“great”
“good”

“unfair” “sure_thing”
“safe”
“hopeful”

“unexpected”
“unfair”

“bad”
“awful”

“nice_gamble” “risky”
“tradeoff”
“irrelevant”

“average”
“unpredictable”

“great”
“good”
“worth_it”

“bad_gamble” “risky”
“tradeoff”
“irrelevant”

“average”
“unpredictable”

“not_worth_it”
“bad”
“awful”

“expected_failure” “long_shot”
“bad”
“doomed”

“predictable”
“expected”
“average”

“bad”
“awful”

“miracle” “long_shot”
“bad”
“doomed”

“unexpected”
“unfair”

“great”
“good”
“worth_it”

Table 6.3: Dunyazad’s six outcome feel structures. If at least one of each of the
given “option_feel,” “overall_predictability,” and “outcome_overall” values
applies to an option, the listed “outcome_feel” applies. For example, if a choice
has a “safe” “option_feel,” a “predictable” “overall_predictability,” and a
“good” “outcome_overall”, then it meets the criteria for having the “expected_
success” outcome feel.
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7. Retrospective Analysis

By comparing outcomes with option feels, an overall impression of a choice can

be obtained. These are represented using “at(<T>, outcome_feel(<option>,

<feel>))” predicates. Dunyazad has six different “outcome_feel” structures

that it recognizes, which are shown in table 6.3. Figure 6.9 provides an

example, showing the “outcome_feel” predicates that result from analysis of

the choice shown in fig. 6.7.

It’s worth noting that contrary to fig. 5.1, Dunyazad doesn’t directly incor-

porate information from its option analysis step into its retrospective analysis.

This is because it doesn’t use this more nuanced information, just using the

higher-level “outcome_overall” predicates. This connects to a deeper point:

as a tool for automated analysis of choices, Dunyazad would not perform very

well, because its definitions are intentionally narrow. The reason for this

is twofold: first, broad definitions are harmful during generation, because

they make it easier to produce things which don’t actually fit the categories

Scene:
A merchant carrying some perfume is being threatened by bandits.

Options/Outcomes:
1. You try to talk the bandits down (You have skill: negotiation and

you have skill: storytelling).
→ You talk to the bandits and convince them to back off.
The bandits are no longer threatening the merchant.

2. You travel onwards (No relevant skills).
→ You continue your journey.
You have traveled to a new location.

Outcome Feel Predicates:
at(root, outcome_feel(option(1), expected_success)).

at(root, outcome_feel(option(2), expected_failure)).

Figure 6.9: An example of retrospective analysis predicates for of the choice
shown in fig. 6.7. Definitions for these “outcome_feel” values can be found in
the listing for eval.lp in appendix B.2.

149



CHAPTER 6. DUNYAZAD

they are supposed to represent. Second, scope and to some degree breadth of

definitions was limited by effort—with more work, these could be improved.

Because of these limitations, Dunyazad’s formal definitions of various prop-

erties are designed to be sufficient, but never necessary conditions for the

effects they describe. In other words, they are idiosyncratic: Dunyazad’s

definition of an ‘obvious’ choice might be one way to make choices obvious,

but there could be other rules for constructing choices that also resulted in

obviousness without necessarily having any overlap with the kinds of obvious

choices that Dunyazad generates. Their idiosyncrasy is not a problem, of

course: we can still learn about obviousness from studying a subset of obvious

choices. However, we need to be careful not to generalize our results too far.

Coming back to the results of retrospective analysis, these “outcome_feel”

predicates give authors another high-level means of control over Dunyazad.

As with the “option_feel” predicates, constraints requiring the presence of

a particular “outcome_feel” force Dunyazad to produce choices that include

such options (if it can), and this is how the experiment described in chapter 8

was set up.

As is hopefully clear from this description, Dunyazad’s poetic constraints are

a direct mirror of the analysis method presented in section 5.4. Although they

operate simultaneously rather than sequentially, each step of analysis shown in

fig. 5.1 corresponds to a set of constraints in Dunyazad’s ASP code. Of course,

this is not simply a case of the code mimicking the theory: both the human-

usable analysis method and the machine-usable code were designed together,

with changes in each informing the development of the other. Furthermore, the

close parallels provided, which extend to the structural level, make this two-way

information flow smoother, allowing both bug fixes to the code and caveats added

to the theory to inform each other.
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6.3 High-Level Control

Dunyazad’s ASP rules allow it to represent an entire story without any trouble,

but the complexity of the problem of generating an answer set when all elements

of a story are left unconstrained is prohibitive. In theory, Dunyazad’s rules

allow an entire story’s worth of content to be solved for, but in practice, given

the exponential runtime complexity of the solving algorithm and the size of the

problems that Dunyazad can create, this is impractical. Some simple statistics

illustrate this: when asked to generate a single “relaxed” choice, Dunyazad

produced a problem with 1,066,956 atoms and 24,974,521 grounded rules, ac-

cording to the output of clasp --stats. The grounded output for this problem

was 994,932 lines of code5; a total of 3.5 gigabytes of data (albeit in a relatively

memory-inefficient format for human readability). Grounding and finding the

first answer set for this problem took almost 24 seconds of CPU time on a mod-

ern Intel i7 laptop with 12 gigabytes of RAM. Even given Dunyazad’s simple

target genre, a full story would contain dozens to hundreds of nodes because

of branching, and asking the solver to tackle that all at once is clearly out of

the question (unless perhaps you are reading this several decades from now and

things have changed?).

The solution to this problem was to add a higher-level control layer that

would ask the answer set solver to solve just one node at a time. This layer keeps

track of all of the answer sets received and integrates the parts of them that

represent story content into a running predicate representation of the entire

story, which is fed into every solver query. This means that even though each

ASP task can only make changes to one timepoint at once, it can see the entire

story so far, and can take that information into account. Adding many nodes as

fixed constraints like this doesn’t cost extra time; in fact, it usually saves time
5The number of lines of grounded output can be less than the number of grounded rules because

a single line can express many rules, particularly when it instantiates a cardinality constraint.
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because the constraints added can make a solution easier to find for the solver

(in particular, solving the first timepoint of a new vignette which necessarily

involves a setup is much slower than solving intermediate timepoints which just

play out action that has already been initiated). The high-level control even goes

a step further: the process of filling in information for a timepoint is actually

split into four independent steps that can be processed separately (although at a

slight cost, since choices in separately-processed steps can no longer affect each

other). The four steps for filling in a timepoint are defined in the file grow.lp:

1. “initialize_node”—This phase involves choosing a setup for the target

timepoint if necessary and locking down the starting state of the timepoint,

including any changes introduced by the chosen setup. Player goals for a

timepoint can also be discovered during this phase. Values for any variable

elements of a setup must be chosen during this phase.

2. “build_options”—The bulk of Dunyazad’s constraints are tied to this phase,

which solves for the options and outcomes at a timepoint.

3. “add_branch_nodes”—This phase adds successor links to the target time-

point and creates new successor timepoints if necessary. It’s also respon-

sible for transferring state between timepoints. The only decisions made

during this phase are whether or not two branches which have exactly equiv-

alent world states should link to the same timepoint or to two different

timepoints, so running it separately loses little.

4. “add_surface”—This phase doesn’t change any of the essential facts of

the story, but merely adds “surface_property” predicates and the like for

the convenience of the English generation code. There are currently no

constraints that link surface properties to story world state, so there is no

cost associated with running this phase separately.
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Although four phases are defined, the control code actually makes a compro-

mise for the sake of greater flexibility and only runs two separate problems per

timepoint. First, the “initialize_node” and “build_options” phases are run

together, so that choices about setup variables can be influenced by choices about

actions and their outcomes and vice versa. Next, the “add_branch_nodes” and

“add_surface” phases are run together, which usually takes a fraction of the time

taken by the other two phases.

Using two steps per node, the high-level code first fills in the root node of a

story and then proceeds to randomly select an empty leaf timepoint to fill in,

followed by random selection of an unbranched node to add branches to, and so on,

until either there are no more branches left (because each has hit an ending) or a

time- or story-size-limit is reached. By proceeding in this manner, the high-level

control code can solve for a story with dozens of nodes in a matter of minutes.

Of course, there is a sacrifice associated with this: it separates decisions about

different timepoints, meaning that later timepoints must always do their best

with the constraints placed on them by the past. In practice, Dunyazad may

even become stuck, when an authorial constraint (such as “make all choices

relaxed”) combines with accumulated state to create an unsatisfiable problem.

With Dunyazad’s current design this happens quite rarely, so a backup procedure

(perhaps deleting the unsatisfiable node and several of its parents before retrying)

has not been necessary. It would of course be possible to implement full back-

tracking search at the higher level if conflicts were frequent, although the cost per

timepoint instantiated (currently in the tens of seconds) would seem to suggest

a search for alternative solutions.

As mentioned previously, Dunyazad’s high-level control code is written in

Python (version 3.x). Besides the simple iterative process just described, there

is code for managing constraint sets to be fed into the solver during each run

(including extracting just the story predicates from previous runs), running
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the solver via the command line and capturing and parsing its output, and

feeding the results into the English generation code. Along with classes for

representing predicates and answer sets, a full parser for clasp’s output is

included, although it is a bit slow and could do with more optimization. For

situations like the experiments described in chapters 7 and 8, there are also

mechanisms for inserting extra constraints that will be used during every call to

the solver. Ultimately, the high-level Python code is relatively straightforward,

with the exception of the English generation code. Although Dunyazad generates

English text using a somewhat sophisticated template-based system, the inner

workings of that system (beyond its basic function of expressing predicate story

representations as English text) are not critical to Dunyazad’s function as a choice

point generator. Those interested can find a description of the template-based

text generator that Dunyazad uses in appendix A.

6.4 Summary

No project of Dunyazad’s scope (modest though it may be) can be perfectly de-

scribed in a technical write-up. There are details that were left out or glossed

over in the sections above, and to thoroughly understand how Dunyazad works

down to the smallest details reading its source code is unavoidable. Dunyazad

is an open-source project, and full source code can be found online at https:

//github.com/solsword/dunyazad. Additionally, an archived snapshot current

as of this writing can be found at www.escholarship.org/uc/item/32d6p0kg.

Luckily, a deep understanding of the source code should be unnecessary for most

scholars who want to take something away from this work. For example, the

analysis method presented in the chapter 5 does not depend on the details of

Dunyazad for its validity (although it is not impossible that it has undiscovered

caveats which could be revealed by inspection of Dunyazad’s code).
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Another reason that the description of Dunyazad given here can be appreci-

ated on its own is that it describes all of the driving principles behind Dunyazad’s

inner workings, in enough detail for someone else to construct their own working

system that generates narrative choices. Technical considerations (such as itera-

tive vs. all-at-once story construction) aside, the principles driving Dunyazad

are not terribly complicated: a story representation that includes the concept of

choices and actions with variable consequences along with systems for estimating

the player’s interpretation of options and outcomes in terms of player goals. One

could re-implement it using an entirely different theory of choice poetics, for

example, or without using logic programming at all.

From the perspective of generative systems, Dunyazad makes the statement:

“Generating narrative choices intentionally is computationally tractable, and

here’s one way to do it.” Ideally this chapter is a convincing demonstration of

that, but Dunyazad has ambitions beyond being a working generative system. In

chapters 7 and 8, I will discuss the results of two experiments that both demon-

strate Dunyazad’s capabilities as a generative system and provide useful insight

into choice poetics by leveraging its capacity as a tool for theory development.
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Chapter 7

Experiment I: Prospective
Impressions

The goal of this chapter and the one that follows is to demonstrate Dunyazad’s

ability to manage player reactions by generating distinctive choice structures.

Because of the way it uses answer set programming, Dunyazad’s choice genera-

tion system not only generates choices, but itself constitutes a theory of choice

poetics. The survey data presented here thus not only validate that players’ per-

ceptions match Dunyazad’s intent, but also inform the theory of choice poetics.

Statistical analysis of the data indicates that Dunyazad is largely successful in

its goals, but also reveals some places where either the code, the theory, or both

can be improved. These unexpected results are in fact one of the larger goals

of Dunyazad as a project: by operationalizing choice poetics, Dunyazad enables

experiments which can reveal details that wouldn’t be obvious from simply ob-

serving human-authored choices, because as a computer program, Dunyazad

makes inhuman mistakes.

Note: parts of this chapter have appeared in abridged form in (Mawhorter, Mateas, and
Wardrip-Fruin, 2015a).

157



CHAPTER 7. EXPERIMENT I: PROSPECTIVE IMPRESSIONS

The results presented here are of course limited by Dunyazad’s specificity:

Dunyazad has a particular approach for creating e.g., obvious choices and in-

formation about properties of its obvious choices doesn’t necessarily generalize

to all obvious choices. Largely, however, the extra considerations that this data

suggests should be taken into account do generalize, because they apply to any

analysis or generation scheme which uses a particular subset of Dunyazad’s

constraints. For example, one result that will be discussed suggests that when

trying to figure out how players will evaluate different options, analysis in terms

of absolute values is insufficient. This result (which is unsurprising, as it echoes

psychological research on real-life choices; see (B. Schwartz et al., 2002)) clearly

isn’t something that’s likely to be limited to just the particular choices that

Dunyazad generates (in terms of genre or any other factor). There might be

some cases where humans do use only absolute value judgements, but until

such cases are identified, it’s safer to assume that both absolute and relative

value judgements between options should be accounted for. In any case, the idea

that absolute value judgements are insufficient for understanding choice poetics

generalizes beyond the specifics of Dunyazad’s choices.

The experiment presented here (and the experiment discussed in chapter 8)

was set up in order to test Dunyazad’s functionality and thereby also inform the

theory of choice poetics that it is based on. This first experiment is mainly con-

cerned with prospective impressions, which are the result of the “relative option

analysis” step in the goal-based choice analysis method described in section 5.4.

In Dunyazad, these are represented using “option_feel” predicates, as described

in section 6.2.4. After analyzing the results of this experiment, I conducted a

second experiment (discussed in chapter 8) focused on retrospective impressions,

which result from retrospective analysis and are represented by “outcome_feel”

predicates. This chapter describes the details of the first experiment, including

details of the experimental setup that are common to both experiments.
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Both experiments broadly confirmed Dunyazad’s abilities to generate the

kinds of choices it was asked to, but also uncovered areas where it struggled.

In particular, Dunyazad has trouble balancing options to create dilemmas be-

cause it does not have a sufficiently detailed model of goal priorities, and it has

trouble analyzing situations where multiple goals conflict, especially when such

situations constitute moral dilemmas. Additionally, it has trouble with actions

which expend resources in service of a goal, and its indirect management of

expectations sometimes leaves something to be desired. All of these shortcom-

ings suggest future work, of course, but also prompt reflection on the goal-based

choice analysis method from section 5.4. Accordingly, section 8.11 revisits some

of the concepts from goal-based-choice-analysis in light of the results from this

experiment and the one presented in chapter 8. The main takeaways for goal-

based choice analysis are that humans should be careful to apply their faculties

for comparing options in terms of things like moral imperatives and opportunity

costs when analyzing options and outcomes. Some other caveats are that relative

option analysis is important in most situations, rather than only being needed

when options are very similar, and that the outcome of an option can influence

post-decision impressions of its desirability as an option pre-decision.

7.1 Overview

To exercise Dunyazad’s prospective impressions system, I set up Dunyazad to

construct three different kinds of choices:

• Relaxed choices, where the stakes were low and there were no bad options.

• Obvious choices, where there was a single option that stood out as more

advantageous than the rest.

• Dilemmas, where every option was about equally undesirable.
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These three prospective impressions cover positive and negative option impres-

sions, low- and high-stakes choices, and contrasting and similar option sets, so

they exercise every dimension of player expectations that Dunyazad attempts

to model. Of course, the full set of Dunyazad’s prospective impressions (shown

in table 5.3) is broader, and there are plenty of prospective impressions that

Dunyazad does not include definitions for, but relaxed, obvious, and dilemma

choices were chosen as representative for this experiment. Note that factors

which give rise to “obviousness” or “being a dilemma” are quite a bit simpler

than, say, factors that make a player feel regret. These experiments, and indeed

work on Dunyazad so far, has focused on these simple effects because if they

can’t be produced reliably, more complex effects are unlikely to work either. The

results presented here are thus only the first step in Dunyazad’s use as a tool for

exploring choice poetics.

After constructing choices, I ran a survey that asked participants to read a

single choice generated by the system and answer some questions about their

perception of the choice. I analyzed the responses across choice categories and

compared them against a uniform distribution to determine if players’ percep-

tions match what the system intended. The data show that Dunyazad was mostly

able to produce the desired prospective impressions, but in a few specific cases

there were surprising results. Because Dunyazad is a transparent operational-

ization of the goal-based choice analysis technique described in section 5.4, both

the expected and surprising results can usefully inform not only the system’s

development but also the theory of choice poetics.

7.2 Method

The primary goal of this experiment was to assess Dunyazad’s ability to manage

and predict player’s prospective impressions, i.e., perceptions of a choice before
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making a decision. To that end, the experiment focuses on players’ perceptions

of options at a choice, and does not even present outcomes to the participants at

all. The three choice types that were generated were chosen because they are

each distinct in terms of the player expectations they engender, and because, as

stated earlier, they together exercise Dunyazad’s capacity to reason about stakes,

positive and negative indicators, and both contrasting and similar options.

To gather data on player expectations, I generated choices using Dunyazad,

showed them to study participants, and asked participants a series of questions

about specific qualities of the choice they just read. Because I used Amazon

Mechanical Turk to gather data, my participants were each paid a small amount

and presumably approached the survey as a means to earn money rather than as

a voluntary undertaking. Because of this, questions were asked in a hypothetical

manner (e.g., “If you were reading this story, which option would you choose?”)

rather than directly (e.g., by having participants pick an option) to imply that

the task at hand was asking them to judge the choice as someone reading it for

entertainment might. Of course, this framing (and being asked specific questions

in general) might encourage an analytical mode of engagement, which is not

what Dunyazad is designed to support, but that limitation is to some degree

inevitable when survey responses are solicited.

To control for participants paying little attention, being unfamiliar with

English, or simply filling in random responses, two check questions were asked.

Responses from participants who failed to answer these questions satisfactorily

were excluded from the analysis, as were responses where one or more questions

were left blank (about 15% of all participants).

7.2.1 Treatments

For this experiment, there were three experimental treatments, each correspond-

ing to a different set of rules used by Dunyazad to generate the choice experienced
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by a subject. These are the “obvious,” “relaxed,” and “dilemma,” choice types

described above (see also table 5.3 for formal definitions of these as Dunyazad

perceives them). The system definitions given in that section represent extra

constraints placed on the choices generated by Dunyazad beyond its common

core rules. Each participant thus saw a choice shaped by one of three different

constraint sets.

Of course, each constraint set can generate a potentially large range of specific

choices, but this study was interested in perceptions common across choices

generated using the same constraints. One possibility would be to show each

participant a unique choice from the space of choices possible given one of the

treatment conditions. However, this setup would mean that no single choice

would be seen by more than one participant, and so there would be no way to

analyze the contribution of individual choices to the perception of the different

treatments. Instead, I generated three different choices per treatment, and

showed each choice to ten participants, for a total of 30 participants per treatment

pre-attrition.

You come to a tavern and decide to rest for a while. A merchant is bored
and a noble is bored and an innkeeper seems knowledgeable. What do
you do?

1. You play a song for the noble
(You have skill: musician. You have no tool for music).

2. You gossip with the innkeeper
(You are missing skill: negotiation).

3. You play a song for the merchant
(You have skill: musician. You have no tool for music).

Figure 7.1: An example choice.
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7.2.2 Setup

To set up the experiment, I used Dunyazad in its “experiment” mode (which

causes it to generate only a single choice and to use a special framing) to generate

three choices for each of the experimental conditions. Additionally, each choice

was required to have exactly three options, so that the number of options wasn’t

a confounding factor in the data. These nine choices were generated sequentially

by the system, so there was no opportunity to cherry-pick “good” examples of

each treatment category. The choice shown in fig. 7.1 is the first choice that

was generated; it is in the “dilemma” treatment. The framing for each choice

presented the skills that the system had assigned the player character for that

choice, and established a basic context for the choice (see fig. 7.2). The framing

for each choice differed only in the skills presented and the fictional destination

name, which Dunyazad chooses randomly from a fixed list of made-up names.

You are about to set out on an epic journey. You are are heading towards
towards the distant country of Jyväsky, hoping to earn fame and fortune.
You have some perfume and a book of legends, and you have skill: literacy,
you have skill: musician, and you have skill: healing. Eager to be on your
way, you set off on the road towards Jyväsky.

Figure 7.2: Example framing. The repetition of “towards” is a typo that was
present in the text shown to participants.

Once the choices were generated, their text was broken into parts and put

into a comma-separated values file for upload to Amazon Mechanical Turk

where the parts would be substituted into a template. Given a survey template,

Mechanical Turk generated an individual survey page for each choice, and ten

tasks were posted per choice (a total of 90 tasks), which workers on Mechanical

Turk were able to preview, accept, and fill out for payment. Each worker was

163



CHAPTER 7. EXPERIMENT I: PROSPECTIVE IMPRESSIONS

paid 50 cents1 upon completing their survey. Myle Ott’s “uniqueturker” script

(https://uniqueturker.myleott.com/) was used to ensure that no individual

worker filled out the survey more than once. To avoid being targeted by bots, the

tasks required workers with a 97% acceptance rate across at least 1000 accepted

tasks (this is lower than the default settings).

7.2.3 Survey Content

Each survey was divided into three sections. The first section “Preliminaries”

began with a prompt that read:

To provide useful data for this survey, you must be at least 18 years

old and able to read English. To confirm this (and to confirm that you

aren’t a bot), please answer the following question.

This section just contained the following question designed to ensure that subjects

were at least 18 years old and had basic English proficiency:

If you’re at least 18 years old, please don’t write “Age of years eighteen

least at am I that confirm I,” as the answer here, instead write that

sentence backwards, ended with an exclamation point. If not, please

do a different HIT, as I cannot use your data in my results, and thus I

will not accept your response.

The second section of the survey was titled “The Choice” and it included the

choice that Dunyazad generated. It began with a prompt:
1This was chosen based on online advice to pay about minimum wage for tasks on Mechanical

Turk. Given the median response time, the hourly pay rate was $7.50, but in retrospect, the
inconvenience of survey tasks (where a worker cannot complete the same task many times and
thus work more efficiently) suggests that a higher pay rate would be appropriate. For this reason
(and because the second survey included more questions) I used a higher pay rate for the second
experiment. The total cost (about $50 in this case, counting Amazon’s 10% fee) was quite cheap.
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Please read the following short story which presents you with a choice,

then answer the questions about that choice below.

In this section, each survey displayed one of the nine generated choices, followed

by a single multiple-choice question:

If you were reading this story, which option would you pick?

This question had three options: “Option 1,” “Option 2,” and “Option 3.”

The final section of the survey was titled “Opinion Questions” and began with

the following prompt:

Please rate your agreement with the following statements, from 1

(strongly disagree) to 5 (strongly agree).

This section contained 8 Likert items2 in the fixed order shown here (the quotes

were part of the survey):

1. “There are no bad options at this choice.”

2. “There is a clear best option at this choice.”

3. “The stakes for this choice are low.”

4. “There are no good options at this choice.”

5. “All of the options at this choice are about equally promising.”

6. “There are options at this choice.” (This is a trick question to test whether
you’re paying attention. Please simply indicate that you are in complete
disagreement.)

7. “This is a difficult choice to make.”

8. “This choice feels like it will have important consequences.”
2These were individual Likert items which did not compose a Likert scale, as the goal of the

survey was to directly measure opinions, and there were no underlying psychological variables
presumed to be giving rise to behavior.
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Each question in this section was followed by the same five numbered options

presented vertically:

1. strongly disagree

2. somewhat disagree

3. neutral

4. somewhat agree

5. strongly agree

For these questions (and the multiple-choice question in the previous section)

participants selected an option by clicking a radio button next to that option.

There were no default responses, so someone who didn’t click any of the radio

buttons would submit a blank response for that question. Responses were treated

as ordinal data, and labeled with the numbers 1 through 5 in the same order

they appeared here (i.e. 1→ strongly disagree; 5→ strongly agree).

7.3 Hypotheses

Before conducting the survey, I came up with a set of initial hypotheses about how

participants would answer these questions based on the treatment conditions.

There were three types of hypothesis: single-treatment hypotheses, between-

treatment hypotheses, and stakes hypotheses. Each singe-treatment hypothesis

posited that under a particular treatment, respondents would generally agree

with or disagree with a particular question. The single-treatment hypotheses

used are listed in table 7.1. Agreement with a question was determined by a one-

sided Mann-Whitney-Wilcoxon U test (Wilcoxon, 1945; Mann and Whitney, 1947)

166



7.3. HYPOTHESES

against a uniform distribution3 of responses with the alternate hypothesis being

“The median of the survey responses is significantly higher than the median of the

uniform distribution.” Disagreement likewise used a Mann-Whitney-Wilcoxon U

test with the alternate hypothesis that the median of the survey responses was

smaller than that of a uniform distribution. In both cases, a confirmation of a

hypothesis was taken to be significant for p < 0.05.

For the between-treatment hypotheses, survey data from two different treat-

ments were compared using a Mann-Whitney-Wilcoxon U test to test whether

one was statistically more-agreed-with than another (with the threshold for sig-

nificance again being set at p < 0.05). The statistics are the same for the converse

cases, so only one test was performed per hypothesis (i.e., if responses to question

3 showed significantly more agreement for the “obvious” treatment than for the
3Another possible standard for comparison would be an all-neutral distribution. Comparison

against a uniform distribution helps demonstrate that the answers aren’t random, however, and
the unsupervised nature of the study meant that participants might have answered some questions
at random in order to complete it quickly (although there were some other guards against this). To
verify that a uniform distribution was an acceptable standard I ran the same hypothesis checks
against an all-neutral distribution and found that support for each was equal to or greater than
support when comparing to the uniform distribution used.

Question Obvious Relaxed Dilemma

1. There are no bad options at this choice. - agree disagree
2. There is a clear best option at this choice. agree - disagree
3. The stakes for this choice are low. - agree -
4. There are no good options at this choice. disagree disagree agree
5. All [options] are about equally promising. disagree - agree
6. There are options at this choice. [. . . ] - - -
7. This is a difficult choice to make. disagree - agree
8. This choice [has] important consequences. - - agree

Table 7.1: Prospective single-treatment hypotheses by treatment
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Question Hypotheses

1. There are no bad options at this choice. relaxed > dilemma
2. There is a clear best option at this choice. obvious > dilemma
3. The stakes for this choice are low. -
4. There are no good options at this choice. dilemma > obvious & relaxed
5. All [options] are about equally promising. dilemma > obvious
6. There are options at this choice. [. . . ] -
7. This is a difficult choice to make. dilemma > obvious & relaxed
8. This choice [has] important consequences. dilemma > obvious & relaxed

Table 7.2: Prospective between-treatment hypotheses by treatment. The “>”
signs indicate more agreement relative to an alternate treatment. “> obvious &
relaxed” indicates that that treatment is hypothesized to be more-agreed-with
than both of those treatments individually (two separate hypotheses).

“relaxed” treatment, it follows automatically that they show significantly less

agreement for the “relaxed” treatment than for the “obvious” treatment—the

test is symmetric). Table 7.2 lists the between-treatment hypotheses. Combined

across all three treatments, there were a total of 13 single-treatment and 9

between-treatment hypotheses.

The stakes hypotheses were simpler: across all treatments, participants

who were shown a choice identified by the system as low-stakes should agree

with the statement “The stakes for this choice are low.” Additionally, partici-

pants shown high-stakes choices were expected to disagree with that statement.

Both of these hypotheses were validated using Mann-Whitney-Wilcoxon U tests

against uniform distributions as above. A fall-back hypothesis for stakes was

that participants who saw low-stakes choices would agree more strongly with

the statement that the stakes were low than participants who saw high-stakes

choices (a between-cases hypothesis).
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7.4 Results

Before processing the data from Amazon Mechanical Turk, responses that showed

signs of inattentiveness, non-proficiency with English, or excess haste were

filtered out. In fact, as responses were being submitted, responses where either

the age question was left blank or where the trick question (question 6) had an

answer other than “1 - strongly disagree” or “5 - strongly agree” were rejected,

meaning that Mechanical Turk would not pay the responder and the task would be

reposted. Including 6 rejected responses, a total of 96 responses were gathered,

with 30 non-rejected responses to each treatment (10 per question). Of the

responses which remained, further filtering was performed:

• Responses where the answer to question 6 wasn’t “1 - strongly disagree”

were dropped. These indicate a responder who may not be paying close

attention to the survey.

• Responses where the total time spent on the task was less than or equal

to 90 seconds were dropped. Answering all 8 questions in just 90 seconds

is probably not possible if each question is given reasonable consideration.

The median response time was 240 seconds (4:00) before filtering and

280 seconds (4:40) after filtering, although these times are simply the

time between a participant accepting and submitting a task; they don’t

necessarily work on the task exclusively during that time, and in general

accepting several tasks before doing them is a common pattern of behavior.

• Responses where any question was left blank were dropped. Given the

“neutral” response option and the content of the survey, leaving a question

blank is more likely a sign of lack of attention than of hesitation to answer.

After these filtering steps, a total of 79 valid responses remained, with 25 re-

sponses to the “obvious” treatment and 27 responses each to the “relaxed” and
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“dilemma” treatments. Given these final response counts, I used a uniform dis-

tribution of 25 data points to test my single-treatment hypotheses, as that was

the closest multiple of 5 (the number of response options) to the sizes of my data

sets. The low- and high-stakes conditions had 44 and 35 responses respectively;

I used the same 25-point uniform distribution to test my stakes hypotheses.

A summary of the data is shown in fig. 7.3. The percentages shown are total

percent of participants who disagreed, were neutral, or agreed with the given

question (from left to right) and the percentages for each separate response are

plotted as colored bars. For each question, data from each of the three treatments

is plotted separately, and in some cases divergence is immediately apparent. Of

course, differences that seem apparent on this summary graph may or may not

be statistically significant.

I tested my hypotheses as described above, and the results of those tests

are show in tables 7.3 and 7.4. Table 7.3 shows the single-treatment hypothesis

results: 9 of my 13 hypotheses were confirmed by my data, while 4 were not.

Each entry in this table indicates the hypothesis (agree→ “A” and disagree→

“D”), the p-value for that hypothesis (the hypothesis is confirmed if the p-value

is below 0.05), and if confirmed, the common-language effect size for that test.

Table 7.4 shows the between-treatment hypothesis results: 8 of my 9 hypotheses

were confirmed by my data and 1 was not.

Note that the common-language effect size is just the percentage of compar-

isons between the cases being tested that support the alternate hypothesis. This

means that, for example, if all responses are neutral, the common-language effect

size when asserting that the responses are greater than a uniform distribution

will be exactly 50% (the theoretical minimum common-language effect size). This

is because 50% of comparisons between an all-neutral data set and a uniform

data set will support the alternate hypothesis (that the neutral data’s median is

higher) and 50% will refute it (counting tied comparisons as half-supporting and
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Figure 7.3: A summary of the data by question plotted as percentages of re-
spondents per treatment who gave each possible answer following (Robbins and
Heiberger, 2011). Responses range from 1 (strongly disagree) to 5 (strongly
agree) with 3 being “neutral.” Disagreeing responses are plotted to the left, and
agreeing responses are plotted to the right.
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Question Obvious Relaxed Dilemma

1. No bad options. - A 0.176 × D 0.009 69%
2. Clear best option. A 0.023 66% - D 0.047 63%
3. Low stakes. - A 0.015 67% -
4. No good options. D 0.006 70% D 0.005 70% A 0.007 69%
5. Option balance. D 0.069 × - A 0.322 ×
7. Difficult choice. D 0.073 × - A 0.009 69%
8. Consequences. - - A 0.001 73%

Table 7.3: Single-treatment results. Each entry has a letter indicating the
hypothesis (‘A’ for agree or ‘D’ for disagree) followed by the p-value for that
test. Significant entries (p < 0.05) are listed in bold, and indicate a common-
language effect size (the percentage of comparisons supporting the hypothesis).
Non-significant entries are highlighted in blue. Note that question 6 (the trick
question) is omitted here.

Question Hypothesis p-value Effect

1. No bad options. relaxed>dilemma 3.1×10−4 76%

2. Clear best option. obvious>dilemma 1.1×10−4 78%

4. No good options.
dilemma>obvious 1.9×10−7 88%
dilemma>relaxed 1.2×10−7 87%

5. Option balance. dilemma>obvious 0.036 64%

7. Difficult choice.
dilemma>obvious 2.7×10−5 80%
dilemma>relaxed 0.001 73%

8. Consequences.
dilemma>obvious 0.140 ×

dilemma>relaxed 3.8×10−4 75%

Table 7.4: Between-treatments results. Each row indicates a hypothesis, the
corresponding p-value, and the effect size if the result is significant (p < 0.05).
Significant results are shown in bold; non-significant results are in blue.
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half-refuting). By the same logic, if responses were all “somewhat agree,” the

effect size would be 70%, and if responses were all “strongly agree,” the effect size

would be 90% (the theoretical maximum effect size in the studies presented here).

The effect sizes listed in table 7.3 range from 62% to 71%, which are moderate to

strong effects. The effect sizes in table 7.4 range from 63% to 83%, with most

being strong effects at >70% effect size.

Besides the single-treatment and between-treatment hypotheses, all three of

the stakes hypotheses were confirmed. For the first (low-stakes choices would

elicit agreement that their stakes were low) the p-value was 0.0047 and the effect

size was 65%. The second stakes hypothesis (that high-stakes choices would elicit

disagreement with the same statement) had a p-value of 0.0011 and an effect

size of 70%. Finally, the backup hypothesis (that agreement would be higher in

the low-stakes case than the high-stakes case) was a given as the first two were

confirmed; it had p = 9.7× 10−11 and an effect size of 83%.

7.5 Discussion

Out of the 25 specific hypotheses, 20 were supported by the data. This indicates

that most of the perceptual qualities I expected given the constraints used to

generate choices were in fact identified by most of the survey participants. In

particular, the fact that all of the stakes hypotheses were confirmed indicates

that Dunyazad’s author-based estimation of which player goals are more and

less important is working. On a treatment-by-treatment basis, the observed

properties were:

• “obvious” choices—Participants tended to agree that “obvious” choices

had a clear best option (question 2) and they tended to disagree with the

statement that they had no good options (question 4). I expected that

participants would disagree that all of the options were equally promising
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(question 5) and that these choices were difficult (question 7) but in both
cases the data did not confirm these expectations.

• “relaxed” choices—Participants tended to agree that the stakes for these
choices were low (question 3) and they tended to disagree with the statement
that these choices had no good options (question 4). I expected participants
to agree that these choices had no bad options (question 1) but the data did
not support this hypothesis.

• “dilemma” choices—Participants tended to disagree that there were “no bad
options” at these choices (question 1) and agree that there were “no good
options” at these choices (question 4). Furthermore, they disagreed with
the statement that these choices had a clear best option (question 2), and
agreed that these choices were difficult and had important consequences
(questions 7 and 8). However, I expected participants to agree that all
options at these choices were about equally promising, but the data did not
support this hypothesis.

Overall, the data support Dunyazad’s ability to control stakes and outcome
valences, but also show that it has a bit of trouble making outcomes seem similar.
The areas where its choices were able to produce the desired poetic effects are
important successes for automatic reasoning about choice poetics, and they imply
that the goals survey participants considered when judging options align at least
somewhat with those the system assumed players would have.

Places were the data did not support my hypotheses are opportunities for
further scrutiny. To start with, I wanted to investigate whether the failed
hypotheses were the result of general trends across all choices generated under a
treatment condition or whether any single choice contributed disproportionately
to an unexpected result. To do this I broke down the results by individual
questions within a treatment and plotted them to see if there was any indication
of per-question differences.
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Figure 7.4: A graph of responses to question 1 under the “relaxed” treatment.
The three numbers are the seeds used to generate the three different choices for
this treatment. The graph setup is the same as in fig. 7.3.

7.5.1 Option Relativity

The first of my failed hypotheses involved the “relaxed” treatment. I expected the

“relaxed” treatment to elicit agreement with the statement “There are no bad

options at this choice,” but it didn’t do so definitively (the statistical test failed

to reject the null hypothesis that the answers to this question were consistent

with a uniform distribution of underlying responses). A per-choice breakdown of

the data for the “relaxed” condition shown in fig. 7.4 gives a strong indication

that the question with seed 4897 elicited qualitatively different responses than

the two other questions in this treatment. That particular question is shown in

fig. 7.5, and reveals one possible reason for what I observed: unlike the other two

questions in the “relaxed” case, option three of this question lists “no relevant

skills” rather than giving a relevant skill possessed by the player.

The fact that the player doesn’t have any skills relevant to that action does not

mean that the action will fail, but it might make that option seem less desirable

than the others at that choice. None of the options at the other two choices in

the “relaxed” treatment listed “no relevant skills,” they all listed some skill that

the player had as relevant, which explains why there might be a difference in

responses. If that wording caused the shift, it would be consistent with Schwartz

et al.’s theory of satisficing versus maximizing personalities (B. Schwartz et al.,

2002) for real-world choices. Schwartz et al. have found that while some people

are happy as long as their choices lead to satisfactory results, others are unhappy

if their choices lead to good but nevertheless suboptimal results. The strong split
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You come to a tavern and decide to rest for a while. A noble is bored and a
peasant is bored and a merchant is selling a book of herbal lore. What do you
do?

1. You tell the peasant a story
(You have skill: storytelling).

2. You tell the noble a story
(You have skill: storytelling).

3. You offer to trade the merchant your dragon scale for the merchant’s
book of herbal lore
(no relevant skills).

Figure 7.5: The “relaxed” choice with seed 4897 (minus the framing, which is
largely the same as that shown in fig. 7.2).

in responses for this specific case (including both significant “strongly disagree”

and significant “strongly agree” contingents) indicates that some people may

be interpreting the phrase “bad option” as meaning options that are absolutely

bad, while others may be comparing the options against each other. It would

take more data to discern whether this distinction is what is at work here, but

it is clear that it is an important distinction for choice poetics, and it is not yet

something that Dunyazad reasons about.

Although Dunyazad does not reason about this, it is to some degree aware of

the distinction between the question with seed 4897 and the other two questions

in that treatment. The constraints for the “relaxed” condition were that each

option either “enables” or “advances” a goal (in the technical senses; see page

136 in item 3), and in this case, the system generated two options that “advanced”

a goal and one that merely “enabled” a goal, thus creating a distinction even on

its own terms. The other two questions in the “relaxed” category each included

three options which “advanced” a goal. In light of the survey results, it is clear

that to construct choices that unambiguously have “no bad options” the system

should not only require that each option works towards a player goal, but that

each option is balanced against all others.
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Figure 7.6: A graph of responses to question 5 under the “dilemma” treatment.
The three numbers are the seeds used to generate the three different choices for
this treatment. The graph setup is the same as in fig. 7.3.

7.5.2 Balancing Failures

Another unsupported hypothesis was that in the “dilemma” treatment partici-

pants would agree with the statement “All of the options at this choice are about

equally promising.” I expected this because one of the constraints of the “dilemma”

treatment was that all of the threatened goals should have the same priority.

However, as shown in fig. 7.6, even for the individual choice in the “dilemma”

treatment where participants reported the most agreement, 30% of participants

answered “somewhat disagree.”

Figure 7.7 shows the options that participants said they would choose for

the three dilemma choices. For the first two choices, option two is a clear loser,

and looking at the choices, it’s easy to see why. Both of those choices (which

dilemma

C
ou

nt

0

2

4

6

1 2 3

11828

1 2 3

46466

1 2 3

72724

Figure 7.7: A histogram of options selected by participants at the three different
“dilemma” choices (each labeled by seed).
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are nearly identical) involve being attacked by a dragon (fig. 7.8 shows the first

choice). In both choices, option two is an option to attack the dragon yourself,

but of course you have neither the “fighting” skill nor a weapon, and the dragon

has both. Although you also lack relevant skills for the other options, making a

desperate attempt to flee from or pacify a dragon seems like a better choice than

fighting it (at the very least, it did to all of my participants).

There are at least three factors that might contribute to the system’s di-

vergence from players’ analysis of these choices. The first has to do with the

granularity of expectations, the second with the granularity of goal priorities,

and the third with stacking goals.

First, there are some clear arguments available to players as to why fighting

might be a worse option than fleeing (for example) in an unfavorable situation.

One is that fighting presents a greater risk of a bad result, and another is that

fighting is directly related to a categorically worse result. The first argument

has to do with the granularity of expectations: Dunyazad just recognizes events

as “unlikely,” “neutral,” or “likely.” In this case, it reasons that since both

fleeing and fighting are “likely” to “fail” the goal of avoiding the present threat,

both options fail a high-priority goal. However, given that all options are marked

negatively, the prospect of fleeing evokes more hope for unwarranted success than

As you continue your journey, a dragon swoops down from the skies, scales
glinting in the sun. It is threatening you. What do you do?

1. You try to flee from the dragon
(You are missing skill: wilderness lore. It has skill: wilderness lore).

2. You attack the dragon
(You are missing skill: fighting. It has skill: fighting. It has some claws).

3. You attempt to pacify the dragon with music
(You are missing skill: musician).

Figure 7.8: The “dilemma” choice with seed 11828 (minus the framing, which is
largely the same as that shown in fig. 7.2).
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the prospect of fighting. This could be expressed in Dunyazad by introducing

evaluations like “somewhat_likely” and “very_likely” that would distinguish

these cases. Of course, the “skill_link” mechanism would have to be updated

to give estimates of these levels of likelihood in different circumstances.

Another argument a player could make as to why fighting is worse than

fleeing in this situation has to do with the relative magnitude of the results.

Internally, Dunyazad recognizes that the “attack” option is likely to “fail” both

the “avoid_threats_to” and “preserve_health” goals, while the “flee” option

is only expected to “fail” the “avoid_threats_to” goal. However, as Dunyazad

is written now, it treats an option that indicates one high-priority goal failure

no differently form one that indicates multiple failures. Particularly for choice

structures which are supposed to have balanced options, some kind of counting

logic would be useful to determine when one option is better or worse than

another, even when they’re in the same general category.

In the same vein, one could argue that even without counting how many

goals fail, the “preserve_health” goal should be higher-priority than the “avoid_

threats_to” goal. In part because of complexity concerns (although I have not

tested this extensively) I made a decision to limit Dunyazad to two priority levels.

One could imagine instead a partially directed “more-important-than” graph

between all player goals at each timepoint, which would be another way for

Dunyazad to realize that fighting is worse than fleeing in this case.

The problem here is that the system’s representation of player expectations

is not fine-grained enough. To the system, all of the options at these choices

are expected to “hinder” the player’s goal of keeping their character alive and

uninjured, but the system makes no distinction beyond that. How certain does

the failure of these goals seem to the player? Exactly how badly does the player

expect to fare when their goal is not met? In this case, even when told that the

situation is hopeless (or perhaps especially then), fleeing seemed a better option
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You come to a tavern and decide to rest for a while. A merchant is bored and
a noble is bored and an innkeeper seems knowledgeable. What do you do?

1. You play a song for the noble
(You have skill: musician. You have no tool for music).

2. You gossip with the innkeeper
(You are missing skill: negotiation).

3. You play a song for the merchant
(You have skill: musician. You have no tool for music).

Figure 7.9: The “dilemma” choice with seed 72724 (minus the framing, which is
largely the same as that shown in fig. 7.2).

than attacking the dragon head-on, but the system doesn’t distinguish those
cases. Based on this data, the system should be improved by adding more detail
to its assessments of goal failure and success.

Any one of these corrections would help this particular case, but especially
given that Dunyazad also has difficulty producing balanced positive options as
mentioned in the previous sub-section, I suspect a more focused approach would
be better. After all, the likelihood reasoning is doing a good job of predicting
which options players will view positively or negatively; it just has a hard time
figuring out whether options are equally positive or equally negative. As fig. 7.7
shows, even the last dilemma choice (shown in fig. 7.9 produced a somewhat
skewed pattern of player decisions. Even though the reason for players to have a
preference may be different for this choice (perhaps the difference in tool availabil-
ity?) the choices here were also not perceived as balanced (see fig. 7.6). Rather
than further overload the current reasoning, an additional subsystem dedicated
to direct relative analysis of options should be added to address problems like
these. This system could separately maintain more-nuanced representations
of goal priorities and outcome likelihoods, and then build arguments as to why
each option is more- or less-desirable than each other option. In many cases,
this nuanced relative analysis could be short-circuited when the old low-fidelity
analysis detects a clear difference.
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In terms of the choice analysis method presented in chapter 5, this exact

problem was already mentioned in section 5.4.6 (see the second paragraph where

it talks about the balance of impacts). I hypothesized here that Dunyazad would

be able to fake a more detailed analysis by just insuring that the threatened

goals had equal priorities, but that turned out not to be true. In this case,

what was learned from Dunyazad’s failure backs up the theory’s point about

balancing impacts: dilemmas are a case which needs closer inspection. Getting

this experimental result is still useful, because it provides a concrete example of

why this is the case.

7.5.3 Outcome Clarity

Not only did I expect participants to agree that options were balanced for

“dilemma” choices, but I also expected them to disagree for “obvious” choices.

Here again my hypothesis was not supported by the data. A per-choice analysis

of question 5 in the “obvious” condition (the top half of fig. 7.10) shows that

again, one choice is divergent from the other two. Figure 7.11 shows that middle

choice, which compared to the other two “obvious” choices is low-stakes (one of

the other choices starts with a dragon attack, the other with bandits attacking

some merchants).

Not only are the stakes for this choice low, but they are unclear. What exactly

does the player hope to gain by gossiping or by telling a story? Perhaps friendship

or some useful information, but those potential rewards seem both uncertain

(even given a “successful” action) and questionably useful. In contrast (albeit

a contrast that participants did not see directly) the utility of fleeing from an

attacking monster is clear, even if it is uncertain whether you will succeed.

Furthermore, there aren’t any obvious risks associated with options 1 and 3, so

even if the player is missing a relevant skill, they might still be worth trying.

181



CHAPTER 7. EXPERIMENT I: PROSPECTIVE IMPRESSIONS

75%
44%
88%

12%
44%
0%

12%
11%
12%

38%
22%
12%

25%
78%
75%

38%
0%
12%

50%
22%
88%

50%
78%
0%

0%
0%
12%

50%
100%
75%

25%
0%
12%

25%
0%
12%

75%
44%
88%

12%
56%
12%

12%
0%
0%

25%
78%
62%

62%
22%
12%

12%
0%
25%

0%
22%
0%

88%
67%
88%

12%
11%
12%

1. There are no bad options at this choice.

2. There is a clear best option at this choice.

3. The stakes for this choice are low.

4. There are no good options at this choice.

5. All [options] are about equally promising.

7. This is a difficult choice to make.

8. This choice [has] important consequences.

21105
64487
97623

21105
64487
97623

21105
64487
97623

21105
64487
97623

21105
64487
97623

21105
64487
97623

21105
64487
97623

100 50 0 50 100
Percentage

Response 1 2 3 4 5

Figure 7.10: A graph of responses to questions 5 and 7 under the “obvious”
treatment by seed. For question 5, the choice with seed 64487 is clearly different
from the other two, and for question 7, the choice with seed 21105 is the one that
stands out. Figures 7.11 and 7.12 show the text of the divergent choices.

You come to a tavern and decide to rest for a while. A merchant is bored and a
peasant seems knowledgeable and an innkeeper seems knowledgeable. What
do you do?

1. You gossip with the innkeeper
(You are missing skill: negotiation).

2. You tell the merchant a story
(You have skill: storytelling).

3. You gossip with the peasant
(You are missing skill: negotiation)

Figure 7.11: The “obvious” choice with seed 64487.

You come across some bandits attacking a merchant. The bandits are threat-
ening the merchant. What do you do?

1. You attack the bandits
(They have skill: fighting. You are missing skill: fighting. They have no
tool for fighting).

2. You travel onwards
(no relevant skills).

3. You talk the bandits down
(no relevant skills).

Figure 7.12: The “obvious” choice with seed 21105 (discussed in section 7.5.4).
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Given this combination of low stakes, a dubious reward for the most-successful-

seeming option, and seemingly consequence-free options all around, it is not

hard to see how some might find these options “about equally promising.”

On the other hand, the system’s attempt to construct an obvious choice in

this case was still somewhat successful. 7 of 9 participants who saw this choice

“strongly agreed” with the statement “There is a clear best option at this choice”

and 8 of those 9 picked option #2 as the option they would choose. While it might

seem like a contradiction to agree (as 3 participants did) with both the statement

that a choice has equally promising options and the statement that it has a clear

best option, this highlights the difference between outcomes-focused evaluation

of individual options and choice-oriented option comparison. The phrasing of “All

of the options at this choice are about equally promising,” suggests evaluating the

utility of each option independently and comparing those utilities. In contrast,

“There is a clear best option at this choice,” suggests comparing options against

each other directly to find one that is better than the others. The fact that people

often make decisions inconsistent with simple utility calculation is well-known

(see e.g., (Tversky and Simonson, 1993)), so it should not be surprising that a

context in which someone is asked to make a decision might elicit a different

response than a context in which someone is asked to rate responses.

The implications for choice poetics are interesting, because choice poetics is

concerned with both mindsets. At least in terms of impact on the player, there’s

clearly a difference between a choice where all of the options seem “about equally

promising” and where that’s definitely not the case, even if both choices have

“a clear best option.” Choices where options seem equally promising but most

players choose a particular route regardless might even be good candidates for

the focus of regret. For example, if it turns out that the “clear best option” leads

to failure and players are forced to revisit the original decision, having seen

some potential in the alternatives they’re more likely to feel that the choice

183



CHAPTER 7. EXPERIMENT I: PROSPECTIVE IMPRESSIONS

was fair, and thus presumably blame their own decision for the consequences

(section 8.6.5 discusses some data relevant to this point that resulted from the

experiment on outcome evaluations). At the same time, if the designer can be

confident that most players will go down the “obvious” route first even without

making the contrast with the other options huge, they can assume that most

players will experience the regretful path as opposed to choosing the ultimately

correct option the first time.

Despite the interesting revelations prompted by this case, Dunyazad does

actually have a problem here: it is analyzing outcomes according to the game

mechanics that it knows about, but the players in this case aren’t playing a

game: they’re experiencing a single choice with very little context. If someone

had played a few of Dunyazad’s output stories already, they’d have a view of the

possibility space much more similar to Dunyazad’s, especially in terms of the

outcomes of actions like “gossip” and “tell_story.” If the players knew what to

expect from both success and failure at these actions, and had a stronger sense

of the role skills play in determining outcomes, they wouldn’t get their hopes up,

and the choice would be “obvious.”

That is the deeper issue here as well: the simple notions of “success” and

“failure” when performing an action often don’t correspond to overall positive

and negative results when an action isn’t clearly oriented towards some pressing

player goal. For example, an attempt to “gossip” despite lacking the relevant

skill seems like it might still yield interesting results, and it isn’t likely to be

disastrous. The same is not true of attacking an enemy: when they’re more

skilled or better-armed, there’s a clear sense of danger (and of what is at stake).

In other words, Dunyazad is doing a good job of manipulating player expectations

when it is heavy-handed, threatening high-priority player goals to make options

appear hopeful or doomed. However, when Dunyazad attempts to use low-priority
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goals in the same fashion, players don’t follow its lead: “My gossiping probably

won’t go ‘as intended?’ Well, it might still be awesome!”

The simplest response to this is to just tread carefully when using low-stakes

choices and assume that some of them aren’t going to get the result you want,

while making sure to use high-stakes choices if a particular property like obvi-

ousness is critical. In the longer term, Dunyazad should recognize things like

the desire to explore rather than always travel the beaten path (especially when

the stakes are low). At the same time, one area for future work is goal-probing

questions, which would allow Dunyazad to ask the player (either directly or indi-

rectly) to indicate their goals. These questions would serve two purposes: first,

they would allow Dunyazad to dynamically determine which goals (including

low-priority goals) the player thinks are important. Second, these questions,

when successful, may subtly influence players by committing them to a goal: one

a player affirms a goal, they may be more likely to behave in a manner consistent

with that goal in the future (see e.g., (Hall, Johansson, and Strandberg, 2012) on

the powerful instinct for post-hoc justification when an opinion is perceived—even

incorrectly—to be one’s own).

7.5.4 Conflicting Goals

My hypothesis that respondents would not find “obvious” choices difficult high-

lights a different choice in the “obvious” category. The data did not support this

hypothesis, and as shown in fig. 7.10, the choice with seed 21105 accounts for

the majority of all responses that contradict it. That choice is shown in fig. 7.12,

and from the system’s perspective, it satisfies the definition of an obvious choice

(see table 5.3) because the second option “advances” a player goal, while neither

the first nor the third do, and both the first and third “threaten” a player goal.

The perceived difficulty of this decision probably stems from the fact that

it pits two player goals against one another: the goal of self-preservation is
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best served by option two, but the goal of helping others in need is best served

by one of the other options. This is similar to the lack of distinction between

threatening one and two goals encountered above. Even when one option at a

choice clearly has the most-positive outcome for the player considering all goals

to be equal, when that choice pits multiple goals against one another, it may

be very difficult indeed. In fact, choices with these structures may give rise

to an entirely different set of poetic concerns that involves moral judgements

(this is exactly how morality thought experiments like the “trolley problem” are

constructed, for example—see (Thomson, 1976)). A difficult decision between

two desirable or undesirable outcomes feels completely different from a decision

between two outcomes each justified by competing moral principles, and it can

resonate powerfully to the broader narrative structures of a story. In its current

state, Dunyazad doesn’t reason about morality at all: it makes no distinction

between goals in terms of their root motivations, and it has no compunction about

how a result is achieved as long as no player goals are threatened in the process.

While Dunyazad gets perhaps surprisingly far without these capabilities, they’re

clearly important and can come up by accident even when Dunyazad isn’t trying

to make use of them.

That said, a detailed inspection of the answer set that resulted in this choice

reveals another problem with the system: ignoring the lack of moral reasoning,

it’s simply not working as intended. In this case, Dunyazad actually thinks

that travelling onwards serves the goal of preventing the threat to the merchant

(because if the player travels onwards, that entire situation is left behind and

therefore the threat no longer exists) while it has no conception that this serves

a goal of self-preservation (although it understands that interfering by either

means threatens the player’s safety). There are thus two more changes to the

system suggested by this data: first a bug-fix related to the consequences of

travelling onwards, and second, the addition of relative goal relevance across
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options: the idea that if all but one option threatens an important goal, then

the remaining option can be seen as indirectly supporting that goal even if none

of its outcomes directly further that goal. Without running this experiment, I

would eventually have found and fixed the “travel onwards” bug, but I may not

have thought to make the second change. In this case, the data served to help

find and diagnose an anomaly in my system, which turned out to involve an error

in the code, but at the same time also pointed to two future goals for the choice

structure model: adding explicit moral reasoning, and a notion of relative goal

relevance when all but one option relates to a goal in the same way.

7.5.5 Stakes and Consequences

The final unsupported hypothesis was that participants would feel more strongly

that “dilemma” choices had important consequences than that “obvious” choices

did. This hypothesis was based on the idea that consequences might seem more

relevant (and thus important) when a decision was more difficult. Given that

one of my “obvious” choices seemed difficult to many participants as discussed

above, it is unsurprising that this hypothesis was not supported.
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Figure 7.13: A graph of responses to question 8 across all treatments by stakes.

What is interesting is the effect of the choice stakes on this question. The

similar hypothesis that participants would agree more in the “dilemma” case than

the “relaxed” case was supported by the data, and one big difference between

those two treatments is the stakes associated with them.4 In fact, when analyzing
4A statistical analysis of the assertion that participants agree more with the statement that

a choice’s stakes are low in the “relaxed” case than the “dilemma” case (not one of my original
hypotheses) reveals a strong significant effect (p = 2.88× 10−5; effect size 76%).
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the data for question 8 according to stakes rather than the three treatments, high-

stakes choices overwhelmingly seem as if they will have important consequences,

while low-stakes choices are mixed (see fig. 7.13).

Statistics confirm the obvious: not only did the high-stakes condition elicit

significantly more agreement on question 8 than the low-stakes condition (p =

2.14×10−8; effect size 79%), it was also significantly above a uniform distribution

(p = 4.9 × 10−6; effect size 78%). Because all of the “relaxed” choices were

low-stakes by design, there is of course correlation between the stakes and the

treatments, but the 35 high-stakes cases were about evenly distributed between

the “obvious” and “dilemma” treatments (16 in “obvious” and 19 in “dilemma”).

Such an overwhelming effect (none of the 35 respondents who saw a high-stakes

choice thought it would not have important consequences) further indicates that

the system is successful in predicting high-stakes player goals: for 94% of choices

where the system thought that an important player goal was affected, players

agreed at least somewhat that the consequences seemed important.

7.6 Conclusions

Overall, this study confirmed Dunyazad’s ability to construct choices based on

player expectations when certain criteria are met. Notably, many of the failed

hypotheses involved situations where several options together affected how a

choice was perceived:

• For question 1 (“There are no bad options at this choice.”) relative rather

than absolute judgements of what is a “bad” option seem to have been

employed by some participants.

• For question 5 (“All of the options at this choice are about equally promis-

ing.”) Dunyazad may need to make finer distinctions between different
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modes of failure, as several options expected to lead to failure may still
seem to offer a range of possibilities when no better options are present.

• Question 7 (“This is a difficult choice to make.”) showed that a choice can
be difficult when multiple goals conflict, even when expectations for one
goal are much better than for another.

These results point to several possible improvements for Dunyazad, and collec-
tively reinforce the importance of considering choices holistically when evaluating
choice poetics.

As already discussed, there are a number of changes that could be made to
Dunyazad based on these results:

• Implement separate “satisfaction” and “maximization” player decision
modes so that the system can reason about how difficult a decision might
seem, whichever decision modality a player is using.

• Upgrade Dunyazad’s system for estimating how individual options affect
goals by adding more detail so that it can further distinguish different
magnitudes of risk and reward.

• Have Dunyazad represent players’ uncertainty about the possible outcomes
of actions like “gossip” and “tell story” so that it can have a clearer picture
of which options seem promising in low-stakes situations.

• Implement goal-probing questions (either direct or indirect) that allow the
system to gain direct knowledge about player goals, especially for low-stakes
options. This would also allow Dunyazad to further support role-playing
by allowing different players to choose options which imply different goals
or goal priorities.

• Implement a model of goal conflicts and more detailed relative goal priorities
including moral reasoning.
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• Implement the idea of relative goal relevance: if all but one option at a choice

either threatens or enables a goal, then the remaining option implicitly

does the opposite.

These changes could make Dunyazad even more successful at constructing choices

which produce particular player expectations (and thus which can produce specific

poetic effects). They are also in line with the goal of getting Dunyazad to generate

choices with more complex poetics, such as choices that elicit regret or choices

that prompt deliberation.

One important functionality of Dunyazad not tested in this first study was

its ability to judge outcomes. This study did largely verify that Dunyazad’s

player expectations about options are working, and it can generate outcomes

that both support and betray those expectations. The experiment described in

chapter 8 relies on this functionality to test how accurate Dunyazad’s estimates

of retrospective perceptions are.
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Experiment II: Retrospective
Impressions

This chapter describes results from a second study involving Dunyazad, this

time scrutinizing player’s impressions of a choice after making a decision. The

setup is largely the same as the first experiment, so reading chapter 7 will help

to understand the results presented here. In particular, section 7.2 describes the

experimental procedures used in the first experiment, which were largely the

same in this experiment, and section 7.3 describes how hypotheses were tested

in the first experiment, which was also largely replicated in this experiment.

Key results echo those from chapter 7 in that Dunyazad needs to be able to

reason better about conflicting goals and use more detailed goal priorities. Addi-

tionally, results relevant to outcome perspectives show that Dunyazad might do

well to adopt a strategy that reasons explicitly about (and/or explicitly constructs)

option implications. The current system which automatically assumes option

implications based on Dunyazad’s internal representation of actions and their

potential consequences in some cases does not align with the expectations that

players seem to develop based on the actual text generated for the options. These
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results and others, along with the results from the experiment described in chap-

ter 7, have implications for the goal-based choice analysis technique presented

in section 5.4 as well, and these are discussed in section 8.11.

8.1 Overview

Because the results from testing Dunyazad’s prospective impression subsystem

were largely successful, I ran another experiment to test the retrospective impres-

sion system. In this experiment both prospective and retrospective impression

constraints were used to create six kinds of choices defined in terms of their

prospective and retrospective impressions (see tables 5.3, 5.4 and 6.3):

• Expected Success—These choices have three options which present them-

selves as leading to success, and each option has a successful outcome. In

terms of “outcome_feel” values (see table 6.3) each option at these choices

is an “expected_success” option. No matter which option a participant

selects, they will be picking an option that suggests success, and they will

get a successful outcome (as far as Dunyazad understands things).

• Expected Failure—The opposite of expected success: every option suggests

and results in failure. Internally, each option is an “expected_failure.”

• Unexpected Failure—These choices consist of three “unfair” options. In

other words, each option seems as though it will be successful, but each

ultimately results in failure. These choices should appear largely the same

as “expected_success” choices before an option is chosen.

• Unexpected Success—The opposite of unexpected failures, these choices

consist of three “miracle” options—each indicates failure but results in

success. These choices mimic “expected failure” options until the player

selects an option and sees an outcome.
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• Obvious Success—These choices have a single “expected_success” op-
tion and two “expected_failure” options, forming an “obvious” “option_
structure.” The outcomes of each choice align with what the option text
suggests: the “good” option leads to success and the others lead to failure.

• Obvious Failure—These choices have a single “unfair” option and two
options which are either “miracle”s or “nice_gamble”s. Just like “obvious
success” choices, their “option_structure” is “obvious.” Of course, instead
of leading to the expected results, each option results in the opposite of
what it suggests.

These six choice structures were designed to manipulate three variables:
valence of outcomes, expectedness of outcomes, and the presence of viable al-
ternatives. Note that due to the study design, each participant only ever saw
a single choice, they could not form judgements based on comparing choices
across categories. The bulk of the hypotheses were designed simply to verify that
the participants agreed with Dunyazad’s internal evaluation of these variables,
but there were a few hypotheses designed to probe for possible relationships
between these six conditions. Overall the results show that Dunyazad did a
good job producing positive outcomes, but struggled with negative outcomes, and
(partially as a result of this) had some trouble producing unexpected results.
Despite these problems, the data reveal some interesting interactions between
the three underlying variables, such as a difference in satisfaction based on the
presence or absence of viable alternatives and a relationship between the valence
of unexpected outcomes and their perceived fairness.

8.2 Method

The experimental setup for this experiment was largely the same as the setup for
the prospective impressions experiment described in chapter 7. This section lists

193



CHAPTER 8. EXPERIMENT II: RETROSPECTIVE IMPRESSIONS

the major differences between the two setups but does not reiterate the details

of the original setup (see section 7.2) that were unchanged. The first obvious

difference was the sample size. As already mentioned, there were six types of

choice generated, rather than 3, for a total of 18 choices (three per condition, just

as in the original experiment). Instead of showing each choice to 10 subjects,

each choice was shown to 15 subjects, which meant that there were nominally

270 participants instead of 90. Luckily the use of Amazon Mechanical Turk

means that there is very little effort per participant, so the logistics of the second

study weren’t drastically different from those of the first.

8.2.1 Extra Constraints

In an attempt to avoid some of the problems with low-stakes choices in the

original experiment, every choice in this experiment was required to have high

stakes. Furthermore, rather than allowing Dunyazad to pick any setup it wanted,

the three choices in each condition were generated using fixed setups (“market,”,

“monster_attack,” and “threatened_innocents”). This helped insure that the

setup text wasn’t a significant variable between the cases, and that each case

would include a variety of setups. Setup parameters were still allowed to vary

freely; the “market” setup in particular has multiple possible configurations.

8.2.2 Framing

Unlike the first survey, where participants were asked to pick the option that they

“would have chosen,” participants in this study were instructed: “Please read

the following short story which presents you with a choice, make a decision, and

then answer the questions about that choice below.” The choices were presented

with a radio button next to each option, and hovering over the text of each option

highlighted it. When the participant clicked anywhere over the text of an option,
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the outcome text for that option would be displayed in the space directly below

it (moving any following options down). At the same time, the selected option

text and the outcome text were highlighted in bold and the radio button for

the selected option was filled in, while the non-selected options were faded to

gray and their radio buttons were disabled. Once an option was selected the

highlight-on-hover and click-to-choose functionality were disabled. Immediately

before the option texts the phrase “To choose, click on an option below. Once

you make a decision you will not be able to change it,” appeared to make sure

that participants understood the format. The option selected by the player was

recorded as part of the study data; every single participant selected an option

and thus saw an outcome.

Of course, although this decision mechanism mimicked the decision-making

environment of modern browser-based narrative choice games, it meant that

participants would see the outcome of their decision before answering questions

about the options that they had. This approach was chosen intentionally to

maintain the flow of the setup into the choice; asking a set of survey questions

after seeing the choice but before making a decision would have an impact on the

poetics of the choice. Of course, having seen an outcome inevitably changes one’s

perception of an option (especially if that outcome was unexpected). The data

in the first survey therefore is more informative about option-related poetics.

To counteract this somewhat, the following text appeared before the option

questions: “For these questions, consider just the options presented, and ignore

the outcome of the option that you chose.” Complying with such a request is not

entirely possible, of course, but the option-related questions in this survey were

only present to establish a point of comparison with the first study, and were not

the focus of the results.
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8.2.3 Compensation

Participants were still Amazon Mechanical Turk workers, but for this study,

each participant was paid $2.00 instead of $0.50. This was partially because

this study involved more questions, and partially because of the desire to pay

more fairly for participants’ time. Based on the quality of the responses that I

received and on reviews of the tasks posted on https://turkopticon.ucsd.edu/,

I believe that this level of pay was satisfactory both from my own perspective

and from the perspective of the participants. The total cost of the experiment

including fees paid to Amazon and the costs of pilot tasks (4 pilot tasks were

posted to debug the survey before posting the 270 main tasks) was $765.20.

8.2.4 Questions

Of course, one major difference between the studies was the set of statements in-

cluded. This study had three sections: statements about the options, statements

about the outcome, and statements about motivation. The option statements

were actually a subset of the statements from the original survey, with extra

text to encourage participants to think only about the options and ignore the

outcome as mentioned above. The following five option statements (listed by

their internal labels) were included:

Clear
best

1. “Considering just the options, there seems to be a clear best option
at this choice.”

Balanced 2. “Ignoring outcomes, the options at this choice all seem about
equally good (or bad).”

No bad 3. “Ignoring outcomes, there are no options that seem bad at this
choice.”

No good 4. “Ignoring outcomes, none of the options at this choice seem good.”
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Low
stakes 5. “Considering just the options, the stakes for this choice seem low.”

In addition to option statements, this survey included statements about the
outcome that participants saw:

Fair 1. “Given the options available, the outcome I got is fair.”

Sense 2. “The outcome that I got makes sense given the option that I
selected.”

Bad 3. “I got a bad outcome.”

Satisfied 4. “I’m happy with the option that I chose.”

Unfair 5. “The outcome that I got is unfair, given the options available.”

Unexpected 6. “The outcome that I got is completely unexpected.”

[Trick]
7. “There is an outcome.” (This is a trick question to test whether

you’re paying attention. Please simply indicate that you are
in complete disagreement.)

Broken 8. “There might be a problem with this choice—the outcome I
got does not make sense.”

Good 9. “The outcome that I got is a good outcome.”

Expected 10. “I pretty much expected the outcome that I got.”

Dissatisfied 11. “I wish I had chosen a different option.”

Underlying these statements were 5 concepts which were each addressed by a pair
of statements with counterbalanced answers. These underlying concepts were:
fairness (questions 1 and 5), sense (questions 2 and 8), valence (questions
3 and 9), satisfaction (questions 4 and 11), and expectedness (questions 6
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and 10). The order of the questions was scrambled and chosen such that no pair

of complimentary statements would appear adjacent to each other in order to

encourage subjects to approach each question individually.

Although the outcome questions were the main focus of this study, some

questions asking participants to self-report their motivations were added at

the end of the study to get direct feedback about modes of engagement. These

questions were prefaced with the prompt:

Please answer the following questions about your motivations for mak-

ing the decision you made, as well as about your motivations and goals

in general when playing/reading interactive stories.

The first question asked directly about motivation:

1. Which of the following motive(s) contributed to your decision? (pick

one or more)

(Note: no submissions will be rejected based on this information; want-

ing to get this survey done quickly is a perfectly valid reason for making

a decision.)

o I’m taking an online survey. I just chose an option quickly so that

I could complete the survey.

o I was just curious to find out what would happen if I chose the

option I did.

o I imagined a character in the story situation and chose what that

character would do.

o I chose what I would have chosen were I in the situation described

in the story.

o I chose the option that I thought would lead to the most interest-

ing/satisfying result.
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o I looked at the skill information and chose the option that I thought

would be most successful.

o Other (please explain):

A free text area was provided below the “Other” option. As suggested in the

prompt, participants were free to select more than one option or leave them all

blank. Note that the options here mostly correspond to the modes of engagement

proposed in chapter 5. Of course, by providing exactly these options players may

be subconsciously coerced into aligning their motivations with the archetypes

that I have defined, and so the results of this study shouldn’t be taken to be a con-

firmation that player motivations do fit into the theoretical framework discussed

above. However, the relative frequency of different responses still provides some

information about whether players’ motives are diverse or generally similar, for

example. The responses to this question were labelled respectively as speed,

curious, role, avatar, interest, power, and other.

In a similar vein, the next question asked how players evaluate outcomes:

2. Which of the following judgement(s) contributes to how you generally

define a “good” outcome in interactive experiences like the one you just

played? (pick one or more)

o I feel an outcome is good when something good happens to my

character in the story world.

o I feel an outcome is good if it is an interesting development in the

story.

o I feel an outcome is good when it fits the role that I am building

for my character.

o I feel an outcome is good when it makes my character more pow-

erful.
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o I feel an outcome is good when it makes progress towards beating

a game.

o Other (please explain):

These responses were labelled respectively as avatar, interest, role, power,

progress, and other. Directly following was effectively the same question but

for “bad” outcomes:

3. Which of the following judgement(s) contributes to how you generally

define a “bad” outcome in interactive experiences like the one you just

played? (pick one or more)

o I feel an outcome is bad when something bad happens to my

character in the story world.

o I feel an outcome is bad if it doesn’t develop the plot.

o I feel an outcome is bad when my character doesn’t do what I

expected them to do.

o I feel an outcome is bad when my character expresses a value or

opinion that is different from what I wanted them to express.

o I feel an outcome is bad when it makes my character less powerful.

o I feel an outcome is bad when it prevents me from making progress

towards beating a game.

o Other (please explain):

These responses were labelled as avatar, interest, no.control, value.clash,

power, progress, and other.

The final question in the motives section asked about consistency of motives.

Unlike the other questions in this section, it forced participants to select a single

response (although it still had an “other” response):
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4. Do you feel you approach all interactive experiences (e.g., Choose-

Your-Own-Adventure novels, video games, tabletop role-playing games,

etc.) with a consistent set of motivations and judgements, or do your

motivations and judgements change from story to story?

m I feel that my motivations and judgements are the same no matter

what interactive story I’m playing.

m I feel that my motivations and judgements change from story to

story.

m I don’t play interactive stories often enough to have a definite

answer.

m Other (please explain):

The responses to this question were labelled consistent, variable, no.exp, and

other. Although the questions in the motivation section weren’t subject to any

statistical tests, they provide some informal information about how players

approach choices. A further experiment designed to seriously investigate player

motivations would require a much tighter design, and would likely derive no

benefit from using Dunyazad to generate its choices, as Dunyazad isn’t designed

to be aware of, or work with, modes of engagement.

Unlike the first survey, this survey included an optional text area at the

end for any additional feedback participants wanted to share. This additional

feedback was not analyzed, but responses were used to help with approval

decisions (several participants indicated honest confusion about some aspect of

the age/fluency question; their responses were accepted).

Besides these differences, the details of this survey were the same as the first

survey, including the format of response options and the framing of the various

sections. Of course, this survey included a different set of hypotheses.
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8.3 Hypotheses

The hypotheses in this study were tested in largely the same way as those in the

prospective study: Each “agree” or “disagree” hypothesis was tested by comparing

the results under a given condition with a uniform distribution of responses

using a Mann-Whitney-Wilcoxon U test with an appropriate alternate hypothesis.

A uniform distribution with 35 elements was used for all comparisons, as this

was the multiple of five (the number of response categories) closest to the number

of samples in most of the relevant cases (32-36 for each condition, although as

low as 8 in some sub-conditions; these low-n comparisons are discussed where

they appear). For between-condition hypotheses, the two sample populations

in question were compared directly using Mann-Whitney-Wilcoxon U tests. In

all cases, results are taken to be significant when their p-values are <0.05, and

common-language effect sizes (see section 7.4 for an explanation) are indicated

wherever the results are significant.

Question
Expected Success Obvious Success Expected Failure
Unexp. Failure Obvious Failure Unexp. Success

Clear best disagree* agree disagree*
Balanced agree* disagree agree*

No bad agree* disagree disagree
No good disagree disagree agree

Low stakes disagree disagree disagree

Table 8.1: Hypotheses about option statements in the retrospective study. Each
entry corresponds to two hypotheses: one for each condition listed in the header of
that column. Because the two conditions in each column share option structures,
they are predicted to elicit identical responses to the option-related statements.
Low-confidence hypotheses are marked with a ‘*’.
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8.3.1 Option Hypotheses

The three option structures used in this study were “positive_alternatives,”

“negative_alternatives,” and “obvious,” as described above. Each option struc-

ture corresponded to two conditions with different outcomes. These paired

conditions are listed in the header of table 8.1; each option structure was pre-

dicted to yield a different set of answers to the five option statements, as shown

in that table. These 30 hypotheses (5 statements × 3 option structures × 2

conditions per structure) were meant to check whether Dunyazad was producing

the desired option structures successfully.

Given the results of the first experiment, several of these hypotheses were not

expected to be supported by the data. These tentative hypotheses are marked

with ‘*’s in table 8.1. In particular, hypotheses having to do with options being

balanced or there being no clear best option were not expected to be validated.

8.3.2 Basic Outcome Hypotheses

Assuming that Dunyazad is able to construct options which indicate either suc-

cess or failure as intended, and that players agree with Dunyazad’s evaluations

of outcomes, there are four different types of option in this study. Each option

indicates either failure or success, and each outcome is either largely successful

or largely unsuccessful. The “expected_success” condition, for example, consists

of three options which both indicate and lead to a good outcome (or at least,

Dunyazad has constructed them with that intent). The “obvious_success” and

“obvious_failure” conditions are more complicated than the other four, which

each consist of three options of the same type. “obvious_success” has one option

which suggests and results in success, but two that suggest and lead to failure.

Likewise, “obvious_failure” has one option which suggests success but leads

to failure, and two that suggest failure but lead to success. This leads to the
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Question
Expected Success Unexp. Success

Obv. Success [main] Obv. Failure [alt]

Fair agree agree
Unfair disagree disagree
Sense agree agree

Broken disagree disagree
Good agree agree
Bad disagree disagree

Satisfied agree agree
Dissatisfied disagree disagree

Expected agree disagree
Unexpected disagree agree

Question
Expected Failure Unexp. Failure
Obv. Success [alt] Obv. Failure [main]

Fair agree disagree
Unfair disagree agree
Sense agree disagree

Broken disagree agree
Good disagree disagree
Bad agree agree

Satisfied - disagree
Dissatisfied - agree

Expected agree disagree
Unexpected disagree agree

Table 8.2: Outcome-related hypotheses for the retrospective study. Each column
lists two conditions in each half of the table; these conditions have the same
expected and actual outcome valences, and are thus predicted to elicit the same
responses. Eight conditions are listed here because the “obvious_” conditions
have sub-cases: [main] for participants who chose the “best” option and [alt] for
participants who chose otherwise. These sub-cases arise because participants
experience outcomes with different valences depending on the option they choose.
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[main] and [alt] sub-cases, [main] indicating participants who were shown an

“obvious_” choice and chose the “best” option, and [alt] indicating participants

who chose a different option at these choices.

Table 8.2 lists all of the outcome-related hypotheses. As with table 8.1, each

cell corresponds to two hypotheses: one for each condition/case listed at the top

of its column. The top half lists hypotheses about ultimately positive outcomes,

while the bottom half lists hypotheses about negative outcomes. At the same

time, the left column covers expected results (where the option indicates a result

of the same valence as the outcome) and the right column covers unexpected

results. The third underlying variable in this study, namely, whether the options

at a choice seemed to indicate similar or divergent outcomes, was not expected

to cause any “disagree” predictions to become “agree” predictions or vice versa,

which is why each cell in this table can list two hypotheses. Table 8.2 represents

a total of 76 individual hypotheses, which makes a total of 106 flat “agree” or

“disagree” hypotheses when combined with the 30 hypotheses in table 8.1. Taken

together, these hypotheses are designed to ensure that Dunyazad’s choices have

the properties Dunyazad assumes they have in terms of both what is suggested

by their options and in terms of how their outcomes are interpreted.

8.3.3 Relative Outcome Hypotheses

As with the first study, there are some hypotheses about the relative agreement

between two different statements as opposed to just agreement with or disagree-

ment with a single statement. These hypotheses are probing for a variety of

interaction effects which may or may not be present, as opposed to trying to

verify that Dunyazad is working as intended.

The first such proposed effect is roughly stated as: “Unexpected failure is more

acceptable when a choice seems free vs. forced.” In other words, I suspected that

when a promising outcome leads to failure, players will be more unhappy if that
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Question Hypothesis

Fair unexp. failure>obv. failure [main]
Unfair unexp. failure<obv. failure [main]
Sense unexp. failure>obv. failure [main]

Broken unexp. failure<obv. failure [main]
Good unexp. failure>obv. failure [main]*
Bad unexp. failure<obv. failure [main]*

Satisfied unexp. failure<obv. failure [main]*
Dissatisfied unexp. failure>obv. failure [main]*

Expected unexp. failure>obv. failure [main]*
Unexpected unexp. failure<obv. failure [main]*

Table 8.3: Relative hypotheses regarding free vs. forced failures. Hypotheses
marked with a ‘*’ are low-confidence hypotheses.

seemed to be the only promising outcome, rather than one of several promising

outcomes. The reasoning behind this is that when a choice seems to have both

good and bad options, players may expect to be rewarded for successfully picking

a good option. On the other hand, if only good options are present, players may

not see their choice as meritorious, and thus may have lower expectations of the

result. Additionally, after seeing an unexpected negative outcome, if there were

other seemingly good options present players may reason that one of those options

would have led to a better results, while no such reasoning is available if the other

options seemed bad. This hypothesis also parallels the idea in decision affect

theory that outcomes are judged relative to salient counterfactual alternatives

(Mellers, A. Schwartz, and Ritov, 1999) (although in this case the alternate

outcomes are merely suggested instead of clearly stated).

Table 8.3 lists the individual hypotheses associated with this proposed effect,

but they can be stated more simply in terms of the underlying variables. This

proposed effect predicts that compared to surprising failures at “obvious” choices,
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Question Hypothesis

Good exp. success<obv. success [main]
Bad exp. success>obv. success [main]

Satisfied exp. success<obv. success [main]
Dissatisfied exp. success>obv. success [main]

Table 8.4: Relative hypotheses regarding chosen vs. inevitable successes.

surprising failures at “positive_alternatives” choices will be perceived as more

fair, more sensible, better, more regretted (because changing options seems more

promising), and more expected. When I formulated these hypotheses I was

most confident in the effects on perceptions of fairness and sense, so the other

hypotheses are marked as low-confidence with a ‘*’.

Another proposed difference was between the “expected_success” case and

the “obvious_success[main]” case. Both of these involve expected success out-

comes, the only difference being whether other outcomes at the choice were

promising or not. One hypothesis was that when alternatives seemed dangerous,

a positive outcome would seem slightly better (both cases were predicted to eval-

uate their outcomes as good overall) because of a greater perceived difference

in outcomes (although participants didn’t get to see the outcomes of non-chosen

options). This accounts for the first two rows of table 8.4, while the other two

indicate a prediction that participants will feel more satisfied with the option

that they chose when the alternatives are negative. The reasoning here is that

curiosity about the results of non-chosen but still positive-seeming options would

slightly change the degree of agreement with the statements about being satis-

fied and regret (both cases were predicted to elicit overall agreement with the

satisfied statement and disagreement with the regret statement). This line of

reasoning also echoes decision affect theory’s ideas about comparison between

actual results and salient alternatives. As with the free-vs-forced hypotheses
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Question Hypothesis

Fair unexp. failure<unexp. success
Unfair unexp. failure>unexp. success
Sense unexp. failure<unexp. success

Broken unexp. failure>unexp. success

Table 8.5: Relative hypotheses regarding good vs. bad surprises.

above, these hypotheses were predicting a change in the degree of agreemen-

t/disagreement on some items, rather than an outright contrast between one

category which is expected to agree with a statement while another disagrees.

Yet another predicted effect was a difference in perceived fairness between

good and bad unexpected results, with hypotheses listed in table 8.5. In both the

unexpected failure and unexpected success case, Dunyazad effectively contradicts

the normal effects of skill and item possession on the outcomes of actions to

produce an effect that it labels as either “unfair” or a “miracle.” In both cases,

it could be argued that these outcomes are “unfair,” although perhaps in two

possible senses of the word (“unjust” vs. “cheating”). The prediction in this case

is that participants will respond more strongly to negative surprises than to

positive surprises (in line with (Shepperd and McNulty, 2002)), being more likely

to label negative surprises as “unfair” or “broken” than positive surprises.

Besides the effect of valence given surprise, I also made predictions regarding

the effect of surprise given valence, for both positive and negative outcomes.

Tables 8.6 and 8.7 list the relevant hypotheses, which are separate for failures

and successes. For failures, the expectation is that unexpected bad things will be

perceived as worse all-around than expected bad things. A secondary prediction

is that participants will be more likely to want to change their choices when a

bad result is unexpected than when it is hinted at beforehand. These predictions

continue to follow (Shepperd and McNulty, 2002) on judgements about expected
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Question Hypothesis

Good unexp. failure<exp. failure
Bad unexp. failure>exp. failure

Satisfied unexp. failure<exp. failure
Dissatisfied unexp. failure>exp. failure

Good obv. failure [main]<exp. failure
Bad obv. failure [main]>exp. failure

Satisfied obv. failure [main]<exp. failure
Dissatisfied obv. failure [main]>exp. failure

Table 8.6: Relative hypotheses regarding expected vs. unexpected failures.

versus unexpected outcomes. Because there are two conditions that give rise to

unexpected failures, there are a total of eight individual hypotheses that result

instead of just four.

For successes, somewhat similar logic applies: a good surprise may seem

sweeter than something which is expected beforehand. This translates to hy-

potheses that unexpected successes will be perceived as better and will leave

participants more satisfied with their choices than expected successes.

Note that for both of these proposed surprise-based effects, a fourth condition

is technically relevant: the “obvious_success[alt]” case consists of outcomes

that are expected failures, and the “obvious_failure[alt]” case consists of

unexpected successes. However, neither of these cases were expected to attract

many participants, and expectations when choosing an option which presumably

seems worse than the “correct” option are probably not the same as expectations

when forced to choose one of three negative options, so these two cases were not

included in these hypotheses.

In total, the proposed effects are backed by 34 relative hypotheses. These

hypotheses are exploratory: they aren’t designed to verify that Dunyazad works
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Question Hypothesis

Good exp. success<unexp. success
Bad exp. success>unexp. success

Satisfied exp. success<unexp. success
Dissatisfied exp. success>unexp. success

Good obv. success [main]<unexp. success
Bad obv. success [main]>unexp. success

Satisfied obv. success [main]<unexp. success
Dissatisfied obv. success [main]>unexp. success

Table 8.7: Relative hypotheses regarding expected vs. unexpected successes.

as intended, but instead they represent guesses about how participants might

react. If they are confirmed, they have interesting implications for the choice

poetics, and each proposed effect could be investigated further.

8.3.4 Motivation Hypotheses

The final category of hypotheses for the retrospective study was a set of hypothe-

ses about the motivation questions. These questions were not really tied to

Dunyazad’s performance, but rather designed to gather preliminary data on

player motivations that could help guide the design of a study focused on modes

of engagement. The hypotheses are thus simple thresholds, and they don’t have

associated statistical tests. Each of the motivation questions had at least one

associated hypothesis:

• The first motivation question was about what motives contributed to par-

ticipants’ decisions. The hypotheses for this question were that the first

(speed), fourth (avatar), and sixth (power) options would each be selected

by at least 50% of participants.
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• The second motivation question concerned how participants decide that

an option is “good.” The hypotheses were that the first (avatar), fourth

(power), and fifth (progress) options would each be selected by at least 50%

of participants.

• The third motivation question was like the second but it focused on “bad”

outcomes. The hypotheses were that the first (avatar), third (no.control),

fifth (power), and sixth (progress) options would each be selected by at least

50% of participants.

• The final motivation question forced participants to choose a single answer

and asked whether they believed their motives were consistent or malleable

across different interactive experiences. The hypothesis for this question

was that among participants who did not select the third option (no.exp,

indicating that they did not have much experience with interactive narra-

tives), at least 70% would select the second option (variable) over the first

(consistent) and fourth (other) options.

All of they hypotheses in the motivation section were motivated mostly by my

own sense of how people play games, which is of course idiosyncratic. The real

value of the motivation questions is not in whether their related hypotheses are

supported or not, but in the aggregate data that they supply. The hypotheses are

still an important point of reference, however, as they help avoid a completely

post-hoc analysis of the data.

8.4 Results

As with the previous experiment, some submissions were rejected because they

failed to answer screening questions correctly (the same two screening questions

as the first survey: one asking for age confirmation in a manner that required
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English proficiency and the other an attention check within the body of the sur-

vey). There were 10 rejected responses, and these were resubmitted to Amazon

so that new participants were found; there a total of 280 responses including

rejections. Rejected responses were not used in the analysis.

Unfortunately, the system for ensuring that the same participant did not

take the survey more than once was configured improperly at the beginning

of data collection, and some participants submitted multiple responses (across

different conditions). When the issue was discovered it was corrected, and all

responses from individuals who saw more than one choice were not used during

data analysis (to preserve the condition that judgements were not based on

cross-category comparisons). A total of 65 responses from 14 individuals who

submitted more than one survey were removed, reducing the total number of

valid responses from 270 to 205. Luckily, because workers who accepted multiple

tasks generally did not do more than one from the same batch, the impact of

this error was distributed fairly evenly. After filtering out these responses and

accounting for places where valid responses were missing an individual item,

each condition still had between 32 and 36 valid responses, and each choice had

between 8 and 14. Thus while the statistical power of the study was reduced, the

problem wasn’t severe enough to call into question the validity of the results.

Unlike the first study, data was only filtered based on submission approval

and this multiple-submission issue. This meant that data from respondents

who left some items blank was still included in the analysis. Before doing the

first study, I was worried that leaving a question blank might be a sign that

someone was completing the survey haphazardly, and I wanted to filter out such

responses. After seeing the data from the first survey, including the distribution

of response times, I was much less worried about this issue, and although leaving

a question blank might be a sign that a participant was distracted, they might

still be answering the other items honestly, especially if they answered the
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trick question correctly (as every single response that was accepted and wasn’t

a duplicate did). The second study also included a mechanism that changed

the color of each response to green to encourage participants to fill out every

question. In the end there were a total of only 13 missing responses out of the

3075 hypothesis-related Likert items seen by non-multiple-participants whose

submissions were accepted. The most-impacted single item was the statement

“[...] there are no options that seem bad [...],” which was missing 5 of the 205

responses that it should have had.

8.4.1 Response Times

The median response time was 672 seconds (11:12) before filtering and 592

seconds (9:52) after filtering, which is in line with this survey being a little more

than twice as long as the first survey. The minimum accepted response time was

155 seconds (2:35) which did not seem short enough to filter out categorically,

especially as a quick look at the answers given did not suggest random responses.

There were a total of eight accepted responses that were completed in less

than 240 seconds (4:00). The fact that the median decreased significantly after

filtering likely has to do with the filtering of multiple responses from individual

participants. Normally if a worker on Mechanical Turk wants to do more than

one task from a single category, they will accept a batch of tasks and then proceed

to work through them, to ensure that other workers don’t use up the remaining

tasks while they work on one. This means that their response times will be

linearly increasing, because the response time is just the time between accepting

and submitting a task. This also means that multiple-submitters will account

for more than their fair share of long-response-time submissions, and so filtering

them out will tend to reduce the median response time. Even workers who only

submit a single task are likely doing other tasks on Mechanical Turk and may

engage in the same accept-to-reserve behavior, which is why I did not consider
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filtering out responses that took “too long.” Without clever instrumentation

of the survey page, the data only provides an upper bound on the time that it

actually takes a worker to complete a task.

8.4.2 Summary

A summary of the results appears in figs. 8.1 to 8.4, which have the same format

as fig. 7.3. Figure 8.1 includes all of the option-related questions, and can be

compared directly to results in fig. 7.3, especially for the last four conditions,

which correspond in pairs to the “obvious” and “dilemma” conditions of the first

experiment, respectively. In figs. 8.2 to 8.4, the questions are ordered such that

complimentary question pairs are adjacent, and comparing the data visually

there seems to be a good deal of symmetry between these pairs, as expected.

Overall, the data indicate that Dunyazad is better at creating positive expecta-

tions and outcomes than negative ones: compare the incredibly one-sided results

for the “expected_success” condition to the much more mixed results for the

“expected_failure” condition, for example.

As mentioned above, each of the rows in these figures represents between 32

and 36 responses, depending on the condition. The sub-cases (e.g., “obvious_

failure[main]” vs. “obvious_failure[alt]”) are not separated here, although

they are analyzed separately for some of the hypotheses. For the “obvious_

success” condition, 25 of the 33 responses fell into the [main] sub-case, while

the remaining 8 participants chose an option other than the one that Dunyazad

expected would be most promising. For the “obvious_failure” condition, the

“[main]” sub-case contained 20 of the 35 responses, while the [alt] sub-case

contained the remaining 15. Note that each condition can be broken down into

three individual choices, and there is a general expectation that these three

choices will elicit generally similar responses, as they are constructed using

the same set of constraints (although they are required to use three different
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Figure 8.1: Option-related results from the retrospective study. Cf. fig. 7.3.
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Figure 8.2: Fair/unfair and sense/nonsense results from the retrospective study.
Setup is the same as fig. 7.3.
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Figure 8.3: Good/bad and satisfied/dissatisfied results from the retrospective
study. Setup is the same as fig. 7.3.
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Figure 8.4: Expected/unexpected retrospective results. Setup as in fig. 7.3.

setups). Slight variation between choices within a condition should not disrupt

the overall results, of course, but if there is significant divergence, it may be a

sign that Dunyazad’s internal reasoning about a choice doesn’t agree with how

participants experience that choice.

8.5 Option Results

Table 8.8 shows the results for the option-related hypotheses, with significant

results listed in bold. Note that in line with the results of the first study, none of

the low-confidence hypotheses were supported by the data. These hypotheses

(marked with ‘*’) involved predictions which don’t hold up if participants judge

options relative to each other instead of in absolute terms, and the prospective

study indicated strongly that this was the case for many participants.
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Question
Expected Success Obvious Success Expected Failure
Unexp. Failure Obvious Failure Unexp. Success

Clear best
D* 0.987 × A 8.3×10−5 75% D* 0.467 ×
D* 0.128 × A 0.001 70% D* 0.717 ×

Balanced
A* 0.809 × D 0.003 69% A* 0.485 ×
A* 0.767 × D 0.045 61% A* 0.794 ×

No bad
A* 0.807 × D 4.5×10−4 72% D 0.082 ×
A* 0.683 × D 0.013 65% D 0.011 66%

No good
D 1.1×10−5 78% D 4.1×10−5 76% A 0.140 ×
D 0.013 65% D 0.004 68% A 0.883 ×

Low
stakes

D 0.279 × D 0.081 × D 0.310 ×
D 0.257 × D 0.121 × D 0.003 68%

Table 8.8: Option-related results in the retrospective experiment. Each row lists
results for a single question; each column stacks results for two conditions (listed
at the top) with identical “option_feel” constraints. Each entry indicates the
hypothesis (‘D’ for ‘disagree’ and ‘A’ for ‘agree’), the p-value, and the common-
language effect size for confirmed hypotheses (which are marked in bold instead
of blue where p < 0.05).

8.5.1 Stakes

One immediate pattern in these results is the lack of support for the “low stakes”

hypotheses. In the initial study, the hypothesis that choices which Dunyazad

labelled as high-stakes would appear that way to participants was clearly con-

firmed by the data, with a p-value of 0.0011 and an effect size of 70% (a strong

effect). In this study, every single choice was required to be high-stakes, but

only in a single case (the “unexpected_success” condition) was the relevant hy-

pothesis confirmed. One reason why this might be the case is that in this study,

Dunyazad was not allowed to control either the setup or the stakes of the choices,

whereas in the initial study Dunyazad was free to control both. The high-stakes
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choices in this study therefore necessarily included choices with “market” setups,

where it is impossible for Dunyazad to construct a scenario that directly threat-

ens the player’s character. A breakdown of responses to the stakes question

across all conditions by setup (fig. 8.5) seems to confirm that the “market” setup

is a problem: it elicits an even split between agree and disagree responses while

the other two setups lean towards disagreeing.

To test this theory, I did a followup analysis with three hypotheses—each

individual setup as a condition was hypothesized to elicit disagreement with

the low stakes statement. The results of this analysis confirmed my suspicions.

The test for the “market” hypothesis does not reject the null hypothesis (p =

0.502), while the tests for the “threatened_innocents” and “monster_attack”

hypotheses are confirmed (p = 0.041; effect size 60% and p = 0.0093; effect

size 64% respectively). Essentially, when Dunyazad creates choices without

constraints regarding their stakes, the high-stakes choices that it does create

are in fact perceived to be high-stakes by players. However, when Dunyazad is

specifically asked to create high-stakes choices using certain fixed setups, such

as the “market” setup, it doesn’t manage to create choices that are convincingly

high-stakes. Whether this means that the perception of stakes has more to do

with the setup text than the actual content of the options and/or outcomes is an

open question that could be tested.

8.5.2 Expected Failure—No Bad Options?

Besides the unconfirmed stakes hypotheses, there were two other places where

high-confidence option-related hypothesis were not confirmed by the data. The

first is in the “expected_failure” case for the “no bad” statement. Although

the “unexpected_success” condition, which in theory generates options which

set identical expectations, was confirmed to disagree with this statement, the

data did not support this hypothesis for the “expected_failure” condition. Of

220



8.5. OPTION RESULTS

36%

66%

62%

39%

18%

23%

24%

16%

15%

[...] [the stakes] seem low.

monster_attack

threatened_innocents

market

100 50 0 50 100
Percentage

Response 1 2 3 4 5

48%

24%

11%

15%

61%

40%

39%

70%

83%

85%

28%

54%

12%

6%

6%

0%

11%

6%

[...] there [is] a clear best option [...].

unexpected_success

expected_failure

obvious_failure

obvious_success

unexpected_failure

expected_success

100 50 0 50 100
Percentage

Response 1 2 3 4 5

Figure 8.5: Stakes results across all conditions grouped by the setup used.

course, this condition is one susceptible to being undermined by relative value

judgements: if all of the options seem bad, one might reason that it doesn’t matter

which is chosen, and therefore none of them are “bad” in the sense that choosing

them would be a mistake. It is telling that the “obvious_” cases confirmed

corresponding hypotheses: when a single positive option was present alongside

negative options, participants strongly rejected the notion that there were “no

bad options” present.

But what about the difference between the “expected_failure” case and the

“unexpected_success” case? Figure 8.6 shows the results for each individual

choice in both cases, and there isn’t a clear culprit. The choice with seed 58403

is the single choice among the six in that figure that elicited the most agreement

with the statement, but it still tilts towards disagreement. Given that both

conditions include a substantial minority of “agree” and even “strongly agree”

responses, there doesn’t seem to be a clear underlying reason for the division in

the results. What is clear is that giving Dunyazad the ability to make relative

rather than purely absolute value judgements should be a high priority. In

future studies, it might also be more productive to just ask participants to label

each option as good/bad (and also suggests-success/suggests-failure), although as
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mentioned in the discussion of the setup for the first study, this kind of language

promotes an analytical approach and that isn’t necessarily desirable.

8.5.3 Dilemma Cases—Competing Goals

Another point of interest among the option-related results was the data’s failure to

support the hypotheses that the “expected_failure” and “unexpected_success”

cases would be viewed as having “no good options.” Again, the “dilemma” case in

the first experiment produced reactions that supported an equivalent hypoth-

esis, so this result is somewhat surprising. Here however the reasons for this

discrepancy are clear.

Figure 8.7 shows the responses for these cases, and it is clear that the choices

with seeds 87991, 8015, 47794, and 33152 are not yielding the expected results:

participants are indicating that there is at least one good option at these choices.

Figure 8.8 shows the choice with seed 87991, and the problem is immediately
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Figure 8.6: Results for the “no bad options” statement in the “expected_failure”
(top) and “unexpected_success” (bottom) conditions, grouped by choice. Each
choice is identified by the numeric seed that was used to create it. The bracketed
numbers on the right indicate the sample size for each choice.
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apparent: Dunyazad has used a “travel_onwards” action as a “clearly bad result.”

This is a result of an overcorrection from the problems with “travel_onwards”

that were discovered during the first study. In that study, “travel_onwards”

was a cure-all option which could get rid of any problem due to the way that it

handled switching scenes. For this second study, that bug was fixed, and instead,

“travel_onwards” is marked as failing any goals relating to unresolved situations

that it leaves behind. In this case, Dunyazad thinks that the player will have

an “avoid_accusations” goal with respect to the accused merchant, and simply

leaving the merchant behind clearly fails this goal.

Of course, the underlying problem here is goal prioritization. If given an

good option to save the merchant, many players are eager to do so, but when

such options are risky, they prefer to preserve their own safety. With Dunyazad’s

two-level goal priority system, which was unchanged from the first experiment,

it’s not possible to represent this complexity. Under the current system then,

instead of “travel_onwards” being seen as an option with too few consequences, it
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Figure 8.7: Results for the “no good options” statement in the “expected_failure”
(top) and “unexpected_success” (bottom) conditions, grouped by choice. The
bracketed numbers in on the right indicate the sample size for each choice.
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You come to a chaotic market and decide to browse for a bit.
A merchant seems knowledgeable and a noble is baselessly accusing the
merchant of insolence and the merchant is selling a spear.
What do you do?

1. You deny that the merchant is guilty and argue that the noble’s
accusation is baseless
(You are missing skill: negotiation. The noble has skill: negotiation).
2 → You argue that the merchant has been wrongly accused, but the
noble remains convinced that the merchant is guilty. The situation
remains the same.

2. You transform the noble into a chicken
(You have skill: sorcery. You have no tool for sorcery).
1 → You try to cast a spell on the noble, but nothing happens. The
situation remains the same.

3. You travel onwards
(no relevant skills).
5 → You continue your journey. You have traveled to a new location.

Figure 8.8: The choice with seed 87991 minus the framing (which is mostly the
same between choices). Boxed numbers before each outcome indicate the number
of participants that chose that outcome. Note the popularity of the third option.

is seen as an option with too many consequences. The choice with seed 8015 also

includes a “travel_onwards” option in a similar situation, and the inclusion of

these options was likely the reason that players felt that the “expected_failure”

cases actually did have some good options.

8.5.4 Dilemma Cases—Outcomes Affect Option Perception

Recall that the “unexpected_success” case exhibited the same problem. The

reason for this was different, however, because neither the choice with seed

47794 nor the choice with seed 33152 had “travel_onwards” options. Instead,

the reason that these choices were rated as having at least one good option is

probably their outcomes. Because participants saw an outcome before answering
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You come across some bandits attacking a merchant.
The bandits are threatening the merchant.
What do you do?

1. You talk the bandits down
(You are missing skill: negotiation).
6 → You reason with the bandits and the bandits agree to back off. The
bandits are no longer threatening the merchant.

2. You transform the bandits into a chicken
(You are missing skill: sorcery).
1 → You cast a spell on the bandits, and the bandits are cursed with the
form of a chicken. The bandits are no longer threatening the merchant,
they have been cursed and transformed into a chicken, and they are now
not sentient.

3. You attack the bandits
(You are missing skill: fighting. They have skill: fighting. They have no
tool for fighting).
3 → You attack them. They fight back but then they are hit by your
attack and then you dodge the bandits’ attack. They are defeated. You
have acquired a book of herbal lore, the bandits are not threatening the
merchant any more, and they have been killed.

Figure 8.9: The “unexpected_success” choice with seed 47794 minus its framing.
Boxed numbers indicate the number of participants that selected each outcome.

any questions, the responses to the option questions could have been affected by

the outcomes seen. Figure 8.9 shows the choice with seed 47794, and looking at

it reveals a likely explanation for the “no good options” response.

As shown in that figure, six of ten participants who saw that choice chose the

first option, and were “unexpectedly” successful. But remember that Dunyazad’s

notion of what is expected is written in terms of system-wide rules: “normally”

someone missing the negotiation skill should always fail to talk someone else

down, so if such an action succeeds the result is unexpected. This kind of

expectation is something that players would learn if they interacted with the

system over a period of time, but participants in this study only saw a single
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choice. Faced with a positive outcome, it would be natural to conclude that

perhaps the negotiation skill isn’t important after all, and therefore that the

option that was chosen was a good one. This line of reasoning would not be

available to players before seeing an outcome, but as stated before, the risk

of such influences was intentionally accepted as the price of a more natural

decision-making experience.

Because the choice with seed 33152 included a very similar “talk_down” option

which was also quite popular, this outcome-dependent effect can explain the failed

hypothesis in the “unexpected_success” condition. Unfortunately, the impact of

this effect and the “travel_onwards” issue affecting the choices with seeds 87991

and 8015 is not negligible. When it comes to evaluating the outcome-related

hypotheses, these choices didn’t convey the intended prospective poetics, and

this could impact their retrospective poetics as well.

8.5.5 Problems with “travel_onwards”

Besides choices in the two dilemma conditions, two other choices—the “obvious_

success” choices with seeds 47371 and 20739—also included “travel_onwards”

options. These are shown in fig. 8.10. Luckily, the choice with seed 47371 happens

to give participants an option that’s more attractive than the “travel_onwards”

option, so the same problem doesn’t occur. In fact, this is a good example of correct

use of “travel_onwards” as an option that seems bad, which is reinforced by the

fact that zero participants chose it. However, based on the option popularities

in choice 20739, that choice has the same problems as choices 87991 and 8015:

the “correct” option involves some perceived risk or cost (in this case giving away

an item to resolve the situation) and so simply ignoring the merchant’s plight is

seen as acceptable.

Note that these options are in the “obvious_success” condition, and as such

participants who saw them are divided into the “[main]” and “[alt]” sub-cases
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You come across some bandits attacking a merchant.
The bandits are threatening the merchant.
What do you do?

1. You talk the bandits down
(You are missing skill: negotiation).
2 → You talk with the bandits, but the bandits refuse to back down.
The bandits have started to threaten you.

2. You transform the bandits into a chicken
(You have skill: sorcery. You have your ancient grimoire).
11 → You cast a spell on the bandits, and the bandits are cursed
with the form of a chicken. The bandits are no longer threatening the
merchant, they have been cursed and transformed into a chicken, and
they are now unintelligent.

3. You travel onwards
(no relevant skills).
0 → You continue your journey. You have traveled to a new place.

You come to a chaotic market and decide to browse for a bit.
A merchant seems knowledgeable and a peasant is bored and a noble is
baselessly accusing the merchant of disrespect and the merchant is selling a
spear.
What do you do?

1. You offer the noble your sack of gold
(You have skill: negotiation).
2 → You bargain with the noble and reach a deal. You have lost your
sack of gold, the noble is not accusing the merchant any more, and the
noble has a sack of gold now.

2. You travel onwards
(no relevant skills).
5 → You continue your journey. You have traveled to a new place.

3. You transform the noble into a chicken
(You are missing skill: sorcery).
1 → You try to cast a spell on the noble, but nothing happens. The
situation remains the same.

Figure 8.10: The “obvious_success” choices 47371 and 20739 minus framing.
Boxed numbers indicate the number of participants who saw each outcome.
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according to which option they chose. For choice 47371, all 11 participants who

chose option two are in the “[main]” sub-case, while the other two participants

are in the “[alt]” sub-case. For choice 20739, there are only two participants

that the system thinks chose the “correct” option, and the majority of participants

are put into the “[alt]” sub-case. This means that the meaning of the sub-cases

is somewhat changed from its intent. The “[alt]” cases are supposed to consist

of participants who intentionally chose a non-positive option despite the presence

of a positive one, and as such they are assumed to be quite small, to the point

that not many hypotheses were proposed which included “[alt]” cases. Because

of Dunyazad’s failure to predict the complexities of player goals, the “[alt]”

case consists largely of participants who thought they were choosing the best

option available, but who disagreed with Dunyazad’s evaluation of what that was.

Although these effects diminish the number of participants in the “[main]” cases,

at least their meaning is not diluted very much: only a few participants from

poorly-formed choices like 20739 wound up choosing the options that Dunyazad

considered best, and so only a few participants in the “[main]” cases weren’t

choosing what they thought was an obviously superior option.

8.5.6 Costly Actions

One failure in Dunyazad’s reasoning here, besides the inability to properly track

goal priorities, is its focus on goals to the detriment of costs. In other words,

Dunyazad thinks about actions only in terms of the goals that they might achieve

or threaten, and not in terms of the costs of those actions. If the player must

use an item to get what they want, Dunyazad neglects this cost and just sees

that a goal is achieved. Of course, this could be handled by adding player goals

concerned with preserving resources, but the two-priority goal system doesn’t

leave room for such goals to affect high-stakes decisions even a little bit.
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The choice with seed 20739 in fig. 8.10 is an example of this: In making a

decision, even players who recognize that the first option will help the merchant

have to somehow justify giving up their gold (and to a noble who doesn’t deserve

it, no less). As the numbers indicate, most decided to simply travel onwards:

the goal of helping the merchant was not worth the cost associated with it. Of

course, it doesn’t help that the option text doesn’t clearly state your intent in

performing the action (to exonerate the merchant).1 In fact, one of the comments

in the “other” free text response to the motivation question reveals exactly this

kind of cost analysis in action:
1This issue has already been addressed by making the text more explicit for “pay_off” actions.

You come to a busy market and decide to browse for a bit.
A thief seems knowledgeable and a noble is baselessly accusing a merchant of
insolence.
What do you do?

1. You talk the noble down
(You have skill: negotiation).
12 → You reason with the noble and the noble calms down. The noble
is no longer accusing the merchant.

2. You offer the noble your sack of gold
(You have skill: negotiation).
0 → You bargain with the noble, but can not seem to reach a deal. The
situation remains the same.

3. You transform the noble into a chicken
(You are missing skill: sorcery).
0 → You cast a spell on the noble, and the noble is cursed with the
form of a chicken. The noble is not accusing the merchant any more, the
noble has been transformed into a chicken, the noble is now not sentient,
the noble no longer has some perfume, and the noble no longer has an
ancient grimoire.

Figure 8.11: The “obvious_failure” choice with seed 95923 minus framing.
Boxed numbers indicate the number of participants that selected each outcome.
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You only really had 2 options. I wouldn’t want to give up the gold if I

didn’t have to. So just negotiation made the most sense.

This response was given by a participant who saw choice 95923, an “obvious_

failure” choice shown in fig. 8.11. The fact that players are factoring costs into

their decisions but Dunyazad is not tracking them is a problem. Of course, the

quote above reveals another problem: the choice with seed 95923 was supposed

to be an “obvious” choice with a single best option. How did Dunyazad justify

having two options that include positive skill indications? In this case, Dunyazad

has found what amounts to a loophole in its rules: the “bad” options at an obvious

choice are allowed to be merely “risky”—the reasoning is that compared to a really

good option, a risky option will still be clearly inferior. Because the “talk_down”

action includes a risk that the target will begin accusing the initiator instead of

their original victim, and because, internally, having the negotiation skill doesn’t

guarantee success, Dunyazad views the first option as a “risky” one: one that

has an unsubstantiated benefit but also a potential drawback. Three factors

combined to throw off Dunyazad’s analysis. First, the unaccounted-for cost of

the “good” option meant that it really wasn’t as attractive as it should have been.

Second, the fact that talking the noble down carried a risk wasn’t something

that was made clear from the surface text. Third, the fact that in the first option,

Dunyazad does not count the negotiation skill as decisive while in the second

option it does creates a false equivalence at the surface text level: both options

appear equally supported by the “negotiation” skill.

This problem of costliness was specific to the “pay_off” action, which was

present in the five choices with seeds 20739, 95923, 40550, 67832, and 82994.

Choice 20739 was just discussed in the context of the “travel_onwards” action and

choice 95923 is the choice that prompted this analysis, but the other three choices

have not yet been considered. Luckily, choice 40550 was a “unexpected_failure”
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choice and choices 67832 and 82994 were both “expected_success” choices: all

three were in conditions that were supposed to have three good options. As a

result, these costly options were presented along with two actually-good options,

and in fact the costly options at these choices were chosen by one, zero, and zero

participants respectively. In other words, these options probably had little effect

on the outcome-related results, as they were almost never chosen. On the other

hand, they do compromise the option structures of the choices in question, and

so they have a potentially important effect on the between-cases comparisons.

One good thing in all of this is that none of the factors that Dunyazad is

currently neglecting are fundamentally difficult to account for. For example, the

fact that all 12 participants at choice 95923 chose the first option, which can

be deduced to be the best using some simple extensions to Dunyazad’s current

logic, means that Dunyazad’s general strategy of using character motivations to

predict player actions is probably on the right track. Extending Dunyazad’s option

evaluation code to reason about action costs, handle complex goal priorities, and

reason about directly-presented implications rather than implications implied by

hidden action logic may be technically challenging, but it’s a clear set of features

to implement. Despite Dunyazad’s failures, the results of this study strongly

imply that with these features, Dunyazad will be able to correctly predict player’s

option evaluations most of the time.

8.6 Outcome Results

While the results of the option-related hypotheses were somewhat lackluster, this

was to some degree expected based on the results of the first study. Had more

improvements been made to Dunyazad before the second study, this might have

been avoided, but the primary purpose of this study was to evaluate Dunyazad’s

outcome predictions, which had not been tested by the first study. Tables 8.9
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and 8.10 show the results for nominally-positive- and nominally-negative-outcome

conditions respectively (the top and bottom halves of table 8.2). Overall, Dun-

yazad seems to be generally successful at producing positive outcomes, although

it has some trouble making them surprising. On the other hand, its track-record

for negative outcomes is not as good. In particular, surprising negative outcomes

were more consistently rated as actually being “bad,” but participants didn’t

necessarily accept the idea that they were “unfair” or “nonsense.”

8.6.1 Outcomes and Option Perception (Again)

The only hypotheses regarding nominally successful outcomes that weren’t con-

firmed were those regarding the expectedness of the nominally unexpected cases.

These two conditions, the “unexpected_success” and “obvious_failure[alt]”

conditions, were supposed to be cases where a participant chose an option which

carried some indicator that it would fail, but got a successful result. The choices

involved had seeds 99500, 47794, and 33152 (“unexpected_success”); and 8638,

28306, and 95923 (“obvious_failure”). Of course, only participants who didn’t

choose the nominally best option at choices 8638, 28306, and 95923 fell into the

“obvious_failure[alt]” case.

Unfortunately, the failure to confirm these hypotheses is not terribly sur-

prising: out of all of the outcome-related statements, the statements about

expectedness and unexpectedness are the most heavily dependent on partici-

pant’s perception of the option text as opposed to only the outcome text. Because

several of the choices listed above had problems with option perceptions, they

didn’t really fit the outcome profile that the hypotheses were expecting. Choices

47794 (see fig. 8.9) and 33152 (not shown) together account or 24 of the 35

“unexpected_success” responses, and as already discussed, they each included a

popular option that in light of its outcome did not seem like a bad option. Because

the option text alone didn’t give players a strong negative expectation for these
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Question Expected Success Unexp. Success
Obv. Success [main] Obv. Failure [alt]

Fair A 6.8×10−11 88% A 1.6×10−6 80%
A 1.7×10−8 87% A 1.1×10−5 85%

Unfair D 2.7×10−10 87% D 3.5×10−5 76%
D 1.7×10−8 87% D 4.2×10−6 86%

Sense A 8.2×10−9 85% A 1.3×10−4 74%
A 4.7×10−8 85% A 4.2×10−6 86%

Broken D 6.9×10−9 85% D 7.1×10−6 78%
D 1.7×10−6 82% D 1.1×10−5 85%

Good A 6.8×10−11 88% A 1.5×10−6 79%
A 3.4×10−7 84% A 4.2×10−6 86%

Bad D 6.7×10−13 90% D 9.2×10−7 80%
D 1.3×10−7 84% D 4.2×10−6 86%

Satisfied A 1.7×10−10 88% A 1.4×10−7 82%
A 4.7×10−8 85% A 1.5×10−6 87%

Dissatisfied D 2.2×10−10 88% D 4.8×10−7 81%
D 1.1×10−6 82% D 1.5×10−6 87%

Expected A 0.011 66% D 0.795 ×
A 3.0×10−4 75% D 0.996 ×

Unexpected D 6.6×10−6 78% A 0.896 ×
D 3.0×10−4 75% A 0.997 ×

Table 8.9: The results from the retrospective study for conditions that have nom-
inally positive outcomes. Each row stacks results from the two (sub-)conditions
listed at the top. Each result lists the hypothesis (‘A’ for agree or ‘D’ for disagree),
the p-value, and if significant (p < 0.05) the common-language effect size.
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Question Expected Failure Unexp. Failure
Obv. Success [alt] Obv. Failure [main]

Fair A 0.001 70% D 0.343 ×
A 0.274 × D 0.460 ×

Unfair D 0.017 65% A 0.634 ×
D 0.024 72% A 0.419 ×

Sense A 1.2×10−4 74% D 0.716 ×
A 0.012 75% D 0.508 ×

Broken D 4.2×10−4 72% A 0.981 ×
D 6.2×10−4 85% A 0.783 ×

Good D 0.129 × D 2.6×10−5 76%
D 0.519 × D 0.006 70%

Bad A 0.762 × A 1.7×10−4 73%
A 0.919 × A 0.014 68%

Satisfied - D 0.024 63%
- D 0.809 ×

Dissatisfied - A 3.7×10−4 72%
- A 0.897 ×

Expected A 0.031 63% D 9.5×10−4 71%
A 0.129 × D 0.168 ×

Unexpected D 2.9×10−4 73% A 0.184 ×
D 0.036 70% A 0.313 ×

Table 8.10: The results from the retrospective study for conditions that have
nominally negative outcomes. The format is the same as that of table 8.9.
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options, positive results were not only not surprising; they made the option seem

like it had been a good one from the start.

The fact that participants marked the outcomes of these options as expected

might also point to a different effect: player trust in game-like systems. In most

modern games, unless the player has already received substantial warnings that

they are on the wrong path, there won’t be choices that have no “correct” option:

even the worst situations will have some means of escape if the player is thrust

into them without control over prior situations. Because participants in this

study only saw one choice, they may have assumed that there would be a “correct”

option that would lead to a successful result. With this expectation in mind, it’s

not surprising at all that choosing what one thinks is the best result will lead to

a good outcome, even if the option text includes some negative indicator.

From the perspective of choice poetics, both of these possible effects are

important to keep in mind. First is the idea that options and outcomes both

influence the perception of the other. In this case, because Dunyazad did not

make clearly bad-seeming options, a positive outcome was able to make those

options seem like good options (at the very least, relative to other options at

those choices). Of course, given that those options seemed good, the notion that

a good outcome would be surprising was no longer valid. In other words, players

reason neither strictly from options to outcomes nor from outcomes to options,

but their perceptions of both affect their perceptions of the other. If fact, there

is ample evidence of this kind of reasoning even in real-world decisions (for an

extreme example see studies on choice blindness such as (Hall, Johansson, and

Strandberg, 2012)). If an author is interested in constructing an option that feels

a specific way in retrospect, then, they must be mindful of how the consequences

of that option make it appear in hindsight.

If the fact that options meant to seem indicative of failure were not ex-

plains the expectedness result in the “unexpected_success” case, what about
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the “obvious_failure[alt]” case? Choice 95923 from that case has already

appeared here as well (see fig. 8.11) and in combination with a graph of all

responses to the “expected” question in “obvious_failure[alt]” cases (fig. 8.12)

explains what is going on. Essentially, Dunyazad’s failure to make choice 95923

obvious flooded the “obvious_failure[alt]” sub-case with 12 responses that

dominated the three from the other two choices (which were clearly much better

at getting participants to choose the intended choice). The “obvious_failure

[alt]” sub-case therefore does not mainly consist of players who chose a bad

option but got a good result. Instead, it mainly consists of players who chose

option one at choice 95923, which as already discussed, seemed to be a clearly

positive option. Because of this, getting a good result was not surprising, and

the corresponding hypotheses were not confirmed.

8.6.2 Outcome Text vs. States

Before moving on to discuss the nominally-negative outcome hypotheses, there’s

one more choice that didn’t quite give expected results from the “unexpected_

success” condition. This is choice 99500 (shown in fig. 8.13), which stood out

because a sizeable minority felt that the outcome they got was bad. Inspecting

Obvious Failure [alt]
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Response 1 2 3 4 5

[2]

[1]

[12]

8%

54%

75%

83%

31%

12%

8%

15%

12%

[...] [the options] [seem about equally promising].
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Figure 8.12: Results for the “expected” statement in the “obvious_failure[alt]”
sub-case, grouped by seed. Note the bracketed numbers on the right which
indicate the sample size for each choice: seed 95923 dominates this category.
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As you journey onwards, an ogre approaches you slowly, gnashing its teeth.
She is threatening you.
What do you do?

1. You attack the ogre
(You are missing skill: fighting. She has skill: fighting. She has no tool
for fighting).
4 → You attack her. You strike at her but she thrusts at you and then
you are hit by the ogre’s attack. Suddenly she rallies and fiercely strikes
back at you, and you are defeated. The ogre is no longer threatening
you, and she is now injured.

2. You attempt to pacify the ogre with music
(You are missing skill: musician).
7 → You weave a soothing melody, and the ogre becomes calm. The
ogre is not threatening you any more.

3. You transform the ogre into a chicken
(You are missing skill: sorcery).
0 → You cast a spell on the ogre, and the ogre is cursed with the form
of a chicken. The ogre is no longer threatening you, and she has been
transformed into a chicken.
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Figure 8.13: The choice with seed 99500 along with valence results from the
“unexpected_success” condition. Boxed values indicate the number of partici-
pants that selected each outcome at choice 99500, and bracketed numbers on the
right of the graph below indicate sample sizes for each row. Note the diverging
responses for choice 99500 and the text of the outcome for option one.
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the choice reveals the problem: the result of option one includes outcome text that

seems at odds with itself: “you are defeated,” but the ogre is “no longer threat-

ening you” and “she is now injured.” Within the system of outcome constraints

placed on the “attack” action, this is allowed: defeat of the target precludes the

death of the attacker, but they may still be injured. The real problem here is

that the “defeated” outcome does not have any direct effects on the state of the

world, unless the defeated party is threatening or accusing someone, in which

case those states are removed.

Because Dunyazad generated a “defeat” with no negative consequences at-

tached in terms of world state, it viewed that “defeat” as it would a victory:

state changes effected by the action are unambiguously positive for the player,

so the result is a “success.” Of course, participants felt otherwise: of the four

participants that selected that option, three gave the anomalous responses to

the valence questions shown in fig. 8.13 and the fourth supplied both neutral

responses. The disconnect here between the text and Dunyazad’s internal repre-

sentation of the world causes a rift between its predictions and player’s actual

impressions. Furthermore, one can question whether Dunyazad should be able

to generate such a situation in the first place: shouldn’t “defeat” come bundled

with a negative consequence such as being at the mercy of the victor? In this case,

the effect was isolated enough that it didn’t upset any hypotheses, but forcing

a clear link between every outcome reflected in the text and a definite internal

state would help avoid situations like this.

8.6.3 The Outcome of “travel_onwards”

As already mentioned, in its present state Dunyazad views “travel_onwards”

actions as much more negative than participants, who often found simply ignoring

a problem to be an acceptable choice. This was not only true of option perceptions,

but of outcome perceptions as well. In fact, the failure of “expected_failure”
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Figure 8.14: Results for the “good” and “bad” items from the “expected_failure”
and “obvious_success[alt]” conditions. Bracketed numbers on the right indi-
cate sample sizes for each row; note that the “obvious_success[alt]” condition
is dominated by choice 20739, and even then has only 8 samples in total.

and “obvious_success[alt]” choices to give reliably negative results (shown in

table 8.10) can be attributed to this problem. As shown in fig. 8.14, which graphs

responses to the “good” and “bad” statements for the “expected_failure” and

“obvious_success[alt]” conditions, the choices where a majority of participants

felt that the outcome was positive are all choices containing “travel_onwards”

options (choices 87991, 8015, and 20739, discussed above). These “travel_

onwards” options, which the system considers to be unambiguously bad (because

the player’s character fails to help someone in need), are seen by players as a good
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or at least mixed result: they have successfully avoided an otherwise troublesome

situation. The presence of these options neatly explains the left-hand column

of table 8.10: they aren’t viewed as bad, but they are seen as fair, sensible,

and expected. The only remaining unconfirmed hypotheses are those for the

“obvious_success[alt]” sub-case, but those can also be explained with reference

to fig. 8.14: the simple lack of data for the “[alt]” sub-case of the “obvious_

success” condition (eight responses total) makes such hypotheses difficult to

confirm statistically. The fact that the bulk of the “obvious_success[alt]” case

responses (5) were from participants who selected to “travel_onwards” at choice

20739 (cf. fig. 8.10) didn’t help matters.

8.6.4 Fairness and The Strength of Expectations

Examining the unexpected failure conditions (the right half of table 8.10) it is

immediately apparent that participants found them to be more fair and less

broken than expected. The relevant rows of fig. 8.2 indicate that these two

conditions did stand out as the least fair and most broken cases, but they were

not found to be more unfair than fair or more broken than sensible, as expected.

Figure 8.15 breaks down the responses by individual choice, and gives a sense

as to which choices were viewed as more fair (and/or less broken) than others.

In the “unexpected_failure” condition, the choice with seed 46585 stands out

as seeming more fair than its companions, and in the “obvious_failure[main]”

condition, the choice with seed 28306 seems to be the culprit.

Figures 8.16 and 8.17 display the choices in question, and they share a common

property that’s likely related to why they were seen as fair: despite their differing

option structures, they include options which generate only weak expectations of

success, and which have somewhat mixed results. In choice 46585, both the first

and third options involve some kind of debate, and while the “negotiation” skill

probably helps debate successfully, it’s not the kind of action where the result

240



8.6. OUTCOME RESULTS

Unexpected Failure

57%

18%

73%

29%

55%

18%

14%

27%

9%

[...] the outcome I got is fair.

40550

46585

57614

100 50 0 50 100
Percentage

Response 1 2 3 4 5

[14]

[11]

[11]

36%

45%

18%

50%

9%

55%

14%

45%

27%

The outcome that I got is unfair [...].

40550

46585

57614

100 50 0 50 100
Percentage

Response 1 2 3 4 5

[14]

[11]

[11]

43%

9%

55%

50%

73%

36%

7%

18%

9%

The outcome that I got makes sense [...].

40550

46585

57614

100 50 0 50 100
Percentage

Response 1 2 3 4 5

[14]

[11]

[11]

50%

91%

73%

50%

9%

27%

0%

0%

0%

[...] the outcome I got does not make sense.

40550

46585

57614

100 50 0 50 100
Percentage

Response 1 2 3 4 5

[14]

[11]

[11]

Obvious Failure [main]

20%

50%

70%

10%

10%

40%

[...] the outcome I got is fair.

28306

8638

100 50 0 50 100
Percentage

Response 1 2 3 4 5

[10]

[10]

[10]

50%

20%

50%

40%

0%

40%

The outcome that I got is unfair [...].

28306

8638

100 50 0 50 100
Percentage

Response 1 2 3 4 5

[10]

[10]

[10]

10%

80%

80%

0%

10%

20%

The outcome that I got makes sense [...].

28306

8638

100 50 0 50 100
Percentage

Response 1 2 3 4 5

[10]

[10]

[10]

80%

10%

20%

50%

0%

40%

[...] the outcome I got does not make sense.

28306

8638

100 50 0 50 100
Percentage

Response 1 2 3 4 5

[10]

[10]

[10]

Figure 8.15: Results for the fairness and sense items in the “unexpected_failure”
and “obvious_failure[main]” conditions. Bracketed numbers on the right indi-
cate sample sizes for each row. Scale as per previous figures.
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would ever be a forgone conclusion. The same is true in choice 28306: the attack

option involves fighting, which is an action often prone to unexpected results,

and furthermore, the advantage ascribed to the player in the option text is only

marginal: possession of a weapon when both parties have the relevant skill.

Besides the fact that these choices don’t set up strong expectations with their

option text, they also don’t have unreservedly negative results. For example,

in the third outcome of choice 46585, while it’s true that failing to get rid of

an accusation as intended is a bad thing, it’s not necessarily awful: maybe the

player will get another chance to address the situation before something really

bad happens. Similarly in outcome three of choice 28306, despite sustaining an

injury the overall battle ends in a draw (which the player might further perceive

You come to a busy market and decide to browse for a bit.
A merchant seems knowledgeable and a peasant is bored and a noble is
baselessly accusing the merchant of disrespect.
What do you do?

1. You talk the noble down
(You have skill: negotiation, and you have skill: storytelling).
6 → You talk with the noble, but the noble refuses to back down. The
noble has started to yell at you.

2. You transform the noble into a chicken
(You have skill: sorcery. You have your ancient grimoire).
0 → You try to cast a spell on the noble, but nothing happens. The
situation remains the same.

3. You deny that the merchant is guilty and argue that the noble’s accusa-
tion is baseless
(The noble is missing skill: negotiation. You have skill: negotiation).
5 → You argue that the merchant has been wrongly accused, but the
noble remains convinced that the merchant is guilty. The situation
remains the same.

Figure 8.16: The “unexpected_failure” choice with seed 46585. Boxed numbers
indicate the number of participants who selected each outcome.
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As you continue your journey, an ogre approaches you, stomping its feet.
She is threatening you.
What do you do?

1. You attempt to pacify the ogre with music
(You have skill: musician. You have no tool for music).
1 → You weave a soothing melody, and the ogre becomes calm. The
ogre is no longer threatening you.

2. You try to flee from the ogre
(The ogre has skill: wilderness lore. You are missing skill: wilderness
lore).
1 → You flee from the ogre and escape. The ogre is no longer threatening
you.

3. You attack the ogre
(The ogre has skill: fighting. You have skill: fighting. She has no tool
for fighting. You have your spear).
10 → You attack the ogre. You strike at the ogre and then the ogre fights
back. Finally you and the ogre withdraw from combat, exhausted. You
are now injured.

Figure 8.17: The “obvious_failure” choice with seed 28306. Boxed numbers
indicate the number of participants who selected each outcome.

as ending the ogre’s threat, although in the system’s representation of the world

the threat persists). While these are negative outcomes (and the results for the

statement “I got a bad outcome” show that most participants agreed on this), are

they negative enough to be considered “unfair” with respect to the expectations

set up by the option text? The subjects in the study didn’t think so, and thus

the hypotheses that these conditions would be perceived as unfair and possibly

broken were not supported.

In Dunyazad’s internal calculus, these options all simply “suggest success,”

and “result in failure” but evaluating them in human terms shows that the

expectations that they set up are limited. The contrast between these options

and ones which players overwhelmingly found to be unfair (such as option two of
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You come across some bandits attacking a merchant.
The bandits are threatening the merchant.
What do you do?

1. You talk the bandits down
(You are missing skill: negotiation).
1 → You reason with the bandits and the bandits calm down. The
bandits are not threatening the merchant any more.

2. You transform the bandits into a chicken
(You have skill: sorcery. You have your ancient grimoire).
10 → You try to cast a spell on the bandits, but nothing happens. The
situation remains the same.

3. You attack the bandits
(The bandits have skill: fighting. You are missing skill: fighting. They
have no tool for fighting).
0 → You attack them. You are hit by their attack but then you dodge
their attack, then you dodge their attack. They are defeated. You have
acquired an ancient grimoire, the bandits are no longer threatening the
merchant, and they become injured.

Figure 8.18: The “obvious_failure” choice with seed 8638. Boxed numbers
indicate the number of participants who selected each outcome. This is an
example of Dunyazad successfully creating a choice that participants viewed as
unfair.

choice 8638, shown in fig. 8.18) is illustrative. Choice 8638 combines an obvious

option structure (so players feel they are making the correct decision by picking

option two) with a disappointing failure. The desire to see the results of the

polymorph spell might have something to do with the strong reactions to choice

8638, but the fact that the option text of option two mentions two positive factors

and no negative ones is likely important as well. Based on these results, if an

author is intentionally trying to create a choice that is perceived as unfair, it

seems that being subtle when suggesting a positive outcome is not the most

productive approach.
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8.6.5 Regret and Alternatives

Another unexpected result from an unexpected failure case was the fact that par-

ticipants weren’t dissatisfied with their decisions at “obvious_failure” choices.

In retrospect, these hypotheses were poorly thought out: the “obvious_failure

[main]” case should be one in which a participant selects what appears to be

the only available good option, but is given a negative outcome. Although such

outcomes should be perceived as bad (which they were), the questions about

satisfaction were asking whether participants would rather have picked a differ-

ent option. If a participant truly thinks that the option they picked is the only

good option, then despite a bad result, they would not believe that a different

option might lead to a better outcome. However, it’s not the case that they clearly

wouldn’t want to try a different option—the outcome they got was bad—so neither

enthusiastic agreement nor firm denial seem like appropriate responses.

The answers that I got reflected these competing impulses: the “satisfied” and

“dissatisfied” statements both received a substantial number of neutral responses

in the “obvious_failure[main]” condition, and the non-neutral responses were

about evenly split overall, as shown in fig. 8.19. Figures 8.17 and 8.18 (just shown)

show the two choices that had any “[main]” responses in the “obvious_failure”

condition; the data in fig. 8.19 all comes from the 20 participants who chose the

most popular options at one of those choices. While both choices are split, choice

28306 leans a bit more towards satisfaction, which may reflect being perceived

as more fair, as just discussed. Ultimately, the hypotheses that the “obvious_

failure[main]” case would leave players feeling dissatisfied with their choice

was shortsighted, and the mixed results that I got should have been expected

given the tension between a bad result and a lack of viable alternatives produced

by these choices.
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8.6.6 Expectations and... Expectedness

The differences between choices 8638 and 28306 in terms of perceived fairness,

brokenness, and satisfaction have been discussed, but there is one more pair

of hypotheses relating to these choices that was not confirmed: the hypotheses

stating that their results would be unexpected. However, the issue of their

differing expectations has already been discussed in relation to perceptions of

fairness. If choice 28306 is perceived as more fair because it gives rise to weaker

expectations of success, then its negative result should be less unexpected than

that of choice 8638. Looking at the bottom two graphs in fig. 8.19, this is exactly

what was observed.

The weak positive expectations in choice 28306 are thus largely responsible

for the failure of the “obvious_failure[main]” sub-case’s results to be viewed

as unexpected. Of course, another factor was the makeup of choice 95923, the

third “obvious_failure” choice, which did not contribute any samples to the

“[main]” case. If just choice 8638 is considered, the hypotheses that its outcome

was unexpected are confirmed (p = 0.01337, effect size 72% for the “not expected”

hypothesis and p = 0.014, effect size 72% for the “was unexpected” hypothesis)

even with only 11 samples (including the non-“[main]” sample). Had all three

choices in the “obvious” condition produced results like choice 8638 (both in

terms of participants choosing the expected option and the reactions to survey

statements) the hypothesis that these types of outcomes were unexpected would

have been confirmed.

The final unconfirmed hypothesis from the unexpected negative outcome

column was that the “unexpected_failure” condition would produce unexpected

results. The full hypothesis is actually half-confirmed, because participants

did significantly disagree that the results were expected, but they didn’t agree

that they were unexpected. Figure 8.20 shows the results for both items in

this condition, and it implicates choice 46585 as the culprit. This choice was
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Figure 8.19: Satisfaction and expectedness in the “obvious_failure[main]” con-
dition. Bracketed numbers on the right indicate sample sizes for each row.
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Figure 8.20: Results for the expectedness items in the “unexpected_failure”
condition. Bracketed numbers on the right indicate sample sizes for each row.
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already discussed in the context of weak expectations, and is shown in fig. 8.16.

That context is not a coincidence: the fact that the actions that it involves are

inherently open-ended means that participants choose them with some doubt

in their minds. The difference between the positive and double-negative cases

here is likely due to the outcomes at choice 46585 being neither expected nor

unexpected. Falling somewhere in between, they elicited disagreement with both

the statement that they were “pretty much expected” and the statement that

they were “completely unexpected,” thus helping confirm the positive hypothesis

while working against the double negative hypothesis.

8.7 Comparative Results

There is much more to be said about the results of the outcome hypotheses and

Dunyazad’s overall performance (see section 8.9), but first, it is useful to examine

the results for the between-condition hypotheses. These hypotheses were grouped

into five topics which each probed for evidence of a different proposed effect, as

discussed in section 8.3.3.

8.7.1 Free vs. Forced Unexpected Failure

The first group predicted broadly that unexpected failure would be perceived as

more acceptable when it seemed to be the result of a free choice rather than a

forced one. Stated another way, participants who experienced failure at a choice

where all options seemed good might be more likely to blame themselves for

picking a “wrong” choice, while participants who picked an option that seemed

to be clearly better than the alternatives might blame the system, accusing it of

being unfair or broken and generally viewing their lot as worse.

The results for the 10 individual hypotheses underlying this prediction are

shown in the top half of table 8.11. Unfortunately, all but two of them were
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Question Hypothesis p-value Effect

Fair unexp. failure>obv. failure [main] 0.640 ×
Unfair unexp. failure<obv. failure [main] 0.292 ×
Sense unexp. failure>obv. failure [main] 0.339 ×

Broken unexp. failure<obv. failure [main] 0.164 ×
Good unexp. failure>obv. failure [main]* 0.916 ×
Bad unexp. failure<obv. failure [main]* 0.902 ×

Satisfied unexp. failure<obv. failure [main]* 7.7×10−4 75%
Dissatisfied unexp. failure>obv. failure [main]* 3.7×10−5 80%

Expected unexp. failure>obv. failure [main]* 0.945 ×
Unexpected unexp. failure<obv. failure [main]* 0.539 ×

Question Hypothesis p-value Effect

Fair unexp. failure>8638 [main] 0.116 ×
Unfair unexp. failure<8638 [main] 0.233 ×
Sense unexp. failure>8638 [main] 0.004 77%

Broken unexp. failure<8638 [main] 0.005 76%
Good unexp. failure>8638 [main] 0.305 ×
Bad unexp. failure<8638 [main] 0.606 ×

Satisfied unexp. failure<8638 [main] 0.004 76%
Dissatisfied unexp. failure>8638 [main] 7.9×10−4 81%

Expected unexp. failure>8638 [main] 0.296 ×
Unexpected unexp. failure<8638 [main] 0.018 71%

Table 8.11: Retrospective hypotheses for the claim that “Unexpected failure
is more acceptable when it happens at a freely-chosen option than when the
player feels there are no viable alternative options.” The bottom half shows the
results when choice 8638 is allowed to stand in for the entire “obvious_failure
[main]” case. Each line lists the hypothesis, the p-value, and if significant
(p < 0.05), the common-language effect size. Low-confidence hypotheses are
marked with a ‘*’. Note that each pair of rows contains opposing predictions,
because complementary questions are arranged together.
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not confirmed (and ironically, the two that were confirmed were “low-confidence”

hypotheses). Despite these results, the two confirmed hypotheses show extremely

strong effects, and can be taken to indicate that a subset of the originally proposed

effect is at work here. Forced-choice unexpected failures may not be seen as

more fair, less broken, better, or more expected than free-choice unexpected

failures, but participants are definitely more-satisfied with their decisions in the

forced-choice case.

Part of the reason that these hypotheses were mostly unsupported is that the

choices in question didn’t confirm the basic hypotheses about whether partici-

pants would agree or disagree with most of these questions (the two cases being

compared here make up the right-hand column in table 8.10). Only the valence

and satisfaction statement hypotheses were confirmed as a pair for either of these

cases, and the hypotheses for the satisfaction statements were only confirmed for

the “unexpected_failure” case. As discussed above, the reasons for this have a lot

to do with the general failure of the “obvious_failure[main]” case to live up to its

name. Because of the not-so-bad outcomes in the “obvious_failure[main]” case,

not to mention the complications that the “unexpected_failure” case had, the

comparison between the “unexpected_failure” and “obvious_failure[main]”

cases isn’t really testing what these hypotheses assumed it would be.

Comparing the “unexpected_failure” case against just the most emblematic

choice from the “obvious_failure[main]” case (choice 8638) gives a slightly

different results, shown in the bottom half of table 8.11. We can see that the

prediction about fairness was not supported (although it wasn’t firmly rejected

either), but the prediction about sense/nonsense holds up. The valence prediction

is still unsupported, and the expectedness hypotheses are split, but overall it

seems that the original idea wasn’t wrong, but just overly broad. Although more

data would be needed to pin down this effect, it seems clear that the perception

of alternatives to a chosen option as viable or not has an effect on how surprising
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negative outcomes are perceived. If options perceived as viable alternatives are

available, players will be both less satisfied with their decision (unsurprisingly)

but they will also be more likely to label the result as one that makes sense, and

less likely to label it as surprising (though not more likely to label it as expected).

8.7.2 Chosen vs. Inevitable Success

A second proposed between-conditions effect was that cases where success seemed

to be the result of choosing a correct option would seem to have better outcomes

than cases where every option seemed likely to be successful, although both

conditions were expected to be rated as generally good. This proposed effect

extended to the satisfied/dissatisfied items as well, but the results of testing

these hypotheses, shown in table 8.12, fail to support this claim. A look at

the distribution of responses to these questions, shown in fig. 8.21, reveals one

possible reason for this: the results are simply oversaturated.

With the data I collected, the proposed subtle differences could have shown

up as a shift from “somewhat agree” to “strongly agree” between the “expected_

success” and “obvious_success[main]” conditions, but it turned out that even in

the “expected_success” condition, which I predicted to score lower, the responses

were overwhelmingly2 “strongly agree.” To get data that might show such an

effect, one approach would be to run a study using a 7- or 9-point Likert scale

and hope that variation showed up in the upper regions of the scale. Another

approach would be to ask participants to directly rate how good or satisfied they

were, and provide response scales that included gradations of “good” such as

“good—great—excellent.”
2Note that although the responses to choice 20739 stand out, they represent only 2 of 25

samples in the “obvious_success[main]” case, and thus don’t have a meaningful effect on the
statistics of these hypotheses. The problems with choice 20739 (a costly choice paired off against a
“travel_onwards” choice) have already been discussed.
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Question Hypothesis p-value Effect

Good exp. success<obv. success [main] 0.942 ×
Bad exp. success>obv. success [main] 1.000 ×

Satisfied exp. success<obv. success [main] 0.725 ×
Dissatisfied exp. success>obv. success [main] 0.791 ×

Table 8.12: Retrospective between-conditions hypotheses concerning differences
between expected successful outcomes in cases where the alternative options are
either both positive or both negative.
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Figure 8.21: Summary of the data in the “expected_success” and “obvious_
success[main]” conditions for the “good” and “satisfied” items. The “bad” and
“dissatisfied” items are not show but are similarly one-sided in the opposite
direction. The last rows in the “obvious_success[main]” case are negligible as
they contain only 2 of the 25 samples in each plot (the problems with choice
20739 were discussed earlier).
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Question Hypothesis p-value Effect

Fair unexp. failure<unexp. success 4.5×10−9 86%
Unfair unexp. failure>unexp. success 5.7×10−5 75%
Sense unexp. failure<unexp. success 3.7×10−4 72%

Broken unexp. failure>unexp. success 0.004 67%

Table 8.13: Results for hypotheses asserting that unexpected positive outcomes
will be perceived as more fair and less broken than unexpected negative outcomes.

8.7.3 Good vs. Bad Unexpected Results

Table 8.13 shows the results for another proposed effect: that unexpected good

results would be seen as more fair and less broken than unexpected bad results.

In other words, when a result is the opposite of what is suggested by option text,

if it’s a good result players will tend to accept it, but if it’s a bad result, they will

tend to protest. This is not a controversial hypothesis, and it was confirmed on

all counts by the data. An interesting followup would be to attempt to assess

whether gradations of better and worse results have a linear effect on perceptions

of fairness and sense or whether there is some kind of inflection point between

the extremes used in this study.

8.7.4 Expected vs. Unexpected Failures

Another uncontroversial prediction was that unexpected failures would feel worse

than expected failures. This proposed effect is in line with theories of outcome

evaluation including both decision affect theory and consistency theory, and has

been confirmed in non-game scenarios (see e.g., (Shepperd and McNulty, 2002)). I

predicted that not only the valence items but also the satisfaction items would be

affected, and compared both expected success conditions (“unexpected_failure”

and “obvious_failure[main]”) against the “expected_failure” condition.
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The results, shown in table 8.14, confirm most of the hypotheses, except for the

satisfaction hypotheses relating to the “obvious_failure[main]” vs. “expected_

failure” comparison. In light of the “obvious_failure[main]” condition’s mixed

satisfaction results, the lack of confirmation for the last two hypotheses is not

surprising, in fact it would be surprising if they had been confirmed, because the

“obvious_failure” cases include competing influences for the satisfaction items,

as discussed above. The data thus agree with existing non-game results sug-

gesting that people perceive unexpected negative outcomes as being worse than

expected negative outcomes, even when the outcomes are identical. Furthermore,

when all available alternatives seem positive, failure provokes a stronger desire

to have chosen a different option than when all alternatives seem negative. Of

course, this last effect is more likely due to the valence of the alternatives than

the expectedness of the outcome, which would explain why it did not carry over

into the “obvious_failure[main]” case.

Unfortunately, although the hypotheses here are supported by the data and

agree with existing literature, there may be another cause for my findings: several

of the choices involved in these conditions have already been called out for not

Question Hypothesis p-value Effect

Good unexp. failure<exp. failure 3.0×10−4 72%
Bad unexp. failure>exp. failure 3.3×10−5 76%

Satisfied unexp. failure<exp. failure 0.006 67%
Dissatisfied unexp. failure>exp. failure 2.6×10−5 77%

Good obv. failure [main]<exp. failure 0.040 64%
Bad obv. failure [main]>exp. failure 0.004 72%

Satisfied obv. failure [main]<exp. failure 0.783 ×
Dissatisfied obv. failure [main]>exp. failure 0.815 ×

Table 8.14: Results for hypotheses predicting that unexpected failures will be
viewed as more negative than expected failures.
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producing their intended poetic effects. These hypotheses were supposed to look
for gradations of badness between choices whose results were uniformly viewed
as bad, but the choices that Dunyazad constructed for these cases didn’t turn out
that way. The data for the “good” item in all three relevant conditions, shown in
fig. 8.22, reveal that several choices are acting up (similar anomalies appear for
the “bad” item). As already discussed, choices 87991 and 8015 included “travel_
onwards” options which resulted in mixed evaluations, and choices 46585 and
28306 both had weak expectations and somewhat mixed outcomes. In this case
these problems happened to push things in favor of confirming the hypotheses,
but including the aberrant choices changes the meaning of the hypotheses, as
they are no longer clearly comparing failures to failures.
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Figure 8.22: Summary of the data in the “expected_failure,” “unexpected_
failure,” and “obvious_failure[main]” conditions for the “good” item. All of
these should have elicited general disagreement, but choices 87991, 8015, and to
some degree 28306 did not live up to this expectation.

255



CHAPTER 8. EXPERIMENT II: RETROSPECTIVE IMPRESSIONS

The results after filtering out the suspect choices are shown in table 8.15.

Although the effect is still (narrowly) confirmed for the “expected_failure” vs.

“unexpected_failure” case, the “obvious_failure[main]” case no longer shows

a strong effect. Interestingly, the effect seems to be significantly stronger for

negatively-worded questions than for positively-worded ones. Whether or not the

option structure of the obvious case interferes with this effect for the valence

items as it almost certainly does for the satisfaction items is open for debate, the

data collected here don’t support either argument.

8.7.5 Expected vs. Unexpected Success

A corollary of the previous proposed effect in decision affect theory is that un-

expected positive results will be viewed as more-positive than expected posi-

tive results (consistency theory in this case would disagree). I also tested this

prediction against the data, but ran into the same problem that I did when

trying to compare chosen vs. inevitable success: the data was oversaturated.

Question Hypothesis p-value Effect

Good 57614+40550<58403 0.048 65%
Bad 57614+40550>58403 0.007 73%

Satisfied 57614+40550<58403 0.049 66%
Dissatisfied 57614+40550>58403 1.2×10−4 85%

Good 8638(main)<58403 0.185 ×
Bad 8638(main)>58403 0.196 ×

Satisfied 8638(main)<58403 0.971 ×
Dissatisfied 8638(main)>58403 0.722 ×

Table 8.15: Results for hypotheses predicting that unexpected failures will be
viewed as more negative than expected failures, using only choices which fit the
expected structure of each condition. Compare with table 8.14.
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Figure 8.21 demonstrated this for the “obvious_success[main]” and “expected_

success” cases, fig. 8.23 shows that this carries over to the “unexpected_success”

case as well (data for the three other items involved in these hypotheses are not

shown, but were similarly saturated). Although there were a few responses that

were affected by Dunyazad’s quirks, even e.g., removing choice 99500 from con-

sideration does not change the statistical results. There was simply not enough

room on the scale for a subtle shift in valence to register. As with the chosen vs.

inevitable success case, running a study with broader scales or asking for a direct

evaluation of the degree of goodness/satisfaction would be viable techniques for

pursing this effect further. In any case, the data that I gathered do not provide

enough information to argue either for or against the presence of this effect.

8.8 Motivation Results

The last few hypotheses in the retrospective study concerned the answers to the

motive questions. The results for these are shown in table 8.17, and the actual

data is graphed in fig. 8.24. The hypotheses aren’t statistical in nature, and just

Question Hypothesis p-value Effect

Good exp. success<unexp. success 0.954 ×
Bad exp. success>unexp. success 1.000 ×

Satisfied exp. success<unexp. success 0.961 ×
Dissatisfied exp. success>unexp. success 0.960 ×

Good obv. success [main]<unexp. success 0.633 ×
Bad obv. success [main]>unexp. success 0.747 ×

Satisfied obv. success [main]<unexp. success 0.847 ×
Dissatisfied obv. success [main]>unexp. success 0.750 ×

Table 8.16: Results for hypotheses predicting that unexpected success will be
seen as more positive than expected success.
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serve to establish some expectations to compare against. Each (except the last)
essentially names an aspect of motivation that is predicted to be widespread and
asks if a simple majority of participants indicated that they used/experienced
that motivation. For example, the avatar motive—which corresponds to viewing
situations from the point of view of the player’s character, i.e., from within the
story—was predicted to be commonly employed in making decisions as well as in
evaluating individual options as both good and bad.

As a reminder, tables 8.18 and 8.19 show the answers that correspond to
the labels used in fig. 8.24. Another view of the motive responses is presented
in figs. 8.25 and 8.26. These each graph unique response combinations that
individually accounted for at least 5% of all responses (i.e., at least 11 responses).
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Figure 8.23: Summary of the data in the “expected_failure,” “unexpected_
failure,” and “obvious_failure[main]” conditions for the “good” item. All of
these should have elicited general disagreement, but choices 87991, 8015, and to
some degree 28306 did not live up to this expectation.
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Figure 8.24: Histograms of responses to the four motive questions. The total
number of responses is 205 in all cases, except for the consistency question where
there was a single missing response. However, all of the other questions allowed
multiple responses, so their counts do not sum up to 205. The middle background
line in all cases is placed at 102.5, or 50% of the maximum possible count.
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Note that each bar in these graphs represents exact matches only, so for example

an “avatar + power” bar would not include an “avatar + power + role” response.

These graphs thus show the most-common unique player-types, rather than the

most common motivations across player-types.

This data should be taken with a grain of salt: it’s self-reported and not

backed up by other measures which could reveal potential biases. The top two

categories among reasons for positive evaluations, for example, are the first

option alone and “all of the above.” However, the strong grouping of results is an

indication that responses aren’t simply random, and in the motivation question

the avatar category alone is most popular despite being the third option.

Question Hypothesis Count Total Percentage Result

[Which] motive(s)
contributed to your

decision? [...]

speed > 50% 4 205 2% ×
avatar > 50% 123 205 60% X

power > 50% 116 205 57% X

[How do you define
a “good” outcome]?

avatar > 50% 149 205 73% X

power > 50% 77 205 38% ×
progress > 50% 112 205 55% X

[How you define a
“bad” outcome]?

avatar > 50% 157 205 77% X

no.control > 50% 69 205 34% ×
power > 50% 105 205 51% X

progress > 50% 111 205 54% X

Do [you] approach
[all experiences]
[the same way]?

variable > 70%
of non-no.exp 123 183 67% ×

Table 8.17: A table of the motive-related hypotheses and their results. Note
that except for the last question, all questions allowed multiple responses to
be selected, so the numbers don’t add up to the total (also, not all possible
answers had a corresponding hypothesis). These are simple true/false outcomes,
as the hypotheses just predict that a certain fraction of participants will select a
particular outcome.
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In terms of the hypotheses, the first result is the most divergent from the
prediction, but in this case it’s potentially a good thing. Only 4 out of 205
participants indicated that they made a decision just to get the survey over
with. Of course, there’s some motivation to lie here, even despite the explicit
declaration that this answer would not affect acceptance, because the decision to
accept or reject a submission is completely up to the requester and can have a
large impact on a worker’s qualifications for tasks (as in this study, a common
qualification criteria is % acceptance rate). The other two predictions about
motives were that avatar and power would be popular, and these turned out to
be true. As noted in item 1 when talking about goal analysis, Dunyazad’s fixed
goals are targeted at avatar play and power play as modes of engagement, and
so confirming these hypotheses shows that Dunyazad is on the right track.

The predictions about positive evaluations were that the avatar, power, and
progress considerations would be popular. As it turned out, avatar and progress

Motive



speed I’m taking an online survey. I just chose an option
quickly so that I could complete the survey.

curious I was just curious to find out what would happen if I
chose the option I did.

role I imagined a character in the story situation and chose
what that character would do.

avatar I chose what I would have chosen were I in the situa-
tion described in the story.

interest I chose the option that I thought would lead to the most
interesting/satisfying result.

power I looked at the skill information and chose the option
that I thought would be most successful.

other Other (please explain):

Table 8.18: Answers to the motive question by label.

261



CHAPTER 8. EXPERIMENT II: RETROSPECTIVE IMPRESSIONS

Good
When



avatar I feel an outcome is good when something good hap-
pens to my character in the story world.

interest I feel an outcome is good if it is an interesting devel-
opment in the story.

role I feel an outcome is good when it fits the role that I am
building for my character.

power I feel an outcome is good when it makes my character
more powerful.

progress I feel an outcome is good when it makes progress to-
wards beating a game.

other Other (please explain):

Bad
When



avatar I feel an outcome is bad when something bad happens
to my character in the story world.

interest I feel an outcome is bad if it doesn’t develop the plot.

no.control I feel an outcome is bad when my character doesn’t do
what I expected them to do.

value.clash I feel an outcome is bad when my character expresses
a value or opinion that is different from what I wanted
them to express.

power I feel an outcome is bad when it makes my character
less powerful.

progress I feel an outcome is bad when it prevents me from
making progress towards beating a game.

other Other (please explain):

Table 8.19: Answers to the evaluation questions by label.
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were both highly popular considerations, but power was not, being less popular

than as role and effectively tied with interest. The predictions about negative

evaluations were also all correct but one. Avatar, power, and progress were all

popular negative evaluation criteria, but no.control was unexpectedly not: only

33% of participants indicated that it was an important consideration for them.

The results for the consistency question were interesting. The prediction

was that a strong majority (in this case 70%) of participants would select the

variable response over the consistent response, not counting participants who

selected no.exp. The result was that of the participants who felt qualified to

respond, 67% selected variable, while 30% selected consistent. This was a

larger proportion of consistent players than anticipated; overall most of the

results showed more diversity than I expected. Note that 90% of participants felt

Motives for Deciding

32
29

21

13 13
11

15%
14%

10%

6% 6%
5%

avatar power avatar +
power

role +
avatar +
power

role avatar +
interesting +

power

Figure 8.25: Unique motive combinations accounting for at least 5% of the total
responses. There were a total of 45 unique response combinations.
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Reasons for Positive Evaluations
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Figure 8.26: As fig. 8.25. There were 35 and 50 unique combinations respectively.
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qualified to answer this question, indicating at least some experience with a form

of interaction fiction, although there may be some self-selection involved in that,

and Amazon Mechanical Turk workers are certainly not a very representative

sample. This does seem encouraging for the use of Mechanical Turk in studies

of game-related behavior and opinions, however.

8.9 Discussion

Looking at all of the results of the retrospective experiment, the main trend seems

to be that while Dunyazad was largely successful at creating positive impressions,

it has trouble creating negative and contrasting impressions, sometimes making

a dilemma when it wants to create an obvious choice or vice versa. This mainly

stems from trouble with goal estimation: it’s two-level priority system is too

simple, and it simply doesn’t model some common player concerns like resource

costs. Luckily, these shortfalls have clear avenues of redress in terms of technical

implementation. It’s also the case that these shortfalls don’t fundamentally

invalidate that goal-based choice analysis method proposed in section 5.4. After

all, when Dunyazad doesn’t make a mistake, it can be eerily good at creating

choices that a variety of people respond to in the same way: an obvious choice like

choice 47371 can convince 11/13 participants to choose the option that the system

thinks is best. Although Dunyazad is somewhat ham-handed in its construction

of options, remember that its only guidance in selecting actions and outcomes is

the operationalization of goal-based choice analysis described in section 6.2. The

success of Dunyazad’s better choices is convincing proof that the goal-based choice

analysis method offers at least some insight into how players make decisions.

As for the high level effects which the between-conditions hypotheses probed

for in this study, although several of them were rendered inscrutable by Dun-

yazad’s limitations, there were some interesting confirmed results. First, it

265



CHAPTER 8. EXPERIMENT II: RETROSPECTIVE IMPRESSIONS

seems that when confronted with unexpected failure, player’s perceptions of

brokenness, and to some degree expectedness, are sensitive to the presence

or absence of viable-seeming alternatives. This is not terribly surprising, but

confirmation of the effect opens the doors for new questions that could be the

subject of a more specific study, such as how gradations in the desirability of

alternatives might affect perceptions of brokenness.

A second high-level result was a confirmation of decision affect theory’s as-

sertion that unexpected failure should feel worse than expected failure (Mellers,

A. Schwartz, and Ritov, 1999) in the context of a narrative game. While again,

confirming a well-studied psychological phenomenon like this is not surprising,

context matters, and uncritically assuming that in-game decision making will

exactly mimic everyday real-life decision-making is flawed. The results also go

both ways: confirming this effect is another sign that Dunyazad is actually creat-

ing both expected and unexpected results. Unfortunately, the same hypothesis

applied to successful results was not supported by the data, but as mentioned,

this was an issue of scale saturation rather than actually conflicting results.

The final component of the study was designed to give a rough sense of

player’s motivations, and the results indicated a substantial diversity of motives.

Perspective-taking was a very common motive in all categories as expected, and

it was also the most popular choice for participants who had a single motive. Con-

sideration of in-game power and progress was a close second to character-centric

judgements, and role-playing (in the true sense of the words) was surprisingly

common, with more than one in three participants indicating that they actively

role-play when making decisions, and almost half indicating that they consider

role-building as a reason for deciding when an outcome is desirable. Although

these are only rough figures, they serve to highlight the importance of consid-

ering modes of engagement when designing and evaluating choices. In terms

of motives for decision making, no single motive accounted for more than 60%
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of participants, meaning that if a choice is designed while taking only one per-

spective into account, as many as four out of ten players might approach that

choice with motivations that its designer never considered. In fact, because there

is considerable overlap between cases, 16% of participants in this study listed

neither of the two most-popular responses (avatar and power) as motives; only

by including the third-most-popular motive, role, does coverage exceed 90%. Of

course this exact mix of motives is influenced by both the sample population

(Mechanical Turk workers) and the genre of the choice they just experienced, but

I suspect that a similarly broad variety of motives is to be expected under most

conditions where one might want to study choice poetics.

Just like the first study, the retrospective study achieved its goals. It high-

lights some of Dunyazad’s strengths and weaknesses, as well as some areas, like

goal priorities and morality, that choice poetics theory could say more about. The

motivation data further make a strong case for the importance of considering

modes of engagement when evaluating choices, while at the same time showing

that Dunyazad’s targeted modes of engagement are broadly present as was hoped.

The results overall offer a plethora of interesting details that could be the basis

for future studies, either with or without an automatic choice-point generator. In

the end, this data can be used to improve Dunyazad, refine the theory of choice

poetics, and provide clues as to productive avenues for future research.

8.10 Conclusions

Having combed through the data, there seem to be two big takeaways from these

experiments. The first is that Dunyazad has weaknesses. Not only does it have

weaknesses, but the results also show what those are, and how to fix them. In

this sense, these studies are a successful product test: the system isn’t perfect

yet, but it does a lot, and if a few things are improved, it can do more.
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The second takeaway from these experiments is that choice poetics are more

complicated than I hoped but also simpler than I feared. Certainly, adding moral

reasoning and relative goal analysis capabilities to Dunyazad are technically

intimidating tasks, which may require some theoretical research of their own.

But at the same time, a lot of the basics seemed to just work: when Dunyazad

made a broken choice the reasons were clear and addressable, and when it made

good choices, the responses of participants were startlingly predictable. The

draw of Dunyazad’s well-crafted obvious answers was almost irresistible, and its

dilemmas made participants feel trapped. Although it accomplished this often

through drastic contrasts instead of the more subtle differences between options

that a human author might use, the point is that it was able to recognize and

deploy those contrasts successfully using the goal-based evaluation framework

presented here. For this reason these studies are not only a confirmation of

Dunyazad’s capabilities (and an inventory of its shortfalls) as a system, but also

an endorsement of goal-based choice analysis as a useful tool for understanding

how players will view choices.

8.11 Impressions Revisited

Section 5.4.6 promised that this chapter would revisit the prospective impressions

that it put forward in light of experimental results. Between the first and

second experiment, the dilemma, depressing, empowering, obvious, and relaxed

prospective structures were used to create choices, and the feedback on those

choices has exposed several ways that they can break down. Table 8.20 lists the

original definitions of those choices, along with some extra details that should

be taken into account during analysis.

Likewise, table 8.21 lists caveats for the retrospective impressions from ta-

ble 5.4. In neither case do the results completely invalidate a definition. Instead,
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results that show flaws in Dunyazad’s mechanical reasoning serve to highlight

the human faculties that must be brought to bear on the problem. For example,

Dunyazad currently lacks the ability to properly reason about moral injunctions,

such as “You must help others,” which are limited by exceptions like “Unless

you must put yourself at risk to do so.” Luckily, humans have this capacity,

and the fact that its lack can derail the construction of an obvious choice in

Dunyazad’s case is evidence that humans should be careful to exercise it when

evaluating such choices (or when constructing them themselves). Thus each flaw

in Dunyazad, as long as it’s cause can be identified, becomes a useful warning for

humans interested in choice analysis. Of course, this is exactly the property that

makes answer set programming an attractive approach for Dunyazad’s technical

implementation: using ASP makes it possible for Dunyazad’s implementation

of choice poetics to be as transparent as possible, and thereby facilitates this

process of turning problems into advice.
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Label Criteria Caveats

Depressing Each option hinders at least one
top-priority goal. No option should
enable or advance any top-priority
goals.

Options should create
clear negative expecta-
tions, especially if they
have positive outcomes.

Dilemma Exactly two options, each of which
hinders one of two different top-
priority player goals. The priori-
ties of the goals and the severity
of the consequences should be bal-
anced and neither option should en-
able or advance any goals (even
low-priority ones).

Proper goal balance
is difficult to achieve.
Moral injunctions often
have exceptions that
need to be considered.

Empowering Every option advances a player
goal, and may threaten one or more
goals but does not hinder any.

If option costs are not
balanced, it may col-
lapse to “obvious.”

Obvious One option that advances a top-
priority player goal without hinder-
ing any (although it may threaten
some), while none of the rest of
the options enable any top-priority
goals, and each of them threatens
some goal.

Resource costs must
be taken into account.
“Bad” options should
clearly indicate which
goal(s) they threaten.

Relaxed There are no option expectations
involving high-priority goals (pos-
itive or negative), and there are no
threatens expectations (and thus
no hinders expectations).

Slight differences be-
tween options can worry
satisficers. Try to con-
trast stakes with those
of previous choices.

Table 8.20: The prospective impression labels from table 5.3 that were used in
the experiments, showing caveats exposed by the results.
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Label Criteria Caveats

Expected
Success

The selected option was ex-
pected to advance a player goal
without hindering any, and its
outcome is both predictable
and good.

Resource costs should be taken
into account. Positive outcome
states can be described nega-
tively.

Expected
Failure

The selected option was ex-
pected to hinder a player goal
and not advance any, and its
outcome is both predictable
and bad.

Badness of outcomes may be
evaluated relative to expected
outcomes of other choices.

Unfair The selected option was ex-
pected to advance at least one
top-priority player goal, while
not hindering any. It has an
unexpected and bad outcome.

May be perceived as broken
if no attractive alternative op-
tions were present. Inherently
chaotic actions dampen expec-
tations of success.

Miracle The selected option was ex-
pected to hinder at least one
top-priority goal, while not ad-
vancing any. It has an unex-
pected and good outcome.

As for expected successes, de-
scriptive text is important, not
just “story-world result.” Posi-
tive results are seen as less sur-
prising than negative ones.

Table 8.21: Several retrospective impression labels from table 5.4, along with
caveats exposed by the results.
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Chapter 9

Conclusion

Throughout the previous three chapters which describe the theory of choice
poetics, the design of Dunyazad, and results from experiments that test its
capabilities, there have been mentions of “future work;” of unexplored paths.
The theory developed in chapter 5 is incomplete and shallow; it doesn’t directly
address some of the most interesting poetic effects of choices, such a regret.
The system description on chapter 6 admits that Dunyazad is focused on single
choices for now, and doesn’t have strong mechanisms for guiding plot arcs. The
experimental results detailed in chapters 7 and 8 are mixed, and highlight several
areas that need work. Taken together, this perhaps gives the impression that
Dunyazad as a project is woefully incomplete.

However, recall the purpose of Dunyazad as a project: learn new things
about choice poetics using a hybrid research method that incorporates artificial
intelligence into a humanistic agenda, while producing a novel generative system
centered on choices. Measured against these goals, the theoretical and technical
results that have been demonstrated so far represent an important first step in a
new direction. The ideas about choice poetics described in chapter 5, for example,
are not ideas that would have resulted from a close reading of multiple choice-
based narratives, and this is also the case for the caveats explored in chapters 7
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and 8. Furthermore, Dunyazad as a generative system does things that no
other existing system attempts, giving users a uniquely detailed level of control
over the choices that it generates: it is a system that attempts to understand
and provide direct control over the impressions that its choices make, and it
is largely successful at this. Finally, the experimental results from chapters 7
and 8 are something that would not have been possible without Dunyazad: based
on Dunyazad’s transparent operationalization of choice poetics, they are able
to establish a direct link between assessments that result from particular ways
of reasoning about choices and audience reactions to those choices. Knowledge
of where Dunyazad’s reasoning breaks down is in fact just as interesting as
knowledge of where it succeeds, and is the main benefit of the use of AI in this
project: without a technical implementation of the theory of choice poetics, these
hidden assumptions would have gone unnoticed.

Viewed in this light, I’m happy with the results of the project so far. It has
broken new theoretical and technical ground, backed up by rigorous experimental
results. The following sections summarize the key results of the Dunyazad project
and suggest important directions for future work.

9.1 A Theory of Choice Poetics

Chapter 5 describes both a broad foundation for understanding the poetics of
choices and a detailed procedure for analyzing choices as they related to player
goals. It provides language for talking about explicit, discrete choices in terms
of framing, options, and outcomes, and it introduces the notion of modes of
engagement, which help conceptualize players’ sometimes complex motivations.
When discussing poetic effects, it goes beyond well-established aspects of player
experience like agency and touches on effects like autonomy, responsibility, and
regret. Finally, chapter 5 describes in detail a technique for analyzing choices
based on player goals; this is the main theoretical contribution of this chapter.
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By mechanically breaking down a player’s experience of a choice into formal

components such as ‘player goals’ and ‘outcome evaluations,’ goal-based choice

analysis seeks to expose hidden connections and account for a range of possible

player motives. While a naı̈ve evaluation of a choice might be able to come up with

the most common reaction and predict which option most players would choose,

the detailed dissection involved in goal-based choice analysis helps understand

how alternative motives might color some player’s perceptions and exposes

the perceived trade-offs between options. For authors of branching narratives,

goal-based choice analysis should be a useful tool for viewing a choice from

multiple player perspectives, and it may be helpful when “debugging” a choice

that playtesting has identified as provoking unexpected reactions. For critics,

goal-based choice analysis ought to help go from a gut reaction to an explicit

description of why a particular choice is effective or ineffective at eliciting a

particular response, as demonstrated in section 5.4.10.

The theory developed in chapter 5 is based on existing theories of traditional

and interactive poetics along with craft advice, as described in chapter 3. But

what sets it apart from similar theories is that it was developed in tandem

with a generative system. It is intentionally more mechanical to allow for easy

operationalization, and this also makes it easy to incorporate feedback from

experimental results.

9.2 A Choice-Point Generator

The main technical result of the Dunyazad project is a program that generates

narrative choices. While any interactive narrative project necessarily gives the

player some kind of choices, until now there have only been a few projects that

focused on those choices as a first-class design problem: most projects generate

(or manage) some other structure which implicitly contains choices without ever
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focusing on the set of options available to the player at any one moment. As the

results in chapters 7 and 8 demonstrate, however, the set of options available

can profoundly impact player reactions, and even options which are never chosen

by the player color their perception of the outcomes that they do see. While a

few other projects such as (Barber and Kudenko, 2007b; Yu and M. O. Riedl,

2013) have made explicit choices and their structures the focus of their attention,

these projects have not attempted to generate a variety of choices in a principled

manner. Relative to existing work, then, Dunyazad stands out as a project that

aims to be able to generate a range of different choice structures by using a

general theory of choice poetics.

Dunyazad’s reliance on an operationalization of choice poetics is key here.

The same results in terms of measurable audience impact could likely have

been achieved using a variety of approaches. Certainly human authors could

have been employed to write choices given similar criteria (e.g., “make it have

an obvious best option”). What is the advantage of using a computer for this

task (or of using answer-set programming as opposed to some other technique)?

The answer lies in the other half of the hybrid research approach: all of these

alternative techniques, including paying human authors, could have achieved

equivalent audience impacts, but none of them offer the same level of insight

into the mechanisms behind that impact.

Because Dunyazad uses answer set programming, both its successes and

failures can be reliably understood in terms of the logical rules of implication

that it operates over, and these rules directly correspond to tenets of the choice

poetic theory that it was developed in dialogue with. In other words, Dunyazad

can establish a sufficiency relationship between the statements of choice poetic

theory and the effects that they purport to describe. By generating choices which

audiences perceive as, say, “obvious,” using only the rules of choice poetics to

guide it, Dunyazad is a procedural proof that those rules are sufficient to give
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rise to “obviousness,” at least in the story contexts that Dunyazad operates

in. Likewise, when a choice is labelled “obvious” but humans don’t perceive

it as such, Dunyazad has demonstrated that its rules are insufficient as an

explanation of what “obviousness” is, and often, the human perceptions that do

result can explain why this is the case in terms, again, of the theoretical rules

of choice poetics. Few other approaches to generating choices, computational or

otherwise, have the same potential to generate experimental results which can

directly inform the underlying theory. Dunyazad is thus not only an example of

a successful system that explores a novel generative space, it is also a unique

tool for the study of choice poetics, and thus a demonstration of a new research

approach that employs artificial intelligence as a tool for the development of a

humanistic theory.

9.3 Experimental Results

The experimental results presented in chapters 7 and 8 are the linchpin of the

hybrid research approach that drives Dunyazad. These results establish, via

Dunyazad’s rules, a direct link between actual human reactions to choices and

the theory of choice poetics which attempts to predict those reactions. Tables 8.20

and 8.21 at the very end of chapter 8 show the results of this feedback: caveats

and amendments to the analysis method described in chapter 5 that resulted

from an analysis of experimental data.

With the participation of hundreds of paid subjects contacted via Amazon

Mechanical Turk, the options and outcomes that Dunyazad generates were eval-

uated in two experiments, focused on immediate reactions such as obviousness

or the valence of outcomes. Dunyazad generated choices for these experiments

by following the implications of simple constraints, such as “make this choice

obvious” within the body of choice poetics theory that it is programmed with.
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Because of this, unexpected results could be traced back to the rules that allowed

them. Critically, Dunyazad’s inhuman exploration of the possibilities allowed

by its rules discovered edge cases that are hidden by human assumptions, such

as the inability of straightforward goal analysis to account for certain kinds of

moral reasoning. These edge cases would probably not have been discovered

by a human attempt to work within the same constraints, because a human

instructed to “create an obvious choice” would unconsciously rule out structures

inconsistent with moral reasoning without being told to do so.

While the experiments did reveal that Dunyazad needs more work to con-

sistently produce the desired low-level poetics, they also confirmed that it was

largely successful at generating specific types of choices. The flaws that the

results exposed in Dunyazad’s reasoning have also served to directly inform

the theory of choice poetics from chapter 5. For example, Dunyazad’s difficulty

in reasoning about moral conflicts of interest (between e.g., self-preservation

and helping an innocent victim in need) shows that when humans apply the

goal-based choice analysis method presented in section 5.4 they should be careful

to exercise their capacity for moral reasoning. This result, and the others like it

presented in chapters 7 and 8, are the real fruits of the hybrid research method

employed in Dunyazad. By using Dunyazad’s inhuman reasoning to double-check

the human reasoning behind the theory of choice poetics, that theory can be

improved and developed more thoroughly than by using human reasoning alone.

9.4 A Hybrid Research Process

The hybrid research approach described here is not just applicable to choice

poetics. I hope that the success of Dunyazad as a project can inspire other

researchers to find value in the application of artificial intelligence as a tool

for research in the humanities and social sciences. Beyond looking for patterns
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in large amounts of data or running intricate simulations designed to model

real-world phenomenon, computers can use symbolic reasoning to explore logical

theories along inhuman lines of inquiry. As frustrating as this can be at times,

the laborious process of explicitly encoding human assumptions about how things

work tends to reveal hidden biases and assumptions that were taken-for-granted

before a computer without them attempted to put a theory to use. By putting

a computer’s output in front of other humans for judgement, a feedback loop

can be formed, allowing the computer’s “mistakes” to expose the underlying

assumptions of a theory’s author, thus informing the theory and the next batch

of generated results.

9.5 Future Work

As a generative system, despite not being able to produce entire gamebooks

at a command, Dunyazad can produce interesting choices, and it has a big

enough generative space to occasionally surprise authors without disappointing

them (although some of its surprises, like those of most generative systems, are

disappointing). Perhaps more importantly, the choices that it generates are

complex and consistent enough to reveal edge-cases of the theory that drives it,

and not just question its implementation of that theory. Given these successes,

there are multiple directions that the project could go in.

First, the flaws revealed by the experimental data should be addressed. This

involves implementing relative value judgements as well as moral reasoning

(perhaps along the lines of the defeasible reasoning approach presented by Joseph

Blass and Ian Horswill in (Blass and Horswill, 2015)). Dunyazad will also need

to implement a more complicated approach to goal priorities, and this will have

to be backed up by an understanding of how players approach conflicting goals:

the theory of choice poetics will need to become more specific on this point. As
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with the functionality that Dunyazad already has, once the theory and system

have evolved, they should be tested in an experimental study, and further revised

based on the results.

Besides developing Dunyazad’s core reasoning capabilities, it should also be

extended to reason about larger plot structures. Currently, Dunyazad can chain

together choices to play out a single scene and transition from scene to scene

by moving the action to a new location, but it lacks high-level reasoning about

plot and elements like recurring characters between scenes that would enable it

to generate longer stories. Implementing these things could enable the study

of more complex poetic effects like regret, although of course these effects also

provide challenges in terms of experimental design. Having Dunyazad generate

full stories would also open up new applications: at that point, it could be studied

as a full interactive narrative experience in its own right.

Finally, the theory of choice poetics should be put to use to gauge its effective-

ness in analyzing human-constructed narrative choices. Not only should it enable

more detailed and explicit analysis of works like Choose-Your-Own-Adventure

books and visual novels, but the act of applying it will result in a different kind of

feedback that can drive the development of the theory. This in turn could expose

new avenues for the growth of Dunyazad as a generative system. Ultimately,

both the system and the theory should benefit from the theory’s application.

All of this work fits into a broader research agenda of developing generative

AI systems that can both push the boundaries of interactive media and simulta-

neously become sites of study for understanding it. As digital media continue

to impact our society, from Facebook’s filtering algorithms to the online virtual

environments that have become important spaces of socialization and growth

for teens and young adults, I hope to see more projects like Dunyazad that use

computers not just to create these environments but to help us make sense of

them and understand how they impact the humans that use them.
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Appendix A

English Generation

Once Dunyazad’s iterative story generation has finished filling in the timepoints

of a story with predicates that represent states, events, and choices, all of that

information needs to be made playable. Dunyazad uses a template-based natural-

language generation system to turn its predicate statements representing story

actions into text (and choice interface elements). The obvious format is hypertext,

but some practical problems and even some real generative work are entailed by

the transformation from predicates to text. Dunyazad doesn’t yet do anything

groundbreaking in terms of discourse, but the experiments that it has been used

in do depend on the text generation capabilities described here.

Dunyazad uses simple grammar-based text generation with small pre-defined

grammars for each setup, action and potential (special world states that motivate

actions). Beyond this it knows how to describe the initial state of the world,

and has pre-defined introduction and epilogue grammars. In the expansion of

these grammars to create text, it can substitute variables but also knows some

simple conjugation rules to enforce subject-verb agreement and it does automatic

pronominalization to help the text flow together as a whole.

297



APPENDIX A. ENGLISH GENERATION

A.1 Grammar Expansion

The basic unit of discourse content in Dunyazad is a grammar expansion, which

looks like this:

:action/attack/option

N#?aggressor/they V#attack/prs/?aggressor N#?target/them

. . . and might be rendered into this:

“you attack the bandits”

. . . or this:

“the merchant attacks you”

The first line, which begins with a ‘:’ character, indicates a substitution key

(a non-terminal in the grammar), and another grammar rule could include an

expansion using this key, which would look like this:

[[action/attack/option]]

Although not required, path-like key names like this example help organize

the grammar and can be matched over using some wildcards (see below). After

a key definition, one or more expansions for that key are given on the following

lines, and when an expansion is made, one of those will be selected at random.

Besides the key of the desired expansion, a grammar expansion can optionally

contain flags and variable assignments, like this:

[[S|misc/you_ask_for@statement=[[action/?_action/option]]]]
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Flags are capital letters given at the beginning of the expansion followed

by a ‘|’ character. The only valid flag is currently ‘S’ for ‘sentence’ which after

expansion capitalizes the first letter of the result and adds a period to the end.

Variable assignments are given by an ‘@’ symbol followed by “<var>=<value>.”

Any number of variable assignments may be given and, as shown, both variables

and grammar expansions can be nested in each other. In this example, the key

“misc/you_ask_for” will be looked up and a random expansion for it will be chosen.

Within text generated by that expansion and its children (if any), the variable

“statement” will take on the literal value “[[action/?_action/option]].” If the

expansion text includes a reference to that variable, of course, when the variable

is substituted a further grammar expansion will be present, but the exact key to

be looked up will depend on the value of the variable “_action” at the time of

the substitution of the “statement” variable. (More precisely, when the string

“?statementi”s processed as a variable within text that results from this example

grammar expansion, the result will include the string “?_actionw”hich will be

subsequently processed as a variable before any further grammar expansion.)

A.2 Variable Expansion

As already indicated, variable substitutions happen concurrently with grammar

substitutions. A variable substitution is indicated by a question mark followed

by a variable name, these must be valid Python identifiers (generally lowercase

strings that may include underscores). Different variables are supplied by Dun-

yazad in different contexts, and grammar expansions may also manually assign

variables as shown above.

The key in the first example above is “action/attack/option,” which is used

when Dunyazad needs to display option text (the text that the player will click

on to trigger the action that follows the standard “What do you do?” prompt)
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for an “attack” action. In this context, Dunyazad runs the grammar with all of

the arguments of the current option’s action bound as variables, so because the

“attack” action has “aggressor” and “target” arguments, those variables names

can be used. Other default variables like “_action” which identifies the current

action are supplied, in the second example above this is used to switch between

grammar keys in an expansion. Variables for actors and items expand to the

unique identifier for the actor/item in question, so “?target” might expand to

“bandits_17” during text generation.

Variables and grammar expansions may both contain each other because their

expansion is interleaved. When expanding a grammar element, the first step is

to scan for all variable substitutions and replace them with their values. This

step uses a while loop, so variables whose values contain variable expansions will

keep expanding until there are no expansions left (setting a variable’s value to an

expansion for itself would cause an infinite loop). Once there are (apparently) no

more variables to substitute, the text is parsed into a list of static text elements

separated by grammar expansions. In text order, the grammar expansions are

then recursively expanded one-by-one (making for a depth-first expansion policy,

although the grammar is context-free, so this matters little). The first step in

each of these recursive calls, of course, is the exhaustive variable substitution

mentioned above.

The net result is that whenever a variable is substituted which contains a

grammar expansion, that expansion will be considered afterwards, and when a

grammar expansion contains a variable, it will be substituted before any sub-

expansions occur. The exhaustive variable substitution rule means that if a

variable contains a grammar expansion with a variable key (as in the example

above), the key variable will be substituted with its value before the grammar

expansion is even parsed. Nested grammar expansions, on the other hand, are

not allowed (in part simply to reduce parser complexity); this is one categorical
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difference between grammar expansions and variables. Another is that all
grammar key-expansion relationships are assigned at compile time (technically,
when the English generation system starts up), while variable assignments can
change at runtime.

A.3 Tags

The extra syntax that surrounds the variable expansions in the “action/attack/
option” example above is Dunyazad’s approach to managing subject/verb agree-
ment and pronominalization. These are called ‘tags,’ and they indicate a third,
more dynamic type of substitution. Whereas variable substitution and grammar
expansion happen concurrently, tag expansions happen only after the other two
types are exhausted, and are scoped in terms of linear text rather than the tree
of grammar expansions. Tags allow Dunyazad to look up all of the properties of
an entity (an actor or item) and use this information to get the text right. Their
two main purposes are dynamically substituting noun references which may be
pronouns, and conjugating verbs while ensuring subject-verb agreement.

In the first example above, notice how “attack” changes to “attacks” to agree
with the singular verb “the merchant” in the second example result. Because the
verb tag (“V#”) contains a reference to the subject of the sentence (“?aggressor”),
it knows whether the noun it must agree with is singular or plural. Of course,
forcing the author to manually specify which noun each verb agrees with is a
significant burden, but integrating automatic analysis that could determine
this correctly most of the time proved beyond the scope of the project (there are
existing solutions to this problem). Besides noun agreement, verb tags are also
used for conjugation, and thus specify a tense as well as an agreeing entity (“prs”
in this case to indicate present-tense).

Noun tags (“N#”) meanwhile include both an entity reference and a third
person plural pronoun. These pronouns are used as a shorthand to identify the
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case and position of noun use, because the third-person plural pronouns are

unique for each case/position (‘they,’ ‘them,’ ‘their,’ ‘theirs,’ ‘themselves’). The

rest of the information necessary to figure out an appropriate pronoun (person,

number, and gender) is gleaned from the entity reference. All of this information

can be used to refer to an entity like a normal English speaker would instead of

always using its full proper name.

Because Dunyazad often needs to assemble paragraphs from sentences that

are written independently from one another, it’s impossible for the author to

specify which noun instances should be full references or pronouns at the dis-

course level. As an example of this, consider a paragraph that uses the same

nouns multiple times with just a single form of address:

As you travel onwards, you come across the bandits threatening the

merchant. You defeat the bandits, and the bandits are injured. The

bandits are no longer threatening the merchant.

The same paragraph using proper pronominalization and introduction flows

much better, even if the sentences are still a bit choppy:

As you travel onwards, you come across some bandits threatening a

merchant. You defeat the bandits, and they are injured. They are no

longer threatening the merchant.

Especially if each sentence is authored in a different file and the final sentence

comes from a grammar key that is used in multiple different contexts, the

author can’t determine when writing the underlying grammar fragments which

nouns should be indefinite or pronominalized. The solution to this problem is

to let Dunyazad handle introduction and pronominalization and just have the

author indicate what pronoun would be used in each situation if one is necessary.

Dunyazad detects the introduction of new entities, inserting “a merchant” instead
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of “the merchant” the first time a specific merchant is encountered, and it uses a

table of recently-used nouns to insert pronouns when they are unambiguous.

The system for pronominalization is fairly simple: it keeps track of the last

noun used which would be a referent for three different pronoun ‘slots:’ ‘he/she,’

‘it,’ and ‘they.’ When a noun is used, if it matches the latest referent for its slot,

a pronoun is used instead; otherwise, the information in that slot is marked as

confounded. After an adjustable number of nouns pass without renewal, old slots

are cleared so that new information can be stored. Only when a slot is empty

is new information stored upon encountering a noun that fits it. These rules

are an attempt to avoid confusing situations where, for example, the word ‘it’

can potentially refer to two different objects. To complement this system, the

slot values are forcibly cleared at certain points (such as between setup text

and action text) to avoid using too many pronouns (note the occurrence of ‘the

bandits’ in the pronominalized text above instead of ‘them,’ which would sound a

bit weird).

Besides verb and noun tags, the third and final type of tag is the directive tag

(“D#”), which is used for the “timeshift” directive. Tense specifications included

in verb tags make it possible in simple cases to automatically alter the tense of a

statement, as seen in one expansion for the key “misc/you_ask_for”:

N#you/they V#ask/prs/you

D#timeshift/infinitive@@?statement@@D#timeshift/pop@@

Timeshift is the only valid directive, and it takes one argument: a tense to

shift into, or the special value ‘pop,’ which returns to the previous tense (tense

shifts are maintained in a stack, with the top shift overriding all below it). In

this example, it is used to take option text that would be given as the action of

a secondary protagonist and turn it into a request from the main character for
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the secondary character to perform that action (in order to maintain second-

person focalization). Recall that the “statement” variable will have a value

which looks like “[[actions/attack/option]]” because of the forced assignment

in the “misc/you_ask_for” expansion shown above (assuming that “_action” has

the value “attack”). In this case, which is chosen by the Python code when an

option represents the action of a protagonist other than the main character, the

“aggressor” variable will hold the identifier of the acting character. If the acting

character is named Peter, the innermost grammar substitution would therefore

normally produce text along the lines of:

Peter attacks the bandits.

However, that text has been placed between the two “timeshift” directives

shown above, and so it will be shifted from the present tense (as specified in the

original verb tag) into the infinitive tense, resulting in:

Peter to attack the bandits.

Of course, the outer noun and verb tags will accompany it, so the end result

will be:

You ask Peter to attack the bandits.

The advantage of the “timeshift” directive is the ability to represent “asking-

for” a task and individual task descriptions separately, as opposed to having to

write every single task with both a “direct” and an “asked-for” version. Although

this doesn’t happen in Dunyazad, it could also be used to reframe narratives,

for example, by having a character tell another character about events that

happened to them in the past tense (the perspective change involved would also

be automatic because of automatic pronominalization).

304



A.4. CONDITIONAL EXPANSIONS

A.4 Conditional Expansions

There are three more mechanisms that Dunyazad’s English generator makes

use of in special cases. The first are conditional expansions: by placing a line

which starts with ‘{’ and ends with ‘}’ where an expansion would normally go,

all following lines defining expansions for the current key are made conditional.

Conditional expansions are only considered valid expansions for a key when the

current story facts contain a set of predicates which taken together produces a

match for each predicate listed on the condition line (separated by semicolons).

So for example, if the following grammar rules are defined:

:color

{favorite_color(X);warm(X)}

a warm ?_X

{favorite_color(X);cool(X)}

a cool ?_X

. . . and the predicates representing the current story were these:

color(red).

color(blue).

color(yellow).

warm(red).

warm(yellow).

cool(blue).

favorite_color(blue).

. . . then expansion of the grammar “[[color]]” would result in the text “a cool

blue.” If there are multiple predicate sets that can match a condition, Dunyazad

considers each possible match as a separate expansion possibility. Internally,
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Dunyazad parses each precondition and looks for matches in the fact set, allowing

uppercase names to take on any value (even a compound predicate). It proceeds to

bind any uppercase names to the values required by the match(es) found and, for

each match, recursively attempts to match the rest of the preconditions subject

to that binding. The end result works a bit like variables in ASP constraints, and

allows fairly complex preconditions, although negation has not been implemented,

and only conjunction is allowed. An added bonus illustrated in this example

is that any matched precondition variables appear as substitutable grammar

variables during expansion of a conditional match (with an ‘_’ prepended to their

names).

To allow for meaningful preconditions, a handful of special variable names

starting with ‘_’ are provided which if used inside a precondition will only trigger

a match when a specific value is found:

• “_Now” matches the current timepoint (whichever timepoint the text cur-

rently being expanded is associated with).

• “_Opt” matches the current option. In some contexts (like setups) there is

no current option, and this won’t match anything.

• “_Act” matches the name of the current action. Only valid when “_Opt” is.

These variables allow conditions to be expressed over things like the outcomes of

the current action (which as predicates include information about the current

timepoint and option). Note that preconditions may not contain normal variable

substitutions, grammar expansions, or tags, because they are not evaluated in

the same way that grammars are.

The main use of conditional expansions is to describe actions differently de-

pending on their outcomes. Although Dunyazad does describe the consequences

of actions independently, perfectly generic action descriptions leave a lot to be
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desired, and being able to write different text for an action like “attack” when

you know the end result will be victory or defeat is useful. On a more practical

note, giving the grammar system the ability to interface directly with the ASP

results cuts out the middleman so that you don’t have to route a variable from

predicates through Python every time you want the text to respond more closely

to the story situation.

A.5 Wildcard Keys

Another trick that Dunyazad has up its sleeve is wildcard keys. The grammar

keys are organized into a directory-like structure with key elements separated

by ‘/’ characters. When an entire path element consists of one of the ‘?’ and ‘*’

wildcard characters they take on a special meaning.

The ‘*’ wildcard is simpler: written in a grammar expansion, it means that

keys must match up to that point, but afterwards may contain any path ele-

ments, which will be ignored for matching purposes. ‘*’ wildcards may only

occur as the final element of a key, and may only occur in grammar expan-

sions, not in key definitions. As an example of the ‘*’ wildcard, the expansion

“[[foo/bar/*]]” matches key “foo/bar/baz,” and will thus consider expansions

listed for “foo/bar/baz” along with any other expansions that match it when it

is being expanded.

‘?’ matching is a bit more complicated, because ‘?’ is allowed to occur both in

expansions and in key definitions. In expansions, the ‘?’ wildcard matches any sin-

gle path element, just like the ‘*’ wildcard but a bit more limited. “[[foo/bar/?]]”

will match “foo/bar/baz” but not “foo/bar/baz/zzx.” When ‘?’ is included in a

key definition, however, it not only matches as a single wildcard but also binds the

special variable “_” to the value that it matched. This allows “passing-in” a single

argument via the “_” variable without having to make a variable assignment in
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your expansion statement. In particular, this streamlines the case where one

grammar expansion wants to modify a set of other expansions. For example,

consider the following pair of definitions:

:misc/is_unskilled/?

N#?who/they V#be/prs/?who [[misc/unskilled/?_]]

:misc/unskilled/wilderness_lore

ignorant about plants and animals

[[misc/bad_at]] surviving in the wild

incapable of surviving in the wilderness

There are individual “misc/unskilled/<skill>” definitions for each skill, to

help boost variety, although it would be easy enough to define a single generic

expansion which worked for every skill. But now we want to go from “ignorant

about plants and animals,” to “the merchant is ignorant about plants and ani-

mals.” By defining our expansion as “misc/is_unskilled/?” and then using the

‘_’ variable, we can effectively provide a “misc/is_unskilled/<skill>” definition

for each “misc/unskilled/<skill>” definition we had before. Of course, it could

also be done using a variable (and in this case the variable “who” is required to

specify the actor) but the wildcard key version is a bit less clunky and helps keep

things mentally organized by folding the variable back into our directory tree

structure where it’s easier to remember.

A.6 Special Directives

Once all the grammar expansions and variable substitutions have been exhausted

and the final pass has been made by substituting tags, it turns out that there

are still a few loose ends to sweep up. One problem is that grammar expansions
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don’t know how they’ll be used, and often start with a tag in any case, so proper

capitalization is difficult. The ‘S’ flag for grammar substitutions helps a lot, but

sometimes the author just needs to specify that a particular letter (which will

vary because of some form of substitution) should be uppercase. This is handled

by the special “@CAP@” directive, which removes itself and capitalizes the letter

that immediately follows it.

Similarly, for formatting reasons normal text gets run together, but in some

cases (like for the prologue), the author needs to be able to insert a paragraph

break. The “@PAR@” directive does exactly this, and it even behaves appropriately

depending on the output format (html vs. txt, for example). The final special

directive is simply “@@,” which actually appeared in an example above. This is

used where a break is needed for parsing reasons, but no whitespace is desired

in the output (likely because there’s already enough whitespace around). Final

processing simply removes the “@@” directive.

A.7 English Generation Results

Once special directives have been removed, the text is ready to be seen by humans.

Along the way, Python code wraps grammar results up into larger structures

depending on the desired output format. Dunyazad currently supports plain

HTML (non-interactive output for debugging purposes), HTML-in-csv (used to

define Amazon Mechanical Turk tasks for experiments), ChoiceScript (the first

platform it worked with) and Twine output formats, with some additional options

to control whether an entire story or just a single node is output. Figure A.1

shows an example of Dunyazad’s text output copy-pasted from the plain HTML

output with some manual editing for formatting. Note that some of the pronomi-

nalization is imperfect: the odd option texts result when it tries to refer to items

using their owner as context and the owner reference becomes a pronoun, even
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though later in the same sentence it uses a definite reference. The text overall is

easier to read than a version that used determinate noun references everywhere,

however, and it has enough variation not to seem blatantly robotic.

Through automatic subject-verb agreement, noun introduction, and pronomi-

nalization, Dunyazad is able to render a wide variety of possible situations into

text using only a few very generic text templates. Although there are plenty

of discourse-focused systems that do much more complex things, Dunyazad’s

simple grammar-based generator enables it to do what it needs to do without

a prohibitive authoring burden. The size of its generative space relies on the

fact that individual state and action predicates have descriptions which can be

combined freely to describe complex situations. Of course, the quality of these

descriptions is limited, but they are good enough to communicate clearly. The

grammar-based system employed by Dunyazad also allows for the possibility of

incremental refinement, as additional variety can be added by adding grammar

expansions while conditional expansions allow an author to add nuanced phrases

which only show up in specific situations.
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You are about to set out on an epic journey. You are are heading towards
the distant country of Jichish, hoping to earn fame and fortune.
You have some perfume and a book of herbal lore, and you have skill:
literacy, you have skill: wilderness lore, you have skill: musician, and
you have skill: sorcery.
Eager to be on your way, you set off on the road towards Jichish.
A merchant shows up and offers to trade an ancient grimoire.
The merchant is selling an oboe and he is selling his ancient grimoire.

1. You steal his ancient grimoire from the merchant (You are missing
skill: thievery. He is missing skill: thievery).
→ You steal his ancient grimoire from the merchant, and he doesn’t
even notice.

2. You offer to trade him your book of herbal lore for the merchant’s
oboe (no relevant skills).
→ He agrees to trade his oboe for your book of herbal lore.

3. You steal his oboe from the merchant (You are missing skill: thievery.
He is missing skill: thievery).
→ You steal his oboe from the merchant, and he doesn’t even notice.

Figure A.1: An example of Dunyazad’s text output. In an interactive output
format2 the outcome text would be hidden until an option was chosen. Note the
awkward pronominalization in the option text.

2At the time of this writing, an interactive example could be found online at https://www.cs.
hmc.edu/~pmawhorter/projects/dunyazad_example.html
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Appendix B

Dunyazad’s ASP Code

This appendix contains listings for all of Dunyazad’s core answer set code, which

run together can be used to produce a single choice. The imperative code that su-

pervises story construction and turns answer sets into English text is not included

here, but the entire project can be found at https://github.com/solsword/

dunyazad, and an archived snapshot current as of this writing can be found at

www.escholarship.org/uc/item/32d6p0kg. Each page in this appendix lists the

source filename at the bottom of the page, and within each category, files are

presented in alphabetical order. Additionally, every fifth line is numbered in the

left margin for ease of reference.

B.1 Utilities

The utils.lp file contains Python code for generating unique instance IDs and

formatting strings (Dunyazad requires clingo to be compiled with Python sup-

port). This Python code is called internally by clingo during solving, in contrast

to the external Python code that calls the solver for each choice in a story and

translates answer sets into English text (that code is not listed in this appendix).

313



utils.lp APPENDIX B. DUNYAZAD’S ASP CODE

utils.lp

1 % utils.lp

% Various utilities , including script functions.

% vim: syn=python

5 unique_key(State , @unique(M)) :-

max_unique(M),

get_unique_key(State).

unique_key_used(K) :-

10 unique_key(State , K).

#script (python)

import gringo

15 def capitalize(arg):

s = str(arg)

return s[0]. upper () + s[1:]

def the(arg):

20 s = str(arg)

return "the " + s

def an(arg):

s = str(arg)

25 if s[0] in "aeiouAEIOU":

return "an " + s

else:

return "a " + s

30 def pred(str):

return gringo.Fun(str)

def join(*args):

return ’’.join(str(a) for a in args)

35

def join_(*args):

return ’_’.join(str(a) for a in args)

def fmt(tmplt , *args):

40 return str(tmplt). format (*( str(a) for a in args))

def join_lines (*args):

return ’\n’.join(str(a) for a in args)

45 def mkmem(*args):

return ’.’.join(str(a) for a in args)
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def unique(lastroundmax , state =[0]):

lastroundmax = int(lastroundmax)

50 if state [0] <= lastroundmax:

state [0] = lastroundmax + 1

state [0] += 1

return state [0]

55 def inst(base , number ):

return gringo.Fun(str(base) + "_" + str(number ))

#end.

B.2 Core Files

The core files include all of Dunyazad’s main constraints, and are summarized

in table 6.2. Not included in this category are the files in the content/ directory,

which each define individual instances of things like goals and actions. Those

files do rely heavily on predicates defined by core files to concisely specify content,

of course.

actions.lp

1 % actions.lp

% Rules about actions.

% Every option has an action:

5 1 = {

at(N, action(option(X), Act)) : action(Act);

error(m("Option without action.", N, option(X)))

} :-

at(N, option(X)),

10 story_op(N, build_options ).

% And every action has a value for each outcome variable:

outcome_variable(Action , Var) :-

outcome_val(Action , Var , Value).

15

1 = {

at(N, outcome(X, o(Var , Val ))) : outcome_val(Action , Var , Val);

error(m("Unassigned outcome variable.", N, X, Action , Var))

} :-

20 at(N, action(X, Action)),
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outcome_variable(Action , Var),

story_op(N, build_options ).

error(m("Exclusive outcome values.", N, X)) :-

25 at(N, action(X, Action)),

at(N, outcome(X, o(Var1 , Val1))),

at(N, outcome(X, o(Var2 , Val2))),

Var1 != Var2 ,

outcome_excludes(Action , o(Var1 , Val1), o(Var2 , Val2)),

30 story_op(N, build_options ).

% And all action arguments are filled in:

1 = {

at(N, arg(X, Arg , Inst)) : is_instance(N, Inst , Class );

35 error(m("Unbound action argument.", N, Action , Arg , Class ))

} :-

at(N, action(X, Action)),

argument(Action , Arg , Class),

Class != action ,

40 story_op(N, build_options ).

1 = {

at(N, arg(X, Arg , ActType )) : action(ActType );

error(m("Unbound action argument.", N, Action , Arg , action ))

45 } :-

at(N, action(X, Action)),

argument(Action , Arg , action),

story_op(N, build_options ).

50 % The concept of an " initiator :"

at(N, initiator(X, Initiator )) :-

at(N, action(X, Action)),

at(N, arg(X, InitArg , Initiator )),

initiator(Action , InitArg),

55 story_op(N, build_options ).

% An action without an initiator is an error:

error(m("Action without initiator.", N, X)) :-

at(N, option(X)),

60 0 = {

at(N, initiator(option(X), Anyone ))

},

story_op(N, build_options ).

65 % Actual consequences depend on which outcome variables have which

% values:

at(N, consequence(X, Consequence )) :-

at(N, consequence_of(X, Outcome , Consequence )),

at(N, outcome(X, Outcome)),
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70 story_op(N, build_options ).

at(N, consequence(X, Modifier , Consequence )) :-

at(N, consequence_of(X, Outcome , Modifier , Consequence )),

at(N, outcome(X, Outcome)),

75 story_op(N, build_options ).

% Being injured , polymorphed , dead , or off -stage limits what actions

% you can take and which actions can be taken on you:

80 error(m("Injured actor initiated an action.", N, X)) :-

at(N, action(X, Action)),

at(N, initiator(X, Initiator )),

st(N, state(injured , Initiator)),

not injured_can_initiate(Action),

85 story_op(N, build_options ).

error(m("Interaction with dead actor.", N, X)) :-

at(N, action(X, Action)),

at(N, arg(X, Arg , Inst)),

90 st(N, state(dead , Inst)),

not dead_okay(Action , Arg),

story_op(N, build_options ).

error(m("Interaction with off -stage instance.", N, X)) :-

95 at(N, action(X, Action)),

at(N, arg(X, Arg , Inst)),

st(N, state(off_stage , Inst)),

not off_stage_okay(Action , Arg),

story_op(N, build_options ).

100

% Outcomes are surprising if they ’re unlikely based on skills/tools:

at(N, surprising(X)) :-

at(N, outcome(X, Outcome)),

at(N, unlikely_outcome(X, Outcome)),

105 story_op(N, build_options ).

% Outcomes are also surprising if there ’s a likely outcome but

% something else happens:

at(N, surprising(X)) :-

110 at(N, likely_outcome(X, o(OutVar , Likely ))),

at(N, outcome(X, o(OutVar , NotLikely ))),

NotLikely != Likely ,

story_op(N, build_options ).

115 % Only chaotic actions may have surprising outcomes:

% Note: now any outcome may be surprising because outcome feel

% constraints can be used to constrain surprise if desired.
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%error(m("Non -chaotic action had surprising outcome .", N, X)) :-

120 % at(N, action(X, Action )),

% at(N, surprising (X)),

% not chaotic(Action ).

actors.lp

1 % actors.lp

% Special rules for actors. See content/actors /*. lp for actor

% definitions .

5 % Actor definition unpacking:

subclass(Imm , Spec) :-

actor_def(Spec , Imm , Name , Number , Gender ).

concrete(Spec) :-

10 actor_def(Spec , Imm , Name , Number , Gender ).

default_name_for(Class , Name) :-

actor_def(Class , Superclass , Name , Number , Gender ).

15 default_number_for(Class , Number) :-

actor_def(Class , Superclass , Name , Number , Gender ).

default_gender_for(Class , Gender) :-

gender(Gender),

20 actor_def(Class , Superclass , Name , Number , Gender ).

default_gender_for(Class , masculine) :-

actor_def(Class , Superclass , Name , Number , either ).

25 default_gender_for(Class , feminine) :-

actor_def(Class , Superclass , Name , Number , either ).

% Some high -level actor ontology structure:

subclass(actor , person ).

30 concrete(person ).

default_name_for(person , "person").

default_number_for(person , singular ).

default_gender_for(person , masculine ).

default_gender_for(person , feminine ).

35 subclass(actor , animal ).

concrete(animal ).

default_name_for(animal , "animal").

default_number_for(animal , singular ).

default_gender_for(animal , masculine ).

40 default_gender_for(animal , feminine ).

class_skill(animal , wilderness_lore , always ).
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class_skill(animal , unintelligent , always ).

% Power relations :

45

at(N, is_powerful(Inst)) :-

is_instance(N, Inst , Category),

powerful(Category ).

50 at(N, is_powerless(Inst)) :-

is_instance(N, Inst , Category),

powerless(Category ).

choice_structure.lp

1 % option constraints :

% -------------------

% relevance : any action which might cause a potential to dissappear

5 % (via any mechanism) is relevant

at(N, relevant_to(option(X), potential(PTyp , Something ))) :-

at(N, consequence_of(option(X), Outcome , _not , Something)),

at(N, potential(PTyp , Something)),

at(N, option(X)),

10 not at(N, action(option(X), travel_onwards )),

not at(N, action(option(X), reach_destination )),

story_op(N, build_options ).

error(m("Irrelevant option", N, option(X))) :-

15 at(N, option(X)),

0 = {

at(N, relevant_to(option(X), Anything ))

},

not at(N, action(option(X), travel_onwards )),

20 not at(N, action(option(X), reach_destination )),

story_op(N, build_options ).

error(

m(

25 "Option relevant but only to unimportant potential.",

N,

option(X)

)

) :-

30 at(N, option(X)),

at(N, relevant_to(option(X), Potential )),

0 = {

at(N, relevant_to(option(X), ImportantPotential )) :

at(N, relevant_to(option(X), ImportantPotential )),
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35 at(N, most_important(ImportantPotential ))

},

not at(N, action(option(X), travel_onwards )),

not at(N, action(option(X), reach_destination )),

story_op(N, build_options ).

40

error(m("Unaddressed important potential", N)) :-

at(N, most_important(potential(PTyp , Something ))),

0 = {

at(N, option(X))

45 : at(N, relevant_to(option(X), potential(PTyp , Something )))

},

2 <= { at(N, option(X)) },

node_type(N, choice),

story_op(N, build_options ).

50

% motivation

% Resolving or nullifying your own problems:

at(N, motivated(X)) :-

55 at(

N,

consequence_of(X, Outcome , resolves , potential(PType , PState ))

),

at(N, potential(problem , PState)),

60 at(N, initiator(X, Initiator )),

at(N, problematic_for(potential(PType , PState), Initiator)),

story_op(N, build_options ).

at(N, motivated(X)) :-

65 at(

N,

consequence_of(X, Outcome , nullifies , potential(PType , PState ))

),

at(N, potential(problem , PState)),

70 at(N, initiator(X, Initiator )),

at(N, problematic_for(potential(PType , PState), Initiator)),

story_op(N, build_options ).

% Actions that enable a goal other than "succeed at your actions :"

75 at(N, motivated(X)) :-

at(N, expectation(X, enables , Goal)),

Goal != as_intended(Initiator),

at(N, initiator(X, Initiator )),

st(N, state(party_member , Initiator)),

80 story_op(N, build_options ).

% Taking advantage of opportunities (except those you ’re offering ):

at(N, motivated(X)) :-
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at(

85 N,

consequence_of(

X,

Outcome ,

resolves ,

90 potential(opportunity , Opportunity)

)

),

at(N, potential(opportunity , Opportunity )),

at(N, initiator(X, Initiator )),

95 not at(

N,

initiated_by(potential(opportunity , Opportunity), Initiator)

),

story_op(N, build_options ).

100

% Manifesting opportunities that you initiated :

at(N, motivated(X)) :-

at(

N,

105 consequence_of(

X,

Outcome ,

manifests ,

potential(PType , PState)

110 )

),

at(N, potential(PType , PState)),

at(N, initiator(X, Initiator )),

at(N, initiated_by(potential(PType , PState), Initiator)),

115 story_op(N, build_options ).

% Let ’s just keep going , shall we?

at(N, motivated(X)) :-

120 at(N, action(X, travel_onwards )),

story_op(N, build_options ).

% We’re almost there!

at(N, motivated(X)) :-

125 at(N, action(X, reach_destination )),

story_op(N, build_options ).

error(m("Unmotivated action", N, option(X))) :-

at(N, option(X)),

130 not at(N, motivated(option(X))).

% redundancy
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error(m("Redundant option", N, X)) :-

node_type(N, choice),

135 at(N, action(X, Action)),

at(N, action(Y, Action)),

at(N, relevant_to(X, P1)),

at(N, relevant_to(Y, P1)),

X < Y,

140 story_op(N, build_options ).

error(m("Redundant option", N, X)) :-

at(N, action(X, travel_onwards )),

at(N, action(Y, travel_onwards )),

145 X < Y,

story_op(N, build_options ).

error(m("Redundant option", N, X)) :-

at(N, action(X, reach_destination )),

150 at(N, action(Y, reach_destination )),

X < Y,

story_op(N, build_options ).

% boredom (at a single node)

155

error(m("Boring options", N)) :-

at(N, action(X, Same)),

at(N, action(Y, Same)),

at(N, action(Z, Same)),

160 X < Y, Y < Z,

story_op(N, build_options ).

% boredom (over time)

error(m("Boring action", N, X)) :-

165 at(Prev , action(X, Action)),

successor(Prev , POpt , N),

at(N, action(X, Action)),

0 = {

at(N, outcome(X, Outcome ))

170 : at(N, outcome(X, Outcome)),

not at(Prev , outcome(POpt , Outcome ))

}

story_op(N, build_options ).

175 % your party as the active agent:

error(m("Non -party -initiated option", N, option(X))) :-

node_type(N, choice),

at(N, initiator(option(X), Init)),

not st(N, state(party_member , Init)),

180 story_op(N, build_options ).
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% your party shouldn ’t act outside of choices:

error(m("Party -initiated event", N, X)) :-

node_type(N, event),

185 at(N, initiator(X, Init)),

st(N, state(party_member , Init)),

not at(N, action(X, travel_onwards )),

not at(N, action(X, reach_destination )),

story_op(N, build_options ).

190

% No trick options:

error(m("Trick option", N, X)) :-

at(N, action(X, Action)),

at(N, arg(X, Arg , PartyMember )),

195 st(N, state(party_member , PartyMember )),

st(N, state(party_member , OtherMember )),

default_intent(Action , Outcome),

at(N, skill_link(Skill , required , NeedsTool , Action , Arg , Outcome)),

not st(N, property(has_skill , PartyMember , Skill)),

200 st(N, property(has_skill , OtherMember , Skill)),

not st(N, state(injured , OtherMember )),

not st(N, state(dead , OtherMember )).

error(m("Trick option", N, X)) :-

205 at(N, action(X, Action)),

at(N, arg(X, Arg , PartyMember )),

st(N, state(party_member , PartyMember )),

st(N, state(party_member , OtherMember )),

default_intent(Action , Outcome),

210 at(N, skill_link(Skill , promotes , NeedsTool , Action , Arg , Outcome)),

not st(N, property(has_skill , PartyMember , Skill)),

st(N, property(has_skill , OtherMember , Skill)),

not st(N, state(injured , OtherMember )),

not st(N, state(dead , OtherMember )).

215

error(m("Trick option", N, X)) :-

at(N, action(X, Action)),

at(N, arg(X, Arg , PartyMember )),

st(N, state(party_member , PartyMember )),

220 st(N, state(party_member , OtherMember )),

default_intent(Action , Outcome),

at(

N,

skill_link(

225 Skill , contest , NeedsTool ,

Action ,

between(Arg , Opponent),

either(Outcome , Bad)

)

230 ),
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not st(N, property(has_skill , PartyMember , Skill)),

st(N, property(has_skill , OtherMember , Skill )).

error(m("Trick option", N, X)) :-

235 at(N, action(X, Action)),

at(N, arg(X, Arg , PartyMember )),

st(N, state(party_member , PartyMember )),

st(N, state(party_member , OtherMember )),

default_intent(Action , Outcome),

240 at(

N,

skill_link(

Skill , contest , NeedsTool ,

Action ,

245 between(Opponent , Arg),

either(Bad , Outcome)

)

),

not st(N, property(has_skill , PartyMember , Skill)),

250 st(N, property(has_skill , OtherMember , Skill )).

% overall structure constraints :

% ------------------------------

255 % the story shouldn ’t end too soon:

error(m("Story too short", N)) :-

node_type(N, ending),

shortest_path(N, L),

L < min_story_length.

260

% choices should be frequent

error(m("Not enough choices", A, B, C)) :-

successor(A, AOpt , B),

successor(B, BOpt , C),

265 not node_type(A, choice),

not node_type(B, choice),

not node_type(C, choice),

not resolves_vignette(B, BOpt),

not at(B, action(BOpt , travel_onwards )),

270 0 = {

at(C, action(AnyOpt , travel_onwards ))

},

story_op(C, build_options ).

275 % events shouldn ’t re -hash the choice you just made or a prevoius

% event

arg_mismatch(N, option(NO), O, option(OO)) :-

at(N, arg(option(NO), Arg , Val)),

at(O, option(OO)),
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280 0 = {

at(O, arg(option(OO), Arg , Val))

: at(O, arg(option(OO), Arg , Val))

},

N < O,

285 story_op(N, build_options ).

arg_mismatch(O, OOpt , N, NOpt) :-

arg_mismatch(N, NOpt , O, OOpt),

story_op(N, build_options ).

290

error(m("Event duplicates previous action", N, Prev , Action )) :-

successor(Prev , Opt , N),

node_type(N, event),

at(Prev , action(Opt , Action)),

295 at(N, action(AnyOpt , Action)),

not arg_mismatch(Prev , Opt , N, AnyOpt),

story_op(N, build_options ).

% failing to deal with a potential twice is enough

300 error(

m("Persistent potential is getting boring", Three , option(Z))

) :-

story_node(One),

successor(One , option(X), Two),

305 successor(Two , option(Y), Three),

at(One , potential(PTyp , Something )),

at(Two , potential(PTyp , Something )),

at(Three , potential(PTyp , Something)),

at(One , consequence_of(option(X), DidntHappen , _not , Something)),

310 not at(One , outcome(option(X), DidntHappen )),

at(Two , consequence_of(option(Y), AlsoDidntHappen , _not ,Something )),

not at(Two , outcome(option(Y), AlsoDidntHappen )),

at(Three , consequence_of(option(Z), MustHappen , _not , Something )),

not at(Three , outcome(option(Z), MustHappen )),

315 story_op(Three , build_options ).

% failing to deal with a problem is no excuse for ignoring it

% ( opportunities don ’t care)

error(m("Ignored failure to solve problem", Two , option(Y))) :-

320 story_node(One),

successor(One , option(X), Two),

successor(Two , option(Y), Three),

at(One , potential(problem , Problem)),

at(Two , potential(problem , Problem)),

325 at(One , consequence_of(option(X), DidntHappen , _not , Problem)),

0 = { at(Two , consequence_of(option(Y), Any , _not , Problem )) },

story_op(Two , build_options ).
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% problems shouldn ’t re -occur within a vignette

330 error(m("Recurring potential", Second )) :-

story_node(First),

before(First , Second),

vignette(First , V),

vignette(Second , V),

335 at(First , potential(PType , Pot)),

not at(Second , potential(PType , Pot)),

at(Second , consequence(option(X), Pot)),

story_op(Second , build_options ).

340 % vignettes shouldn ’t drag on too long

error(m("Vignette dragging on...", N, option(X))) :-

vignette(N, R),

before(R, I1),

before(I1, I2),

345 before(I2, I3),

before(I3, N), % N is at least the fourth node since R on some path

at(N, option(X)),

not resolves_vignette(N, option(X)),

not at(N, action(option(X), travel_onwards )),

350 story_op(N, build_options ).

% vignette structure constraints :

% -------------------------------

355 % vignette -level boredom

error(m("Repeated vignette setup", N, R)) :-

story_op(N, build_options),

setup(N, Boring),

successor(Prev , Opt , N),

360 vignette(Prev , R),

setup(R, Boring ).

error(m("Repeated vignette setup", N, R)) :-

story_op(Prev , add_branch_nodes),

365 setup(N, Boring),

successor(Prev , Opt , N),

vignette(Prev , R),

setup(R, Boring ).

370 times_setup_used_before(N, Setup , Count) :-

story_op(N, build_options),

possible_setup(Setup),

Count = {

setup(Prev , Setup) : before(Prev , N)

375 }.

unique_setups_used_before(N, Count) :-
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story_op(N, build_options),

Count = {

380 possible_setup(Setup) : setup(Prev , Setup), before(Prev , N)

}.

error(m("Boring vignette setup", N)) :-

story_op(N, build_options),

385 setup(N, Boring),

times_setup_used_before(N, Boring , Boredom),

unique_setups_used_before(N, Unique),

Boredom > 0,

Boredom + 1 >= Unique.

390

% every vignette ends with one of the special actions "travel onwards"

% or "reach destination :"

% TODO: This !?!?

395 %1 = {

% node_type(N, event );

% node_type(N, ending );

% error(m(" Vignette resolution has wrong node type .", End , Opt , N))

%} :-

400 % resolves_vignette (End , Opt),

% successor(End , Opt , N),

% story_op(N, build_options ).

%

%at(N, action(option (1), travel_onwards )) :-

405 % node_type(N, event),

% resolves_vignette (End , Opt),

% successor(End , Opt , N),

% story_op(N, build_options ).

410 at(N, action(option (1), reach_destination )) :-

node_type(N, ending),

resolves_vignette(End , Opt),

successor(End , Opt , N),

story_op(N, build_options ).

415

% choice poetics constraints :

% ---------------------------

420 choices_before(N, X) :-

X = {

node_type(B, choice) : before(B, N)

},

story_op(N, build_options ).

425
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% the story must contain at least a minimum number of choices:

error(m("Too few choices before ending", N)) :-

node_type(N, ending),

430 choices_before(N, L),

L < min_story_choices.

% The first few choices have a set structure :

% option_structure_plan (0, relaxed ).

435 % option_structure_plan (1, relaxed ).

% option_structure_plan (2, straightforward ).

% option_structure_plan (3, mysterious ).

% TODO: Get rid of this?

440 %error(m(" Deviated from initial choices plan", N)) :-

% node_type(N, choice),

% story_op(N, build_options ),

% choices_before (N, L),

% option_structure_plan (L, CS),

445 % not at(N, option_structure (CS )).

core.lp

1 % core rules:

% -----------

%#minimize { 1@100 , error(Message) : error(Message) }.

5 :- error(Message ).

%:- error(m(" Choice node missing option 1.", N)).

%:- error(m(" Choice node missing option 2.", N)).

%:- error(m(" Error with instance number .", Inst )).

10 %:- error(m(" Action without initiator .",N,X)).

%:- error(m("Non -party - initiated option",N,X)).

%:- error(m(" Irrelevant option",N,X)).

%:- error(m(" Unaddressed important potential ",N)).

%:- error(m(" Unmotivated action",N,X)).

15

%:- error(m(" Story too short", N)).

%:- error(m(" Skipped transition ", N)).

%:- error(m(" Transition is too early", N)).

%:- error(m(" Reached destination before end of story", N, X)).

20 %:- error(m("Post -travel node without setup .", N, X, Next )).

%:- error(m(" Unmotivated action", N, X)).

%:- error(m(" Redundant option", N, X)).

%:- error(m(" Left a non -hidden problem behind .", N, P)).

%:- error(m("Party - initiated event", N, X)).

25 %:- error(m(" Vignette starts with an event !")).

%:- error(m(" Irrelevant option", Node , Option )).
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%:- error(m(" Unbound action argument .", Node , Action , Arg , ArgType )).

%:- error(m(" Price is not a treasure .", Node , Option )).

30 #const max_options =3.

#const max_outcome_variables =5.

#const min_story_length =5.

#const min_story_choices =3.

#const max_setup_argument_arity =4.

35 #const max_party_size =3.

opt_num (1.. max_options ).

setup_arg_id (1.. max_setup_argument_arity ).

party_size_value (1.. max_party_size ).

40

outcome_variable(Action , Variable) :-

outcome_val(Action , Variable , AnyVal ).

error(m("Action has too many outcome variables.", Action )) :-

45 action(Action),

Count = {

outcome_variable(Action , Var) :

outcome_variable(Action , Var)

},

50 Count > max_outcome_variables.

% Core node construction :

% -----------------------

55 % Choice nodes have at least two options:

2 <= {

at(N, option(X)) : opt_num(X);

error(m("Choice node missing option 1.", N));

error(m("Choice node missing option 2.", N))

60 } <= max_options :-

node_type(N, choice),

story_op(N, build_options ).

% Ending and event nodes have exactly one "option :"

65 at(N, option (1)) :-

node_type(N, ending),

story_op(N, build_options ).

at(N, option (1)) :-

70 node_type(N, event),

story_op(N, build_options ).

% State and action rules:

% -----------------------

75
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% Exclusive properties and relationships :

exclusive(has_item ).

exclusive(type).

80 at(N, consequence_of(X, O, _not , property(Prop , Obj , Old ))) :-

at(N, consequence_of(X, O, property(Prop , Obj , New))),

exclusive(Prop),

st(N, property(Prop , Obj , Old)),

Old != New ,

85 story_op(N, build_options ).

at(N, consequence_of(X, O, _not , relation(Rel , Old , Obj))) :-

at(N, consequence_of(X, O, relation(Rel , New , Obj))),

exclusive(Rel),

90 st(N, relation(Rel , Old , Obj)),

Old != New ,

story_op(N, build_options ).

at(N, consequence_of(X, O, _not , relation(Rel , Old , Obj))) :-

95 at(N, consequence_of(X, O, relation(Rel , New , Obj))),

exclusive(Rel),

st(N, relation(Rel , Old , Obj)),

Old != New ,

story_op(N, build_options ).

100

% Most actions can ’t be performed reflexively :

error(m("Improperly reflexive action.", N, Opt)) :-

reflexive(N, Opt),

at(N, action(Opt , Action)),

105 not reflexive(Action ).

reflexive(N, Opt) :-

at(N, arg(Opt , Arg1 , inst(Type , ID))),

at(N, arg(Opt , Arg2 , inst(Type , ID))),

110 Arg1 < Arg2.

% Typing rules:

% -------------

115

general_category(actor ).

general_category(item).

% TODO: locations ?

120 category(N, Thing , Category) :-

is_instance(N, Thing , Category),

general_category(Category ).

category_for(Category , Category) :-
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125 general_category(Category ).

category_for(Class , Category) :-

subclass(Category , Class),

general_category(Category ).

130

any_class(Class) :- category_for(Class , SomeCategory ).

error(m("Instance doesn’t belong to a general category.", N, I)) :-

st(N, inst(Type , I)),

135 0 = {

category(N, inst(Type , I), Category)

}.

is_instance(N, Thing , Class) :-

140 st(N, property(type , Thing , Class )).

is_instance(N, Thing , Class) :-

is_instance(N, Thing , Subclass),

subclass(Class , Subclass ).

145

subclass(General , Specific) :-

subclass(General , Intermediate),

subclass(Intermediate , Specific ).

150 concrete_class_of(Abstract , Concrete) :-

subclass(Abstract , Concrete),

concrete(Concrete ).

concrete_class_of(Concrete , Concrete) :-

155 concrete(Concrete ).

eval.lp

1 % eval.lp

% Rules dealing with how choice structures are evaluated .

% Expectations :

5 % --------------

option_relevance(irrelevant ).

option_relevance(threatens ).

option_relevance(enables ).

10 option_relevance(hinders ).

option_relevance(advances ).

stakes_level(none).

stakes_level(low).
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15 stakes_level(high).

higher_stakes(low , none).

higher_stakes(high , none).

higher_stakes(high , low).

20

at_least_as_high(SL1 , SL2) :- higher_stakes(SL1 , SL2).

at_least_as_high(SL, SL) :- stakes_level(SL).

% Options which have no other expectation are expected to be

25 % irrelevant :

at(N, expectation(option(X), irrelevant , G)) :-

at(N, option(X)),

at(N, player_goal(G)),

0 = {

30 at(N, expectation(option(X), threatens , G));

at(N, expectation(option(X), enables , G));

at(N, expectation(option(X), hinders , G));

at(N, expectation(option(X), advances , G))

}.

35

% Threatens and enables based on possible outcomes:

at(N, expectation(X, threatens , Goal)) :-

at(N, consequence_of(X, Outcome , State)),

40 state_hinders(Goal , State).

at(N, expectation(X, threatens , Goal)) :-

at(N, consequence_of(X, Outcome , State)),

state_fails(Goal , State ).

45

at(N, expectation(X, threatens , Goal)) :-

at(N, action(X, Action)),

Action != travel_onwards , Action != reach_destination ,

at(N, consequence_of(X, Outcome , _not , State)),

50 state_advances(Goal , State ).

at(N, expectation(X, threatens , Goal)) :-

at(N, action(X, Action)),

Action != travel_onwards , Action != reach_destination ,

55 at(N, consequence_of(X, Outcome , _not , State)),

state_achieves(Goal , State ).

at(N, expectation(X, enables , Goal)) :-

at(N, consequence_of(X, Outcome , State)),

60 state_advances(Goal , State ).

at(N, expectation(X, enables , Goal)) :-

at(N, consequence_of(X, Outcome , State)),
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state_achieves(Goal , State ).

65

at(N, expectation(X, enables , Goal)) :-

at(N, action(X, Action)),

Action != travel_onwards , Action != reach_destination ,

at(N, consequence_of(X, Outcome , _not , State)),

70 state_hinders(Goal , State).

at(N, expectation(X, enables , Goal)) :-

at(N, action(X, Action)),

Action != travel_onwards , Action != reach_destination ,

75 at(N, consequence_of(X, Outcome , _not , State)),

state_fails(Goal , State ).

% Hinders and advances based on ’likely ’ outcomes:

80 at(N, expectation(X, hinders , Goal)) :-

at(N, consequence_of(X, Outcome , State)),

state_hinders(Goal , State),

at(N, likely_outcome(X, Outcome )).

85 at(N, expectation(X, hinders , Goal)) :-

at(N, consequence_of(X, Outcome , State)),

state_fails(Goal , State),

at(N, likely_outcome(X, Outcome )).

90 at(N, expectation(X, hinders , Goal)) :-

at(N, action(X, Action)),

Action != travel_onwards , Action != reach_destination ,

at(N, consequence_of(X, Outcome , _not , State)),

state_advances(Goal , State),

95 at(N, likely_outcome(X, Outcome )).

at(N, expectation(X, hinders , Goal)) :-

at(N, action(X, Action)),

Action != travel_onwards , Action != reach_destination ,

100 at(N, consequence_of(X, Outcome , _not , State)),

state_achieves(Goal , State),

at(N, likely_outcome(X, Outcome )).

at(N, expectation(X, advances , Goal)) :-

105 at(N, consequence_of(X, Outcome , State)),

state_advances(Goal , State),

at(N, likely_outcome(X, Outcome )).

at(N, expectation(X, advances , Goal)) :-

110 at(N, consequence_of(X, Outcome , State)),

state_achieves(Goal , State),

at(N, likely_outcome(X, Outcome )).
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at(N, expectation(X, advances , Goal)) :-

115 at(N, action(X, Action)),

Action != travel_onwards , Action != reach_destination ,

at(N, consequence_of(X, Outcome , _not , State)),

state_hinders(Goal , State),

at(N, likely_outcome(X, Outcome )).

120

at(N, expectation(X, advances , Goal)) :-

at(N, action(X, Action)),

Action != travel_onwards , Action != reach_destination ,

at(N, consequence_of(X, Outcome , _not , State)),

125 state_fails(Goal , State),

at(N, likely_outcome(X, Outcome )).

% Special expectations for travel_onwards and reach_destination .

% Basically , if there ’s a state that would be removed by one of these

130 % actions , we know that we’re actually leaving it behind , so if that

% statie is *either* bad_for/ awful_for *or* good_for/great_for any

% goal , we expect to hinder that goal by leaving the state behind ,

% because either we’re leaving a problem behind which will now never

% get solved (in the case that the state is hindering/failing a goal)

135 % or we’re moving out of a situaiton which is good/great for our goal.

at(N, expectation(option(X), hinders , Goal)) :-

at(N, option(X)),

1 = {

140 at(N, action(option(X), travel_onwards ));

at(N, action(option(X), reach_destination ))

},

at(N, consequence_of(option(X), Outcome , _not , State)),

state_fails(Goal , State ).

145

at(N, expectation(option(X), hinders , Goal)) :-

at(N, option(X)),

1 = {

at(N, action(option(X), travel_onwards ));

150 at(N, action(option(X), reach_destination ))

},

at(N, consequence_of(option(X), Outcome , _not , State)),

state_hinders(Goal , State).

155 % This one is threatens instead of hinders.

at(N, expectation(option(X), threatens , Goal)) :-

at(N, option(X)),

1 = {

at(N, action(option(X), travel_onwards ));

160 at(N, action(option(X), reach_destination ))

},
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at(N, consequence_of(option(X), Outcome , _not , State)),

state_advances(Goal , State ).

165 at(N, expectation(option(X), hinders , Goal)) :-

at(N, option(X)),

1 = {

at(N, action(option(X), travel_onwards ));

at(N, action(option(X), reach_destination ))

170 },

at(N, consequence_of(option(X), Outcome , _not , State)),

state_achieves(Goal , State ).

175 % Stakes are based on the goals that are threatened :

% Percieved stakes (per -option ):

at(N, perceived_option_stakes(X, high)) :-

story_op(N, build_options),

180 at(N, expectation(X, Exp , Goal)),

Exp != irrelevant ,

at(N, goal_stakes(Goal , high)),

at(N, player_goal(Goal )).

185 at(N, perceived_option_stakes(X, low)) :-

story_op(N, build_options),

at(N, expectation(X, Exp , Goal)),

Exp != irrelevant ,

at(N, goal_stakes(Goal , low)),

190 at(N, player_goal(Goal)),

not at(N, perceived_option_stakes(X, high )).

at(N, perceived_option_stakes(option(X), none)) :-

story_op(N, build_options),

195 at(N, option(X)),

not at(N, perceived_option_stakes(option(X), high)),

not at(N, perceived_option_stakes(option(X), low)).

% Percieved stakes (overall ):

200 at(N, perceived_stakes(high)) :-

at(N, perceived_option_stakes(X, high )).

at(N, perceived_stakes(low)) :-

at(N, perceived_option_stakes(X, low)),

205 0 = {

at(N, perceived_option_stakes(Any , high))

}.

at(N, perceived_stakes(none)) :-

210 story_node(N),
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0 = {

at(N, perceived_option_stakes(Any , high ));

at(N, perceived_option_stakes(Any , low))

}.

215

% Actual stakes (per outcome ):

at(N, outcome_stakes(X, high)) :-

story_op(N, build_options),

at(N, outcome_perception(X, Any , Goal)),

220 at(N, goal_stakes(Goal , high)),

at(N, player_goal(Goal )).

at(N, outcome_stakes(X, low)) :-

story_op(N, build_options),

225 at(N, outcome_perception(X, Any , Goal)),

at(N, goal_stakes(Goal , low)),

at(N, player_goal(Goal)),

not at(N, outcome_stakes(X, high )).

230 at(N, outcome_stakes(option(X), none)) :-

story_op(N, build_options),

at(N, option(X)),

not at(N, outcome_stakes(option(X), high)),

not at(N, outcome_stakes(option(X), low)).

235

% Actual stakes (overall ):

at(N, actual_stakes(high)) :-

story_op(N, build_options),

at(N, outcome_perception(X, Any , Goal)),

240 Any != irrelevant ,

at(N, player_goal(Goal)),

at(N, goal_stakes(Goal , high )).

at(N, actual_stakes(low)) :-

245 story_op(N, build_options),

at(N, outcome_perception(X, Any , Goal)),

Any != irrelevant ,

at(N, player_goal(Goal)),

at(N, goal_stakes(Goal , low)),

250 not at(N, actual_stakes(high )).

at(N, actual_stakes(none)) :-

story_op(N, build_options),

not at(N, actual_stakes(high)),

255 not at(N, actual_stakes(low)).

% different types of option feels:

at(N, option_feel(option(X), sure_thing )) :-
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260 story_op(N, build_options),

at(N, option(X)),

at(N, player_goal(Goal)),

at(N, expectation(option(X), advances , Goal)),

at(N, goal_stakes(Goal , Stakes)),

265 Stakes != none ,

0 = {

at(N, player_goal(G2))

: at(N, expectation(option(X), threatens , G2));

at(N, player_goal(G3))

270 : at(N, expectation(option(X), hinders , G3))

}.

at(N, option_feel(option(X), safe)) :-

story_op(N, build_options),

275 at(N, option(X)),

1 <= {

at(N, player_goal(G1)) :

at(N, expectation(option(X), advances , G1)),

at(N, goal_stakes(G1, Stakes1)),

280 higher_stakes(Stakes1 , none);

at(N, player_goal(G2)) :

at(N, expectation(option(X), enables , G2)),

at(N, goal_stakes(G2, Stakes2)),

higher_stakes(Stakes2 , none)

285 },

0 = {

at(N, player_goal(G3))

: at(N, expectation(option(X), threatens , G3));

at(N, player_goal(G4))

290 : at(N, expectation(option(X), hinders , G4))

}.

at(N, option_feel(option(X), hopeful )) :-

story_op(N, build_options),

295 at(N, option(X)),

1 <= {

at(N, perceived_stakes(low ));

at(N, perceived_stakes(high))

},

300 at(N, player_goal(HopeGoal)),

at(N, expectation(option(X), advances , HopeGoal)),

at(N, goal_stakes(HopeGoal , HopeStakes )),

at(N, player_goal(ThreatGoal )),

at(N, expectation(option(X), threatens , ThreatGoal )),

305 at(N, goal_stakes(ThreatGoal , ThreatStakes )),

at_least_as_high(HopeStakes , ThreatStakes),

higher_stakes(ThreatStakes , none),

0 = {

337



eval.lp APPENDIX B. DUNYAZAD’S ASP CODE

at(N, player_goal(G3)) :

310 at(N, expectation(option(X), threatens , G3)),

at(N, goal_stakes(G3, S3)),

higher_stakes(S3, ThreatStakes)

},

0 = {

315 at(N, player_goal(G4))

: at(N, expectation(option(X), hinders , G4))

}.

at(N, option_feel(option(X), risky)) :-

320 story_op(N, build_options),

at(N, option(X)),

at(N, player_goal(HopeGoal)),

at(N, expectation(option(X), enables , HopeGoal)),

at(N, goal_stakes(HopeGoal , HopeStakes )),

325 at(N, player_goal(ThreatGoal )),

at(N, expectation(option(X), threatens , ThreatGoal )),

at(N, goal_stakes(ThreatGoal , ThreatStakes )),

at_least_as_high(ThreatStakes , HopeStakes),

higher_stakes(HopeStakes , none),

330 0 = {

at(N, player_goal(G3))

: at(N, expectation(option(X), advances , G3));

at(N, player_goal(G4))

: at(N, expectation(option(X), hinders , G4))

335 }.

at(N, option_feel(option(X), tradeoff )) :-

story_op(N, build_options),

at(N, option(X)),

340 at(N, player_goal(AchievesGoal )),

at(N, expectation(option(X), advances , AchievesGoal )),

at(N, goal_stakes(AchievesGoal , Stakes)),

at(N, player_goal(FailsGoal)),

at(N, expectation(option(X), hinders , FailsGoal)),

345 at(N, goal_stakes(FailsGoal , Stakes)),

higher_stakes(Stakes , none).

at(N, option_feel(option(X), irrelevant )) :-

story_op(N, build_options),

350 at(N, option(X)),

0 = {

at(N, player_goal(G1)) :

at(N, expectation(option(X), enables , G1)),

at(N, goal_stakes(G1 , Stakes1)),

355 higher_stakes(Stakes1 , none);

at(N, player_goal(G2)) :

at(N, expectation(option(X), advances , G2)),
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at(N, goal_stakes(G2, Stakes2)),

higher_stakes(Stakes2 , none);

360 at(N, player_goal(G3)) :

at(N, expectation(option(X), threatens , G3)),

at(N, goal_stakes(G3, Stakes3)),

higher_stakes(Stakes3 , none);

at(N, player_goal(G4)) :

365 at(N, expectation(option(X), hinders , G4)),

at(N, goal_stakes(G4, Stakes4)),

higher_stakes(Stakes4 , none)

}.

370 at(N, option_feel(option(X), longshot )) :-

story_op(N, build_options),

at(N, option(X)),

at(N, player_goal(FailGoal)),

at(N, expectation(option(X), hinders , FailGoal)),

375 at(N, goal_stakes(FailGoal , FailStakes )),

at(N, player_goal(HopeGoal)),

at(N, expectation(option(X), enables , HopeGoal)),

at(N, goal_stakes(HopeGoal , HopeStakes )),

at_least_as_high(FailStakes , HopeStakes),

380 higher_stakes(HopeStakes , none),

0 = {

at(N, player_goal(G3))

: at(N, expectation(option(X), advances , G3))

}.

385

at(N, option_feel(option(X), bad)) :-

story_op(N, build_options),

at(N, option(X)),

1 <= {

390 at(N, player_goal(G1)) :

at(N, expectation(option(X), threatens , G1)),

at(N, goal_stakes(G1 , Stakes1)),

higher_stakes(Stakes1 , none);

at(N, player_goal(G2)) :

395 at(N, expectation(option(X), hinders , G2)),

at(N, goal_stakes(G2, Stakes2)),

higher_stakes(Stakes2 , none)

},

0 = {

400 at(N, player_goal(G3))

: at(N, expectation(option(X), enables , G3));

at(N, player_goal(G4))

: at(N, expectation(option(X), advances , G4))

}.

405

at(N, option_feel(option(X), doomed )) :-
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story_op(N, build_options),

at(N, option(X)),

at(N, player_goal(DoomedGoal )),

410 at(N, expectation(option(X), hinders , DoomedGoal )),

at(N, goal_stakes(DoomedGoal , DoomedStakes )),

higher_stakes(DoomedStakes , none),

0 = {

at(N, player_goal(G2))

415 : at(N, expectation(option(X), enables , G2));

at(N, player_goal(G3))

: at(N, expectation(option(X), advances , G3))

}.

420 % option -based choice structures :

at(N, option_structure(mysterious )) :-

story_op(N, build_options),

1 < { at(N, option(X)) },

425 0 = #sum {

1,at(N, option(X)) : at(N, option_feel(option(X), irrelevant ));

-1,at(N, option(X)) : at(N, option(X))

}.

430 at(N, option_structure(uncertain )) :-

story_op(N, build_options),

1 < { at(N, option(X)) },

0 = #sum {

1,at(N, option(X)) : at(N, option_feel(option(X), risky ));

435 -1,at(N, option(X)) : at(N, option(X))

}.

at(N, option_structure(obvious )) :-

story_op(N, build_options),

440 1 < { at(N, option(X)) },

1 = {

at(N, option(X)) : at(N, option_feel(option(X), hopeful ));

at(N, option(X)) : at(N, option_feel(option(X), safe))

},

445 0 = {

at(N, option(X)) : at(N, option_feel(option(X), tradeoff ));

at(N, option(X)) : at(N, option_feel(option(X), irrelevant ))

}.

450 at(N, option_structure(relaxed )) :-

story_op(N, build_options),

1 < { at(N, option(X)) },

0 = #sum {

1,at(N, option(X)) : at(N, option_feel(option(X), safe ));

455 -1,at(N, option(X)) : at(N, option(X))
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},

at(N, perceived_stakes(Stakes)),

higher_stakes(high , Stakes ).

460 at(N, option_structure(powerful )) :-

story_op(N, build_options),

1 < { at(N, option(X)) },

1 <= {

at(N, option(X)) : at(N, option_feel(option(X), hopeful ));

465 at(N, option(X)) : at(N, option_feel(option(X), safe))

},

0 = {

at(N, player_goal(G1))

: at(N, expectation(option(X), threatens , G1));

470 at(N, player_goal(G2))

: at(N, expectation(option(X), hinders , G2))

},

at(N, perceived_stakes(high )).

475 at(N, option_structure(uncomfortable )) :-

story_op(N, build_options),

1 < { at(N, option(X)) },

1 <= {

at(N, option(X)) : at(N, option_feel(option(X), longshot ));

480 at(N, option(X)) : at(N, option_feel(option(X), risky ))

},

0 = {

at(N, option(X)) : at(N, option_feel(option(X), tradeoff ));

at(N, option(X)) : at(N, option_feel(option(X), irrelevant ));

485 at(N, option(X)) : at(N, option_feel(option(X), hopeful ));

at(N, option(X)) : at(N, option_feel(option(X), safe))

},

at(N, perceived_stakes(Stakes)),

higher_stakes(Stakes , none).

490

at(N, option_structure(tradeoffs )) :-

story_op(N, build_options),

1 < { at(N, option(X)) },

0 = #sum {

495 1,at(N, option(X)) : at(N, option_feel(option(X), tradeoff ));

-1,at(N, option(X)) : at(N, option(X))

},

at(N, player_goal(Goal1)),

at(N, player_goal(Goal2)),

500 Goal1 != Goal2 ,

2 <= {

at(N, option(X)) : at(N, expectation(option(X), advances , Goal1 ));

at(N, option(X)) : at(N, expectation(option(X), advances , Goal2))

},
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505 at(N, perceived_stakes(Stakes)),

higher_stakes(Stakes , none).

at(N, option_structure(positive_alternatives )) :-

story_op(N, build_options),

510 1 < { at(N, option(X)) },

at(N, perceived_stakes(SomeStakes )),

higher_stakes(SomeStakes , none),

0 = #sum {

1,at(N, option(X)) : at(N, option_feel(option(X), safe ));

515 1,at(N, option(X)) : at(N, option_feel(option(X), hopeful ));

-1,at(N, option(X)) : at(N, option(X))

},

0 = #sum {

1,at(N, option(X)) :

520 at(N, expectation(option(X), advances , SomeGoal)),

at(N, goal_stakes(SomeGoal , SomeStakes )),

at(N, player_goal(SomeGoal ));

-1,at(N, option(X)) : at(N, option(X))

},

525 at(N, player_goal(Goal1)),

at(N, player_goal(Goal2)),

Goal1 != Goal2 ,

% TODO: This is a bit silly ...

2 <= {

530 at(N, option(X)) : at(N, expectation(option(X), advances , Goal1 ));

at(N, option(X)) : at(N, expectation(option(X), advances , Goal2))

}.

at(N, option_structure(negative_alternatives )) :-

535 story_op(N, build_options),

1 < { at(N, option(X)) },

at(N, perceived_stakes(SomeStakes )),

higher_stakes(SomeStakes , none),

0 = #sum {

540 1,at(N, option(X)) : at(N, option_feel(option(X), longshot ));

1,at(N, option(X)) : at(N, option_feel(option(X), bad));

-1,at(N, option(X)) : at(N, option(X))

},

0 = #sum {

545 1,at(N, option(X)) :

at(N, expectation(option(X), hinders , SomeGoal)),

at(N, goal_stakes(SomeGoal , SomeStakes )),

at(N, player_goal(Goal ));

-1,at(N, option(X)) : at(N, option(X))

550 }.

at(N, option_structure(pressured )) :-

story_op(N, build_options),
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1 < { at(N, option(X)) },

555 0 = {

at(N, option(X)) : at(N, option_feel(option(X), safe ));

at(N, option(X)) : at(N, option_feel(option(X), irrelevant ))

},

1 <= {

560 at(N, option(X)) : at(N, option_feel(option(X), hopeful ));

at(N, option(X)) : at(N, option_feel(option(X), tradeoff ))

},

at(N, perceived_stakes(Stakes)),

higher_stakes(Stakes , none).

565

at(N, option_structure(dangerous )) :-

story_op(N, build_options),

1 < { at(N, option(X)) },

0 = {

570 at(N, option(X)) : at(N, option_feel(option(X), safe ));

at(N, option(X)) : at(N, option_feel(option(X), hopeful ));

at(N, option(X)) : at(N, option_feel(option(X), tradeoff ));

at(N, option(X)) : at(N, option_feel(option(X), irrelevant ))

},

575 1 <= {

at(N, option(X)) : at(N, option_feel(option(X), risky ))

},

at(N, perceived_stakes(high )).

580 at(N, option_structure(unfortunate )) :-

story_op(N, build_options),

1 < { at(N, option(X)) },

0 = {

at(N, option(X)) : at(N, option_feel(option(X), safe ));

585 at(N, option(X)) : at(N, option_feel(option(X), hopeful ));

at(N, option(X)) : at(N, option_feel(option(X), tradeoff ));

at(N, option(X)) : at(N, option_feel(option(X), irrelevant ))

},

1 <= {

590 at(N, option(X)) : at(N, option_feel(option(X), risky ))

},

at(N, perceived_stakes(Stakes)),

higher_stakes(high , Stakes ).

595 at(N, option_structure(bleak)) :-

story_op(N, build_options),

1 < { at(N, option(X)) },

0 = #sum {

1,at(N, option(X)) : at(N, option_feel(option(X), longshot ));

600 1,at(N, option(X)) : at(N, option_feel(option(X), bad));

-1,at(N, option(X)) : at(N, option(X))

},
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at(N, perceived_stakes(Stakes)),

higher_stakes(Stakes , none).

605

at(N, option_structure(depressing )) :-

story_op(N, build_options),

1 < { at(N, option(X)) },

0 = #sum {

610 1,at(N, option(X)) :

at(N, expectation(option(X), hinders , Goal)),

at(N, player_goal(Goal ));

-1,at(N, option(X)) : at(N, option(X))

},

615 0 = {

at(N, option(X)) :

at(N, expectation(option(X), advances , Goal)),

at(N, player_goal(Goal ));

at(N, option(X)) :

620 at(N, expectation(option(X), enables , Goal)),

at(N, player_goal(Goal))

},

at(N, perceived_stakes(Stakes)),

higher_stakes(high , Stakes ).

625

at(N, option_structure(doomed )) :-

story_op(N, build_options),

1 < { at(N, option(X)) },

0 = #sum {

630 1,at(N, option(X)) :

at(N, expectation(option(X), hinders , Goal)),

at(N, player_goal(Goal ));

-1,at(N, option(X)) : at(N, option(X))

},

635 0 = {

at(N, option(X)) :

at(N, expectation(option(X), advances , Goal)),

at(N, player_goal(Goal ));

at(N, option(X)) :

640 at(N, expectation(option(X), enables , Goal)),

at(N, player_goal(Goal))

},

at(N, perceived_stakes(high )).

645 % TODO: Worry about options without any assigned feel?

% Outcomes:

% ----------

650

outcome_perception(irrelevant ).
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outcome_perception(bad_for ).

outcome_perception(good_for ).

outcome_perception(awful_for ).

655 outcome_perception(great_for ).

% bad_for and good_for

at(N, outcome_perception(X, bad_for , Goal)) :-

660 at(N, consequence(X, State)),

state_hinders(Goal , State).

at(N, outcome_perception(X, good_for , Goal)) :-

at(N, consequence(X, State)),

665 state_advances(Goal , State ).

at(N, outcome_perception(X, bad_for , Goal)) :-

at(N, action(X, Action)),

Action != travel_onwards , Action != reach_destination ,

670 at(N, consequence(X, _not , State)),

state_advances(Goal , State ).

at(N, outcome_perception(X, good_for , Goal)) :-

at(N, action(X, Action)),

675 Action != travel_onwards , Action != reach_destination ,

at(N, consequence(X, _not , State)),

state_hinders(Goal , State).

at(N, outcome_perception(X, bad_for , Goal)) :-

680 at(N, action(X, Action)),

Action != travel_onwards , Action != reach_destination ,

at(N, consequence(X, _not , State)),

state_achieves(Goal , State ).

685 at(N, outcome_perception(X, good_for , Goal)) :-

at(N, action(X, Action)),

Action != travel_onwards , Action != reach_destination ,

at(N, consequence(X, _not , State)),

state_fails(Goal , State ).

690

% awful_for and great_for

at(N, outcome_perception(X, awful_for , Goal)) :-

at(N, consequence(X, State)),

695 state_fails(Goal , State ).

at(N, outcome_perception(X, great_for , Goal)) :-

at(N, consequence(X, State)),

state_achieves(Goal , State ).

700

345



eval.lp APPENDIX B. DUNYAZAD’S ASP CODE

% outcome perceptions for travel_onwards and reach_destination :

at(N, outcome_perception(option(X), awful_for , Goal)) :-

at(N, option(X)),

705 1 = {

at(N, action(option(X), travel_onwards ));

at(N, action(option(X), reach_destination ))

},

at(N, consequence(option(X), _not , State)),

710 state_achieves(Goal , State ).

at(N, outcome_perception(option(X), bad_for , Goal)) :-

at(N, option(X)),

1 = {

715 at(N, action(option(X), travel_onwards ));

at(N, action(option(X), reach_destination ))

},

at(N, consequence(option(X), _not , State)),

state_advances(Goal , State ).

720

at(N, outcome_perception(option(X), awful_for , Goal)) :-

at(N, option(X)),

1 = {

at(N, action(option(X), travel_onwards ));

725 at(N, action(option(X), reach_destination ))

},

at(N, consequence(option(X), _not , State)),

state_hinders(Goal , State).

730 at(N, outcome_perception(option(X), awful_for , Goal)) :-

at(N, option(X)),

1 = {

at(N, action(option(X), travel_onwards ));

at(N, action(option(X), reach_destination ))

735 },

at(N, consequence(option(X), _not , State)),

state_fails(Goal , State ).

% Possible outcome perceptions (used to determine which outcomes are

740 % important ):

% bad_for and good_for

at(N, possible_outcome_perception(X, O, bad_for , Goal)) :-

745 at(N, consequence_of(X, O, State)),

state_hinders(Goal , State).

at(N, possible_outcome_perception(X, O, good_for , Goal)) :-

at(N, consequence_of(X, O, State)),
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750 state_advances(Goal , State ).

at(N, possible_outcome_perception(X, O, bad_for , Goal)) :-

at(N, action(X, Action)),

Action != travel_onwards , Action != reach_destination ,

755 at(N, consequence_of(X, O, _not , State)),

state_advances(Goal , State ).

at(N, possible_outcome_perception(X, O, good_for , Goal)) :-

at(N, action(X, Action)),

760 Action != travel_onwards , Action != reach_destination ,

at(N, consequence_of(X, O, _not , State)),

state_hinders(Goal , State).

at(N, possible_outcome_perception(X, O, bad_for , Goal)) :-

765 at(N, action(X, Action)),

Action != travel_onwards , Action != reach_destination ,

at(N, consequence_of(X, O, _not , State)),

state_achieves(Goal , State ).

770 at(N, possible_outcome_perception(X, O, good_for , Goal)) :-

at(N, action(X, Action)),

Action != travel_onwards , Action != reach_destination ,

at(N, consequence_of(X, O, _not , State)),

state_fails(Goal , State ).

775

% awful_for and great_for

at(N, possible_outcome_perception(X, O, awful_for , Goal)) :-

at(N, consequence_of(X, O, State)),

780 state_fails(Goal , State ).

at(N, possible_outcome_perception(X, O, great_for , Goal)) :-

at(N, consequence_of(X, O, State)),

state_achieves(Goal , State ).

785

% possible outcome perceptions for travel_onwards and

% reach_destination :

at(

790 N,

possible_outcome_perception(option(X), Outcome , awful_for , Goal)

) :-

at(N, option(X)),

1 = {

795 at(N, action(option(X), travel_onwards ));

at(N, action(option(X), reach_destination ))

},

at(N, consequence_of(option(X), Outcome , _not , State)),
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state_achieves(Goal , State ).

800

at(

N,

possible_outcome_perception(option(X), Outcome , bad_for , Goal)

) :-

805 at(N, option(X)),

1 = {

at(N, action(option(X), travel_onwards ));

at(N, action(option(X), reach_destination ))

},

810 at(N, consequence_of(option(X), Outcome , _not , State)),

state_advances(Goal , State ).

at(

N,

815 possible_outcome_perception(option(X), Outcome , awful_for , Goal)

) :-

at(N, option(X)),

1 = {

at(N, action(option(X), travel_onwards ));

820 at(N, action(option(X), reach_destination ))

},

at(N, consequence_of(option(X), Outcome , _not , State)),

state_hinders(Goal , State).

825 at(

N,

possible_outcome_perception(option(X), Outcome , awful_for , Goal)

) :-

at(N, option(X)),

830 1 = {

at(N, action(option(X), travel_onwards ));

at(N, action(option(X), reach_destination ))

},

at(N, consequence_of(option(X), Outcome , _not , State)),

835 state_fails(Goal , State ).

% Mixed outcome perceptions :

% When we achieve a goal with no drawbacks :

840 at(N, outcome_overall(X, great)) :-

at(N, outcome_perception(X, great_for , Goal)),

at(N, player_goal(Goal)),

at(N, outcome_stakes(X, Stakes)),

at(N, goal_stakes(Goal , Stakes)),

845 0 = {

at(N, outcome_perception(X, awful_for , AnyGoal )) :

at(N, outcome_perception(X, awful_for , AnyGoal)),
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at(N, player_goal(AnyGoal)),

at(N, goal_stakes(AnyGoal , Stakes ));

850 at(N, outcome_perception(X, bad_for , AnyGoal )) :

at(N, outcome_perception(X, bad_for , AnyGoal)),

at(N, player_goal(AnyGoal)),

at(N, goal_stakes(AnyGoal , Stakes ))

}.

855

% When we advance a goal with no drawbacks :

at(N, outcome_overall(X, good)) :-

at(N, outcome_perception(X, good_for , Goal)),

at(N, player_goal(Goal)),

860 at(N, outcome_stakes(X, Stakes)),

at(N, goal_stakes(Goal , Stakes)),

0 = {

at(N, outcome_perception(X, great_for , AnyGoal )) :

at(N, outcome_perception(X, great_for , AnyGoal)),

865 at(N, player_goal(AnyGoal)),

at(N, goal_stakes(AnyGoal , Stakes ));

at(N, outcome_perception(X, awful_for , AnyGoal )) :

at(N, outcome_perception(X, awful_for , AnyGoal)),

at(N, player_goal(AnyGoal)),

870 at(N, goal_stakes(AnyGoal , Stakes ));

at(N, outcome_perception(X, bad_for , AnyGoal )) :

at(N, outcome_perception(X, bad_for , AnyGoal)),

at(N, player_goal(AnyGoal)),

at(N, goal_stakes(AnyGoal , Stakes ))

875 }.

% When we achieve at least one goal but fail at least one other goal ,

% or advance one goal while hindering another:

at(N, outcome_overall(X, tradeoff )) :-

880 at(N, outcome_stakes(X, Stakes)),

at(N, outcome_perception(X, great_for , Goal)),

at(N, player_goal(Goal)),

at(N, goal_stakes(Goal , Stakes)),

at(N, outcome_perception(X, awful_for , FailedGoal )),

885 at(N, player_goal(FailedGoal )),

at(N, goal_stakes(FailedGoal , Stakes )).

at(N, outcome_overall(X, tradeoff )) :-

at(N, outcome_stakes(X, Stakes)),

890 at(N, outcome_perception(X, good_for , Goal)),

at(N, player_goal(Goal)),

at(N, goal_stakes(Goal , Stakes)),

at(N, outcome_perception(X, bad_for , HinderedGoal )),

at(N, player_goal(HinderedGoal )),

895 at(N, goal_stakes(HinderedGoal , Stakes)),

0 = {
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at(N, outcome_perception(X, great_for , AnyGoal )) :

at(N, outcome_perception(X, great_for , AnyGoal)),

at(N, goal_stakes(AnyGoal , Stakes)),

900 at(N, player_goal(AnyGoal ));

at(N, outcome_perception(X, awful_for , AnyGoal )) :

at(N, outcome_perception(X, awful_for , AnyGoal)),

at(N, goal_stakes(AnyGoal , Stakes)),

at(N, player_goal(AnyGoal ))

905 }.

% When we achieve at least one goal but hinder at least one other:

at(N, outcome_overall(X, worth_it )) :-

at(N, outcome_stakes(X, Stakes)),

910 at(N, outcome_perception(X, great_for , Goal)),

at(N, player_goal(Goal)),

at(N, goal_stakes(Goal , Stakes)),

at(N, outcome_perception(X, bad_for , HinderedGoal )),

at(N, player_goal(HinderedGoal )),

915 at(N, goal_stakes(HinderedGoal , Stakes)),

0 = {

at(N, outcome_perception(X, awful_for , AnyGoal )) :

at(N, outcome_perception(X, awful_for , AnyGoal)),

at(N, goal_stakes(AnyGoal , Stakes)),

920 at(N, player_goal(AnyGoal ))

}.

% When we advance at least one goal but fail at least one other:

at(N, outcome_overall(X, not_worth_it )) :-

925 at(N, outcome_stakes(X, Stakes)),

at(N, outcome_perception(X, good_for , Goal)),

at(N, player_goal(Goal)),

at(N, goal_stakes(Goal , Stakes)),

at(N, outcome_perception(X, awful_for , FailedGoal )),

930 at(N, player_goal(FailedGoal )),

at(N, goal_stakes(FailedGoal , Stakes)),

0 = {

at(N, outcome_perception(X, great_for , AnyGoal )) :

at(N, outcome_perception(X, great_for , AnyGoal)),

935 at(N, goal_stakes(AnyGoal , Stakes)),

at(N, player_goal(AnyGoal ))

}.

% When we hinder a goal and make no progress otherwise :

940 at(N, outcome_overall(X, bad)) :-

at(N, outcome_perception(X, bad_for , Goal)),

at(N, player_goal(Goal)),

at(N, outcome_stakes(X, Stakes)),

at(N, goal_stakes(Goal , Stakes)),

945 0 = {
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at(N, outcome_perception(X, great_for , AnyGoal )) :

at(N, outcome_perception(X, great_for , AnyGoal)),

at(N, player_goal(AnyGoal)),

at(N, goal_stakes(AnyGoal , Stakes ));

950 at(N, outcome_perception(X, good_for , AnyGoal )) :

at(N, outcome_perception(X, good_for , AnyGoal)),

at(N, player_goal(AnyGoal)),

at(N, goal_stakes(AnyGoal , Stakes ));

at(N, outcome_perception(X, awful_for , AnyGoal )) :

955 at(N, outcome_perception(X, awful_for , AnyGoal)),

at(N, player_goal(AnyGoal)),

at(N, goal_stakes(AnyGoal , Stakes ))

}.

960 % When we fail a goal and make no progress otherwise :

at(N, outcome_overall(X, awful)) :-

at(N, outcome_perception(X, awful_for , Goal)),

at(N, player_goal(Goal)),

at(N, outcome_stakes(X, Stakes)),

965 at(N, goal_stakes(Goal , Stakes)),

0 = {

at(N, outcome_perception(X, great_for , AnyGoal )) :

at(N, outcome_perception(X, great_for , AnyGoal)),

at(N, player_goal(AnyGoal)),

970 at(N, goal_stakes(AnyGoal , Stakes ));

at(N, outcome_perception(X, good_for , AnyGoal )) :

at(N, outcome_perception(X, good_for , AnyGoal)),

at(N, player_goal(AnyGoal)),

at(N, goal_stakes(AnyGoal , Stakes ))

975 }.

% When an outcome doesn ’t affect max -stakes goals in the end:

at(N, outcome_overall(option(X), neutral )) :-

at(N, option(X)),

980 at(N, outcome_stakes(X, Stakes)),

0 = {

at(N, outcome_perception(option(X), NotIrrelevant , AnyGoal )) :

at(N, outcome_perception(option(X), NotIrrelevant , AnyGoal)),

at(N, player_goal(AnyGoal)),

985 at(N, goal_stakes(AnyGoal , Stakes)),

NotIrrelevant != irrelevant

}.

990 % Outcomes affecting non -max -stakes or non -player goals are not

% considered important:

at(N, important_outcome(X, Outcome )) :-

at(N, outcome(X, Outcome)),

at(N, outcome_stakes(X, Stakes)),
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995 at(N, goal_stakes(Goal , Stakes)),

at(N, player_goal(Goal)),

at(N, possible_outcome_perception(X, Outcome , Any , Goal )).

% Non - effecacious outcomes that are the alternatives to outcomes that

1000 % would be important count as important.

% TODO: Account for exclusion rules here as well to imply importance

% across multiple outcome variables ?

at(N, important_outcome(X, o(SameVar , Happened ))) :-

at(N, outcome(X, o(SameVar , Happened ))),

1005 at(N, outcome_stakes(X, Stakes)),

at(N, goal_stakes(Goal , Stakes)),

at(N, player_goal(Goal)),

at(

N,

1010 possible_outcome_perception(X, o(SameVar , CouldHave), Any , Goal)

).

% Outcomes which are neither likely nor unlikely are labeled as

% "neutral :"

1015

at(N, neutral_outcome(X, o(OutVar , OutVal ))) :-

at(N, action(X, Action)),

outcome_val(Action , OutVar , OutVal),

not at(N, likely_outcome(X, o(OutVar , OutVal ))),

1020 not at(N, unlikely_outcome(X, o(OutVar , OutVal ))).

% Outcome predictabilities :

1025 at(N, outcome_predictability(X, o(OutVar , OutVal), predictable )) :-

story_op(N, build_options),

at(N, outcome(X, o(OutVar , OutVal ))),

at(N, likely_outcome(X, o(OutVar , OutVal ))),

1 = {

1030 at(N, likely_outcome(X, o(OutVar , AnyVal ))) :

at(N, likely_outcome(X, o(OutVar , AnyVal )))

}.

at(N, outcome_predictability(X, o(OutVar , OutVal), expected )) :-

1035 story_op(N, build_options),

at(N, outcome(X, o(OutVar , OutVal ))),

at(N, likely_outcome(X, o(OutVar , OutVal ))),

2 <= {

at(N, likely_outcome(X, o(OutVar , AnyVal ))) :

1040 at(N, likely_outcome(X, o(OutVar , AnyVal )))

}.

at(N, outcome_predictability(X, o(OutVar , OutVal), average )) :-
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story_op(N, build_options),

1045 at(N, outcome(X, o(OutVar , OutVal ))),

not at(N, unlikely_outcome(X, o(OutVar , OutVal ))),

0 = {

at(N, likely_outcome(X, o(OutVar , AnyVal ))) :

at(N, likely_outcome(X, o(OutVar , AnyVal )))

1050 },

1 <= {

at(N, unlikely_outcome(X, o(OutVar , AnyVal ))) :

at(N, unlikely_outcome(X, o(OutVar , AnyVal )))

}.

1055

at(N, outcome_predictability(X, o(OutVar , OutVal), unpredictable )) :-

story_op(N, build_options),

at(N, outcome(X, o(OutVar , OutVal ))),

0 = {

1060 at(N, likely_outcome(X, o(OutVar , AnyVal ))) :

at(N, likely_outcome(X, o(OutVar , AnyVal )));

at(N, unlikely_outcome(X, o(OutVar , AnyVal ))) :

at(N, unlikely_outcome(X, o(OutVar , AnyVal )))

}.

1065

at(N, outcome_predictability(X, o(OutVar , OutVal), unpredictable )) :-

story_op(N, build_options),

at(N, action(X, Action)),

at(N, outcome(X, o(OutVar , OutVal ))),

1070 0 = #sum { % All possible outcome values for this var are "unlikely"

1, outcome_val(Action , OutVar , AnyVal) :

outcome_val(Action , OutVar , AnyVal );

-1, at(N, unlikely_outcome(X, o(OutVar , AnyVal ))) :

at(N, unlikely_outcome(X, o(OutVar , AnyVal )))

1075 }.

at(N, outcome_predictability(X, o(OutVar , OutVal), unexpected )) :-

story_op(N, build_options),

at(N, outcome(X, o(OutVar , OutVal ))),

1080 at(N, neutral_outcome(X, o(OutVar , OutVal ))),

1 <= {

at(N, likely_outcome(X, o(OutVar , AnyVal ))) :

at(N, likely_outcome(X, o(OutVar , AnyVal )))

}.

1085

at(N, outcome_predictability(X, o(OutVar , OutVal), unexpected )) :-

story_op(N, build_options),

at(N, outcome(X, o(OutVar , OutVal ))),

at(N, unlikely_outcome(X, o(OutVar , OutVal ))),

1090 0 = {

at(N, likely_outcome(X, o(OutVar , AnyVal ))) :

at(N, likely_outcome(X, o(OutVar , AnyVal )))

353



eval.lp APPENDIX B. DUNYAZAD’S ASP CODE

},

1 <= {

1095 at(N, neutral_outcome(X, o(OutVar , AnyVal ))) :

at(N, neutral_outcome(X, o(OutVar , AnyVal )))

}.

at(N, outcome_predictability(X, o(OutVar , OutVal), unfair )) :-

1100 story_op(N, build_options),

at(N, outcome(X, o(OutVar , OutVal ))),

at(N, unlikely_outcome(X, o(OutVar , OutVal ))),

at(N, likely_outcome(X, o(OutVar , OtherVal ))),

OutVal != OtherVal.

1105

error(

m(

"Individual outcome has multiple predictabilities:",

N, X, o(OutVar , OutVal), P1 , P2

1110 )

) :-

at(N, outcome_predictability(X, o(OutVar , OutVal), P1)),

at(N, outcome_predictability(X, o(OutVar , OutVal), P2)),

P1 < P2.

1115

error(

m(

"Individual outcome has no predictability:",

N,

1120 X,

o(OutVar , OutVal)

)

):-

at(N, outcome(X, o(OutVar , OutVal ))),

1125 0 = {

at(N, outcome_predictability(X, o(OutVar , OutVal), Any)) :

at(N, outcome_predictability(X, o(OutVar , OutVal), Any))

}.

1130 % Combined predictabilities :

at(N, overall_predictability(X, predictable )) :-

story_op(N, build_options),

at(N, outcome(X, SomeOutcome )),

0 = #sum { % All important outcomes for this option are predictable

1135 1, at(N, outcome(X, Outcome )) :

at(N, important_outcome(X, Outcome ));

-1, at(N, outcome(X, Outcome )) :

at(N, important_outcome(X, Outcome)),

at(N, outcome_predictability(X, Outcome , predictable ))

1140 },

1 <= {
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at(N, important_outcome(X, Outcome ))

}. % and there ’s at least one

1145 at(N, overall_predictability(X, expected )) :-

story_op(N, build_options),

at(N, outcome(X, SomeOutcome )),

not at(N, overall_predictability(X, predictable )),

0 = #sum { % Outcomes for this opt are pred., expctd., or avg.

1150 1, at(N, outcome(X, Outcome )) :

at(N, important_outcome(X, Outcome ));

-1, at(N, outcome(X, Outcome )) :

at(N, important_outcome(X, Outcome)),

at(N, outcome_predictability(X, Outcome , predictable ));

1155 -1, at(N, outcome(X, Outcome )) :

at(N, important_outcome(X, Outcome)),

at(N, outcome_predictability(X, Outcome , expected ));

-1, at(N, outcome(X, Outcome )) :

at(N, important_outcome(X, Outcome)),

1160 at(N, outcome_predictability(X, Outcome , average ))

},

1 <= { % And they ’re not *all* average

at(N, outcome(X, Outcome )) :

at(N, outcome_predictability(X, Outcome , predictable )),

1165 at(N, important_outcome(X, Outcome ));

at(N, outcome(X, Outcome )) :

at(N, outcome_predictability(X, Outcome , expected)),

at(N, important_outcome(X, Outcome ))

}.

1170

at(N, overall_predictability(X, average )) :-

story_op(N, build_options),

at(N, outcome(X, SomeOutcome )),

0 = #sum { % All important outcomes for this option are average

1175 1, at(N, outcome(X, Outcome )) :

at(N, important_outcome(X, Outcome ));

-1, at(N, outcome(X, Outcome )) :

at(N, important_outcome(X, Outcome)),

at(N, outcome_predictability(X, Outcome , average ))

1180 },

1 <= {

at(N, important_outcome(X, Outcome ))

}. % and there ’s at least one

1185 at(N, overall_predictability(X, unpredictable )) :-

story_op(N, build_options),

at(N, important_outcome(X, SomeOutcome )),

at(N, outcome_predictability(X, SomeOutcome , unpredictable )),

0 = {

1190 at(N, outcome(X, Outcome )) :
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at(N, outcome_predictability(X, Outcome , unexpected )),

at(N, important_outcome(X, Outcome ));

at(N, outcome(X, Outcome )) :

at(N, outcome_predictability(X, Outcome , unfair)),

1195 at(N, important_outcome(X, Outcome ))

}.

at(N, overall_predictability(X, unexpected )) :-

story_op(N, build_options),

1200 at(N, important_outcome(X, SomeOutcome )),

at(N, outcome_predictability(X, SomeOutcome , unexpected )),

0 = {

at(N, outcome(X, Outcome )) :

at(N, outcome_predictability(X, Outcome , unfair)),

1205 at(N, important_outcome(X, Outcome ))

}.

at(N, overall_predictability(X, unfair )) :-

story_op(N, build_options),

1210 at(N, important_outcome(X, SomeOutcome )),

at(N, outcome_predictability(X, SomeOutcome , unfair )).

at(N, overall_predictability(option(X), irrelevant )) :-

story_op(N, build_options),

1215 at(N, option(X)),

0 = {

at(N, outcome_perception(option(X), SomePerception , SomeGoal )):

at(N, outcome_perception(option(X), SomePerception , SomeGoal)),

at(N, player_goal(SomeGoal ))

1220 }.

1 >= {

at(N, overall_predictability(option(X), unrecognized ))

} :-

1225 story_op(N, build_options),

at(N, option(X)).

error(

m("Outcome has multiple overall predictabilities:", N, X, P1 , P2)

1230 ) :-

at(N, overall_predictability(X, P1)),

at(N, overall_predictability(X, P2)),

P1 < P2.

1235 error(m("Outcome has no overall predictability:", N, option(X))) :-

at(N, option(X)),

0 = {

at(N, overall_predictability(option(X), Any)) :

at(N, overall_predictability(option(X), Any))
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1240 }.

% Outcome feels:

at(N, outcome_feel(option(X), expected_success )) :-

1245 story_op(N, build_options),

at(N, option(X)),

1 <= {

at(N, option_feel(option(X), sure_thing ));

at(N, option_feel(option(X), safe ));

1250 at(N, option_feel(option(X), hopeful ))

},

1 = {

at(N, overall_predictability(option(X), predictable ));

at(N, overall_predictability(option(X), expected ))

1255 },

1 <= {

at(N, outcome_overall(option(X), great ));

at(N, outcome_overall(option(X), good))

}.

1260

at(N, outcome_feel(option(X), unfair )) :-

story_op(N, build_options),

at(N, option(X)),

1 <= {

1265 at(N, option_feel(option(X), sure_thing ));

at(N, option_feel(option(X), safe ));

at(N, option_feel(option(X), hopeful ))

},

1 = {

1270 at(N, overall_predictability(option(X), unexpected ));

at(N, overall_predictability(option(X), unfair ))

},

1 = {

% TODO: Re -enable this when we’ve got a better lock on what is

1275 % "worth it"

% at(N, outcome_overall (option(X), not_worth_it ));

at(N, outcome_overall(option(X), bad));

at(N, outcome_overall(option(X), awful ))

}.

1280

at(N, outcome_feel(option(X), nice_gamble )) :-

story_op(N, build_options),

at(N, option(X)),

1 <= {

1285 at(N, option_feel(option(X), risky ));

at(N, option_feel(option(X), tradeoff ));

at(N, option_feel(option(X), irrelevant ))

},
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1 = {

1290 at(N, overall_predictability(option(X), average ));

at(N, overall_predictability(option(X), unpredictable ))

},

1 = {

at(N, outcome_overall(option(X), great ));

1295 at(N, outcome_overall(option(X), good ));

at(N, outcome_overall(option(X), worth_it ))

}.

at(N, outcome_feel(option(X), bad_gamble )) :-

1300 story_op(N, build_options),

at(N, option(X)),

1 <= {

at(N, option_feel(option(X), risky ));

at(N, option_feel(option(X), tradeoff ));

1305 at(N, option_feel(option(X), irrelevant ))

},

1 = {

at(N, overall_predictability(option(X), average ));

at(N, overall_predictability(option(X), unpredictable ))

1310 },

1 = {

at(N, outcome_overall(option(X), not_worth_it ));

at(N, outcome_overall(option(X), bad));

at(N, outcome_overall(option(X), awful ))

1315 }.

at(N, outcome_feel(option(X), expected_failure )) :-

story_op(N, build_options),

at(N, option(X)),

1320 1 <= {

at(N, option_feel(option(X), longshot ));

at(N, option_feel(option(X), bad));

at(N, option_feel(option(X), doomed ))

},

1325 1 = {

at(N, overall_predictability(option(X), predictable ));

at(N, overall_predictability(option(X), expected ));

at(N, overall_predictability(option(X), average ))

},

1330 1 <= {

% TODO: Re -enable this when we’ve got a better lock on what ’s "worth

% it"

% at(N, outcome_overall (option(X), not_worth_it ));

at(N, outcome_overall(option(X), bad));

1335 at(N, outcome_overall(option(X), awful ))

}.

358



B.2. CORE FILES eval.lp

at(N, outcome_feel(option(X), miracle )) :-

story_op(N, build_options),

1340 at(N, option(X)),

1 <= {

at(N, option_feel(option(X), longshot ));

at(N, option_feel(option(X), bad));

at(N, option_feel(option(X), doomed ))

1345 },

1 = {

at(N, overall_predictability(option(X), unexpected ));

at(N, overall_predictability(option(X), unfair ))

},

1350 1 = {

at(N, outcome_overall(option(X), great ));

at(N, outcome_overall(option(X), good ));

% TODO: but we’re leaving this in for now ...

at(N, outcome_overall(option(X), worth_it ))

1355 }.

% TODO: More outcome feels!

goals.lp

1 % goals.lp

% Rules dealing with player goals.

at(N, player_goal(preserve_health(Member ))) :-

5 st(N, state(party_member , Member)),

story_op(N, initialize_node ).

at(N, player_goal(avoid_threats_to(Member ))) :-

st(N, state(party_member , Member)),

10 story_op(N, initialize_node ).

at(N, player_goal(avoid_accusations(Member ))) :-

st(N, state(party_member , Member)),

story_op(N, initialize_node ).

15

at(N, player_goal(preserve_original_form(Member ))) :-

st(N, state(party_member , Member)),

story_op(N, initialize_node ).

20 at(N, player_goal(reclaim_property(Member , StolenItem ))) :-

st(N, state(party_member , Member)),

st(N, relation(stolen_from , Member , StolenItem )),

story_op(N, initialize_node ).

25 at(N, player_goal(as_intended(Member ))) :-

359



goals.lp APPENDIX B. DUNYAZAD’S ASP CODE

st(N, state(party_member , Member)),

story_op(N, initialize_node ).

at(N, player_goal(have_tool_for(Member , Skill ))) :-

30 st(N, state(party_member , Member)),

st(N, property(has_skill , Member , Skill)),

story_op(N, initialize_node ).

% the player doesn ’t want others to be threatened or accused as long

35 % as they ’re not aggressive :

at(N, guilty(inst(actor , Guilty ))) :-

st(N, relation(threatening , inst(actor , Guilty), Anyone )).

40 at(N, guilty(inst(actor , Guilty ))) :-

st(

N,

relation(accusing , inst(actor , Guilty), inst(actor , Innocent ))

),

45 not at(N, guilty(inst(actor , Innocent ))).

at(N, guilty(inst(actor , Guilty ))) :-

st(N, relation(has_item , inst(actor , Guilty), inst(item , Stolen ))),

st(

50 N,

relation(stolen_from , inst(actor , Victim), inst(item , Stolen ))

).

at(N, player_goal(avoid_threats_to(inst(actor , Innocent )))) :-

55 st(N, inst(actor , Innocent)),

st(N, relation(threatening , Someone , inst(actor , Innocent ))),

not at(N, guilty(inst(actor , Innocent ))),

story_op(N, initialize_node ).

60 %at(N, player_goal ( avoid_threats_to (inst(actor , Innocent )))) :-

% st(N, inst(actor , Innocent )),

% at(

% N,

% consequence (

65 % O,

% relation(threatening , Someone , inst(actor , Innocent ))

% )

% ),

% not at(N, guilty(inst(actor , Innocent ))),

70 % story_op(N, initialize_node ).

at(N, player_goal(avoid_accusations(inst(actor , Innocent )))) :-

st(N, inst(actor , Innocent)),

st(N, relation(accusing , Someone , inst(actor , Innocent ))),
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75 not at(N, guilty(inst(actor , Innocent ))),

story_op(N, initialize_node ).

% TODO: Some way of making this not crash & overload things?

%at(N, player_goal ( avoid_accusations (inst(actor , Innocent )))) :-

80 % st(N, inst(actor , Innocent )),

% at(

% N,

% consequence (

% O,

85 % relation(accusing , Someone , inst(actor , Innocent ))

% )

% ),

% not at(N, guilty(inst(actor , Innocent ))),

% story_op(N, initialize_node ).

90

% TODO: more player goals!

grow.lp

1 % Nodes statuses

% --------------

% All nodes can be uninitialized , initialized , built , branched , or

5 % polished.

error(m("Node without status.", N)) :-

story_node(N),

0 = {

10 node_status(N, uninitialized );

node_status(N, initialized );

node_status(N, built);

node_status(N, branched );

node_status(N, polished)

15 }.

% Story operations allow nodes to reach new statuses:

node_status_reached(N, uninitialized) :- new_node(N).

20

node_status_reached(N, initialized) :- story_op(N, initialize_node ).

node_status_reached(N, built) :- story_op(N, build_options ).

25 node_status_reached(N, branched) :- story_op(N, add_branch_nodes ).

node_status_reached(N, polished) :- story_op(N, add_surface ).
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% A node ’s actual status is the highest step reached:

30

node_status(N, uninitialized) :-

node_status_reached(N, uninitialized),

0 = {

node_status_reached(N, initialized );

35 node_status_reached(N, built);

node_status_reached(N, branched );

node_status_reached(N, polished)

}.

40 node_status(N, initialized) :-

node_status_reached(N, initialized),

0 = {

node_status_reached(N, built);

node_status_reached(N, branched );

45 node_status_reached(N, polished)

}.

node_status(N, built) :-

node_status_reached(N, built),

50 0 = {

node_status_reached(N, branched );

node_status_reached(N, polished)

}.

55 node_status(N, branched) :-

node_status_reached(N, branched),

0 = {

node_status_reached(N, polished)

}.

60

node_status(N, polished) :- node_status_reached(N, polished ).

% You can ’t skip node status steps (but you can do several at once ):

65 error(m("Node status skipped ’uninitialized ’.", N)) :-

node_status_reached(N, initialized),

0 = {

node_status_reached(N, uninitialized)

}.

70

error(m("Node status skipped ’initialized ’.", N)) :-

node_status_reached(N, built),

0 = {

node_status_reached(N, initialized)

75 }.

error(m("Node status skipped ’built ’.", N)) :-
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node_status_reached(N, branched),

0 = {

80 node_status_reached(N, built)

}.

error(m("Node status skipped ’branched ’.", N)) :-

node_status_reached(N, polished),

85 0 = {

node_status_reached(N, branched)

}.

90 % Some sanity checks

% ------------------

% Choice nodes which have neither inherited potential nor a setup

% cannot reach " initialized ":

95

inherited_potential(N) :-

story_node(N),

successor(Prev , Opt , N),

0 < { unresolved_potential(Prev , Opt , Pt) }.

100

error(m("Built choice has no potential!", N)) :-

node_status_reached(N, built),

story_node(N),

node_type(N, choice),

105 0 = {

setup(N, Setup) : possible_setup(Setup);

inherited_potential(N)

}.

110 % Nodes which have no options cannot reach "built ":

optcount(N, X) :-

story_node(N),

X = {

at(N, option(O)) : opt_num(O)

115 }.

error(m("Built node has no options!", N)) :-

node_status_reached(N, built),

optcount(N, 0).

120

% Every option of a "branched" node must have a successor , unless it’s

% an "ending" node:

error(

125 m("Branched node’s option is missing a successor.", N, option(O))

) :-
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node_status_reached(N, branched),

at(N, option(O)),

0 = {

130 successor(N, option(O), X) : story_node(X);

node_type(N, ending)

}.

% TODO: sanity checking for "polished" nodes?

135

% Setup implementation

% --------------------

140 % A setup is needed at the beginning of the story and after every

% travel_onwards event:

1 = {

setup(R, Setup) : possible_setup(Setup);

error(m("Root without setup.", R))

145 } :-

story_root(R),

story_op(R, initialize_node ).

1 = {

150 setup(N, Setup) : possible_setup(Setup);

error(m("Post -travel node without setup.", Prev , Opt , N))

} :-

successor(Prev , Opt , N),

at(Prev , action(Opt , travel_onwards )),

155 story_op(N, initialize_node ).

% Node ordering

% -------------

160

% Transitive beforeness of states given a direct " successor" relation:

before(Prev , New) :-

story_node(Prev),

story_node(New),

165 successor(Prev , Opt , New).

before(Prev , New) :-

story_node(Prev),

story_node(Int),

170 story_node(New),

successor(Prev , Opt , Int),

before(Int , New).

% Succession involves either an existing node that matches the outcome

175 % state of the branching node , or a new node.
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matching_successor(Br, option(Opt), Succ) :-

story_node(Succ),

state_match(Br , option(Opt), Succ),

not before(Succ , Br),

180 story_op(Br, add_branch_nodes ).

1 = {

successor(Br, option(Opt), Succ) :

matching_successor(Br, option(Opt), Succ);

185 successor(Br, option(Opt), @pred(@join_(Br, Opt )));

error(m("Node without successor.", Br , option(Opt)))

} :-

story_op(Br, add_branch_nodes),

at(Br, option(Opt)),

190 not node_type(Br, ending ).

% New node creation

% -----------------

195

% New nodes need to be marked as such and filled in:

new_node(@pred(@join_(Br, Opt ))) :-

successor(Br, option(Opt), @pred(@join_(Br, Opt))),

story_op(Br, add_branch_nodes ).

200

story_node(N) :- new_node(N).

1 = {

node_type(N, choice );

205 node_type(N, event);

node_type(N, ending );

error(m("Invalid/missing node type.", N))

} :-

story_node(N),

210 story_op(N, build_options ).

path_length(Next , Shortest +1) :-

successor(Prev , Opt , Next),

shortest_path(Prev , Shortest ).

215

shortest_path(N, Shortest) :-

path_length(N, Shortest),

0 = {

path_length(N, Shorter)

220 : path_length(N, Shorter), Shorter < Shortest

}.

% State copying

365



grow.lp APPENDIX B. DUNYAZAD’S ASP CODE

225 % -------------

st(New , PSt) :-

new_node(New),

successor(Old , Opt , New),

230 st(Old , PSt),

not at(Old , consequence(Opt , _not , PSt)).

st(New , NSt) :-

new_node(New),

235 successor(Old , Opt , New),

at(Old , consequence(Opt , NSt )).

error(m("New node picked up extra state", New , State)) :-

new_node(New),

240 successor(Old , Opt , New),

st(New , State),

not st(Old , State),

not at(Old , consequence(Opt , State)),

not spontaneous(st(New , State )).

245

error(m("New node lost a state", New , State)) :-

new_node(New),

successor(Old , Opt , New),

st(Old , State),

250 not st(New , State),

not at(Old , consequence(Opt , _not , State)),

not spontaneous(_not , st(New , State )).

error(m("New node violated negative consequence", New , State )) :-

255 new_node(New),

successor(Old , Opt , New),

at(Old , consequence(Opt , _not , State)),

st(New , State).

260

% State matching

% --------------

% The concept of a "state match ":

265 state_match(Prev , option(Opt), New) :-

story_op(Prev , add_branch_nodes),

story_node(New),

New != Prev ,

at(Prev , option(Opt)),

270 not state_mismatch(Prev , option(Opt), New).

% mismatch due to ignored consequence :

state_mismatch(Prev , option(Opt), New) :-
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story_op(Prev , add_branch_nodes),

275 story_node(New),

New != Prev ,

at(Prev , consequence(option(Opt), State)),

not st(New , State).

280 % mismatch due to invalidated _not consequence :

state_mismatch(Prev , option(Opt), New) :-

story_op(Prev , add_branch_nodes),

at(Prev , option(Opt)),

story_node(New),

285 New != Prev ,

at(Prev , consequence(option(Opt), _not , State)),

st(New , State).

% mismatch due to uncaused state addition:

290 state_mismatch(Prev , option(Opt), New) :-

story_op(Prev , add_branch_nodes),

at(Prev , option(Opt)),

story_node(New),

New != Prev ,

295 st(New , State),

0 = {

st(Prev , State);

at(Prev , consequence(option(Opt), State ));

spontaneous(st(New , State))

300 }.

% mismatch due to uncaused state dissapearance :

state_mismatch(Prev , option(Opt), New) :-

story_op(Prev , add_branch_nodes),

305 at(Prev , option(Opt)),

story_node(New),

New != Prev ,

st(Prev , State),

0 = {

310 st(New , State);

at(Prev , consequence(option(Opt), _not , State ));

spontaneous(_not , st(New , State ))

}.

315 % insurance :

error(m("Option has state mismatch with successor.", Old , Opt)) :-

state_mismatch(Old , Opt , New),

successor(Old , Opt , New).
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items.lp

1 % items.lp

% Special rules for items. See content/items /*. lp for item

% definitions .

5 % Item definition unpacking :

subclass(Imm , Spec) :-

item_def(Spec , Imm , Name , Number ).

concrete(Spec) :-

10 item_def(Spec , Imm , Name , Number ).

default_name_for(Class , Name) :-

item_def(Class , Superclass , Name , Number ).

15 default_number_for(Class , Number) :-

item_def(Class , Superclass , Name , Number ).

% All items are by default neuter:

default_gender_for(Class , neuter) :-

20 subclass(item , Class).

% The concept of a ’nonbook tool ’ is used for setup

nonbook_tool(Tool , Skill) :-

tool_for(Tool , Skill),

25 0 = { item_def(Tool , book , Name , Number) }.

% Universal tool requirements :

at(N, has_tool_for(Actor , Skill)) :-

30 st(N, relation(has_item , Actor , Item)),

is_instance(N, Item , Category),

tool_for(Category , Skill),

story_op(N, initialize_node ).

35 % communal property and the concept of "can trade"

at(N, can_trade(Person , Thing)) :-

st(N, relation(has_item , Person , Thing)),

story_op(N, initialize_node ).

40

at(N, can_trade(Person , Thing)) :-

st(N, state(party_member , Person)),

st(N, state(party_member , OtherMember )),

st(N, relation(has_item , OtherMember , Thing)),

45 story_op(N, initialize_node ).
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potential.lp

1 % potential .lp

% Rules about potential problems and opportunities .

% TODO: How to indicate resolution success ?!

5

% Problematic /opportune states:

% -----------------------------

at(N, potential(PTyp , state(PState , Inst ))) :-

10 potential(PTyp , state , PState),

st(N, state(PState , Inst)),

story_op(N, build_options ).

at(N, potential(PTyp , property(PProp , Inst , PVal ))) :-

15 potential(PTyp , property , PProp , PVal),

st(N, property(PProp , Inst , PVal)),

story_op(N, build_options ).

at(N, potential(PTyp , relation(PRel , I1 , I2))) :-

20 potential(PTyp , relation , PRel),

st(N, relation(PRel , I1, I2)),

story_op(N, build_options ).

% potentials can be made to dissapear in different ways:

25

resolution_method(resolves ).

resolution_method(manifests ).

resolution_method(nullifies ).

30 at(N, consequence(Option , _not , PState )) :-

at(N, consequence(Option , RM, potential(PType , PState ))),

resolution_method(RM).

at(N, consequence_of(Option , Outcome , _not , PState )) :-

35 at(

N,

consequence_of(

Option ,

Outcome ,

40 RM,

potential(PType , PState)

)

),

resolution_method(RM).

45

% certain parties are the initiators of and/or are troubled by

% different potentials .
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at(N, initiated_by(potential(PTyp , state(PState , Inst)), Inst)) :-

50 at(N, potential(PTyp , state(PState , Inst))),

initiated_by(PTyp , state , PState , inst).

at(

N,

55 initiated_by(potential(PTyp , property(PProp , Inst , PVal)), Inst)

) :-

at(N, potential(PTyp , property(PProp , Inst , PVal))),

initiated_by(PTyp , property , PProp , PVal , inst).

60 at(

N,

initiated_by(potential(PTyp , relation(PRel , From , To)), From)

) :-

at(N, potential(PTyp , relation(PRel , From , To))),

65 initiated_by(PTyp , relation , PRel , from).

at(N, initiated_by(potential(PTyp , relation(PRel , From , To)), To)) :-

at(N, potential(PTyp , relation(PRel , From , To))),

initiated_by(PTyp , relation , PRel , to).

70

at(N, problematic_for(potential(PTyp , state(PState , Inst)), Inst)) :-

at(N, potential(PTyp , state(PState , Inst))),

problematic_for(PTyp , state , PState , inst).

75 at(

N,

problematic_for(potential(PTyp , property(PProp , Inst , PVal)), Inst)

) :-

at(N, potential(PTyp , property(PProp , Inst , PVal))),

80 problematic_for(PTyp , property , PProp , PVal , inst).

at(

N,

problematic_for(potential(PTyp , relation(PRel , From , To)), From)

85 ) :-

at(N, potential(PTyp , relation(PRel , From , To))),

problematic_for(PTyp , relation , PRel , from).

at(

90 N,

problematic_for(potential(PTyp , relation(PRel , From , To)), To)

) :-

at(N, potential(PTyp , relation(PRel , From , To))),

problematic_for(PTyp , relation , PRel , to).

95

% Potentials have categories , including "urgent" and " immediate ":
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at(N, category(potential(PTyp , state(PState , Inst)), Category )) :-

at(N, potential(PTyp , state(PState , Inst))),

pcategory(potential(PTyp , state , PState), Category),

100 story_op(N, build_options ).

at(

N,

category(potential(PTyp , property(PProp , Inst , PVal)), Category)

105 ) :-

at(N, potential(PTyp , property(PProp , Inst , PVal))),

pcategory(potential(PTyp , property , PProp , PVal), Category),

story_op(N, build_options ).

110 at(N, category(potential(PTyp , relation(PRel , I1 , I2)), Category )) :-

at(N, potential(PTyp , relation(PRel , I1 , I2))),

pcategory(potential(PTyp , relation , PRel), Category),

story_op(N, build_options ).

115 % From immediate problems to mere opportunities some potentials are

% more important than others.

at(N, most_important(Pt)) :-

at(N, importance(I, Pt)),

0 = {

120 at(N, some_importance(O)) : O < I

}.

at(N, some_importance(I)) :-

at(N, importance(I, Something )).

125

at(N, importance (1, potential(problem , Pt))) :-

at(N, category(potential(problem , Pt), urgent)),

at(N, category(potential(problem , Pt), immediate)),

story_op(N, build_options ).

130

at(N, importance (2, potential(problem , Pt))) :-

at(N, category(potential(problem , Pt), immediate)),

story_op(N, build_options ).

135 at(N, importance (3, potential(problem , Pt))) :-

at(N, category(potential(problem , Pt), urgent)),

story_op(N, build_options ).

at(N, importance (4, potential(problem , Pt))) :-

140 at(N, potential(problem , Pt)),

story_op(N, build_options ).

at(N, importance (5, potential(opportunity , Pt))) :-

at(N, category(potential(opportunity , Pt), urgent)),

145 at(N, category(potential(opportunity , Pt), immediate)),
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story_op(N, build_options ).

at(N, importance (6, potential(opportunity , Pt))) :-

at(N, category(potential(opportunity , Pt), immediate)),

150 story_op(N, build_options ).

at(N, importance (7, potential(opportunity , Pt))) :-

at(N, category(potential(opportunity , Pt), urgent)),

story_op(N, build_options ).

155

at(N, importance (8, potential(opportunity , Pt))) :-

at(N, potential(opportunity , Pt)),

story_op(N, build_options ).

160 % The idea of " unresolved " potential :

unresolved_potential(N, option(O), potential(PTyp , Pt)) :-

at(N, potential(PTyp , Pt)),

at(N, option(O)),

0 = { at(N, consequence(option(O), _not , Pt)) },

165 story_op(N, build_options ).

unresolved_potential(N, Opt , potential(PTyp , state(PState , Inst ))) :-

at(N, consequence(Opt , state(PState , Inst))),

potential(PTyp , state , PState),

170 story_op(N, build_options ).

unresolved_potential(

N,

Opt ,

175 potential(PTyp , property(PProp , Inst , PVal))

) :-

at(N, consequence(Opt , property(PProp , Inst , PVal))),

potential(PTyp , property , PProp , PVal),

story_op(N, build_options ).

180

unresolved_potential(

N,

Opt ,

potential(PTyp , relation(PRel , I1, I2))

185 ) :-

at(N, consequence(Opt , relation(PRel , I1 , I2))),

potential(PTyp , relation , PRel),

story_op(N, build_options ).

190 % Potential can be hidden if something involved is off -stage:

% TODO: Hide base states/ properties / relations instead/as well?

at(N, hidden(potential(PTyp , state , PState ))) :-

potential(PTyp , state , PState),

st(N, state(PState , Inst)),
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195 st(N, state(off_stage , Inst)),

story_op(N, build_options ).

at(N, hidden(potential(PTyp , property(PProp , Inst , PVal )))) :-

potential(PTyp , property , PProp , PVal),

200 st(N, property(PProp , Inst , PVal)),

st(N, state(off_stage , Inst)),

story_op(N, build_options ).

at(N, hidden(potential(PTyp , relation(PRel , I1, I2)))) :-

205 potential(PTyp , relation , PRel),

st(N, relation(PRel , I1, I2)),

st(N, state(off_stage , I1)),

story_op(N, build_options ).

210 at(N, hidden(potential(PTyp , relation(PRel , I1, I2)))) :-

potential(PTyp , relation , PRel),

st(N, relation(PRel , I1, I2)),

st(N, state(off_stage , I2)),

story_op(N, build_options ).

settings.lp

1 % settings.lp

% Rules about different settings.

possible_setting(town).

5 possible_setting(city).

possible_setting(road).

possible_setting(wilderness ).

1 = {

10 setting(N, Setting) : possible_setting(Setting );

error(m("Node without setting.", N))

} :-

story_node(N),

story_op(N, initialize_node ).

15

setting(Next , Setting) :-

setting(N, Setting),

vignette(N, V),

vignette(Next , V),

20 successor(N, Opt , Next).
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setup.lp

1 % setup.lp

% Rules concerning vignette setup.

% Rules for unpacking and labelling spontaneous states:

5 % -----------------------------------------------------

st(N, State) :-

sp_st(N, State),

story_op(N, initialize_node ).

10

spontaneous(st(N, State )) :-

sp_st(N, State),

story_op(N, initialize_node ).

15 % Rules for setup arguments :

% --------------------------

% normal arguments

setup_argument_n(Setup , Arg , Class , 1, 1) :-

20 setup_argument(Setup , Arg , Class).

1 >= {

error(m("Argument binding failed.", N, Setup , Arg))

} :-

25 setup(N, Setup),

setup_argument_n(Setup , Arg , Class , Min , Max).

Min <= {

at(N, setup_arg(Arg , Inst)) : is_instance(N, Inst , Class)

30 } <= Max :-

setup(N, Setup),

setup_argument_n(Setup , Arg , Class , Min , Max),

not error(m("Argument binding failed.", N, Setup , Arg)),

story_op(N, initialize_node ).

35

% create arguments

setup_argument_create_n(Setup , Arg , Class , 1, 1) :-

setup_argument_create(Setup , Arg , Class).

40

1 >= {

error(m("Creation argument binding failed.", N, Setup , Arg))

} :-

setup(N, Setup),

45 setup_argument_create_n(Setup , Arg , Class , Min , Max).

Min <= {
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get_unique_key(s(N, sargcreate(Setup , Arg , Class), I))

: setup_arg_id(I),

50 I <= Max

} <= Max :-

setup(N, Setup),

setup_argument_create_n(Setup , Arg , Class , Min , Max),

not error(m("Creation argument binding failed.", N, Setup , Arg)),

55 story_op(N, initialize_node ).

at(N, setup_arg(Arg , inst(Type , @inst(Class , K)))) :-

unique_key(s(N, sargcreate(Setup , Arg , Class), I), K),

category_for(Class , Type),

60 setup(N, Setup),

story_op(N, initialize_node ).

sp_st(N, Inst) :-

setup(N, Setup),

65 at(N, setup_arg(Arg , Inst)),

setup_argument_create_n(Setup , Arg , Class , Min , Max),

story_op(N, initialize_node ).

1 = {

70 sp_inst_class(N, Inst , Concrete)

: concrete_class_of(Class , Concrete );

error(m("Error with spontaneous instance concrete class.", N, Inst))

} :-

setup(N, Setup),

75 at(N, setup_arg(Arg , Inst)),

setup_argument_create_n(Setup , Arg , Class , Min , Max),

story_op(N, initialize_node ).

sp_st(N, property(type , Inst , Class )) :-

80 sp_inst_class(N, Inst , Class ).

% Add class skills:

0 <= {

sp_st(N, property(has_skill , Inst , Skill ))

85 } <= 1 :-

sp_inst_class(N, Inst , Class),

is_instance(N, Inst , Superclass),

class_skill(Superclass , Skill , sometimes ).

90 sp_st(N, property(has_skill , Inst , Skill )) :-

sp_inst_class(N, Inst , Class),

is_instance(N, Inst , Superclass),

class_skill(Superclass , Skill , always ).

95 % Create class items
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1 >= {

error(m("Creation side -effect binding failed.", N, Setup , Arg))

} :-

100 setup(N, Setup),

setup_argument_create_n(Setup , Arg , Class , Min , Max),

at(N, setup_arg(Arg , Inst)),

is_instance(N, Inst , Someclass),

class_item(Someclass , IClass , Min , Max).

105

Min <= {

get_unique_key(s(N, createclassitem(Owner , CIClass), I))

: setup_arg_id(I),

concrete_class_of(IClass , CIClass),

110 I <= Max

} <= Max :-

setup(N, Setup),

setup_argument_create_n(Setup , Arg , Class , Min , Max),

not error(m("Creation side -effect binding failed.", N, Setup , Arg)),

115 at(N, setup_arg(Arg , Owner)),

is_instance(N, Owner , Someclass),

class_item(Someclass , IClass , Min , Max),

story_op(N, initialize_node ).

120 sp_st(N, inst(Type , @inst(CIClass , K))) :-

unique_key(s(N, createclassitem(Owner , CIClass), I), K),

category_for(CIClass , Type),

story_op(N, initialize_node ).

125 sp_st(N, relation(has_item , Owner , inst(Type , @inst(CIClass , K)))) :-

unique_key(s(N, createclassitem(Owner , CIClass), I), K),

category_for(CIClass , Type),

story_op(N, initialize_node ).

130 sp_st(N, property(type , inst(Type , @inst(CIClass , K)), CIClass )) :-

unique_key(s(N, createclassitem(Owner , CIClass), I), K),

category_for(CIClass , Type),

story_op(N, initialize_node ).

135 % Rules for argument substitution :

% --------------------------------

s_st_n(Setup , State , 1) :-

s_st(Setup , State ).

140

s_st_n(Setup , State , 0) :-

s_o_st(Setup , State).

% States

145 L <= { sp_st(N, state(State , Const )) } <= 1 :-
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s_st_n(Setup , state(c(State), c(Const)), L),

setup(N, Setup),

story_op(N, initialize_node ).

150 L <= { sp_st(N, state(State , Val)) } <= 1 :-

s_st_n(Setup , state(c(State), v(Arg)), L),

at(N, setup_arg(Arg , Val)),

setup(N, Setup),

story_op(N, initialize_node ).

155

L <= { sp_st(N, state(SVal , Const)) } <= 1 :-

s_st_n(Setup , state(v(SArg), c(Const)), L),

at(N, setup_arg(SArg , SVal)),

setup(N, Setup),

160 story_op(N, initialize_node ).

L <= { sp_st(N, state(SVal , Val)) } <= 1 :-

s_st_n(Setup , state(v(SArg), v(Arg)), L),

at(N, setup_arg(Arg , Val)),

165 at(N, setup_arg(SArg , SVal)),

setup(N, Setup),

story_op(N, initialize_node ).

% Properties

170 L <= { sp_st(N, property(Prop , C1 , C2)) } <= 1 :-

s_st_n(Setup , property(c(Prop), c(C1), c(C2)), L),

setup(N, Setup),

story_op(N, initialize_node ).

175 L <= { sp_st(N, property(Prop , Val , Const)) } <= 1 :-

s_st_n(Setup , property(c(Prop), v(Arg), c(Const)), L),

at(N, setup_arg(Arg , Val)),

setup(N, Setup),

story_op(N, initialize_node ).

180

L <= { sp_st(N, property(Prop , Const , Val)) } <= 1 :-

s_st_n(Setup , property(c(Prop), c(Const), v(Arg)), L),

at(N, setup_arg(Arg , Val)),

setup(N, Setup),

185 story_op(N, initialize_node ).

L <= { sp_st(N, property(Prop , V1 , V2)) } <= 1 :-

s_st_n(Setup , property(c(Prop), v(A1), v(A2)), L),

at(N, setup_arg(A1 , V1)),

190 at(N, setup_arg(A2 , V2)),

setup(N, Setup),

story_op(N, initialize_node ).

L <= { sp_st(N, property(PVal , C1 , C2)) } <= 1 :-
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195 s_st_n(Setup , property(v(PArg), c(C1), c(C2)), L),

at(N, setup_arg(PArg , PVal)),

setup(N, Setup),

story_op(N, initialize_node ).

200 L <= { sp_st(N, property(PVal , Val , Const)) } <= 1 :-

s_st_n(Setup , property(v(PArg), v(Arg), c(Const)), L),

at(N, setup_arg(PArg , PVal)),

at(N, setup_arg(Arg , Val)),

setup(N, Setup),

205 story_op(N, initialize_node ).

L <= { sp_st(N, property(PVal , Const , Val)) } <= 1 :-

s_st_n(Setup , property(v(PArg), c(Const), v(Arg)), L),

at(N, setup_arg(PArg , PVal)),

210 at(N, setup_arg(Arg , Val)),

setup(N, Setup),

story_op(N, initialize_node ).

L <= { sp_st(N, property(PVal , V1 , V2)) } <= 1 :-

215 s_st_n(Setup , property(v(PArg), v(A1), v(A2)), L),

at(N, setup_arg(PArg , PVal)),

at(N, setup_arg(A1 , V1)),

at(N, setup_arg(A2 , V2)),

setup(N, Setup),

220 story_op(N, initialize_node ).

% Relations

L <= { sp_st(N, relation(Rel , C1, C2)) } <= 1 :-

s_st_n(Setup , relation(c(Rel), c(C1), c(C2)), L),

225 setup(N, Setup),

story_op(N, initialize_node ).

L <= { sp_st(N, relation(Rel , Val , Const)) } <= 1 :-

s_st_n(Setup , relation(c(Rel), v(Arg), c(Const)), L),

230 at(N, setup_arg(Arg , Val)),

setup(N, Setup),

story_op(N, initialize_node ).

L <= { sp_st(N, relation(Rel , Const , Val)) } <= 1 :-

235 s_st_n(Setup , relation(c(Rel), c(Const), v(Arg)), L),

at(N, setup_arg(Arg , Val)),

setup(N, Setup),

story_op(N, initialize_node ).

240 L <= { sp_st(N, relation(Rel , V1, V2)) } <= 1 :-

s_st_n(Setup , relation(c(Rel), v(A1), v(A2)), L),

at(N, setup_arg(A1 , V1)),

at(N, setup_arg(A2 , V2)),
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setup(N, Setup),

245 story_op(N, initialize_node ).

L <= { sp_st(N, relation(RVal , C1 , C2)) } <= 1 :-

s_st_n(Setup , relation(v(RArg), c(C1), c(C2)), L),

at(N, setup_arg(RArg , RVal)),

250 setup(N, Setup),

story_op(N, initialize_node ).

L <= { sp_st(N, relation(RVal , Val , Const)) } <= 1 :-

s_st_n(Setup , relation(v(RArg), v(Arg), c(Const)), L),

255 at(N, setup_arg(RArg , RVal)),

at(N, setup_arg(Arg , Val)),

setup(N, Setup),

story_op(N, initialize_node ).

260 L <= { sp_st(N, relation(RVal , Const , Val)) } <= 1 :-

s_st_n(Setup , relation(v(RArg), c(Const), v(Arg)), L),

at(N, setup_arg(RArg , RVal)),

at(N, setup_arg(Arg , Val)),

setup(N, Setup),

265 story_op(N, initialize_node ).

L <= { sp_st(N, relation(RVal , V1 , V2)) } <= 1 :-

s_st_n(Setup , relation(v(RArg), v(A1), v(A2)), L),

at(N, setup_arg(RArg , RVal)),

270 at(N, setup_arg(A1 , V1)),

at(N, setup_arg(A2 , V2)),

setup(N, Setup),

story_op(N, initialize_node ).

275 % Error checking:

error(m("Negative argument arity.", Setup , Arg)) :-

setup_argument_n(Setup , Arg , Class , Min , Max),

Min < 0.

280 error(m("Negative argument arity.", Setup , Arg)) :-

setup_argument_n(Setup , Arg , Class , Min , Max),

Max < 0.

error(m("Invalid argument arity.", Setup , Arg)) :-

285 setup_argument_n(Setup , Arg , Class , Min , Max),

Min > Max.

error(m("Excessive argument arity.", Setup , Arg)) :-

setup_argument_n(Setup , Arg , Class , Min , Max),

290 Min > max_setup_argument_arity.

error(m("Excessive argument arity.", Setup , Arg)) :-
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setup_argument_n(Setup , Arg , Class , Min , Max),

Max > max_setup_argument_arity.

295

error(m("Negative argument arity.", Setup , Arg)) :-

setup_argument_create_n(Setup , Arg , Class , Min , Max),

Min < 0.

300 error(m("Negative argument arity.", Setup , Arg)) :-

setup_argument_create_n(Setup , Arg , Class , Min , Max),

Max < 0.

error(m("Invalid argument arity.", Setup , Arg)) :-

305 setup_argument_create_n(Setup , Arg , Class , Min , Max),

Min > Max.

error(m("Excessive argument arity.", Setup , Arg)) :-

setup_argument_create_n(Setup , Arg , Class , Min , Max),

310 Min > max_setup_argument_arity.

error(m("Excessive argument arity.", Setup , Arg)) :-

setup_argument_create_n(Setup , Arg , Class , Min , Max),

Max > max_setup_argument_arity.

skills.lp

1 % skills.lp

% Rules about skills and actions.

skill(unintelligent ).

5 skill(monstrous ).

restricted_skill(unintelligent ).

restricted_skill(monstrous ).

skill(tinkering ).

10 skill(fighting ).

skill(wilderness_lore ).

skill(music ).

skill(elocution ).

skill(healing ).

15 skill(thievery ).

skill(literacy ).

%skill(prayer ). TODO: Make this useful

skill(acrobatics ).

skill(storytelling ).

20 skill(sorcery ).

% TODO: sailing?

% TODO: More skills!
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skill_name(unintelligent , "unintelligent").

25 skill_name(monstrous , "monstrous").

skill_name(tinkering , "tinkering").

skill_name(fighting , "fighting").

skill_name(wilderness_lore , "wilderness lore").

skill_name(music , "music").

30 skill_name(elocution , "elocution").

skill_name(healing , "healing").

skill_name(thievery , "thievery").

skill_name(literacy , "literacy").

skill_name(prayer , "prayer").

35 skill_name(acrobatics , "acrobatics").

skill_name(sorcery , "sorcery").

% Skill link types:

skill_link_type(required , positive , strong ).

40 skill_link_type(promotes , positive , weak).

skill_link_type(avoids , negative , weak).

skill_link_type(contest , complicated ).

% Universal skill links:

45

at(N, skill_link(Skill , Link , NeedsTool , Action , Arg , Outcome )) :-

skill_link(Skill , Link , NeedsTool , Action , Arg , Outcome),

story_op(N, build_options ).

50 % Skill link unpacking:

% ’required ’ skill links depress expectations if a skill and/or tool

% is missing:

at(N, unlikely_outcome(X, Outcome )) :-

55 at(N, action(X, Action)),

at(N, arg(X, Arg , Actor)),

at(N, skill_link(Skill , required , NeedsTool , Action , Arg , Outcome)),

not st(N, property(has_skill , Actor , Skill)),

story_op(N, build_options ).

60

at(N, unlikely_outcome(X, Outcome )) :-

at(N, action(X, Action)),

at(N, arg(X, Arg , Actor)),

at(N, skill_link(Skill , required , tool , Action , Arg , Outcome)),

65 st(N, property(has_skill , Actor , Skill)),

not at(N, has_tool_for(Actor , Skill)),

story_op(N, build_options ).

% ’promotes ’ as opposed to ’required ’ links directly increase

70 % expectations :

at(N, likely_outcome(X, Outcome )) :-

at(N, action(X, Action)),
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at(N, arg(X, Arg , Actor)),

at(N, skill_link(Skill , promotes , no_tool , Action , Arg , Outcome)),

75 st(N, property(has_skill , Actor , Skill)),

story_op(N, build_options ).

at(N, likely_outcome(X, Outcome )) :-

at(N, action(X, Action)),

80 at(N, arg(X, Arg , Actor)),

at(N, skill_link(Skill , promotes , tool , Action , Arg , Outcome)),

st(N, property(has_skill , Actor , Skill)),

at(N, has_tool_for(Actor , Skill)),

story_op(N, build_options ).

85

% ’avoids ’ is the inverse of ’promotes ’:

at(N, unlikely_outcome(X, Outcome )) :-

at(N, action(X, Action)),

at(N, arg(X, Arg , Actor)),

90 at(N, skill_link(Skill , avoids , no_tool , Action , Arg , Outcome)),

st(N, property(has_skill , Actor , Skill)),

story_op(N, build_options ).

at(N, unlikely_outcome(X, Outcome )) :-

95 at(N, action(X, Action)),

at(N, arg(X, Arg , Actor)),

at(N, skill_link(Skill , avoids , tool , Action , Arg , Outcome)),

st(N, property(has_skill , Actor , Skill)),

at(N, has_tool_for(Actor , Skill)),

100 story_op(N, build_options ).

% ’contest ’ links using between to name two arguments & compare skill

% levels:

at(N, likely_outcome(X, Win)) :-

105 at(N, action(X, Action)),

at(N, arg(X, One , AOne)),

at(N, arg(X, Two , ATwo)),

at(

N,

110 skill_link(

Skill , contest , Tool ,

Action ,

between(One , Two),

either(Win , Lose)

115 )

),

st(N, property(has_skill , AOne , Skill)),

not st(N, property(has_skill , ATwo , Skill)),

story_op(N, build_options ).

120

at(N, unlikely_outcome(X, Lose)) :-
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at(N, action(X, Action)),

at(N, arg(X, One , AOne)),

at(N, arg(X, Two , ATwo)),

125 at(

N,

skill_link(

Skill , contest , Tool ,

Action ,

130 between(One , Two),

either(Win , Lose)

)

),

st(N, property(has_skill , AOne , Skill)),

135 not st(N, property(has_skill , ATwo , Skill)),

story_op(N, build_options ).

at(N, likely_outcome(X, Lose)) :-

at(N, action(X, Action)),

140 at(N, arg(X, One , AOne)),

at(N, arg(X, Two , ATwo)),

at(

N,

skill_link(

145 Skill , contest , Tool ,

Action ,

between(One , Two),

either(Win , Lose)

)

150 ),

not st(N, property(has_skill , AOne , Skill)),

st(N, property(has_skill , ATwo , Skill)),

story_op(N, build_options ).

155 at(N, unlikely_outcome(X, Win)) :-

at(N, action(X, Action)),

at(N, arg(X, One , AOne)),

at(N, arg(X, Two , ATwo)),

at(

160 N,

skill_link(

Skill , contest , Tool ,

Action ,

between(One , Two),

165 either(Win , Lose)

)

),

not st(N, property(has_skill , AOne , Skill)),

st(N, property(has_skill , ATwo , Skill)),

170 story_op(N, build_options ).
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at(N, likely_outcome(X, Win)) :-

at(N, action(X, Action)),

at(N, arg(X, One , AOne)),

175 at(N, arg(X, Two , ATwo)),

at(

N,

skill_link(

Skill , contest , tool ,

180 Action ,

between(One , Two),

either(Win , Lose)

)

),

185 not st(N, property(has_skill , AOne , Skill)),

not st(N, property(has_skill , ATwo , Skill)),

at(N, has_tool_for(AOne , Skill)),

not at(N, has_tool_for(ATwo , Skill)),

story_op(N, build_options ).

190

at(N, unlikely_outcome(X, Lose)) :-

at(N, action(X, Action)),

at(N, arg(X, One , AOne)),

at(N, arg(X, Two , ATwo)),

195 at(

N,

skill_link(

Skill , contest , tool ,

Action ,

200 between(One , Two),

either(Win , Lose)

)

),

not st(N, property(has_skill , AOne , Skill)),

205 not st(N, property(has_skill , ATwo , Skill)),

at(N, has_tool_for(AOne , Skill)),

not at(N, has_tool_for(ATwo , Skill)),

story_op(N, build_options ).

210 at(N, unlikely_outcome(X, Win)) :-

at(N, action(X, Action)),

at(N, arg(X, One , AOne)),

at(N, arg(X, Two , ATwo)),

at(

215 N,

skill_link(

Skill , contest , tool ,

Action ,

between(One , Two),
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220 either(Win , Lose)

)

),

not st(N, property(has_skill , AOne , Skill)),

not st(N, property(has_skill , ATwo , Skill)),

225 not at(N, has_tool_for(AOne , Skill)),

at(N, has_tool_for(ATwo , Skill)),

story_op(N, build_options ).

at(N, likely_outcome(X, Lose)) :-

230 at(N, action(X, Action)),

at(N, arg(X, One , AOne)),

at(N, arg(X, Two , ATwo)),

at(

N,

235 skill_link(

Skill , contest , tool ,

Action ,

between(One , Two),

either(Win , Lose)

240 )

),

not st(N, property(has_skill , AOne , Skill)),

not st(N, property(has_skill , ATwo , Skill)),

not at(N, has_tool_for(AOne , Skill)),

245 at(N, has_tool_for(ATwo , Skill)),

story_op(N, build_options ).

at(N, likely_outcome(X, Win)) :-

at(N, action(X, Action)),

250 at(N, arg(X, One , AOne)),

at(N, arg(X, Two , ATwo)),

at(

N,

skill_link(

255 Skill , contest , tool ,

Action ,

between(One , Two),

either(Win , Lose)

)

260 ),

st(N, property(has_skill , AOne , Skill)),

st(N, property(has_skill , ATwo , Skill)),

at(N, has_tool_for(AOne , Skill)),

not at(N, has_tool_for(ATwo , Skill)),

265 story_op(N, build_options ).

at(N, unlikely_outcome(X, Lose)) :-

at(N, action(X, Action)),
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at(N, arg(X, One , AOne)),

270 at(N, arg(X, Two , ATwo)),

at(

N,

skill_link(

Skill , contest , tool ,

275 Action ,

between(One , Two),

either(Win , Lose)

)

),

280 st(N, property(has_skill , AOne , Skill)),

st(N, property(has_skill , ATwo , Skill)),

at(N, has_tool_for(AOne , Skill)),

not at(N, has_tool_for(ATwo , Skill)),

story_op(N, build_options ).

285

at(N, unlikely_outcome(X, Win)) :-

at(N, action(X, Action)),

at(N, arg(X, One , AOne)),

at(N, arg(X, Two , ATwo)),

290 at(

N,

skill_link(

Skill , contest , tool ,

Action ,

295 between(One , Two),

either(Win , Lose)

)

),

st(N, property(has_skill , AOne , Skill)),

300 st(N, property(has_skill , ATwo , Skill)),

not at(N, has_tool_for(AOne , Skill)),

at(N, has_tool_for(ATwo , Skill)),

story_op(N, build_options ).

305 at(N, likely_outcome(X, Lose)) :-

at(N, action(X, Action)),

at(N, arg(X, One , AOne)),

at(N, arg(X, Two , ATwo)),

at(

310 N,

skill_link(

Skill , contest , tool ,

Action ,

between(One , Two),

315 either(Win , Lose)

)

),
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st(N, property(has_skill , AOne , Skill)),

st(N, property(has_skill , ATwo , Skill)),

320 not at(N, has_tool_for(AOne , Skill)),

at(N, has_tool_for(ATwo , Skill)),

story_op(N, build_options ).

% An outcome value is "likely" if all other possibilities are unlikely

325 % and vice versa:

at(N, likely_outcome(X, o(OutVar , OutVal ))) :-

at(N, action(X, Action)),

outcome_val(Action , OutVar , OutVal),

PossibleOutcomes = { outcome_val(Action , OutVar , PossibleVal) },

330 PossibleOutcomes - 1 = {

at(N, unlikely_outcome(X, o(OutVar , UnlikelyVal )))

},

not at(N, unlikely_outcome(X, o(OutVar , OutVal ))),

story_op(N, build_options ).

335

at(N, unlikely_outcome(X, o(OutVar , OutVal ))) :-

at(N, action(X, Action)),

outcome_val(Action , OutVar , OutVal),

PossibleOutcomes = { outcome_val(Action , OutVar , PossibleVal) },

340 PossibleOutcomes - 1 = {

at(N, likely_outcome(X, o(OutVar , UnlikelyVal )))

},

not at(N, likely_outcome(X, o(OutVar , OutVal ))),

story_op(N, build_options ).

345

% An outcome is unlikely if it is excluded by a likely outcome:

at(N, unlikely_outcome(X, Excluded )) :-

at(N, action(X, Action)),

outcome_excludes(Action , Likely , Excluded),

350 at(N, likely_outcome(X, Likely )).

% Some predicates that make gleaning a list of applicable skills/tools

% easy:

355 at(N, relevant_skill(X, Actor , has , Skill)) :-

at(N, action(X, Action)),

at(N, skill_link(Skill , Link , NeedsTool , Action , Arg , Outcome)),

skill_link_type(Link , AnyValence , AnyStrength),

at(N, arg(X, Arg , Actor)),

360 st(N, property(has_skill , Actor , Skill)),

story_op(N, build_options ).

at(N, relevant_skill(X, Actor , missing , Skill)) :-

at(N, action(X, Action)),

365 at(N, skill_link(Skill , Link , NeedsTool , Action , Arg , Outcome)),

skill_link_type(Link , AnyValence , strong),
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at(N, arg(X, Arg , Actor)),

not st(N, property(has_skill , Actor , Skill)),

story_op(N, build_options ).

370

at(N, relevant_tool(X, Actor , has , Item)) :-

at(N, action(X, Action)),

at(N, relevant_skill(X, Actor , has , Skill)),

at(N, skill_link(Skill , LinkType , tool , Action , Arg , Outcome)),

375 at(N, arg(X, Arg , Actor)),

st(N, property(has_skill , Actor , Skill)),

st(N, relation(has_item , Actor , Item)),

is_instance(N, Item , Category),

tool_for(Category , Skill),

380 story_op(N, build_options ).

at(N, relevant_tool(X, Actor , missing , Skill )) :-

at(N, action(X, Action)),

at(N, relevant_skill(X, Actor , has , Skill)),

385 at(N, skill_link(Skill , LinkType , tool , Action , Arg , Outcome)),

at(N, arg(X, Arg , Actor)),

st(N, property(has_skill , Actor , Skill)),

not at(N, has_tool_for(Actor , Skill)),

story_op(N, build_options ).

390

at(N, relevant_skill(X, Actor , has , Skill)) :-

at(N, action(X, Action)),

at(N, arg(X, AArg , Actor)),

at(

395 N,

skill_link(

Skill , contest , Tool ,

Action ,

between(AArg , Other),

400 either(Win , Lose)

)

),

st(N, property(has_skill , Actor , Skill)),

story_op(N, build_options ).

405

at(N, relevant_skill(X, Actor , missing , Skill)) :-

at(N, action(X, Action)),

at(N, arg(X, AArg , Actor)),

at(

410 N,

skill_link(

Skill , contest , Tool ,

Action ,

between(AArg , Other),

415 either(Win , Lose)

388



B.2. CORE FILES skills.lp

)

),

not st(N, property(has_skill , Actor , Skill)),

story_op(N, build_options ).

420

at(N, relevant_skill(X, Actor , has , Skill)) :-

at(N, action(X, Action)),

at(N, arg(X, AArg , Actor)),

at(

425 N,

skill_link(

Skill , contest , Tool ,

Action ,

between(Other , AArg),

430 either(Win , Lose)

)

),

st(N, property(has_skill , Actor , Skill)),

story_op(N, build_options ).

435

at(N, relevant_skill(X, Actor , missing , Skill)) :-

at(N, action(X, Action)),

at(N, arg(X, AArg , Actor)),

at(

440 N,

skill_link(

Skill , contest , Tool ,

Action ,

between(Other , AArg),

445 either(Win , Lose)

)

),

not st(N, property(has_skill , Actor , Skill)),

story_op(N, build_options ).

450

at(N, relevant_tool(X, Actor , has , Item)) :-

at(N, action(X, Action)),

at(N, arg(X, AArg , Actor)),

at(

455 N,

skill_link(

Skill , contest , tool ,

Action ,

between(AArg , Other),

460 either(Win , Lose)

)

),

at(N, relevant_skill(X, Actor , has , Skill)),

st(N, property(has_skill , Actor , Skill)),
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465 st(N, relation(has_item , Actor , Item)),

is_instance(N, Item , Category),

tool_for(Category , Skill),

story_op(N, build_options ).

470 at(N, relevant_tool(X, Actor , missing , Skill )) :-

at(N, action(X, Action)),

at(N, arg(X, AArg , Actor)),

at(

N,

475 skill_link(

Skill , contest , tool ,

Action ,

between(AArg , Other),

either(Win , Lose)

480 )

),

at(N, relevant_skill(X, Actor , has , Skill)),

st(N, property(has_skill , Actor , Skill)),

not at(N, has_tool_for(Actor , Skill)),

485 story_op(N, build_options ).

at(N, relevant_tool(X, Actor , has , Item)) :-

at(N, action(X, Action)),

at(N, arg(X, AArg , Actor)),

490 at(

N,

skill_link(

Skill , contest , tool ,

Action ,

495 between(Other , AArg),

either(Win , Lose)

)

),

at(N, relevant_skill(X, Actor , has , Skill)),

500 st(N, property(has_skill , Actor , Skill)),

st(N, relation(has_item , Actor , Item)),

is_instance(N, Item , Category),

tool_for(Category , Skill),

story_op(N, build_options ).

505

at(N, relevant_tool(X, Actor , missing , Skill )) :-

at(N, action(X, Action)),

at(N, arg(X, AArg , Actor)),

at(

510 N,

skill_link(

Skill , contest , tool ,

Action ,
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between(Other , AArg),

515 either(Win , Lose)

)

),

at(N, relevant_skill(X, Actor , has , Skill)),

st(N, property(has_skill , Actor , Skill)),

520 not at(N, has_tool_for(Actor , Skill)),

story_op(N, build_options ).

at(N, relevant_tool(X, Actor , has , Item)) :-

at(N, action(X, Action)),

525 at(N, arg(X, AArg , Actor)),

at(N, arg(X, OArg , Other)),

at(

N,

skill_link(

530 Skill , contest , tool ,

Action ,

between(AArg , OArg),

either(Win , Lose)

)

535 ),

at(N, relevant_skill(X, Actor , has , Skill)),

not st(N, property(has_skill , Actor , Skill)),

not st(N, property(has_skill , Other , Skill)),

st(N, relation(has_item , Actor , Item)),

540 is_instance(N, Item , Category),

tool_for(Category , Skill),

story_op(N, build_options ).

at(N, relevant_tool(X, Actor , missing , Skill )) :-

545 at(N, action(X, Action)),

at(N, arg(X, AArg , Actor)),

at(N, arg(X, OArg , Other)),

at(

N,

550 skill_link(

Skill , contest , tool ,

Action ,

between(AArg , OArg),

either(Win , Lose)

555 )

),

at(N, relevant_skill(X, Actor , has , Skill)),

not st(N, property(has_skill , Actor , Skill)),

not st(N, property(has_skill , Other , Skill)),

560 not at(N, has_tool_for(Actor , Skill)),

story_op(N, build_options ).
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at(N, relevant_tool(X, Actor , has , Item)) :-

at(N, action(X, Action)),

565 at(N, arg(X, AArg , Actor)),

at(N, arg(X, OArg , Other)),

at(

N,

skill_link(

570 Skill , contest , tool ,

Action ,

between(OArg , AArg),

either(Win , Lose)

)

575 ),

at(N, relevant_skill(X, Actor , has , Skill)),

not st(N, property(has_skill , Actor , Skill)),

not st(N, property(has_skill , Other , Skill)),

st(N, relation(has_item , Actor , Item)),

580 is_instance(N, Item , Category),

tool_for(Category , Skill),

story_op(N, build_options ).

at(N, relevant_tool(X, Actor , missing , Skill )) :-

585 at(N, action(X, Action)),

at(N, arg(X, AArg , Actor)),

at(N, arg(X, OArg , Other)),

at(

N,

590 skill_link(

Skill , contest , tool ,

Action ,

between(OArg , AArg),

either(Win , Lose)

595 )

),

at(N, relevant_skill(X, Actor , has , Skill)),

not st(N, property(has_skill , Actor , Skill)),

not st(N, property(has_skill , Other , Skill)),

600 not at(N, has_tool_for(Actor , Skill)),

story_op(N, build_options ).
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surface.lp

1 % surface.lp

% Rules about surface text realization

% Gender values:

5 gender(masculine ).

gender(feminine ).

gender(neuter ).

number(singular ).

10 number(plural ).

% Default values for name , person , number , gender , and determination :

1 = {

15 surface_property(name , inst(Type , ID), Name)

: surface_property(name , inst(Type , ID), Name);

surface_property(name , inst(Type , ID), Name)

: default_name_for(Class , Name),

st(N, property(type , inst(Type , ID), Class ));

20 error(m("Error with instance name.", inst(Type , ID)))

} :-

st(N, inst(Type , ID)).

1 = {

25 surface_property(person , inst(Type , ID), Name)

: surface_property(person , inst(Type , ID), Name);

surface_property(person , inst(Type , ID), third );

error(m("Error with instance person.", inst(Type , ID)))

} :-

30 st(N, inst(Type , ID)).

1 = {

surface_property(number , inst(Type , ID), Number)

: surface_property(number , inst(Type , ID), Number );

35 surface_property(number , inst(Type , ID), Number)

: default_number_for(Class , Number),

st(N, property(type , inst(Type , ID), Class ));

error(m("Error with instance number.", inst(Type , ID)))

} :-

40 st(N, inst(Type , ID)).

1 = {

surface_property(gender , inst(Type , ID), Gender)

: surface_property(gender , inst(Type , ID), Gender );

45 surface_property(gender , inst(Type , ID), Gender)

: default_gender_for(Class , Gender),

st(N, property(type , inst(Type , ID), Class ));
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error(m("Error with spontaneous instance gender.", inst(Type , ID)))

} :-

50 st(N, inst(Type , ID)).

1 = {

surface_property(determined , inst(Type , ID), Det) :

surface_property(determined , inst(Type , ID), Det);

55 surface_property(determined , inst(Type , ID), true);

error(m("Error with instance determination.", inst(Type , ID)))

} :-

st(N, inst(Type , ID)).

the_party.lp

1 % the_party .lp

% Rules about the player ’s party.

% Party Setup:

5 % ------------

_sr(R) :- story_root(R), story_op(R, initialize_node ).

% Core setup:

10

starting_skill(tinkering ).

starting_skill(wilderness_lore ).

starting_skill(music).

starting_skill(elocution ).

15 starting_skill(healing ).

starting_skill(thievery ).

% starting_skill (prayer ).

starting_skill(acrobatics ).

starting_skill(storytelling ).

20 starting_skill(fighting ).

starting_skill(sorcery ).

st(R, inst(actor , you)) :- _sr(R).

st(R, state(party_member , inst(actor , you ))) :- _sr(R).

25 st(R, property(type , inst(actor , you), person )) :- _sr(R).

surface_property(name , inst(actor , you), "Dunyazad").

surface_property(person , inst(actor , you), second ).

surface_property(gender , inst(actor , you), feminine ).

30 surface_property(number , inst(actor , you), singular ).

surface_property(determined , inst(actor , you), false).

% You start with literacy and three other random skills (from the list

% of "starting" skills ):

3 = {
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35 st(R, property(has_skill , inst(actor , you), Skill ))

: starting_skill(Skill );

error(m("Missing starting skill."))

} :- _sr(R).

st(R, property(has_skill , inst(actor , you), literacy )) :- _sr(R).

40 %st(R, property(has_skill , inst(actor , you), storytelling )) :- _sr(R).

% Party member parameters :

party_member_name("Arel").

45 party_member_name("Jain").

party_member_name("Frodde").

party_member_name("Zair").

party_member_name("Estok").

party_member_name("Ime").

50

party_member_rel("friend").

party_member_rel("cousin").

party_member_rel("servant").

party_member_rel("teacher").

55 party_member_rel("student").

party_member_rel("beloved").

% Party member selection:

60 1 = {

party_size(PS) : party_size_value(PS)

} :- _sr(R).

1 = {

65 party_member(member_one , Relation) : party_member_rel(Relation );

error(m("Party member of no relation.", member_one ))

} :-

_sr(R),

party_size(PS),

70 PS >= 2.

1 = {

party_member(member_two , Relation) : party_member_rel(Relation );

error(m("Party member of no relation.", member_two ))

} :-

75 _sr(R),

party_size(PS),

PS >= 3.

error(m("Can’t handle party sizes larger than 3.")) :-

party_size(PS),

80 PS > 3.

error(m("Multiple party members have the same relation.")) :-

party_member(M1, Relation),

party_member(M2, Relation),
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M1 != M2.

85 error(m("Polyamory is too complciated to handle.")) :-

2 <= { party_member(M, "beloved") : party_member(M, R) }.

error(m("Student and master both.")) :-

party_member(M1, "teacher"),

party_member(M2, "student").

90

% Party member unpacking:

st(R, inst(actor , Member )) :- party_member(Member , Relation), _sr(R).

95 st(R, state(party_member , inst(actor , Member ))) :-

party_member(Member , Relation),

_sr(R).

1 = {

100 surface_property(name , inst(actor , Member), Name)

: party_member_name(Name);

error(m("Party member without name.", Member ))

} :- party_member(Member , Relation ).

105 error(m("Multiple party members have the same name.")) :-

surface_property(name , inst(actor , M1), Name),

surface_property(name , inst(actor , M2), Name),

M1 != M2 ,

_sr(R).

110

1 = {

surface_property(gender , inst(actor , Member), masculine );

surface_property(gender , inst(actor , Member), feminine );

error(m("Party member without gender.", Member ))

115 } :- party_member(Member , Relation), _sr(R).

surface_property(determined , inst(actor , Member), false) :-

party_member(Member , Relation ).

120 st(R, property(relationship , inst(actor , Member), Relation )) :-

party_member(Member , Relation), _sr(R).

st(R, property(type , inst(actor , Member), person )) :-

party_member(Member , Relation),

125 _sr(R).

% Each party member starts with 2 skills:

2 = {

st(R, property(has_skill , inst(actor , Member), Skill))

130 : skill(Skill),

not restricted_skill(Skill);

error(m("Party member missing starting skill 1.", Member ));
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error(m("Party member missing starting skill 2.", Member ))

} :- party_member(Member , Relation), _sr(R).

135

error(m("Party member initial skill overlap.", Skill )) :-

skill(Skill),

st(R, property(has_skill , inst(actor , M1), Skill)),

st(R, property(has_skill , inst(actor , M2), Skill)),

140 st(R, state(party_member , inst(actor , M1))),

st(R, state(party_member , inst(actor , M2))),

M1 != M2 ,

_sr(R).

145 % Supply unpacking:

get_unique_key(s(supplies(Owner , Item ))) :-

supplies(Owner , Item), _sr(R).

supply_inst(R, Owner , inst(item , @inst(Item , K)), Item) :-

150 unique_key(s(supplies(Owner , Item)), K),

supplies(Owner , Item),

_sr(R).

st(R, Inst) :-

supply_inst(R, Owner , Inst , Type).

155 st(R, property(type , Inst , Type)) :-

supply_inst(R, Owner , Inst , Type).

surface_property(name , Inst , Name) :-

supply_inst(R, Owner , Inst , Type),

item_def(Type , GType , Name , Number ).

160 surface_property(number , Inst , Number) :-

supply_inst(R, Owner , Inst , Type),

item_def(Type , GType , Name , Number ).

st(R, relation(has_item , inst(actor , Owner), Inst)) :-

supply_inst(R, Owner , Inst , Type).

165

% Supply details

% You start with some basic items:

1 = {

170 supplies(you , Treasure) :

item_def(Treasure , treasure , Name , Number)

} :- _sr(R).

1 >= {

supplies(you , Charm) :

175 item_def(Charm , charm , Name , Number)

} :- _sr(R).

1 = {

supplies(you , Book) :

180 item_def(Book , book , Name , Number );

error(m("No starting book."))
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} :- _sr(R).

% You can start with a tool for one of your skills:

185 0 <= {

supplies(you , Tool) :

nonbook_tool(Tool , Skill),

st(R, property(has_skill , inst(actor , you), Skill)),

_sr(R)

190 } <= 2.

% Your party members start with non -book tools for their skills:

1 = {

supplies(Member , Tool) :

195 nonbook_tool(Tool , Skill),

item_def(Tool , Type , Name , Number );

error(m("Member didn’t start with tool for skill.", Member , Skill ))

} :-

1 <= { nonbook_tool(Tool , Skill) },

200 party_member(Member , Relation),

st(R, property(has_skill , inst(actor , Member), Skill)),

_sr(R).

% Your literate party members might also start with some random books:

205 2 >= {

supplies(Member , Book) :

party_member(Member , Relation),

st(R, property(has_skill , inst(actor , Member), literacy)),

item_def(Book , book , BName , BNumber)

210 } :-

_sr(R).

vignettes.lp

1 % vignettes .lp

% Rules about vignette flow.

% Setups define the start of a new vignette:

5 vignette(N, N) :-

setup(N, Setup),

story_op(N, initialize_node ).

vignette(N, PrV) :-

0 = { setup(N, Setup) : possible_setup(Setup) },

10 successor(Prev , Opt , N),

vignette(Prev , PrV),

story_op(N, initialize_node ).

% An option which resolves the all remaining potentials at a given

15 % node resolves that node ’s vignette , since a new vignette will be
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% needed to start to reintroduce potential . Travel onwards is an

% exception , as it happens between vignettes .

resolves_vignette(N, option(O)) :-

story_node(N),

20 at(N, option(O)),

0 = {

unresolved_potential(N, option(O), Pt)

: unresolved_potential(N, option(O), Pt),

not at(N, hidden(Pt)),

25 not at(N, category(Pt , persistent ))

},

not at(N, action(option(O), travel_onwards )),

story_op(N, build_options ).

30 % The first node of a new vignette should always be a choice node:

error(m("Vignette starts with an event!")) :-

vignette(N, N),

not node_type(N, choice ).

B.3 Goal Definitions

These files, from the content/ directory, each specify how a single goal works.

Note the custom code in the files g-as_intended.lp, g-avoid_accusations.lp,

and g-avoid_threats_to.lp. These three goals extend the normal state-based

goal definition format a bit by directly specifying extra conditions for certain

“expecatation” and/or “outcome_perception” predicates.

g-as_intended.lp

1 % as intended

at(N, goal_stakes(as_intended(Actor), low)) :-

at(N, initiator(X, Actor )).

5

at(N, expectation(X, advances , as_intended(Actor ))) :-

at(N, initiator(X, Actor)),

at(N, action(X, Action)),

default_intent(Action , Outcome),

10 at(N, likely_outcome(X, Outcome )).

at(N, expectation(X, hinders , as_intended(Actor ))) :-

at(N, initiator(X, Actor)),
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at(N, action(X, Action)),

15 default_intent(Action , Outcome),

at(N, unlikely_outcome(X, Outcome )).

at(N, outcome_perception(X, great_for , as_intended(Actor ))) :-

at(N, initiator(X, Actor)),

20 at(N, action(X, Action)),

default_intent(Action , Outcome),

at(N, outcome(X, Outcome )).

at(N, outcome_perception(X, awful_for , as_intended(Actor ))) :-

25 at(N, initiator(X, Actor)),

at(N, action(X, Action)),

default_intent(Action , o(OutVar , OutVal)),

not at(N, outcome(X, o(OutVar , OutVal ))).

g-avoid_accusations.lp

1 % avoid accusations

at(N, goal_stakes(avoid_accusations(inst(actor , ID)), high)) :-

st(N, inst(actor , ID)).

5

state_hinders(

avoid_accusations(inst(actor , Key)),

relation(accusing , inst(actor , ThreatKey), inst(actor , Key))

) :-

10 st(N, inst(actor , Key)),

st(N, inst(actor , ThreatKey )).

% If there ’s an accusation , it being likely to persist seems

% dangerous :

15 at(

N,

expectation(X, hinders , avoid_accusations(inst(actor , Victim )))

) :-

at(N, action(X, Action)),

20 st(N, relation(accusing , Threat , inst(actor , Victim ))),

0 = { % No likely or neutral outcome will resolve the threat:

at(N, likely_outcome(X, Likely )) :

at(N, likely_outcome(X, Likely)),

at(

25 N,

consequence_of(

X,

Likely ,

_not ,

30 relation(accusing , Threat , inst(actor , Victim ))
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)

);

at(N, neutral_outcome(X, Neutral )) :

at(N, neutral_outcome(X, Neutral)),

35 at(

N,

consequence_of(

X,

Neutral ,

40 _not ,

relation(accusing , Threat , inst(actor , Victim ))

)

)

}.

45

% If there ’s an accusation , just letting it persist is enough to

% hinder the goal of avoiding it:

at(

N,

50 outcome_perception(

option(X),

bad_for ,

avoid_accusations(inst(actor , Key))

)

55 ) :-

at(N, option(X)),

st(N, relation(accusing , Threat , inst(actor , Key))),

0 = {

at(N, outcome(option(X), Happened )) :

60 at(N, outcome(option(X), Happened)),

at(

N,

consequence_of(

option(X),

65 Happened ,

_not ,

relation(accusing , Threat , inst(actor , Key))

)

)

70 }.
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g-avoid_threats_to.lp

1 % avoid threats to

at(N, goal_stakes(avoid_threats_to(inst(actor , ID)), high)) :-

st(N, inst(actor , ID)).

5

state_hinders(

avoid_threats_to(inst(actor , Key)),

relation(threatening , inst(actor , ThreatKey), inst(actor , Key))

) :-

10 st(N, inst(actor , Key)),

st(N, inst(actor , ThreatKey )).

% If there ’s a threat , it being likely to persist seems dangerous:

at(

15 N,

expectation(X, hinders , avoid_threats_to(inst(actor , Victim )))

) :-

at(N, action(X, Action)),

st(N, relation(threatening , Threat , inst(actor , Victim ))),

20 0 = { % No likely or neutral outcome will resolve the threat:

at(N, likely_outcome(X, Likely )) :

at(N, likely_outcome(X, Likely)),

at(

N,

25 consequence_of(

X,

Likely ,

_not ,

relation(threatening , Threat , inst(actor , Victim ))

30 )

);

at(N, neutral_outcome(X, Neutral )) :

at(N, neutral_outcome(X, Neutral)),

at(

35 N,

consequence_of(

X,

Neutral ,

_not ,

40 relation(threatening , Threat , inst(actor , Victim ))

)

)

}.

45 % If there ’s a threat , just letting it persist is enough to hinder the

% goal of avoiding it:

at(
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N,

outcome_perception(

50 option(X),

bad_for ,

avoid_threats_to(inst(actor , Key))

)

) :-

55 at(N, option(X)),

st(N, relation(threatening , Threat , inst(actor , Key))),

0 = {

at(N, outcome(option(X), Happened )) :

at(N, outcome(option(X), Happened)),

60 at(

N,

consequence_of(

option(X),

Happened ,

65 _not ,

relation(threatening , Threat , inst(actor , Key))

)

)

}.

g-have_tool_for.lp

1 % have tool for

% Note this is probably the most opaque goal ...

5 at(N, goal_stakes(have_tool_for(inst(actor , ID), Skill), low)) :-

st(N, inst(actor , ID)),

st(N, property(has_skill , inst(actor , ID), Skill )).

state_achieves(

10 have_tool_for(inst(actor , Actor), Skill),

relation(has_item , inst(actor , Actor), inst(item , Item))

) :-

st(N, inst(actor , Actor)),

st(N, property(has_skill , inst(actor , Actor), Skill)),

15 st(N, inst(item , Item)),

is_instance(N, inst(item , Item), Category),

tool_for(Category , Skill ).
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g-preserve_health.lp

1 % preserve health

at(N, goal_stakes(preserve_health(inst(actor , ID)), high)) :-

st(N, inst(actor , ID)).

5

state_fails(

preserve_health(inst(actor , Key)),

state(injured , inst(actor , Key))

) :-

10 st(N, inst(actor , Key)).

state_fails(

preserve_health(inst(actor , Key)),

state(killed , inst(actor , Key))

15 ) :-

st(N, inst(actor , Key)).

g-preserve_original_form.lp

1 % preserve original form

at(N, goal_stakes(preserve_original_form(inst(actor , ID)), high)) :-

st(N, inst(actor , ID)).

5

state_fails(

preserve_original_form(inst(actor , Key)),

property(polymorphed , inst(actor , Key), Any)

) :-

10 st(N, inst(actor , Key)),

any_class(Any).

g-reclaim_property.lp

1 % reclaim property

% This is borderline high vs. low stakes ...

5 at(N, goal_stakes(reclaim_property(Victim , Item), high)) :-

at(N, potential(problem , relation(stolen_from , Victim , Item ))).

state_achieves(

reclaim_property(Victim , Item),

10 relation(has_item , Victim , Item)

) :-

at(N, potential(problem , relation(stolen_from , Victim , Item ))).
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B.4 Action Definitions

These files, also from the content/ directory, each define a single action. Table 6.1

provides a quick overview of the actions repertoire; note that the “arrive,” “leave,”

and “pursue” actions are not currently enabled by any setups, and to speed up

results they have been entirely commented out for now. Action definitions are

responsible for defining both individual outcome components and the skills

and/or tools that make those outcomes more or less likely. They can define the

consequences of individual outcome components conditionally with respect to

the world state when an action occurs, although important conditional effects of

an action should be reified as outcome variables to allow the system to reason

about player perceptions.

a-accuse.lp

1 % accuse

action(accuse ).

% arguments

5

argument(accuse , accuser , actor ).

argument(accuse , target , actor).

initiator(accuse , accuser ).

default_intent(accuse , o(success , accused )).

10

% outcomes

outcome_val(accuse , success , accused ).

outcome_val(accuse , success , ignored ).

15

% skills:

skill_link(

elocution , contest , no_tool ,

20 accuse ,

between(accuser , target),

either(o(success , accused), o(success , ignored ))

).
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25 % accuseing if successful develops an "accusing" relation

at(

N,

consequence_of(

30 X,

o(success , accused),

relation(accusing , Accuser , Target)

)

) :-

35 at(N, action(X, accuse)),

at(N, arg(X, accuser , Accuser)),

at(N, arg(X, target , Target)),

story_op(N, build_options ).

a-arrive.lp

1 %% arrive

%action(arrive ).

%

%% arguments

5 %

%argument(arrive , subject , actor ).

% off_stage_okay (arrive , subject ).

% initiator(arrive , subject ).

% default_intent (arrive , o(result , arrived )).

10 %

%% outcomes

%

%% It doesn ’t make sense for arriving to fail , so there ’s only one

%% outcome: outcome_val (arrive , result , arrived ).

15 %

%% skills

%

%% none

%

20 %% (hack) prohibit threatened actors from moving back on -stage:

%% TODO: More general mechanism for this kind of thing?

%

%error(m(" Threatened actor arrived .", N, X)) :-

% at(N, action(X, arrive )),

25 % at(N, arg(X, subject , Subject )),

% st(N, relation(threatening , Someone , Subject )),

% story_op(N, build_options ).

%

%% The subject must start off -stage and arrives on -stage:

30 %

%error(m("On -stage subject arrived .", N, X)) :-
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% at(N, action(X, arrive )),

% at(N, arg(X, subject , Subject )),

% not st(N, state(off_stage , Subject )),

35 % story_op(N, build_options ).

%

%at(

% N,

% consequence_of (

40 % o(result ,

% arrived), _not ,

% state(off_stage , Subject)

% )

%) :-

45 % at(N, action(X, arrive )),

% at(N, arg(X, subject , Subject )),

% story_op(N, build_options ).

%

%at(

50 % N,

% consequence_of (

% o(result ,

% arrived), _not ,

% state(off_stage , Item)

55 % )

%) :-

% at(N, action(X, arrive )),

% at(N, arg(X, subject , Subject )),

% st(N, relation(has_item , Subject , Item)),

60 % story_op(N, build_options ).

a-attack.lp

1 % attack

action(attack ).

chaotic(attack ).

5

% arguments

argument(attack , aggressor , actor).

argument(attack , target , actor).

10 initiator(attack , aggressor ).

default_intent(attack , o(success , victory )).

% outcomes

15 outcome_val(attack , aggressor_state , unharmed ).

outcome_val(attack , aggressor_state , injured ).
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outcome_val(attack , aggressor_state , killed ).

outcome_val(attack , target_state , unharmed ).

20 outcome_val(attack , target_state , injured ).

outcome_val(attack , target_state , killed ).

outcome_val(attack , get_loot , loot).

outcome_val(attack , get_loot , nothing ).

25

outcome_val(attack , success , victory ).

outcome_val(attack , success , defeat ).

outcome_val(attack , success , tie).

30 outcome_excludes(

attack ,

o(success , victory),

o(aggressor_state , killed)

).

35 outcome_excludes(

attack ,

o(success , defeat),

o(target_state , killed)

).

40

outcome_excludes(attack , o(success , tie), o(aggressor_state , killed )).

outcome_excludes(attack , o(success , tie), o(get_loot , loot )).

outcome_excludes(attack , o(success , defeat), o(get_loot , loot )).

45

outcome_excludes(

attack ,

o(success , tie),

o(target_state , killed)

50 ).

outcome_excludes(

attack ,

o(aggressor_state , unharmed),

55 o(target_state , unharmed)

).

outcome_excludes(

attack ,

60 o(target_state , unharmed),

o(aggressor_state , unharmed)

).

% skills:

65

408



B.4. ACTION DEFINITIONS a-attack.lp

skill_link(

fighting , contest , tool ,

attack ,

between(aggressor , target),

70 either(o(aggressor_state , unharmed), o(aggressor_state , injured ))

).

skill_link(

fighting , contest , tool ,

75 attack ,

between(aggressor , target),

either(o(target_state , injured), o(target_state , unharmed ))

).

80 skill_link(

fighting , contest , tool ,

attack ,

between(aggressor , target),

either(o(success , victory), o(success , defeat ))

85 ).

% attacking is one way to deal with a threat

at(

90 N,

consequence_of(

X,

o(success , victory),

resolves ,

95 potential(problem , relation(threatening , Target , Someone ))

)

) :-

at(N, action(X, attack)),

at(N, arg(X, target , Target)),

100 st(N, relation(threatening , Target , Someone)),

story_op(N, build_options ).

% no matter the outcome , an attack that winds up injuring a threat

% resolves the threat

105

at(

N,

consequence_of(

X,

110 o(aggressor_state , injured),

resolves ,

potential(problem , relation(threatening , Aggressor , Someone ))

)

) :-
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115 at(N, action(X, attack)),

at(N, arg(X, aggressor , Aggressor)),

st(N, relation(threatening , Aggressor , Someone)),

story_op(N, build_options ).

120 at(

N,

consequence_of(

X,

o(aggressor_state , killed),

125 resolves ,

potential(problem , relation(threatening , Aggressor , Someone ))

)

) :-

at(N, action(X, attack)),

130 at(N, arg(X, aggressor , Aggressor)),

st(N, relation(threatening , Aggressor , Someone)),

story_op(N, build_options ).

at(

135 N,

consequence_of(

X,

o(target_state , injured),

resolves ,

140 potential(problem , relation(threatening , Target , Someone ))

)

) :-

at(N, action(X, attack)),

at(N, arg(X, target , Target)),

145 st(N, relation(threatening , Target , Someone)),

story_op(N, build_options ).

at(

N,

150 consequence_of(

X,

o(target_state , killed),

resolves ,

potential(problem , relation(threatening , Target , Someone ))

155 )

) :-

at(N, action(X, attack)),

at(N, arg(X, target , Target)),

st(N, relation(threatening , Target , Someone)),

160 story_op(N, build_options ).

at(

N,
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consequence_of(

165 X,

o(success , Every),

manifests ,

potential(problem , relation(threatening , Aggressor , Target ))

)

170 ) :-

outcome_val(attack , success , Every),

at(N, action(X, attack)),

at(N, arg(X, aggressor , Aggressor)),

at(N, arg(X, target , Target)),

175 st(N, relation(threatening , Aggressor , Target)),

story_op(N, build_options ).

% fighting is dangerous :

at(

180 N,

consequence_of(

X,

o(aggressor_state , injured),

state(injured , Aggressor)

185 )

) :-

at(N, action(X, attack)),

at(N, arg(X, aggressor , Aggressor)),

story_op(N, build_options ).

190

at(

N,

consequence_of(

X,

195 o(aggressor_state , killed),

state(killed , Aggressor)

)

) :-

at(N, action(X, attack)),

200 at(N, arg(X, aggressor , Aggressor)),

story_op(N, build_options ).

at(

N,

205 consequence_of(

X,

o(target_state , injured),

state(injured , Target)

)

210 ) :-

at(N, action(X, attack)),

at(N, arg(X, target , Target)),
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story_op(N, build_options ).

215 at(

N,

consequence_of(

X,

o(target_state , killed),

220 state(killed , Target)

)

) :-

at(N, action(X, attack)),

at(N, arg(X, target , Target)),

225 story_op(N, build_options ).

% Looting is a possibility :

1 = {

230 at(

N,

consequence_of(

X,

o(get_loot , loot),

235 relation(has_item , Aggressor , Item)

)

) : st(N, relation(has_item , Aggressor , Item))

} :-

at(N, action(X, attack)),

240 at(N, arg(X, aggressor , Aggressor)),

1 <= { st(N, relation(has_item , Aggressor , Item)) },

story_op(N, build_options ).

a-buy_healing.lp

1 % buy_healing

action(buy_healing ).

reflexive(buy_healing ).

5 injured_can_initiate(buy_healing ).

% arguments

argument(buy_healing , doctor , actor ).

10 argument(buy_healing , patient , actor ).

argument(buy_healing , buyer , actor).

argument(buy_healing , price , item).

initiator(buy_healing , buyer ).

default_intent(buy_healing , o(success , healed )).

15
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% outcomes

outcome_val(buy_healing , success , healed ).

outcome_val(buy_healing , success , still_injured ).

20 outcome_val(buy_healing , success , killed ).

outcome_val(buy_healing , deal , deal).

outcome_val(buy_healing , deal , no_deal ).

25 outcome_excludes(

buy_healing ,

o(deal , no_deal),

o(success , healed)

).

30

outcome_excludes(

buy_healing ,

o(deal , no_deal),

o(success , killed)

35 ).

% skills

skill_link(

40 healing , required , tool ,

buy_healing , doctor ,

o(success , healed)

).

45 skill_link(

healing , avoids , no_tool ,

buy_healing , doctor ,

o(success , killed)

).

50

skill_link(

elocution , promotes , no_tool ,

buy_healing , buyer ,

o(deal , deal)

55 ).

% Patients must be injured:

error(m("Bought healing from unwilling doctor.", N, X)) :-

at(N, action(X, buy_healing )),

60 at(N, arg(X, doctor , Doctor)),

not st(N, property(offering_service , Doctor , treat_injury )),

story_op(N, build_options ).

error(m("Bought healing for uninjured patient.", N, X)) :-
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65 at(N, action(X, buy_healing )),

at(N, arg(X, patient , Patient)),

not st(N, state(injured , Patient)),

story_op(N, build_options ).

70 % Trade constraints :

error(m("Unintelligent buyer.", N, X, Buyer)) :-

at(N, action(X, buy_healing )),

at(N, arg(X, buyer , Buyer)),

st(N, property(has_skill , Buyer , unintelligent )),

75 story_op(N, build_options ).

error(m("Unintelligent doctor.", N, X, Doctor )) :-

at(N, action(X, buy_healing )),

at(N, arg(X, doctor , Doctor)),

80 st(N, property(has_skill , Doctor , unintelligent )),

story_op(N, build_options ).

error(m("Buyer can’t trade price.", N, X, Buyer , Price)) :-

at(N, action(X, buy_healing )),

85 at(N, arg(X, buyer , Buyer)),

at(N, arg(X, price , Price)),

not at(N, can_trade(Buyer , Price)),

story_op(N, build_options ).

90 % Buying healing gets rid of injuries:

at(

N,

consequence_of(

X,

95 o(success , healed),

resolves ,

potential(problem , state(injured , Patient ))

)

) :-

100 at(N, action(X, buy_healing )),

at(N, arg(X, doctor , Doctor)),

at(N, arg(X, patient , Patient)),

st(N, state(injured , Patient)),

story_op(N, build_options ).

105

% However , when buying healing there ’s a risk of death:

at(N, consequence_of(X, o(success , killed), state(dead , Patient ))) :-

at(N, action(X, buy_healing )),

at(N, arg(X, patient , Patient)),

110 story_op(N, build_options ).

% And the doctor takes the price:

at(
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N,

115 consequence_of(

X,

o(deal , deal),

relation(has_item , Doctor , Price)

)

120 ) :-

at(N, action(X, buy_healing )),

at(N, arg(X, doctor , Doctor)),

at(N, arg(X, price , Price)),

story_op(N, build_options ).

125

% Buying heailng resolves offers to sell healing:

at(

N,

consequence_of(

130 X,

o(deal , deal),

resolves ,

potential(

opportunity ,

135 property(offering_service , Doctor , treat_injury)

)

)

) :-

at(N, action(X, trade)),

140 at(N, arg(X, seller , Doctor)),

st(N, property(offering_service , Doctor , treat_injury )),

story_op(N, build_options ).

a-deny_blame.lp

1 % deny_blame

action(deny_blame ).

% arguments

5

argument(deny_blame , denier , actor).

argument(deny_blame , accuser , actor).

argument(deny_blame , victim , actor).

initiator(deny_blame , denier ).

10 default_intent(deny_blame , o(success , exonerated )).

% outcomes

outcome_val(deny_blame , success , exonerated ).

15 outcome_val(deny_blame , success , ignored ).
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% skills:

skill_link(

20 elocution , contest , no_tool ,

deny_blame ,

between(denier , accuser),

either(o(success , exonerated), o(success , ignored ))

).

25

% constraints :

error(m("Unintelligent blame.", N, X)) :-

at(N, action(X, deny_blame )),

30 at(N, arg(X, Any , ShouldBeSmart )),

st(N, property(has_skill , ShouldBeSmart , unintelligent )),

story_op(N, build_options ).

reflexive(deny_blame ).

35

error(m("Accuser is also victim.", N, X)) :-

at(N, action(X, deny_blame )),

at(N, arg(X, accuser , SamePerson )),

at(N, arg(X, victim , SamePerson )).

40

error(m("Accuser is also denier.", N, X)) :-

at(N, action(X, deny_blame )),

at(N, arg(X, denier , SamePerson )),

at(N, arg(X, accuser , SamePerson )).

45

% denying blame is one way to get rid of an accusation :

at(

N,

50 consequence_of(

X,

o(success , exonerated),

resolves ,

potential(problem , relation(accusing , Accuser , Victim ))

55 )

) :-

at(N, action(X, deny_blame )),

at(N, arg(X, accuser , Accuser)),

at(N, arg(X, victim , Victim)),

60 at(N, potential(problem , relation(accusing , Accuser , Victim ))),

story_op(N, build_options ).
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a-dispel.lp

1 % dispel

action(dispel ).

chaotic(dispel ).

5

% arguments

argument(dispel , caster , actor).

argument(dispel , target , actor).

10 initiator(dispel , caster ).

default_intent(dispel , o(success , dispelled )).

% outcomes

15 outcome_val(dispel , success , dispelled ).

outcome_val(dispel , success , no_effect ).

% skills:

20 skill_link(

sorcery , contest , tool ,

dispel ,

between(caster , target),

either(o(success , cursed), o(success , no_effect ))

25 ).

error(m("Attempt to dispel a non -cursed target.", N, X)) :-

at(N, action(X, dispel)),

at(N, arg(X, target , Target)),

30 0 = {

st(N, property(polymorphed , Target , Any)) :

st(N, property(polymorphed , Target , Any)),

any_class(Any)

},

35 story_op(N, build_options ).

error(m("Unintelligent caster.", N, X)) :-

at(N, action(X, dispel)),

at(N, arg(X, caster , Unintelligent )),

40 st(N, property(has_skill , Unintelligent , unintelligent )),

story_op(N, build_options ).

% effects:

45 % Note: this one effect has many rammifications ; see

% content/p- polymorphed .lp

at(
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N,

consequence_of(

50 X,

o(success , dispelled),

resolved ,

potential(problem , property(polymorphed , Target , OriginalType ))

)

55 ) :-

at(N, action(X, dispel)),

at(N, arg(X, target , Target)),

st(N, property(polymorphed , Target , OriginalType )),

story_op(N, build_options ).

a-explain_innocence.lp

1 % explain_innocence

action(explain_innocence ).

% arguments

5

argument(explain_innocence , explainer , actor).

argument(explain_innocence , accuser , actor).

argument(explain_innocence , victim , actor ).

initiator(explain_innocence , explainer ).

10 default_intent(explain_innocence , o(success , exonerated )).

% outcomes

outcome_val(explain_innocence , success , exonerated ).

15 outcome_val(explain_innocence , success , ignored ).

% skills:

skill_link(

20 storytelling , promotes , no_tool ,

explain_innocence ,

explainer ,

o(success , exonerated)

).

25

% explaining innocence is unlikely to work if the accused is guilty:

% TODO: More specific accusations and crimes!

at(N, unlikely_outcome(X, o(success , exonerated ))) :-

30 at(N, action(X, explain_innocence )),

at(N, arg(X, accuser , Justified )),

at(N, arg(X, victim , Guilty)),

st(N, relation(has_item , Guilty , Stolen)),
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st(N, relation(stolen_from , Anyone , Stolen )).

35

at(N, relevant_factor(X, Guilty , has_stolen_item , Stolen )) :-

at(N, action(X, explain_innocence )),

at(N, arg(X, accuser , Justified )),

at(N, arg(X, victim , Guilty)),

40 st(N, relation(has_item , Guilty , Stolen)),

st(N, relation(stolen_from , Anyone , Stolen )).

% constraints :

45 error(m("Unintelligent blame.", N, X)) :-

at(N, action(X, explain_innocence )),

at(N, arg(X, Any , ShouldBeSmart )),

st(N, property(has_skill , ShouldBeSmart , unintelligent )),

story_op(N, build_options ).

50

reflexive(explain_innocence ).

error(m("Accuser is also victim.", N, X)) :-

at(N, action(X, explain_innocence )),

55 at(N, arg(X, accuser , SamePerson )),

at(N, arg(X, victim , SamePerson )).

error(m("Accuser is also explainer.", N, X)) :-

at(N, action(X, explain_innocence )),

60 at(N, arg(X, explainer , SamePerson )),

at(N, arg(X, accuser , SamePerson )).

% explaining innocence is one way to get rid of an accusation :

65 at(

N,

consequence_of(

X,

o(success , exonerated),

70 resolves ,

potential(problem , relation(accusing , Accuser , Victim ))

)

) :-

at(N, action(X, explain_innocence )),

75 at(N, arg(X, accuser , Accuser)),

at(N, arg(X, victim , Victim)),

at(N, potential(problem , relation(accusing , Accuser , Victim ))),

story_op(N, build_options ).
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a-flee.lp

1 % flee

action(flee).

chaotic(flee).

5

% arguments

argument(flee , fearful , actor).

argument(flee , from , actor).

10 initiator(flee , fearful ).

injured_can_initiate(flee).

default_intent(flee , o(success , escape )).

% outcomes

15

outcome_val(flee , success , escape ).

outcome_val(flee , success , failure ).

outcome_val(flee , get_injured , injured ).

20 outcome_val(flee , get_injured , safe).

% skills

at(

25 N,

skill_link(

acrobatics , contest , no_tool ,

flee ,

between(fearful , from),

30 either(o(success , escape), o(success , failure ))

)

) :-

1 <= {

setting(N, city);

35 setting(N, town)

},

story_node(N).

at(

40 N,

skill_link(

acrobatics , contest , no_tool ,

flee ,

between(fearful , from),

45 either(o(get_injured , safe), o(get_injured , injured ))

)

) :-
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1 <= {

setting(N, city);

50 setting(N, town)

},

story_node(N).

at(

55 N,

skill_link(

wilderness_lore , contest , no_tool ,

flee ,

between(fearful , from),

60 either(o(success , escape), o(success , failure ))

)

) :-

1 <= {

setting(N, road);

65 setting(N, wilderness)

},

story_node(N).

at(

70 N,

skill_link(

wilderness_lore , contest , no_tool ,

flee ,

between(fearful , from),

75 either(o(get_injured , safe), o(get_injured , injured ))

)

) :-

1 <= {

setting(N, road);

80 setting(N, wilderness)

},

story_node(N).

% Fleeing gets rid of threats

85 at(

N,

consequence_of(

X,

o(success , escape),

90 resolves ,

potential(problem , relation(threatening , From , Fearful ))

)

) :-

at(N, action(X, flee)),

95 at(N, arg(X, fearful , Fearful)),

at(N, arg(X, from , From)),
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st(N, relation(threatening , From , Fearful)),

story_op(N, build_options ).

100 % Fleeing gets rid of accusations

% TODO: Complicate this somewhat !!

at(

N,

consequence_of(

105 X,

o(success , escape),

resolves ,

potential(problem , relation(accusing , From , Fearful ))

)

110 ) :-

at(N, action(X, flee)),

at(N, arg(X, fearful , Fearful)),

at(N, arg(X, from , From)),

st(N, relation(accusing , From , Fearful)),

115 story_op(N, build_options ).

% Fleeing puts things off -stage , unless they ’re a party member , in

% which case it puts everything not in your party or belonging to it

% off -stage:

120

at(

N,

consequence_of(X, o(success , escape), state(off_stage , Fearful ))

) :-

125 at(N, action(X, leave)),

at(N, arg(X, fearful , Fearful)),

not st(N, state(party_member , Fearful)),

story_op(N, build_options ).

130 at(

N,

consequence_of(X, o(success , escape), state(off_stage , Item))

) :-

at(N, action(X, leave)),

135 at(N, arg(X, fearful , Fearful)),

not st(N, state(party_member , Fearful)),

st(N, relation(has_item , Fearful , Item)),

story_op(N, build_options ).

140 % All of the things you are moving away from:

move_away_from(N, X, inst(Type , Inst)) :-

at(N, action(X, flee)),

at(N, arg(X, fearful , Fearful)),

145 st(N, state(party_member , Fearful)),
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st(N, inst(Type , Inst)),

not st(N, state(party_member , inst(Type , Inst))),

0 = {

st(N, relation(has_item , PartyMember , inst(Type , Inst ))) :

150 st(N, state(party_member , PartyMember ))

},

story_op(N, build_options ).

at(

155 N,

consequence_of(X, o(success , escape), state(off_stage , Thing ))

) :-

at(N, action(X, leave)),

at(N, arg(X, fearful , Fearful)),

160 st(N, state(party_member , Fearful)),

move_away_from(N, X, Thing),

story_op(N, build_options ).

% You can be injured if you fail to escape:

165

at(

N,

consequence_of(X, o(get_injured , injured), state(injured , Fearful ))

) :-

170 at(N, action(X, flee)),

at(N, arg(X, fearful , Fearful)),

story_op(N, build_options ).

% TODO: something about the attacker ’s intent?

a-gossip.lp

1 % gossip

action(gossip ).

% arguments

5

argument(gossip , interested , actor).

argument(gossip , knowledgeable , actor).

initiator(gossip , interested ).

default_intent(gossip , o(utility , useful )).

10

% outcomes

outcome_val(gossip , utility , useful ).

outcome_val(gossip , utility , useless ).

15

% skills
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skill_link(

elocution , required , no_tool ,

20 gossip , interested ,

o(utility , useful)

).

error(m("Unintelligent gossip.", N, X)) :-

25 at(N, action(X, gossip)),

at(N, arg(X, interested , Unintelligent )),

st(N, property(has_skill , Unintelligent , unintelligent )),

story_op(N, build_options ).

30 error(m("Unintelligent gossip.", N, X)) :-

at(N, action(X, gossip)),

at(N, arg(X, knowledgeable , Unintelligent )),

st(N, property(has_skill , Unintelligent , unintelligent )),

story_op(N, build_options ).

35

% Either way you can ’t gossip with the same actor again.

at(

N,

consequence_of(

40 X,

o(utility , useful),

resolves ,

potential(opportunity , state(knows_gossip , Knowledgeable ))

)

45 ) :-

at(N, action(X, gossip)),

outcome_val(gossip , utility , OVal),

at(N, arg(X, knowledgeable , Knowledgeable )),

st(N, state(knows_gossip , Knowledgeable )),

50 story_op(N, build_options ).

at(

N,

consequence_of(

55 X,

o(utility , useless),

nullifies ,

potential(opportunity , state(knows_gossip , Knowledgeable ))

)

60 ) :-

at(N, action(X, gossip)),

outcome_val(gossip , utility , OVal),

at(N, arg(X, knowledgeable , Knowledgeable )),

st(N, state(knows_gossip , Knowledgeable )),

65 story_op(N, build_options ).
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% TODO: More effects!

a-leave.lp

1 %% leave

%action(leave ).

%

%% arguments

5 %

%argument(leave , subject , actor ).

% initiator(leave , subject ).

% default_intent (leave , o(result , gone )).

%

10 %% outcomes

%

% outcome_val (leave , result , gone ).

% outcome_val (leave , result , detained ).

%

15 %% skills

%

%% none

%

%% You can ’t leave if you ’re being threatened (you should flee

20 %% instead ):

%

%error(m(" Walked out of a threatening situation .", N, X)) :-

% at(N, action(X, leave )),

% at(N, arg(X, subject , Subject )),

25 % st(N, relation(threatening , Someone , Subject )),

% story_op(N, build_options ).

%

%% Since it’s all the same in the end , the initator of leaving should

%% always be % you.

30 %

%error(m(" Party member other than you left ...")) :-

% at(N, action(X, leave )),

% at(N, arg(X, subject , Subject )),

% st(N, state(party_member , Subject )),

35 % Subject != inst(actor , you),

% story_op(N, build_options ).

%

%% Leaving puts things off -stage , unless they ’re you , in which case it

%% puts % everything not in your party or belonging to it off -stage:

40 %

%at(

% N,

% consequence_of (X, o(result , gone), state(off_stage , Subject ))
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%) :-

45 % at(N, action(X, leave )),

% at(N, arg(X, subject , Subject )),

% Subject != inst(actor , you),

% story_op(N, build_options ).

%

50 %at(

% N,

% consequence_of (X, o(result , gone), state(off_stage , Item ))

%) :-

% at(N, action(X, leave )),

55 % at(N, arg(X, subject , Subject )),

% Subject != inst(actor , you),

% st(N, relation(has_item , Subject , Item)),

% story_op(N, build_options ).

%

60 %% All of the things you are moving away from:

%

% move_away_from (N, X, inst(Type , Inst )) :-

% at(N, action(X, leave )),

% at(N, arg(X, subject , inst(actor , you ))),

65 % st(N, inst(Type , Inst )),

% not st(N, state(party_member , inst(Type , Inst ))),

% 0 = {

% st(N, relation(has_item , PartyMember , inst(Type , Inst ))) :

% st(N, state(party_member , PartyMember ))

70 % },

% story_op(N, build_options ).

%

%at(

% N,

75 % consequence_of (X, o(result , gone), state(off_stage , Thing ))

%) :-

% at(N, action(X, leave )),

% at(N, arg(X, subject , inst(actor , you ))),

% move_away_from (N, X, Thing),

80 % story_op(N, build_options ).
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a-pacify.lp

1 % pacify

action(pacify ).

% arguments

5

argument(pacify , pacifier , actor ).

argument(pacify , aggressive , actor).

initiator(pacify , pacifier ).

default_intent(pacify , o(mood , relaxed )).

10

% outcomes

outcome_val(pacify , mood , relaxed ).

outcome_val(pacify , mood , enraged ).

15

outcome_val(pacify , get_injured , injured ).

outcome_val(pacify , get_injured , safe).

outcome_excludes(pacify , o(mood , relaxed), o(get_injured , injured )).

20

% skills

skill_link(

music , required , tool ,

25 pacify , pacifier ,

o(mood , relaxed)

).

skill_link(

30 music , promotes , tool ,

pacify , pacifier ,

o(mood , relaxed)

).

35 % TODO: Should we really have such high expectations ?

% skill_link (

% music , promotes , tool ,

% pacify , pacifier ,

% o(mood , relaxed)

40 %).

skill_link(

music , required , no_tool ,

pacify , pacifier ,

45 o(get_injured , safe)

).
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% you can only pacify unintelligent beings: TODO: Change this?

50 error(m("Pacification of intelligent target.", N, X)) :-

at(N, arg(X, aggressive , Aggressive )),

not st(N, property(has_skill , Aggressive , unintelligent )),

story_op(N, build_options ).

55 % pacifying is one way to deal with a threat

at(

N,

consequence_of(

X,

60 o(mood , relaxed),

resolves ,

potential(problem , relation(threatening , Aggressive , Someone ))

)

) :-

65 at(N, action(X, pacify)),

at(N, arg(X, aggressive , Aggressive )),

st(N, relation(threatening , Aggressive , Someone)),

story_op(N, build_options ).

70 % if things go badly the subject threatens you

at(

N,

consequence_of(

X,

75 o(mood , enraged),

relation(threatening , Aggressive , Pacifier)

)

) :-

at(N, action(X, pacify)),

80 at(N, arg(X, aggressive , Aggressive )),

at(N, arg(X, pacifier , Pacifier)),

story_op(N, build_options ).

% and ignores anyone else

85 at(

N,

consequence_of(

X,

o(mood , enraged),

90 nullifies ,

potential(problem , relation(threatening , Aggressive , Someone ))

)

) :-

at(N, action(X, pacify)),

95 at(N, arg(X, aggressive , Aggressive )),

at(N, arg(X, pacifier , Pacifier)),
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st(N, relation(threatening , Aggressive , Someone)),

Someone != Pacifier ,

story_op(N, build_options ).

100

% You can get injured if things go badly.

at(

N,

consequence_of(

105 X,

o(get_injured , injured),

state(injured , Pacifier)

)

) :-

110 at(N, action(X, pacify)),

at(N, arg(X, pacifier , Pacifier)),

story_op(N, build_options ).

a-pay_off.lp

1 % pay_off

action(pay_off ).

% arguments

5

argument(pay_off , asking , actor ).

argument(pay_off , listening , actor).

argument(pay_off , victim , actor ).

argument(pay_off , price , item).

10 initiator(pay_off , asking ).

default_intent(pay_off , o(deal , deal )).

% outcomes

15 outcome_val(pay_off , deal , deal).

outcome_val(pay_off , deal , no_deal ).

% skills

20 skill_link(

elocution , promotes , no_tool ,

pay_off , asking ,

o(deal , deal)

).

25

error(m("Pay off without price.", N, X)) :-

at(N, action(X, pay_off)),

at(N, arg(X, asking , Asking)),

at(N, arg(X, price , Price)),
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30 not at(N, can_trade(Asking , Price)),

story_op(N, build_options ).

error(m("Price is not a treasure.", N, X)) :-

at(N, action(X, pay_off)),

35 at(N, arg(X, asking , Asking)),

at(N, arg(X, price , Price)),

not is_instance(N, Price , treasure),

story_op(N, build_options ).

40 error(m("Unintelligent asker.", N, X)) :-

at(N, action(X, pay_off)),

at(N, arg(X, asking , Asking)),

st(N, property(has_skill , Asking , unintelligent )),

story_op(N, build_options ).

45

error(m("Unintelligent listener.", N, X)) :-

at(N, action(X, pay_off)),

at(N, arg(X, listening , Listening)),

st(N, property(has_skill , Listening , unintelligent )),

50 story_op(N, build_options ).

error(

m("Bribe target isn’t threatening or accusing the victim.", N, X)

) :-

55 at(N, action(X, talk_down)),

at(N, arg(X, listening , Listening)),

at(N, arg(X, victim , Victim)),

0 = {

st(N, relation(threatening , Listening , Victim ));

60 st(N, relation(accusing , Listening , Victim ))

},

story_op(N, build_options ).

% the threat is withdrawn :

65 at(

N,

consequence_of(

X,

o(deal , deal),

70 resolves ,

potential(problem , relation(threatening , Listening , Victim ))

)

) :-

at(N, action(X, pay_off)),

75 at(N, arg(X, listening , Listening)),

at(N, arg(X, victim , Victim)),

st(N, relation(threatening , Listening , Victim)),

story_op(N, build_options ).
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80 % or the accusation is withdrawn:

at(

N,

consequence_of(

X,

85 o(deal , deal),

resolves ,

potential(problem , relation(accusing , Listening , Victim ))

)

) :-

90 at(N, action(X, pay_off)),

at(N, arg(X, listening , Listening)),

at(N, arg(X, victim , Victim)),

st(N, relation(accusing , Listening , Victim)),

story_op(N, build_options ).

95

% but the price must be paid:

at(

N,

consequence_of(

100 X,

o(deal , deal),

relation(has_item , Listening , Item)

)

) :-

105 at(N, action(X, pay_off)),

at(N, arg(X, listening , Listening)),

at(N, arg(X, price , Item)),

story_op(N, build_options ).

a-play_song.lp

1 % play_song

action(play_song ).

% arguments

5

argument(play_song , musician , actor).

argument(play_song , audience , actor).

initiator(play_song , musician ).

default_intent(play_song , o(quality , harmonious )).

10 % TODO: the instrument ?

% outcomes

outcome_val(play_song , quality , harmonious ).

15 outcome_val(play_song , quality , plain).
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% TODO: add discordant ?

% skills

20 skill_link(

music , required , tool ,

play_song , musician ,

o(quality , harmonious)

).

25

error(m("Unintelligent musician.", N, X)) :-

at(N, action(X, play_song)),

at(N, arg(X, musician , Unintelligent )),

st(N, property(has_skill , Unintelligent , unintelligent )),

30 story_op(N, build_options ).

error(m("Unintelligent audience.", N, X)) :-

at(N, action(X, play_song)),

at(N, arg(X, audience , Unintelligent )),

35 st(N, property(has_skill , Unintelligent , unintelligent )),

story_op(N, build_options ).

% effects

40 at(

N,

consequence_of(

X,

o(quality , harmonious),

45 resolves ,

potential(opportunity , state(bored , Audience ))

)

):-

at(N, action(X, play_song)),

50 at(N, arg(X, audience , Audience)),

st(N, state(bored , Audience)),

story_op(N, build_options ).

at(

55 N,

consequence_of(

X,

o(quality , plain),

nullifies ,

60 potential(opportunity , state(bored , Audience ))

)

):-

at(N, action(X, play_song)),

at(N, arg(X, audience , Audience)),
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65 st(N, state(bored , Audience)),

story_op(N, build_options ).

% TODO: angering the audience?

70

% TODO: Other effects?

a-polymorph.lp

1 % polymorph

action(polymorph ).

chaotic(polymorph ).

5

% arguments

argument(polymorph , caster , actor).

argument(polymorph , target , actor).

10 initiator(polymorph , caster ).

default_intent(polymorph , o(success , cursed )).

% outcomes

15 outcome_val(polymorph , success , cursed ).

outcome_val(polymorph , success , no_effect ).

% skills:

20 skill_link(

sorcery , required , tool ,

polymorph , caster ,

o(success , cursed)

).

25

skill_link(

sorcery , promotes , tool ,

polymorph , caster ,

o(success , cursed)

30 ).

error(m("Unintelligent caster.", N, X)) :-

at(N, action(X, polymorph )),

at(N, arg(X, caster , Unintelligent )),

35 st(N, property(has_skill , Unintelligent , unintelligent )),

story_op(N, build_options ).

% effects:
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40 % Note: this one effect has many rammifications ; see

% content/p- polymorphed .lp

at(

N,

consequence_of(

45 X,

o(success , cursed),

property(polymorphed , Target , OriginalType)

)

) :-

50 at(N, action(X, polymorph)),

at(N, arg(X, target , Target)),

st(N, property(type , Target , OriginalType )),

story_op(N, build_options ).

a-pursue.lp

1 %% pursue

%action(pursue ).

%

%chaotic(pursue ).

5 %

%% arguments

%

%argument(pursue , subject , actor ).

%argument(pursue , object , actor ).

10 % off_stage_okay (pursue , object ).

% initiator(pursue , subject ).

% default_intent (pursue , o(result , caught_up )).

%

%% outcomes

15 %

% outcome_val (pursue , result , caught_up ).

% outcome_val (pursue , result , lost ).

%

%% skills (same as flee)

20 %

%at(

% N,

% skill_link (

% acrobatics , contest , no_tool ,

25 % pursue ,

% between(subject , object),

% either(o(result , caught_up ), o(result , lost ))

% )

%) :-

30 % 1 <= {
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% setting(N, city );

% setting(N, town)

% },

% story_node (N).

35 %

%at(

% N,

% skill_link (

% wilderness_lore , contest , no_tool ,

40 % pursue ,

% between(subject , object),

% either(o(result , caught_up ), o(result , lost ))

% )

%) :-

45 % 1 <= {

% setting(N, road );

% setting(N, wilderness )

% },

% story_node (N).

50 %

%% You can ’t pursue if you ’re being threatened (you should flee

%% instead ):

%

%error(m(" Pursued out of a threatening situation .", N, X)) :-

55 % at(N, action(X, pursue )),

% at(N, arg(X, subject , Subject )),

% st(N, relation(threatening , Someone , Subject )),

% story_op(N, build_options ).

%

60 %% The object of pursuit must be off -stage:

%

%error(m(" Pursued on -stage actor .", N, X)) :-

% at(N, action(X, pursue )),

% at(N, arg(X, object , Object )),

65 % not st(N, state(off_stage , Object )),

% story_op(N, build_options ).

%

%% Pursuit puts things off -stage , unless they ’re you , in which case it

%% puts % everything not in your party or belonging to it off -stage ,

70 %% while putting % previously off -stage things on -stage (unless you

%% get lost ).

%

%at(

% N,

75 % consequence_of (X, o(result , caught_up ), state(off_stage , Subject ))

%) :-

% at(N, action(X, pursue )),

% at(N, arg(X, subject , Subject )),

% not st(N, state(party_member , Subject )),
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80 % story_op(N, build_options ).

%

%at(

% N,

% consequence_of (X, o(result , caught_up ), state(off_stage , Item ))

85 %) :-

% at(N, action(X, pursue )),

% at(N, arg(X, subject , Subject )),

% not st(N, state(party_member , Subject )),

% st(N, relation(has_item , Subject , Item)),

90 % story_op(N, build_options ).

%

%at(

% N,

% consequence_of (X, o(result , lost), state(off_stage , Subject ))

95 %) :-

% at(N, action(X, pursue )),

% at(N, arg(X, subject , Subject )),

% not st(N, state(party_member , Subject )),

% story_op(N, build_options ).

100 %

%at(

% N,

% consequence_of (X, o(result , lost), state(off_stage , Item ))

%) :-

105 % at(N, action(X, pursue )),

% at(N, arg(X, subject , Subject )),

% not st(N, state(party_member , Subject )),

% st(N, relation(has_item , Subject , Item)),

% story_op(N, build_options ).

110 %

%% All of the things you are moving away from:

%

% move_away_from (N, X, inst(Type , Inst )) :-

% at(N, action(X, pursue )),

115 % at(N, arg(X, subject , Subject )),

% st(N, state(party_member , Subject )),

% st(N, inst(Type , Inst )),

% not st(N, state(party_member , inst(Type , Inst ))),

% 0 = {

120 % st(N, relation(has_item , PartyMember , inst(Type , Inst ))) :

% st(N, state(party_member , PartyMember ))

% },

% not st(N, state(off_stage , inst(Type , Inst ))),

% story_op(N, build_options ).

125 %

%at(

% N,

% consequence_of (X, o(result , caught_up ), state(off_stage , Thing ))
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%) :-

130 % at(N, action(X, pursue )),

% at(N, arg(X, subject , Subject )),

% st(N, state(party_member , Subject )),

% move_away_from (N, X, Thing),

% story_op(N, build_options ).

135 %

%at(

% N,

% consequence_of (X, o(result , lost), state(off_stage , Thing ))

%) :-

140 % at(N, action(X, pursue )),

% at(N, arg(X, subject , Subject )),

% st(N, state(party_member , Subject )),

% move_away_from (N, X, Thing),

% story_op(N, build_options ).

145 %

%at(

% N,

% consequence_of (

% X,

150 % o(result , caught_up),

% _not ,

% state(off_stage , Thing)

% )

%) :-

155 % at(N, action(X, pursue )),

% at(N, arg(X, subject , Subject )),

% st(N, state(party_member , Subject )),

% st(N, state(off_stage , Thing )),

% story_op(N, build_options ).

160 %% if you ’re lost instead , you wind up alone

a-reach_destination.lp

1 % reach_destination : a special party -only action that ends the story

action(reach_destination ).

% arguments

5

argument(reach_destination , subject , actor).

initiator(reach_destination , subject ).

% outcomes

10

outcome_val(reach_destination , journey , over).

% no skills
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15 % The argument of reach_destination is fixed:

at(N, arg(Opt , subject , inst(actor , you))) :-

at(N, action(Opt , reach_destination )).

20 % reach_destination cannot happen except at an ending:

error(m("Reached destination before end of story", N, X)) :-

at(N, action(X, reach_destination )),

not node_type(N, ending ).

25

% reach_destination gets rid of all existing potentials :

at(

N,

30 consequence_of(

X,

o(journey , over),

nullifies , potential(Any , Pt)

)

35 ) :-

at(N, action(X, reach_destination )),

at(N, potential(Any , Pt)),

story_op(N, build_options ).

40 % reach_destination doesn ’t need to have any consequences as it can

% only happen at the end of a story.

a-shift_blame.lp

1 % shift_blame

action(shift_blame ).

% arguments

5

argument(shift_blame , shifter , actor ).

argument(shift_blame , accuser , actor ).

argument(shift_blame , old_victim , actor).

argument(shift_blame , new_victim , actor).

10 initiator(shift_blame , shifter ).

default_intent(shift_blame , o(success , shifted )).

% outcomes

15 outcome_val(shift_blame , success , shifted ).

outcome_val(shift_blame , success , suspected ).

outcome_val(shift_blame , success , ignored ).
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% skills:

20

skill_link(

elocution , contest , no_tool ,

shift_blame ,

between(shifter , new_victim),

25 either(o(success , shifted), o(success , suspected ))

).

% Shifting the blame to yourself is always easy:

30 at(N, likely_outcome(X, o(success , shifted ))) :-

at(N, action(X, shift_blame )),

at(N, arg(X, accuser , Accuser)),

at(N, arg(X, shifter , SamePerson )),

at(N, arg(X, new_victim , SamePerson )).

35

at(

N,

relevant_factor(

X,

40 SamePerson ,

shift_blame_via_confession ,

SamePerson

)

) :-

45 at(N, action(X, shift_blame )),

at(N, arg(X, accuser , Accuser)),

at(N, arg(X, shifter , SamePerson )),

at(N, arg(X, new_victim , SamePerson )).

50 % constraints :

error(m("Unintelligent blame.", N, X)) :-

at(N, action(X, shfit_blame )),

at(N, arg(X, Any , ShouldBeSmart )),

55 st(N, property(has_skill , ShouldBeSmart , unintelligent )),

story_op(N, build_options ).

reflexive(shift_blame ). % see custom role overlap constraints below

60 error(m("Shifter is also accuser.", N, X)) :-

at(N, action(X, shift_blame )),

at(N, arg(X, shifter , SamePerson )),

at(N, arg(X, accuser , SamePerson )).

65 error(m("Accuser is the old accused.", N, X)) :-

at(N, action(X, shift_blame )),
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at(N, arg(X, accuser , SamePerson )),

at(N, arg(X, old_victim , SamePerson )).

70 error(m("Accuser is the new accused.", N, X)) :-

at(N, action(X, shift_blame )),

at(N, arg(X, accuser , SamePerson )),

at(N, arg(X, new_victim , SamePerson )).

75 error(m("Old and new victims are the same.", N, X)) :-

at(N, action(X, shift_blame )),

at(N, arg(X, old_victim , SamePerson )),

at(N, arg(X, new_victim , SamePerson )).

80 error(m("Tried to shift non -existent blame.", N, X)) :-

at(N, action(X, shift_blame )),

at(N, arg(X, accuser , Accuser)),

at(N, arg(X, old_victim , OldVictim)),

not st(N, relation(accusing , Accuser , OldVictim )).

85

% shifting blame if successful changes an "accusing" relation

at(

N,

90 consequence_of(

X,

o(success , shifted),

resolves ,

potential(problem , relation(accusing , Accuser , OldVictim ))

95 )

) :-

at(N, action(X, shift_blame )),

at(N, arg(X, accuser , Accuser)),

at(N, arg(X, old_victim , OldVictim)),

100 at(N, potential(problem , relation(accusing , Accuser , OldVictim ))),

story_op(N, build_options ).

% The accusation just spreads rather than shifting if you fail ...

%at(

105 % N,

% consequence_of (

% X,

% o(success , suspected ),

% resolves ,

110 % potential(problem , relation(accusing , Accuser , OldVictim ))

% )

%) :-

% at(N, action(X, shift_blame )),

% at(N, arg(X, shifter , Shifter )),

115 % at(N, arg(X, accuser , Accuser )),
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% at(N, arg(X, old_victim , OldVictim )),

% at(N, potential(problem , relation(accusing , Accuser , OldVictim ))),

% Shifter != OldVictim ,

% story_op(N, build_options ).

120

at(

N,

consequence_of(

X,

125 o(success , shifted),

relation(accusing , Accuser , NewVictim)

)

) :-

at(N, action(X, shift_blame )),

130 at(N, arg(X, accuser , Accuser)),

at(N, arg(X, new_victim , NewVictim)),

story_op(N, build_options ).

at(

135 N,

consequence_of(

X,

o(success , suspected),

relation(accusing , Accuser , Shifter)

140 )

) :-

at(N, action(X, shift_blame )),

at(N, arg(X, shifter , Shifter)),

at(N, arg(X, accuser , Accuser)),

145 story_op(N, build_options ).

a-steal.lp

1 % steal

action(steal).

chaotic(steal ).

5

% arguments

argument(steal , thief , actor).

argument(steal , victim , actor).

10 argument(steal , target , item).

initiator(steal , thief).

default_intent(steal , o(get_item , get)).

default_intent(steal , o(get_caught , safe )).

15 % outcomes
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outcome_val(steal , get_item , get).

outcome_val(steal , get_item , dont_get ).

20 outcome_val(steal , get_caught , caught ).

outcome_val(steal , get_caught , safe).

% skills:

25 skill_link(

thievery , contest , no_tool ,

steal ,

between(thief , victim),

either(o(get_item , get), o(get_item , dont_get ))

30 ).

skill_link(

thievery , contest , no_tool ,

steal ,

35 between(thief , victim),

either(o(get_caught , safe), o(get_caught , caught ))

).

error(m("Stole from wrong victim.", N, X)) :-

40 at(N, action(X, steal)),

at(N, arg(X, victim , Victim)),

at(N, arg(X, target , Item)),

not st(N, relation(has_item , Victim , Item )).

45 % consequences

at(

N,

consequence_of(

50 X,

o(get_item , get),

relation(has_item , Thief , Item)

)

) :-

55 at(N, action(X, steal)),

at(N, arg(X, thief , Thief)),

at(N, arg(X, target , Item)),

story_op(N, build_options ).

60 at(

N,

consequence_of(

X,

o(get_item , get),
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65 relation(stolen_from , Victim , Item)

)

) :-

at(N, action(X, steal)),

at(N, arg(X, victim , Victim)),

70 at(N, arg(X, target , Item)),

0 = {

st(N, inst(actor , Anyone )) :

st(N, inst(actor , Anyone)),

st(N, relation(stolen_from , inst(actor , Anyone), Item))

75 },

story_op(N, build_options ).

% if you get caught stealing something that doesn ’t belong to you

% you ’ll be either threatened or accused (TODO: accusations !).

80

at(

N,

consequence_of(

X,

85 o(get_caught , caught),

relation(threatening , Victim , Thief)

)

) :-

at(N, action(X, steal)),

90 at(N, arg(X, thief , Thief)),

at(N, arg(X, victim , Victim)),

at(N, arg(X, target , Item)),

not st(N, relation(stolen_from , Thief , Item)),

story_op(N, build_options ).

a-talk_down.lp

1 % talk_down

action(talk_down ).

% arguments

5

argument(talk_down , asking , actor).

argument(talk_down , listening , actor ).

argument(talk_down , victim , actor).

initiator(talk_down , asking ).

10 default_intent(talk_down , o(attitude , convinced )).

% outcomes

outcome_val(talk_down , attitude , convinced ).

15 outcome_val(talk_down , attitude , unconvinced ).
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outcome_val(talk_down , is_enraged , enraged ).

outcome_val(talk_down , is_enraged , not_enraged ).

20 outcome_excludes(

talk_down ,

o(attitude , convinced),

o(is_enraged , enraged)

).

25

% skills

skill_link(

elocution , required , no_tool ,

30 talk_down , asking ,

o(attitude , convinced)

).

skill_link(

35 storytelling , promotes , no_tool ,

talk_down , asking ,

o(attitude , convinced)

).

40 skill_link(

elocution , required , no_tool ,

talk_down , asking ,

o(is_enraged , not_enraged)

).

45

skill_link(

storytelling , promotes , no_tool ,

talk_down , asking ,

o(is_enraged , not_enraged)

50 ).

error(m("Unintelligent asker.", N, X)) :-

at(N, action(X, talk_down )),

at(N, arg(X, asking , Asking)),

55 st(N, property(has_skill , Asking , unintelligent )),

story_op(N, build_options ).

error(m("Unintelligent listener.", N, X)) :-

at(N, action(X, talk_down )),

60 at(N, arg(X, listening , Listening )),

st(N, property(has_skill , Listening , unintelligent )),

story_op(N, build_options ).

error(m("Victim not being threatened or accused.", N, X)) :-
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65 at(N, action(X, talk_down)),

at(N, arg(X, listening , Listening)),

at(N, arg(X, victim , Victim)),

0 = {

st(N, relation(threatening , Listening , Victim ));

70 st(N, relation(accusing , Listening , Victim ))

},

story_op(N, build_options ).

% success convinces the threatener to back down

75 at(

N,

consequence_of(

X,

o(attitude , convinced),

80 resolves ,

potential(problem , relation(threatening , Listening , Victim ))

)

) :-

at(N, action(X, talk_down)),

85 at(N, arg(X, listening , Listening)),

at(N, arg(X, victim , Victim)),

st(N, relation(threatening , Listening , Victim)),

story_op(N, build_options ).

90 at(

N,

consequence_of(

X,

o(attitude , convinced),

95 resolves ,

potential(problem , relation(accusing , Listening , Victim ))

)

) :-

at(N, action(X, talk_down)),

100 at(N, arg(X, listening , Listening)),

at(N, arg(X, victim , Victim)),

st(N, relation(accusing , Listening , Victim)),

story_op(N, build_options ).

105 % but the the target might become enraged instead

at(

N,

consequence_of(

X,

110 o(is_enraged , enraged),

relation(threatening , Listening , Asking)

)

) :-
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at(N, action(X, talk_down)),

115 at(N, arg(X, asking , Asking)),

at(N, arg(X, listening , Listening)),

at(N, arg(X, victim , Victim)),

st(N, relation(threatening , Listening , Victim)),

story_op(N, build_options ).

120

at(

N,

consequence_of(

X,

125 o(is_enraged , enraged),

relation(accusing , Listening , Asking)

)

) :-

at(N, action(X, talk_down)),

130 at(N, arg(X, asking , Asking)),

at(N, arg(X, listening , Listening)),

at(N, arg(X, victim , Victim)),

st(N, relation(accusing , Listening , Victim)),

story_op(N, build_options ).

a-tell_story.lp

1 % tell_story

action(tell_story ).

% arguments

5

argument(tell_story , teller , actor).

argument(tell_story , audience , actor ).

initiator(tell_story , teller ).

default_intent(tell_story , o(quality , entertaining )).

10

% outcomes

outcome_val(tell_story , quality , entertaining ).

outcome_val(tell_story , quality , boring ).

15

% skills

skill_link(

storytelling , promotes , no_tool ,

20 tell_story , teller ,

o(quality , entertaining)

).

error(m("Unintelligent storyteller.", N, X)) :-

446



B.4. ACTION DEFINITIONS a-tell_story.lp

25 at(N, action(X, tell_story )),

at(N, arg(X, teller , Unintelligent )),

st(N, property(has_skill , Unintelligent , unintelligent )),

story_op(N, build_options ).

30 error(m("Unintelligent audience.", N, X)) :-

at(N, action(X, tell_story )),

at(N, arg(X, audience , Unintelligent )),

st(N, property(has_skill , Unintelligent , unintelligent )),

story_op(N, build_options ).

35

at(

N,

consequence_of(

X,

40 o(quality , entertaining),

resolves ,

potential(opportunity , state(bored , Audience ))

)

) :-

45 at(N, action(X, tell_story )),

at(N, arg(X, audience , Audience)),

st(N, state(bored , Audience)),

story_op(N, build_options ).

50 at(

N,

consequence_of(

X,

o(quality , boring),

55 nullifies ,

potential(opportunity , state(bored , Audience ))

)

) :-

at(N, action(X, tell_story )),

60 at(N, arg(X, audience , Audience)),

st(N, state(bored , Audience)),

story_op(N, build_options ).

% TODO: Other effects?
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a-trade.lp

1 % trade

action(trade).

% arguments

5

argument(trade , buyer , actor).

argument(trade , seller , actor).

argument(trade , price , item).

argument(trade , goods , item).

10 initiator(trade , buyer).

default_intent(trade , o(deal , deal )).

% outcomes

15 outcome_val(trade , deal , deal).

outcome_val(trade , deal , no_deal ).

% skills

20 skill_link(

elocution , promotes , no_tool ,

trade , buyer ,

o(deal , deal)

).

25

error(m("Unintelligent buyer.", N, X, Buyer)) :-

at(N, action(X, trade)),

at(N, arg(X, buyer , Buyer)),

st(N, property(has_skill , Buyer , unintelligent )),

30 story_op(N, build_options ).

error(m("Unintelligent seller.", N, X, Seller )) :-

at(N, action(X, trade)),

at(N, arg(X, seller , Seller)),

35 st(N, property(has_skill , Seller , unintelligent )),

story_op(N, build_options ).

error(m("Buyer can’t trade price.", N, X, Buyer , Price)) :-

at(N, action(X, trade)),

40 at(N, arg(X, buyer , Buyer)),

at(N, arg(X, price , Price)),

not at(N, can_trade(Buyer , Price)),

story_op(N, build_options ).

45 error(m("Seller can’t trade goods.", N, X, Seller , Goods )) :-

at(N, action(X, trade)),

at(N, arg(X, seller , Seller)),
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at(N, arg(X, goods , Goods)),

not at(N, can_trade(Seller , Goods)),

50 story_op(N, build_options ).

at(

N,

consequence_of(

55 X,

o(deal , deal),

relation(has_item , Buyer , Goods)

)

) :-

60 at(N, action(X, trade)),

at(N, arg(X, buyer , Buyer)),

at(N, arg(X, goods , Goods)),

story_op(N, build_options ).

65 at(

N,

consequence_of(

X,

o(deal , deal),

70 relation(has_item , Seller , Price)

)

) :-

at(N, action(X, trade)),

at(N, arg(X, seller , Seller)),

75 at(N, arg(X, price , Price)),

story_op(N, build_options ).

% trading is how you buy stuff:

at(

80 N,

consequence_of(

X,

o(deal , deal),

resolves ,

85 potential(opportunity , relation(selling , Seller , Goods ))

)

) :-

at(N, action(X, trade)),

at(N, arg(X, seller , Seller)),

90 at(N, arg(X, goods , Goods)),

st(N, relation(selling , Seller , Goods)),

story_op(N, build_options ).
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a-travel_onwards.lp

1 % travel_onwards : a special party -only action that moves to the next

% vignette

action(travel_onwards ).

5 % arguments

argument(travel_onwards , subject , actor).

initiator(travel_onwards , subject ).

injured_can_initiate(travel_onwards ).

10

% outcomes

outcome_val(travel_onwards , onwards , onwards ).

15 % no skills

% The argument of travel_onwards is fixed:

at(N, arg(Opt , subject , inst(actor , you))) :-

20 at(N, action(Opt , travel_onwards )).

% travel_onwards as an option removes all problems and opportunities

% related to things left behind , but it can ’t be an option if doing so

% would remove a non -hidden problem.

25

removed_by(N, X, potential(PType , state(PState , Subject ))) :-

at(N, action(X, travel_onwards )),

at(N, potential(PType , state(PState , Subject ))),

travel_away_from(N, X, Subject),

30 story_op(N, build_options ).

removed_by(N, X, potential(PType , property(PProp , Subject , PVal ))) :-

at(N, action(X, travel_onwards )),

at(N, potential(PType , property(PProp , Subject , PVal))),

35 travel_away_from(N, X, Subject),

story_op(N, build_options ).

removed_by(N, X, potential(PType , relation(PRel , Subject , Object ))) :-

at(N, action(X, travel_onwards )),

40 at(N, potential(PType , relation(PRel , Subject , Object ))),

travel_away_from(N, X, Subject),

story_op(N, build_options ).

removed_by(N, X, potential(PType , relation(PRel , Subject , Object ))) :-

45 at(N, action(X, travel_onwards )),

at(N, potential(PType , relation(PRel , Subject , Object ))),

travel_away_from(N, X, Object),
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story_op(N, build_options ).

50 error(m("Left a non -hidden problem behind.", N, Prb)) :-

at(N, action(X, travel_onwards )),

removed_by(N, X, potential(problem , Prb)),

not at(N, hidden(potential(problem , Prb))),

1 <= {

55 st(N, state(party_member , Member ))

: at(N, problematic_for(potential(problem , Prb), Member ))

},

story_op(N, build_options ).

60 at(

N,

consequence_of(

X,

o(onwards , onwards),

65 nullifies , potential(PType , Pot)

)

) :-

at(N, action(X, travel_onwards )),

at(N, potential(PType , Pot)),

70 removed_by(N, X, potential(PType , Pot)),

story_op(N, build_options ).

% travelling onwards gets rid of all spontaneous instances and

% properties thereof unless the party has picked up the instance to

75 % take with them:

travel_away_from(N, X, inst(Type , Inst)) :-

at(N, action(X, travel_onwards )),

vignette(N, V),

80 spontaneous(st(V, inst(Type , Inst))),

st(N, inst(Type , Inst)),

not st(N, state(party_member , inst(Type , Inst))),

0 = {

st(N, relation(has_item , PartyMember , Inst)) :

85 st(N, state(party_member , PartyMember ))

},

story_op(N, build_options ).

at(N, consequence_of(X, o(onwards , onwards), _not , Inst)) :-

90 travel_away_from(N, X, Inst).

at(

N,

consequence_of(

95 X,

o(onwards , onwards),
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_not , state(State , Inst)

)

) :-

100 st(N, state(State , Inst)),

travel_away_from(N, X, Inst).

at(

N,

105 consequence_of(

X,

o(onwards , onwards),

_not , property(Prop , Inst , Value)

)

110 ) :-

st(N, property(Prop , Inst , Value)),

travel_away_from(N, X, Inst).

at(

115 N,

consequence_of(

X,

o(onwards , onwards),

_not , relation(Rel , Inst , Other)

120 )

) :-

st(N, relation(Rel , Inst , Other)),

travel_away_from(N, X, Inst).

125 at(

N,

consequence_of(

X,

o(onwards , onwards),

130 _not , relation(Rel , Other , Inst)

)

) :-

st(N, relation(Rel , Other , Inst)),

travel_away_from(N, X, Inst).
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a-treat_injury.lp

1 % treat_injury

action(treat_injury ).

reflexive(treat_injury ).

5 injured_can_initiate(treat_injury ). % TODO: really this?

chaotic(treat_injury ).

% arguments

10 argument(treat_injury , doctor , actor ).

argument(treat_injury , patient , actor).

initiator(treat_injury , doctor ).

default_intent(treat_injury , o(success , healed )).

15 % outcomes

outcome_val(treat_injury , success , healed ).

outcome_val(treat_injury , success , still_injured ).

outcome_val(treat_injury , success , killed ).

20

% skills

skill_link(

healing , required , tool ,

25 treat_injury , doctor ,

o(success , healed)

).

skill_link(

30 healing , avoids , no_tool ,

treat_injury , doctor ,

o(success , killed)

).

35 % Patients must be injured:

error(m("Treated uninjured patient.", N, X)) :-

at(N, action(X, treat_injury )),

at(N, arg(X, patient , Patient)),

not st(N, state(injured , Patient)),

40 story_op(N, build_options ).

error(m("Unintelligent doctor.", N, X)) :-

at(N, action(X, treat_injury )),

at(N, arg(X, doctor , Unintelligent )),

45 st(N, property(has_skill , Unintelligent , unintelligent )),

story_op(N, build_options ).
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% Treating injuries gets rid of them

at(

50 N,

consequence_of(

X,

o(success , healed),

resolves ,

55 potential(problem , state(injured , Patient ))

)

) :-

at(N, action(X, treat_injury )),

at(N, arg(X, doctor , Doctor)),

60 at(N, arg(X, patient , Patient)),

st(N, state(injured , Patient)),

story_op(N, build_options ).

% However , when treating injuries there ’s a risk of death:

65 at(N, consequence_of(X, o(success , killed), state(dead , Patient ))) :-

at(N, action(X, treat_injury )),

at(N, arg(X, patient , Patient)),

story_op(N, build_options ).

B.5 Setup Definitions

These files define the individual setup possibilities. Each setup includes fixed

elements but may also include some variable elements. The core file setup.lp

defines the implications of most of the predicates used in these definitions. Note

that the “thiefs”etup is currently inactive (and is commented out for efficiency).

s-healer.lp

1 % a healer

% TODO: Merge this into a larger setup?

possible_setup(healer ).

5

setup_argument_create(healer , doctor , healer ).

setup_argument_create(healer , supplies , medicine_chest ).

s_st(healer , relation(c(has_item), v(doctor), v(supplies ))).

10

s_st(

healer ,

454



B.5. SETUP DEFINITIONS s-healer.lp

property(c(offering_service), v(doctor), c(treat_injury ))

).

15

error(m("Used healer setup without any patients", N)) :-

setup(N, healer),

0 = {

st(N, state(injured , Inst))

20 }.

s-market.lp

1 % a market

possible_setup(market ).

5 setup_argument_create_n(market , merchant_one , merchant , 1, 1).

setup_argument_create_n(market , merchant_two , merchant , 0, 1).

setup_argument_create_n(market , noble , aristocrat , 0, 1).

setup_argument_create_n(market , peasant , laborer , 0, 1).

setup_argument_create_n(market , doctor , healer , 0, 1).

10 setup_argument_create_n(market , lowlife , bad_guy , 0, 1).

% Some stuff for the merchant(s) to sell:

setup_argument_n(market , goods_one , item , 0, 3).

setup_argument_n(market , goods_two , item , 0, 3).

15

error(m("Market population too low.", N)) :-

setup(N, market),

3 > {

at(N, setup_arg(Arg , Anyone )) :

20 at(N, setup_arg(Arg , Anyone)),

setup_argument_create_n(market , Arg , Typ , L, U)

}.

error(m("Too much boredom", N)) :-

25 setup(N, market),

3 <= {

sp_st(N, state(bored , inst(actor , A))) : st(N, inst(actor , A))

},

story_op(N, initialize_node ).

30

error(m("Too much gossip", N)) :-

setup(N, market),

3 <= {

sp_st(N, state(knows_gossip , inst(actor , A)))

35 : st(N, inst(actor , A))

},

story_op(N, initialize_node ).
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error(m("Noble accusing multiple parties.", N)) :-

40 setup(N, market),

at(N, setup_arg(noble , Noble)),

2 <= {

sp_st(N, relation(accusing , Noble , inst(actor , O)))

: st(N, inst(actor , O))

45 },

story_op(N, initialize_node ).

error(m("Lowlife threatening multiple parties.", N)) :-

setup(N, market),

50 at(N, setup_arg(lowlife , Lowlife)),

2 <= {

sp_st(N, relation(threatening , Lowlife , inst(actor , O))) :

st(N, inst(actor , O))

},

55 story_op(N, initialize_node ).

error(m("Merchant one doesn’t own their goods", N)) :-

setup(N, market),

at(N, setup_arg(merchant_one , Merchant)),

60 at(N, setup_arg(goods_one , Goods)),

not st(N, relation(has_item , Merchant , Goods)),

story_op(N, initialize_node ).

error(m("Merchant two doesn’t own their goods", N)) :-

65 setup(N, market),

at(N, setup_arg(merchant_two , Merchant)),

at(N, setup_arg(goods_two , Goods)),

not st(N, relation(has_item , Merchant , Goods)),

story_op(N, initialize_node ).

70

% Potentials :

s_st(market , relation(c(selling), v(merchant_one), v(goods_one ))).

s_st(market , relation(c(selling), v(merchant_two), v(goods_two ))).

s_st(

75 market ,

property(c(offering_service), v(doctor), c(treat_injury ))

).

s_o_st(market , state(c(bored), v(merchant_one ))).

80 s_o_st(market , state(c(bored), v(merchant_two ))).

s_o_st(market , state(c(bored), v(noble ))).

s_o_st(market , state(c(bored), v(peasant ))).

s_o_st(market , state(c(bored), v(lowlife ))).

s_o_st(market , state(c(knows_gossip), v(merchant_one ))).

85 s_o_st(market , state(c(knows_gossip), v(merchant_two ))).

s_o_st(market , state(c(knows_gossip), v(peasant ))).
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s_o_st(market , state(c(knows_gossip), v(lowlife ))).

s_o_st(market , relation(c(accusing), v(noble), c(inst(actor , you )))).

s_o_st(market , relation(c(accusing), v(noble), v(peasant ))).

90 s_o_st(market , relation(c(accusing), v(noble), v(merchant_one ))).

s_o_st(market , relation(c(accusing), v(noble), v(merchant_two ))).

s_o_st(market , relation(c(threatening), v(lowlife), v(merchant_one ))).

s_o_st(market , relation(c(threatening), v(lowlife), v(merchant_two ))).

% TODO: find some way to run the text binding for four cases and then

95 % enable this.

%s_o_st(

% market ,

% relation(c( threatening ), v(lowlife), c(inst(actor , you )))

%).

s-monster_attack.lp

1 % monster attack

possible_setup(monster_attack ).

5 setup_argument_create(monster_attack , monster , monster ).

s_st(

monster_attack ,

relation(c(threatening), v(monster), c(inst(actor , you )))

10 ).

s-on_sale.lp

1 % goods for sale

possible_setup(on_sale ).

5 setup_argument_create(on_sale , merchant , businessperson ).

setup_argument_create_n(on_sale , goods , item , 2, 3).

s_st(on_sale , relation(c(has_item), v(merchant), v(goods ))).

10 s_st(on_sale , relation(c(selling), v(merchant), v(goods ))).
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s-tavern.lp

1 % a tavern

possible_setup(tavern ).

5 setup_argument_create_n(tavern , merchant , merchant , 0, 1).

setup_argument_create_n(tavern , noble , aristocrat , 0, 1).

setup_argument_create_n(tavern , peasant , laborer , 0, 1).

setup_argument_create(tavern , innkeeper , innkeeper ).

10 % The stuff that the merchant is selling:

setup_argument_n(tavern , goods , item , 0, 2).

error(m("Tavern population too low.", N)) :-

setup(N, tavern),

15 2 > {

at(N, setup_arg(merchant , Merchant ));

at(N, setup_arg(noble , Noble ));

at(N, setup_arg(peasant , Peasant ))

}.

20

error(m("Too much boredom", N)) :-

setup(N, tavern),

3 <= {

sp_st(N, state(bored , inst(actor , A))) : st(N, inst(actor , A))

25 },

story_op(N, initialize_node ).

error(m("Too much gossip", N)) :-

setup(N, tavern),

30 3 <= {

sp_st(N, state(knows_gossip , inst(actor , A)))

: st(N, inst(actor , A))

},

story_op(N, initialize_node ).

35

error(m("Noble accusing multiple parties.", N)) :-

setup(N, tavern),

at(N, setup_arg(noble , Noble)),

2 <= {

40 sp_st(N, relation(accusing , Noble , inst(actor , O)))

: st(N, inst(actor , O))

},

story_op(N, initialize_node ).

45 error(m("Merchant doesn’t own the goods", N)) :-

setup(N, tavern),

at(N, setup_arg(merchant , Merchant)),
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at(N, setup_arg(goods , Goods)),

not st(N, relation(has_item , Merchant , Goods)),

50 story_op(N, initialize_node ).

% Potentials :

s_o_st(tavern , relation(c(selling), v(merchant), v(goods ))).

s_o_st(tavern , state(c(bored), v(merchant ))).

55 s_o_st(tavern , state(c(bored), v(noble ))).

s_o_st(tavern , state(c(bored), v(peasant ))).

s_o_st(tavern , state(c(knows_gossip), v(noble ))).

s_o_st(tavern , state(c(knows_gossip), v(peasant ))).

s_o_st(tavern , state(c(knows_gossip), v(innkeeper ))).

60 s_o_st(market , relation(c(accusing), v(noble), v(peasant ))).

s_o_st(market , relation(c(accusing), v(noble), v(merchant ))).

s_o_st(market , relation(c(accusing), v(noble), v(innkeeper ))).

s-thief.lp

1 % a thief steals an item

% possible_setup (thief ).

5 % setup_argument_create (thief , perp , inst(actor , thief )).

% setup_argument (thief , victim , actor ).

% setup_argument (thief , goods , item ).

%% The thief has the goods:

10 %s_st(thief , relation(c(has_item), v(perp), v(goods ))).

%s_st(thief , relation(c( stolen_from ), v(victim), v(goods ))).

%

%error(m(" Thief stole wrong item .")) :-

% setup(N, thief),

15 % at(N, setup_arg(goods , Goods )),

% at(N, setup_arg(victim , Victim )),

% 0 != #sum {

% 1, story_node (Prev) : story_node (Prev), successor(Prev , Opt , N);

% -1, story_node (Prev) :

20 % story_node (Prev),

% successor(Prev , Opt , N),

% st(Prev , relation(has_item , Victim , Goods ))

% }.
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s-threatened_innocents.lp

1 % innocents being threatened

possible_setup(threatened_innocents ).

5 setup_argument_create(

threatened_innocents ,

attacker ,

tough

). % might be armed

10 setup_argument_create(threatened_innocents , victim , businessperson ).

setup_argument_create(threatened_innocents , goods , treasure ).

setup_argument_create_n(threatened_innocents , goods , item , 0, 1).

% The victim owns the goods:

15 s_st(

threatened_innocents ,

relation(c(has_item), v(victim), v(goods ))

).

20 % The attacker is threatening the victim:

s_st(

threatened_innocents ,

relation(c(threatening), v(attacker), v(victim ))

).

B.6 Potential Definitions

These files define individual potentials, which are state predicates that suggest

actions (for example, being injured suggests getting treatment). These files refine

underlying state definitions by specifying things like who is responsible for the

state, and who it is good or bad for. They also define urgency and immediacy

of potentials, so that characters can have believable priorities (e.g., seeking

treatment for an injury being prioritized over buying an available item as opposed

to the opposite).
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p-accusing.lp

1 % accusing

potential(problem , relation , accusing ).

pcategory(potential(problem , relation , accusing), urgent ).

pcategory(potential(problem , relation , accusing), immediate ).

5 initiated_by(problem , relation , accusing , from).

problematic_for(problem , relation , accusing , to).

p-bored.lp

1 % bored

potential(opportunity , state , bored).

initiated_by(opportunity , state , bored , inst).

5 error(m("Bored while embroiled in something interesting.")) :-

st(N, state(bored , Actor)),

1 <= {

at(N, potential(PType , state(S, Actor ))) :

at(N, potential(PType , state(S, Actor ))), S != bored;

10 at(N, potential(PType , property(P, Actor , V)));

at(N, potential(PType , relation(R, Actor , Other )));

at(N, potential(PType , relation(R, Other , Actor )))

}

story_op(N, initialize_node ).

p-injured.lp

1 % injured

potential(problem , state , injured ).

pcategory(potential(problem , state , injured), urgent ).

pcategory(potential(problem , state , injured), persistent ).

5 problematic_for(problem , state , injured , inst).

p-knows_gossip.lp

1 % knows_gossip

potential(opportunity , state , knows_gossip ).

initiated_by(opportunity , state , knows_gossip , inst).
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p-offering_service.lp

1 % offering_service

potential(opportunity , property , offering_service , Action) :-

action(Action ).

initiated_by(opportunity , property , offering_service , Action , inst) :-

5 action(Action ).

% TODO: auto -cancel

error(m("Offered service without required skill.", N)) :-

st(N, property(offering_service , Offering , Service)),

10 at(

N,

skill_link(Skill , required , Tool , Service , SInitArg , SOutcome)

),

default_intent(Service , SOutcome),

15 initiator(Service , SInitArg),

not st(N, property(has_skill , Offering , Skill)),

story_op(N, build_options ).

error(m("Offered service without promoting skill.", N)) :-

20 st(N, property(offering_service , Offering , Service)),

at(

N,

skill_link(Skill , promotes , Tool , Service , SInitArg , SOutcome)

),

25 default_intent(Service , SOutcome),

initiator(Service , SInitArg),

not st(N, property(has_skill , Offering , Skill)),

story_op(N, build_options ).

30 error(m("Offered service without contest skill.", N)) :-

st(N, property(offering_service , Offering , Service)),

at(N,

skill_link(

Skill , contest , Tool ,

35 Service ,

between(SInitArg , Opponent),

either(SOutcome , OtherOutcome)

)

),

40 default_intent(Service , SOutcome),

initiator(Service , SInitArg),

not st(N, property(has_skill , Offering , Skill)),

story_op(N, build_options ).

45 error(m("Offered service without contest skill.", N)) :-

st(N, property(offering_service , Offering , Service)),

at(
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N,

skill_link(

50 Skill , contest , Tool ,

Service ,

between(Opponent , SInitArg),

either(OtherOutcome , SOutcome)

)

55 ),

default_intent(Service , SOutcome),

initiator(Service , SInitArg),

not st(N, property(has_skill , Offering , Skill)),

story_op(N, build_options ).

60

error(m("Offered service without required tool.", N)) :-

st(N, property(offering_service , Offering , Service)),

at(

N,

65 skill_link(Skill , required , tool , Service , SInitArg , SOutcome)

),

default_intent(Service , SOutcome),

initiator(Service , SInitArg),

not at(N, has_tool_for(Offering , Skill)),

70 story_op(N, build_options ).

error(m("Offered service without promoting tool.", N)) :-

st(N, property(offering_service , Offering , Service)),

at(

75 N,

skill_link(Skill , promotes , tool , Service , SInitArg , SOutcome)

),

default_intent(Service , SOutcome),

initiator(Service , SInitArg),

80 not at(N, has_tool_for(Offering , Skill)),

story_op(N, build_options ).

error(m("Offered service without contest tool.", N)) :-

st(N, property(offering_service , Offering , Service)),

85 at(

N,

skill_link(

Skill , contest , tool ,

Service ,

90 between(SInitArg , Opponent),

either(SOutcome , OtherOutcome)

)

),

default_intent(Service , SOutcome),

95 initiator(Service , SInitArg),

not at(N, has_tool_for(Offering , Skill)),
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story_op(N, build_options ).

error(m("Offered service without contest tool.", N)) :-

100 st(N, property(offering_service , Offering , Service)),

at(

N,

skill_link(

Skill , contest , tool ,

105 Service ,

between(Opponent , SInitArg),

either(OtherOutcome , SOutcome)

)

),

110 default_intent(Service , SOutcome),

initiator(Service , SInitArg),

not at(N, has_tool_for(Offering , Skill)),

story_op(N, build_options ).

p-polymorphed.lp

1 % polymorphed

potential(problem , property , polymorphed , Any) :- any_class(Any).

pcategory(potential(problem , property , polymorphed , Any), urgent) :-

5 any_class(Any).

pcategory(

potential(problem , property , polymorphed , Any),

persistent

10 ) :-

any_class(Any).

problematic_for(

problem ,

15 property ,

polymorphed ,

Any ,

inst

) :- any_class(Any).

20

% When you become polymorphed , you become a chicken if you weren ’t one

% already:

% Changing the type and/or number of an entity is NOT GOOD!

% TODO: Make this work?

25 %at(N, consequence_of (X, O, property(type , Target , chicken ))) :-

% at(N, consequence_of (X, O, property(polymorphed , Target , Any ))),

% not st(N, property(type , Target , chicken )),

% story_op(N, build_options ).
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30 % You also gain the " unintelligent " skill if you didn ’t already have

% it:

at(

N,

consequence_of(X, O, property(has_skill , Target , unintelligent ))

35 ) :-

at(N, consequence_of(X, O, property(polymorphed , Target , Any))),

not st(N, property(has_skill , Target , unintelligent )),

story_op(N, build_options ).

40 % You also drop all of your items:

% TODO: Some way to pick them back up!

% TODO: Some concept of item ownership !

at(N, consequence_of(X, O, _not , relation(has_item , Target , Item ))) :-

at(N, consequence_of(X, O, property(polymorphed , Target , Any))),

45 st(N, relation(has_item , Target , Item)),

story_op(N, build_options ).

% When you ’re polymporhed back , you regain your original type and lose

50 % the unintelligent skill unless it’s a class skill for your original

% type:

% See above

% TODO: Make this work?

55 %at(N, consequence_of (X, O, property(type , Target , Original ))) :-

% at(

% N,

% consequence_of (

% X,

60 % O, _not ,

% property(polymorphed , Target , Original)

% )

% ),

% Original != chicken ,

65 % story_op(N, build_options ).

at(

N,

consequence_of(

70 X,

O, _not ,

property(has_skill , Target , unintelligent)

)

) :-

75 at(

N,

consequence_of(
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X,

O, _not ,

80 property(polymorphed , Target , Original)

)

),

0 = {

class_skill(SomeClass , unintelligent , always) :

85 subclass(Original , SomeClass),

class_skill(SomeClass , unintelligent , always );

class_skill(Original , unintelligent , always) :

class_skill(Original , unintelligent , always)

},

90 story_op(N, build_options ).

% Becomming polymorphed cancels several other potentials :

at(

95 N,

consequence_of(

X,

O,

nullifies ,

100 potential(opportunity , state(knows_gossip , Target ))

)

) :-

at(N, consequence_of(X, O, property(polymorphed , Target , Any))),

at(N, potential(opportunity , state(knows_gossip , Target ))),

105 story_op(N, build_options ).

at(

N,

consequence_of(

110 X,

O,

nullifies ,

potential(opportunity , state(bored , Target ))

)

115 ) :-

at(N, consequence_of(X, O, property(polymorphed , Target , Any))),

at(N, potential(opportunity , state(bored , Target ))),

story_op(N, build_options ).

120 % yes , polymorphing someone is an extreme way of healing them ...

at(

N,

consequence_of(

X,

125 O,

nullifies ,
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potential(problem , state(injured , Target ))

)

) :-

130 at(N, consequence_of(X, O, property(polymorphed , Target , Any))),

at(N, potential(problem , state(injured , Target ))),

story_op(N, build_options ).

at(

135 N,

consequence_of(

X,

O,

nullifies ,

140 potential(

opportunity ,

property(offering_service , Target , Anything)

)

)

145 ) :-

at(N, consequence_of(X, O, property(polymorphed , Target , Any))),

at(

N,

potential(

150 opportunity ,

property(offering_service , Target , Anything)

)

),

story_op(N, build_options ).

155

at(

N,

consequence_of(

X,

160 O,

nullifies ,

potential(opportunity , relation(selling , Target , Anything ))

)

) :-

165 at(N, consequence_of(X, O, property(polymorphed , Target , Any))),

at(N, potential(opportunity , relation(selling , Target , Anything ))),

story_op(N, build_options ).

at(

170 N,

consequence_of(

X,

O,

nullifies ,

175 potential(problem , relation(accusing , Target , Anyone ))
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)

) :-

at(N, consequence_of(X, O, property(polymorphed , Target , Any))),

at(N, potential(problem , relation(accusing , Target , Anyone ))),

180 story_op(N, build_options ).

at(

N,

consequence_of(

185 X,

O,

nullifies ,

potential(problem , relation(threatening , Target , Anyone ))

)

190 ) :-

at(N, consequence_of(X, O, property(polymorphed , Target , Any))),

at(N, potential(problem , relation(threatening , Target , Anyone ))),

story_op(N, build_options ).

p-selling.lp

1 % selling

potential(opportunity , relation , selling ).

initiated_by(opportunity , relation , selling , from).

5 error(m("Selling more than one of the same item type.")) :-

story_node(N),

st(N, relation(selling , Seller , Item1)),

st(N, relation(selling , Seller , Item2)),

Item1 != Item2 ,

10 st(N, property(type , Item1 , SameType)),

st(N, property(type , Item2 , SameType )).

at(

N,

15 consequence_of(

X,

O,

nullifies ,

potential(

20 opportunity ,

relation(selling , Merchant , Item)

)

)

) :-

25 at(

N,

consequence_of(X, O, _not , relation(has_item , Merchant , Item))
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),

at(N, potential(opportunity , relation(selling , Merchant , Item))),

30 story_op(N, build_options ).

p-stolen_from.lp

1 % stolen_from

potential(problem , relation , stolen_from ).

pcategory(potential(problem , relation , stolen_from), urgent ).

pcategory(potential(problem , relation , stolen_from), immediate ).

5 problematic_for(problem , relation , stolen_from , from).

% Whoever has the item is the thief:

at(

N,

10 initiated_by(

potential(problem , relation(stolen_from , Victim , Item)),

Thief

)

) :-

15 at(N, potential(problem , relation(stolen_from , Victim , Item))),

st(N, relation(has_item , Thief , Item )).

% taking back the item resolves the stolen_from potential:

at(

20 N,

consequence_of(X, O, resolves , relation(stolen_from , Victim , Item))

) :-

at(N, consequence_of(X, O, relation(has_item , Victim , Item))),

st(N, relation(stolen_from , Victim , Item)),

25 story_op(N, build_options ).

p-threatening.lp

1 % threatening

potential(problem , relation , threatening ).

pcategory(potential(problem , relation , threatening), urgent ).

pcategory(potential(problem , relation , threatening), immediate ).

5 initiated_by(problem , relation , threatening , from).

problematic_for(problem , relation , threatening , to).
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B.7 Actor Definitions

These files define a simple hierarchical ontology of actors. The highest levels of

the ontology are actually defined in the core file actors.lp. Actor definitions can

also specify things like skills or items that can be automatically associated with

certain types of actors. Actor types are used mainly in the setup files.

animals.lp

1 actor_def(chicken , animal , "chicken", singular , either ).

actor_def(chickens , animal , "chickens", plural , neuter ).

bad_guys.lp

1 subclass(person , bad_guy ).

powerful(bad_guy ).

subclass(bad_guy , stealer ).

5 class_skill(stealer , acrobatics , sometimes ).

class_skill(stealer , thievery , always ).

subclass(bad_guy , tough ).

class_skill(tough , fighting , always ).

10 class_item(tough , artificial_weapon , 0, 1).

actor_def(bandits , tough , "bandits", plural , neuter ).

class_skill(bandits , thievery , sometimes ).

15

actor_def(thief , stealer , "thief", singular , either ).
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commmoners.lp

1 subclass(person , commoner ).

powerless(commoner ).

% General commoners

5 actor_def(innkeeper , commoner , "innkeeper", singular , either ).

class_skill(innkeeper , literacy , sometimes ).

class_skill(innkeeper , storytelling , sometimes ).

% Businesspeople

10 subclass(commoner , businessperson ).

class_skill(businessperson , literacy , always ).

actor_def(merchant , businessperson , "merchant", singular , either ).

class_skill(merchant , tinkering , sometimes ).

15 class_skill(merchant , music , sometimes ).

class_skill(merchant , elocution , sometimes ).

class_skill(merchant , storytelling , sometimes ).

class_item(merchant , treasure , 0, 1).

class_item(merchant , book , 0, 1).

20 class_item(merchant , artificial_weapon , 1, 1).

% Skilled workers

subclass(commoner , skilled ).

class_skill(skilled , literacy , sometimes ).

25

actor_def(healer , skilled , "healer", singular , either ).

class_skill(healer , healing , always ).

class_item(healer , medicine_chest , 1, 1).

30

% Laborers

subclass(commoner , laborer ).

class_skill(laborer , storytelling , sometimes ).

35 actor_def(peasant , laborer , "peasant", singular , either ).

class_skill(peasant , wilderness_lore , sometimes ).
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monsters.lp

1 subclass(animal , monster ).

powerful(monster ).

class_skill(monster , fighting , always ).

class_skill(monster , monstrous , always ).

5 class_skill(monster , wilderness_lore , sometimes ).

% actor_def(dragon , monster , "dragon", singular , neuter ).

%item_def(dragon_scale , treasure , "dragon scale", singular ).

%item_def(dragon_claws , natural_weapon , "claws", plural ).

10 % class_item (dragon , dragon_claws , 1, 1).

% class_item (dragon , dragon_scale , 0, 1).

%trophy(dragon , dragon_scale ).

% actor_def(leviathan , monster , "leviathan", singular , neuter ).

15 %item_def(

% leviathan_ambergris ,

% treasure ,

% "leviathan ambergris ",

% singular

20 %).

%trophy(leviathan , leviathan_ambergris ).

% TODO: "group" number

% actor_def(ripper_pack , monster , "pack of rippers", singular , neuter ).

25

actor_def(ogre , monster , "ogre", singular , either ).

item_def(sack_of_gold , treasure , "sack of gold", singular ).

%item_def(dragon_claws , natural_weapon , "claws", plural ).

% class_item (dragon , dragon_claws , 1, 1).

30 class_item(ogre , artificial_weapon , 0, 1).

class_item(ogre , sack_of_gold , 0, 1).

trophy(ogre , sack_of_gold ).

nobles.lp

1 subclass(person , aristocrat ).

powerful(aristocrat ).

class_skill(aristocrat , literacy , always ).

class_skill(aristocrat , elocution , sometimes ).

5 class_skill(aristocrat , music , sometimes ).

class_item(aristocrat , treasure , 0, 1).

class_item(aristocrat , book , 0, 1).

actor_def(noble , aristocrat , "noble", singular , either ).
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B.8 Item Definitions

These files define a hierarchical ontology of items beneath the high-level cate-

gories defined in the core file items.lp. Item types are mainly relevant because

they can be tools for associated skills. The “teaches_skill” predicates in the

books.lp file are unfortunately impotent at the moment, although once a skill-

learning system exists these would provide an additional incentive for acquiring

these items.

books.lp

1 subclass(item , book).

%item_def(holy_book , book , "holy book", singular ).

% teaches_skill (holy_book , prayer ).

5 %tool_for(holy_book , prayer ).

item_def(plants_book , book , "book of herbal lore", singular ).

teaches_skill(plants_book , wilderness_lore ).

tool_for(plants_book , wilderness_lore ).

10 teaches_skill(plants_book , healing ).

tool_for(plants_book , healing ).

item_def(ancient_grimoire , book , "ancient grimoire", singular ).

teaches_skill(ancient_grimoire , sorcery ).

15 tool_for(ancient_grimoire , sorcery ).

%item_def(animals_book , book , "guide to wild beasts", singular ).

% teaches_skill (animals_book , wilderness_lore ).

%tool_for(animals_book , wilderness_lore ).

20

%item_def(speech_book , book , "book of speeches", singular ).

% teaches_skill (speech_book , elocution ).

%item_def(music_book , book , "music book", singular ).

25 % teaches_skill (music_book , music ).

item_def(medicine_book , book , "book of medicine", singular ).

teaches_skill(medicine_book , healing ).

tool_for(medicine_book , healing ).

30

%item_def(legends_book , book , "book of legends", singular ).
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% teaches_skill (legends_book , storytelling ).

%tool_for(legends_book , storytelling ).

charms.lp

1 subclass(item , charm).

item_def(ring , charm , "ring", singular ).

%item_def(amulet , charm , "amulet", singular ).

5 %item_def(bracelet , charm , "bracelet", singular ).

%item_def(necklace , charm , "necklace", singular ).

%item_def(anklet , charm , "anklet", singular ).

%item_def(earrings , book , "earrings", plural ).

%item_def(hair_clip , charm , "hair clip", singular ).

10 %item_def(belt , charm , "belt", singular ).

%item_def(vest , charm , "vest", singular ).

%item_def(comb , charm , "comb", singular ).

instruments.lp

1 subclass(item , instrument ).

%item_def(harp , instrument , "harp", singular ).

%item_def(mandolin , instrument , "mandolin", singular ).

5 %item_def(flute , instrument , "flute", singular ).

item_def(oboe , instrument , "oboe", singular ).

%item_def(trumpet , instrument , "trumpet", singular ).

%item_def(accordian , instrument , " accordian", singular ).

10 tool_for(IType , music) :- item_def(IType , instrument , Name , Number ).

tools.lp

1 subclass(item , tool).

%item_def(hammer , tool , "hammer", singular ).

%tool_for(hammer , tinkering ).

5

%item_def(pliers , tool , "pliers", plural ).

%tool_for(pliers , tinkering ).

item_def(medicine_chest , tool , "medicine chest", singular ).

10 tool_for(medicine_chest , healing ).
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treasure.lp

1 subclass(item , treasure ).

%item_def(coins , treasure , "coins", plural ).

%item_def(gem , treasure , "gem", singular ).

5 %item_def(spices , treasure , "spices", plural ).

item_def(perfume , treasure , "perfume", plural ). % TODO: Mass nouns?

weapons.lp

1 subclass(item , weapon ).

subclass(weapon , artificial_weapon ).

subclass(weapon , natural_weapon ).

5

%item_def(sword , artificial_weapon , "sword", singular ).

item_def(spear , artificial_weapon , "spear", singular ).

%item_def(javelin , artificial_weapon , "javelin", singular ).

%item_def(dagger , artificial_weapon , "daggers", plural ).

10 %item_def(axe , artificial_weapon , "axe", singular ).

%item_def(mace , artificial_weapon , "mace", singular ).

%item_def(glaive , artificial_weapon , "glaive", singular ).

%item_def(bow , artificial_weapon , "bow", singular ).

%item_def(rapier , artificial_weapon , "rapier", singular ).

15

tool_for(IType , fighting) :-

item_def(IType , artificial_weapon , Name , Number ).

tool_for(IType , fighting) :-

item_def(IType , natural_weapon , Name , Number ).
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