
Procedural Level Generation Using Occupancy-Regulated Extension

Peter Mawhorter, Michael Mateas

Abstract— Existing approaches to procedural level generation
in 2D platformer games are, with some notable exceptions,
procedures designed to do the work of a human game designer.
They offer the usual benefits and disadvantages of AI applied to
a cognitive task: they can work much faster than a human level
designer, and are in some cases able to explore the design space
automatically to find levels with desirable qualities. But they
aren’t able to capture the human creativity that produces the
most interesting level designs, and they are usually very specific
to their particular domain. This paper introduces occupancy-
regulated extension (ORE), a general geometry assembly al-
gorithm that supports human-design-based level authoring at
arbitrary scales.

I. INTRODUCTION

A good procedural level generator must satisfy complex
constraints in an aesthetically pleasing manner. Existing
approaches to procedural level generation systems for plat-
formers often focus on the constraints involved, and thereby
greatly limit the variety of their output. They instantiate pro-
cesses which emulate a human designer in order to produce
a level, using algorithms that by their nature create playable
levels, with extra processes dedicated to adding interesting
features that make the levels enjoyable. These processes are
usually domain-specific, which allows them to generate level
designs that take advantage of the interesting mechanics
exclusive to their domain. The algorithm presented here,
however, takes the opposite approach. It is designed to be
general, in the sense that it generates geometry without
knowing about the mechanics of the game (and therefore
could reasonably be used with a variety of different games),
and it is designed with variety rather than playability as the
primary goal. To generate enjoyable levels without reason-
ing about mechanics, occupancy-regulated extension (ORE)
relies on pre-authored chunks of levels as raw material,
operating in a manner similar to case-based-reasoning. This
reliance imposes some limitations on the system, but also
gives it some unique advantages, including the ability to tap
into the creativity of a human level designer.

Occupancy-regulated extension works by assembling a
level using chunks from a library. The algorithm uses po-
sitions that the player might occupy during play to anchor
each chunk, and these potential positions are also used as
the extension points for a partial level. This process greatly
narrows the space of levels that can be produced from the
given chunk library, mostly by excluding various incoherent
and unplayable levels. By regulating the incremental exten-
sion of the level using occupancy, the level is allowed to be
quite complex without devolving into a chaotic jumble of
unrelated components.

Although occupancy-regulated extension itself is domain-
independent in that it specifies how geometry should be

assembled without knowing what that geometry is, its use
in a specific domain does require some adaption: a domain-
specific concept of chunk compatibility must be established,
and domain-specific post-processing is also usually desirable.
Of course, a chunk library must also be created in order
to use the algorithm. We have implemented ORE in the
Infinite Mario engine, in order to enter the level generation
contest at the 2010 Computational Intelligence in Games
(CIG) conference.

II. RELATED WORK

Games like Infinite Mario and Spelunky are examples
of procedural content generation in playable systems [1],
[2]. Both take a domain-specific chunk-based approach to
generation: in order to generate a level, they split it into
chunks, and generate each chunk using a relatively simple
algorithm. For example, in Infinite Mario, the generator
iteratively builds level sections of random length until it
reaches the desired level length. Each section constructed
is built using one of 5 template/algorithms: ‘straight’, ‘hill’,
‘tubes’, ‘jump’, and ‘cannons’. These algorithms are pretty
simple, building a specific type of terrain with a bit of
random variation thrown in. In a similar fashion, levels of
Spelunky are split into sixteen 10x8 rooms arranged in a
four by four grid. Each room is randomly selected from
a list of pre-authored segments, but the pre-authored room
segments each contain a mixture of static terrain and hooks
for random generation of sub-components. Finally, a separate
algorithm interfaces with the generation of room details and
adds enemies and treasure.

Both of these algorithms at their core generate “good”
geometry, which they then decorate and modify, within strict
limits. Spelunky is a bit more permissive in this respect, but
also includes game mechanics for destroying terrain, which
make the playability constraint easier to satisfy. The focus
on playability limits how creative these algorithms can be,
and in the case of Infinite Mario, it greatly limits the variety
that is generated.

In both games, of course, new bits of content (either
template/algorithms in Infinite Mario or room templates and
sub-components in Spelunky) could be authored to increase
the variety present in generated levels, but neither game
supports combining geometry to create variety. In Infinite
Mario, each template/algorithm works in its own space, so
emergent effects are limited to the borders between sections,
and are minimal. In Spelunky, components are combined
hierarchically, which results in limited emergent geometry,
but there is no interaction between geometric components
that could produce truly novel architecture. On the other
hand, Spelunky’s separate object generation does react with

the geometry to produce emergent variation, which gives
the game good replay value. It’s also worth noting that by
using specific room variants, Spelunky can incorporate large-
scale features like shops and bosses that would be difficult
to incorporate in a fine-grained generator.

Beyond games like Infinite Mario and Spelunky, there have
been several research projects aimed at applying procedural
generation methods to platformer levels. For example, Comp-
ton and Mateas have proposed a framework for rhythm-based
procedural generation of platformer levels [3] which was
extended by Smith et al. [4], [5], and an alternative challenge-
based approach has recently been proposed by Sorenson and
Pasquier [6]. Other projects have used procedural generation
as a means of studying the effects of level design on player
behavior [7], or as the basis of a dynamic difficulty adjust-
ment algorithm [8]. For the most part, the constraints that
these efforts have adopted in order to facilitate reaching their
goals have drastically limited the design space within which
their algorithms work. For example, out of the citations
above, only Compton and Mateas’ initial framework allows
for having two separate routes through the level stacked on
top of one another. This is an infrequent occurrence in actual
Super Mario levels, but it can be used to great effect by
a human designer. Of course, limiting the generative space
in these ways has allowed these projects to achieve other
goals, like rhythmic pacing, and has enabled them to meet
strong playability constraints. In contrast, because it uses
human-designed chunks and arbitrary extension, occupancy-
regulated extension is able to reproduce the full range of
levels that a human might design, but does not guarantee
playability.

An example of a less-limited system is Laskov’s work
on reinforcement-learning-based level generation [9] which
treats level generation as a sequence of choices undertaken
by a level-building agent and uses reinforcement learning
to create a level-building policy that is executed to cre-
ate a level. Laskov’s system uses 3x6-tile chunks of level
components as its actions, and places them from left to
right at different heights within the level, creating a system
of explicit branching paths. It uses a simple algorithm for
tracing reachability during this process, which allows it to
guarantee playability. Because Laskov’s generation domain
only includes one obstacle type, one enemy type, and one
treasure type, it’s difficult to assess the generality of the
learning-based algorithm (or whether it can generate geome-
try that makes clever use of game mechanics), but the ability
to use custom action types is promising.

Besides work in procedural level generation, ORE is
inspired by (but only loosely based on) the reasoning strategy
known as case-based reasoning [10]. Although the ‘cases’
used are level geometry rather than situations, and the full
case-based reasoning cycle of recall and adaption is not used,
the principle is the same: iteratively make a decision about
what to do based on past actions. Accordingly, questions of
how to generate and maintain a case library are relevant.

III. OCCUPANCY-REGULATED EXTENSION

The core concept of occupancy-regulated extension is
occupancy, which is expressed as potential positions (‘an-
chors’). Anchors are locations within the level which the
player might occupy during gameplay. Accordingly, the raw
material of ORE consists of a partial level and a set of
chunks of level geometry, both annotated with potential
positions. The algorithm then works by adding chunks to the
partial level in a manner that preserves anchors, iteratively
expanding the existing content. To generate a full level, the
initial content should just be a starting area with an anchor
for the player’s starting location, and a library of chunks (the
size and nature of this library are discussed in section IV-C;
our current implementation uses a library of 42 chunks, the
largest of which is 10x10 tiles).

Context Selection

Chunk Selection

Chunk Integration

Filtering

Selection

Fig. 1. The steps of the occupancy-regulated extension algorithm.

The ORE algorithm iterates using three steps (see figure 1).
First, a context is selected, which will be used to expand the
current content. Second, a chunk is selected from the library
that matches that context. Finally, the chunk is integrated
with the existing content.

Context selection consists of deciding which part of the
existing geometry to expand. ORE itself is agnostic to the
context selection method, but it must select a single anchor
at which to expand the level. The simplest possible context
selection procedure just picks an anchor at random from the
existing anchors within the generated content. This often
picks positions at which no further expansion is possible
given the chunk selection algorithm and chunk library, how-
ever, so a slightly smarter routine is used: select anchors from
existing content in random order, but don’t re-use any until
all of them have been used. Much more intelligent context
selection criteria are of course possible, and this is one area
that warrants future study.

Fig. 2. A dramatization of chunk selection. In the upper left, we see
existing content, including an anchor. The upper right shows a matching
chunk (based on geometric filtering). The lower left shows the resulting
geometry (the original anchor is now marked as used), and the lower right
shows the level segment after post-processing.

Following context selection, chunk selection consists of a
filtering step followed by a selection step (see figure 2). First,
the chunk library must be filtered to select a list of compatible
candidates, and then a single chunk must be chosen from this
list for integration. Once again, ORE is agnostic to the actual
filtering and selection methods used, except that they should
produce a single chunk with which to extend the level. It
is important that the selection process produce a compatible
chunk, however; otherwise ORE would happily construct a
completely incoherent level. This notion of compatibility, of
course, depends on the domain in which generation occurs,
and on what exactly a chunk contains.

For Infinite Mario, we use the various sprites (such as
normal ground, a pipe, or a Koopa) as components, along
with some extra information (like which direction(s) a plat-
form should extend in). Chunks are sets of these components
placed in relation to each other, with anchors mixed in as
just another component type. The chunk library encodes
these component sets in a library file, annotated with chunk
properties as in this example chunk, which consists of a pipe
on flat ground that contains a piranha flower (the @ characters
represent anchors; the frequency tag here means that this
chunk will have a weight of 0.6 during random selection
rather than the default of 1):
frequency: -0.4

@ \
[[\
[[\ f

@ [[@\
++++++\

The filtering algorithm in our system iterates over all of the

chunks in the chunk library and checks each for compatibility
with the chosen context at each of the anchors within the
chunk. The filtering algorithm uses the following steps to
produce a matching chunk given a test chunk from the chunk
library (along with a particular anchor within it) and the
chosen context (an anchor within the ‘query chunk’, which
is all of the components within the level so far):

1. Align the test chunk with the query chunk using their
anchors.

2. For each component in the test chunk:
a. If it duplicates an existing component, eliminate it and

continue to the next component.
b. If it is otherwise on top of an existing component,

reject this test chunk.
c. If it is not a platform, for each of its up to 8 adjacent

neighbors in the query chunk:
i. If the neighbor is duplicated by a component in

the test chunk, continue.
ii. If the neighbor matches the test component, elim-

inate the test component and continue testing the
rest of the chunk.

iii. Otherwise, reject the test chunk.
d. If it is a platform, for each of the up to 25 neighbors

in the query chunk within 2 units of the component:
i. If the neighbor overlaps a matching component in

the test chunk, continue.
ii. If the neighbor isn’t a platform and directly blocks

the test component from extending as specified,
reject the test chunk.

iii. If the neighbor is a platform, reject the test chunk
unless it is ‘compatible’1.

e. Eliminate any remaining components in the test chunk
that extend beyond the edges of the level.

f. If the test chunk was not rejected, return all of the
components not eliminated during testing. These form
the matching chunk.

Once a set of matching chunks has been found, the
selection algorithm is invoked. This selection algorithm can
be used to control the generator output, and tuning it is im-
portant for producing fun levels. The currently implemented
selection process involves computing a weight for each chunk
and picking one at random with probabilities proportional to
their weights. Weights are computed using a combination
of a per-chunk weight specified in the library, the number
of times that chunk has been used before, and whether or
not the chunk is “precise” as specified in the library. Of
course this particular selection process isn’t part of ORE; the
core ORE algorithm only requires that the chunk selected be
compatible with the chosen context (as ensured during the
chunk matching step).

Given a context and a compatible chunk, the final step is

1Depending on their relative positions, neighboring platform components
might be compatible if they extend towards each other, if they form an L
shape (i.e. both extend towards or away from a common point in orthogonal
directions), or if they extend away from each other with a gap in between.

simply to integrate the new chunk with the existing geometry.
This is achieved by pasting in the matched chunk at its
specified anchor. During this step, the potential position that
is used to anchor the new chunk is marked as used to
inform the next context selection step, and any other potential
positions in the incoming chunk are added to the existing
content just like the other pieces of the chunk. Because of
this, new chunks will grow out of the chunk that was just
placed, eventually forming a complete level.

A. Edge Cases

The three steps of ORE can be iterated to build an entire
level, but the algorithm can run into trouble in two ways.
First, it’s possible that by using chunks that include only a
single anchor, the total number of available anchors in the
content being generated will reach zero. Second, it’s possible
that when attempting to find a compatible chunk for a given
context, no chunk will match. The first problem is solved
by simply resetting the list of used anchors, so that each of
the original anchors throughout the existing content may be
checked again for chunk placement. But of course it could be
the case that no chunks can fit at any of these anchor points.
The solution to the second problem fixes this issue as well,
though: when no matching chunks are found for a context
query, the algorithm extrapolates a new anchor several units
to the right of, and possibly a few units above, the current
anchor, as long as this new anchor wouldn’t overlap existing
geometry. Presumably, this new position will permit further
generation, and in the worst case, iterating the addition of
these free anchors should eventually lead to a suitable place
for further generation.

B. Post-Processing

Even after enough components have been placed to form a
complete level various extra mechanisms are necessary. For
example, many components indicating extension in a particu-
lar direction will not necessarily have neighbors immediately
adjacent to them. To fix this, a post-processing algorithm
goes through the level and expands all components that are
marked for extension, forming solid blocks of ground from
sparse platforms (this is illustrated in the final panel of figure
2).

A second post-processing step takes raw platforms and
gives them specific sprites. For example, each of the edges of
a platform must be set to the correct edge sprite depending
on its facing (figure 2 uses these edge sprites to indicate
extension constraints on the components involved, but the
correct sprites actually aren’t known until after the expansion
step). This cleanup step is relatively uninteresting, except
when an invalid sprite is placed (in Infinite Mario, this can
happen when ground is placed that is only one tile thick:
there is no sprite for ground that has edges on two sides).
In these cases, the post-processing step does one of two
things: it either replaces the offending sprite with a similar
sprite that fits (in the case of thin ground, it uses solid blue
blocks), or it removes the offending sprite entirely, effectively
modifying the level. Given the fact that invalid sprites are

mostly produced by quirks in the generation algorithm, this
domain-specific post-processing can correct for some edge
cases.

The final post-processing step applies some simple global
constraints to the level. This addresses the inability of the
simple iterative algorithm to respect global constraints. For
example, traditionally in Mario levels, the distribution of
powerups is regular: they are distributed along the x-axis
such that they occur infrequently, often exactly twice in a
level. Because this constraint is tied to both the x-position
of the powerup box and the existence of other powerup
boxes, it would be difficult to implement as part of the
chunk selection process. Instead, the global post-processing
step iterates over the level from left to right, using simple
probabilities to replace most powerup boxes with coin boxes.
The algorithm uses a threshold that increases with each
iteration, and leaves a powerup in place if a random number
is below the threshold, resetting the threshold when it does
so. By tuning the initial threshold and the increment, an even
but random distribution of powerup boxes can be achieved,
assuming the chunk placement algorithm places powerup
boxes regularly. This exact same step is also performed
separately for enemies, winged enemies, and enemy spawn
points, although each of these features use a much faster
increment than powerups do. For these other features, if the
probability check fails, the feature is simply removed. These
post-processing steps allow more exact control over the
output than chunk selection weights would alone, especially
with regards to difficulty.

The use of domain-specific post-processing techniques
highlights some of the weaknesses of the occupancy-
regulated extension algorithm on its own. Although ORE is
agnostic to chunk content, it relies on smart chunk selection
and post-processing algorithms to create interesting levels. To
use ORE in a new domain, it would be necessary to define a
new compatibility algorithm and post-processing procedure.

IV. DISCUSSION

A. Characterization

Without the opportunity to perform experimental playtest-
ing on the output of our system, we rely instead on critical
analysis of the generator output to judge the quality of
our system as a procedural content generator. Eventually, a
more formal analysis including metrics for desired output
properties should be performed, as has been done with other
systems [11].

B. System Output

The occupancy-regulated extension algorithm generates
content within a large space of possible variations. Even
given a small fixed chunk library (there are 42 chunks in the
library used to generate the examples shown here), because
the space of possible levels includes all tilings of those
chunks in the plane (constrained by potential positions and
compatibility), the generative space is quite large. A small
sampling of this space is enough to demonstrate that it is

Fig. 3. The beginnings of four different levels. The arrow behind Mario
and the initial downward curb are part of the fixed starting platform that
forms the basis for generation.

also an interesting one: figure 3 shows just the first screen of
four different generated levels (each panel contains between
about four and ten chunks). These four levels were generated
one after the other, and used identical generation parameters
and the same chunk library. From examining these examples,
some of the output patterns become clear.

Given the starting components and the chunk library,
levels where the player starts near the top of the screen
will be rare. It’s also the case that much height variation
within the first bit of the level is uncommon. However,
unlike levels of the original Infinite Mario, the placement
of enemies, coins, and blocks is quite unpredictable. At the
same time, we can already see that because of the chunk
library, the generator does have some idioms that it uses:
the walking Goomba below a line of blocks appears in two
of these levels, as does the line of three coins above open
ground (both of which are chunks in the library). Because
these idioms combine with surrounding geometry, they don’t
become boring: the line of coins is more interesting with
blocks directly above it, or when it gets placed at the edge
of a platform. Beyond idioms, there’s also a basic logic to the
way that components are placed: there is lots of variation, but
it isn’t just chaos. By maintaining the fundamental continuity
of potential positions, ORE achieves high variability while
remaining coherent. In some cases, it does produce odd
architecture, like the open space under the line of blocks
in the bottom left example, but this odd architecture does
not dominate the levels, and it sometimes crosses the line
from odd into interesting.

Besides variation, ORE is also capable of producing com-
plexity. This is something that the original Infinite Mario
lacked, and something that is easy to neglect when a gener-
ator has other specific goals. Figure 4 illustrates a complex
area. Although this is a hand-picked example, such complex
areas aren’t rare, and portions of levels that involve multi-
path structures are quite common. Again, this complexity
is not just chaos: the constraints of potential positions and

Fig. 4. Four screens of progress through a complex generated area. Not all
levels contain structures this complex, but neither are they extremely rare.

compatibility give rise to recognizable paths through these
areas: they are complex in an enjoyable way. It’s also worth
pointing out that the largest chunks in the chunk library for
these examples are no larger than 10x10 tiles (in the lower-
right panel of figure 3, the ledge at the right of the screen,
along with the two coins above it, the ground below it, and
the three enemies near it, is a single chunk), and the smallest
chunks are around 2x3 tiles (the lines of brick blocks in
figure 4 are generated by a series of overlapping chunks
each of which contains a pair of bricks). Although complex
areas could be added via large hand-authored chunks, they
also arise algorithmically from the interaction of many small
chunks.

Fig. 5. An emergent bit of level design: the block above the logs contains
a powerup, but it can only be reached if the player doesn’t already have a
powerup (or is very skilled).

Variation and complexity are certainly desirable proper-
ties, but they might just result directly from hand-authored
chunks. If this were the case, then ORE would be uninter-
esting as a creative system, even if it were an excellent tool
for producing levels. But examination of generated levels
shows that this is not the case: the random combination of

compatible chunks sometimes results in interesting use of
game mechanics that was not present in the chunk library.
Figure 5 shows an example of this: two chunks, one involving
a stack of logs and the other involving a powerup block,
have been superimposed. The resultant geometry makes it
difficult for the player to obtain the powerup unless they don’t
currently have one (getting a powerup increases your size,
making it difficult to fit below the powerup block). These
sorts of emergent structures are fairly rare (this one occurs
once in perhaps several dozen levels) but they show that
the system does have some creativity to it. Because clever
combinations of elements are something that players look
forward to in human-designed levels, their presence in a
machine-generated level is encouraging.

C. The Chunk Library

None of this analysis of variance and complexity has
addressed how the chunk library influences generation. The
existing chunk library contains 42 chunks split into two
groups: an initial library of 22 chunks, and an extended
library of 20 additional chunks. The initial library is more
general, while the extended library contains more varied
components.

Fig. 6. The initial screens of four levels constructed using only the initial
chunk library. Note that at least one chunk (a red Koopa under a question
block) appears in all four of these, and is used several times in panel 4.

To get an idea of the effects of chunk library variation,
figures 6 and 7 each show the first screen of four levels (like
the earlier example, these levels were generated one after the
other). The levels in figure 6 were generated using only the
initial chunk library, while the levels in figure 7 were gen-
erated using only the extended chunk library. Immediately,
the patterns in each group can be seen, and properties like
the availability of chunks that represent changes in ground
height are clear. These two example sets have noticeably
different styles which are consistent within each set. The
first set uses lots of Koopas on varying-height ledges, along
with frequent blocks. The second set uses lots of vertical
objects, like pipes and logs, along with special enemies like
bullet towers, and it also has some blocks scattered in midair.

While the ability to generate stylized levels using a custom
chunk library is useful, over the course of an entire level the
components used in the second batch might become boring
due to uniform height. Because of this, that chunk library
will also be unlikely to generate complex structures. The
first set of levels holds more promise, since there are ledges
and blocks that could contribute to complex structures, but
it the uniform enemies and frequent blocks might become
boring after a while.

Fig. 7. Four more levels, this time constructed using only the extended
chunk library. The small library is evident here as well: a chunk consisting
of two wooden blocks appears in three of these four starting screens.

By looking at these smaller chunk libraries individually, it
is evident that alone, they do not quite produce interesting
variance. But using both libraries together can produce the
levels shown in figures 3 and 4. This shows that a relatively
small selection of chunks can create interesting levels, and
by manipulating the chunks present in the library, stylistic
effects can be achieved. It’s also apparent that chunk libraries
require certain kinds of chunks in order to generate com-
plex and interesting geometry configurations (chunks that
incorporate height variance are specifically useful for this).
Unfortunately, the effects of larger chunk libraries and non-
human-authored libraries have not been studied.

D. Strengths

One great benefit of ORE is that it incorporates human-
designed elements into the generated levels. Its ability to
use chunks of any scale allows for complex human-designed
components to be used, and the iterative nature of the
algorithm even permits joint design with a human, since ORE
doesn’t care how much of a level has been authored before
it starts generating. It would be simple to design a mixed-
initiative system where a designer built part of a level, asked
ORE to generate some extra pieces, and then built more
based on the results. The desirability of such systems has
been established by Smith et al. in their continuing work on
mixed-initiative rhythm-based generation [5].

By using human-designed elements as a base, ORE also
achieves some measure of domain-independence. Although

chunk selection and post-processing depend on the specifics
of the domain, these don’t require a complex player model
or deep knowledge of game mechanics. Things like how far
the player can jump, what geometry is suitable for which
enemies, and the effects of powerups are all encoded in the
chunk library, and aren’t represented explicitly in the chunk
selection or post-processing algorithms (except for the code
that generates new potential positions when the algorithm
gets stuck, which knows about jump distance). Using ORE
with another 2-dimensional platformer would not be terribly
complicated, and in fact, with more involved post-processing,
ORE could in theory be applied to a 3-dimensional space.
The chunk-based nature of the algorithm also means that
level styles can be changed or mixed together simply by
manipulating the chunk library.

The chunk-selection process is a natural place to tweak the
generator output. For example, the current implementation
adjusts difficulty in part by marking chunks with tags such
as “precise” (meaning that traversing the chunk requires
precise jumping). By using this information during chunk
selection to compute weights, the difficulty of the level can
be altered in very specific ways. Because the algorithm is
relatively quick with a small chunk library (it takes around
15 seconds to generate a complete level using a library of
42 chunks), it might even be possible to perform dynamic
difficulty adjustment using ORE.

Fig. 8. Four examples of generation mistakes: an unreachable area, a
trapped enemy, a location where the player can get stuck, and a graphical
artifact (the stack of logs is cut off at the top).

E. Weaknesses

Naturally, many of the decisions made in the design of
ORE involved trade-offs. In particular, using a chunk library
for generation necessitates the generation and maintenance
of said library. Also, there are aspects of the algorithm that
depend on the nature of the chunks in the chunk library (as
discussed briefly above in the context of post-processing).
As a generative algorithm, ORE is uninteresting to the
degree that it depends on a very specific type of chunk
library. The examples above that show generator output under

variations in the chunk library are somewhat reassuring, but
further experimentation is necessary to validate this. The fact
that ORE produces interesting output at very small chunk
library sizes is encouraging, however, because even if it
requires a hand-tuned chunk library, it could still be useful
in the context of a mixed-initiative generator that specifically
incorporated chunk generation as a task.

Another weakness of ORE is that by prioritizing variety,
it fails to guarantee playability. Given only the constraints
that arise from the anchor points, it’s possible to build an
unplayable level, because interactions between chunks placed
can violate global playability. For example, after placing
several chunks that create new anchor points successively
farther to the right, the algorithm might place a chunk
that creates an anchor point above an existing one. This
could be followed by placing chunks back towards the left,
which might almost (but not quite) overlap with the existing
chunks that were placed going to the right, forming an
insurmountable cliff. Another possibility is that if there are
“decorative” chunks in the library that contain powerups or
enemies but no geometry, these might be placed end-to-end
to form an unsurmountable gap. The current implementation
does not address this weakness, and it does sometimes create
unbeatable levels. This is currently a rare phenomenon (in
part because of the nature of the chunk library), but steps to
address it are important directions for future work.

Finally, ORE does require a robust compatibility algo-
rithm. Without care, interactions between the chunk selection
and later post-processing steps can produce undesirable sit-
uations, as seen in figure 8. In most cases, these don’t have
a major impact on gameplay (for example, to get the avatar
stuck in that third panel, a very specific action sequence is
necessary), but ideally they could be avoided by using some
more advanced compatibility algorithm. Future work on ORE
will address issues like these.

V. FUTURE WORK

A. Mixed-Initiative Design

One of the most promising directions for future work
would be to incorporate occupancy-regulated extension into a
mixed-initiative design tool. Smith et al. [5] have motivated
the creation of such tools, and their existing work shows
promise. ORE is already well-suited to the task because it
works iteratively: it doesn’t care whether existing geometry
was specified by hand or by previous iterations of the
algorithm. Furthermore, in a mixed-initiative tool, the use
of chunks would provide expressive power beyond just the
ability to hand-author segments of the level. By labeling
chunks in the library with various properties, a designer could
specify regions in which certain properties were preferred.
This preference could then be realized by manipulation
of weights during the chunk selection process. The post-
processing steps could also be manipulated by the designer
(and of course, hand-designed content could be excluded
from them), allowing for statements like “this area should
have a lot of enemies, but after it there should be some

tricky platforms with few enemies,” to be encoded as a
combination of property specifications and post-processing
customizations.

B. Library Improvements

The exact performance of ORE under variations in the
chunk library is not known. Experimenting with different
chunk libraries would better characterize the algorithm, and
using ORE with machine-generated chunk libraries would
be an interesting goal. Such a chunk library might be
automatically extracted from a level by following a play trace
through the level and taking periodic snapshots. The level
components near the player in each pair of snapshots would
become a case, and the player positions from each snapshot
would be its anchors. The cases could even be automatically
annotated with properties according to in-game events such
as the player dying. Ideally, this would allow the use of
ORE to reconstruct variations in a particular style, simply
by extracting chunks from a level designed in that style and
using those for generation. Of course, the chunk extraction
algorithm might have to be quite elaborate if ORE requires a
very specific mix of chunks to work well, or a mixed strategy
using a small, bland base chunk library along with extracted
chunks might be successful.

C. On-Line Extension

In theory, ORE could be modified to run during play, and
the chunk selection algorithm could be influenced by player
behavior and in-game events to achieve some measure of
dynamic difficulty adjustment. Of course, the various post-
processing algorithms would have to be adapted run on-line
as well, so this would not be a trivial task. Also, the gener-
ation algorithm would have to be constrained to a particular
area within the level. On the other hand, this alteration is
likely to provide at least a modest speed increase, which
should be enough to run the algorithm without noticeably
slowing down the game (at least with a chunk library about
as big as the present one).

D. Playability

Levels that aren’t playable can be incredibly frustrating,
even if they are relatively rare. Thus, adding a playability
guarantee to ORE is an important research goal. To do this,
a playability checking step could be added to the algorithm,
after chunk selection. When the check failed, the algorithm
could either select a new chunk, or it could try to add another
chunk to make the result playable again. A detailed player
model would be the basis for playability checking.

E. Generalizability

Besides work to improve ORE itself, the application
of ORE to new domains offers interesting possibilities. It
would also be interesting to investigate alternate compati-
bility constraints for new domains, and to characterize the
authoring burden associated with developing a new chunk
library. Although ORE seems relatively domain-independent,
a project that uses it in some other domain would be able to

verify or disparage this claim.

VI. CONCLUSION

Games like Infinite Mario and Spelunky use algorithms
that are based on piecing together chunks to form a level, but
only do so within strict constraints. Less-constrained iterative
techniques like case-based reasoning are well known, but
haven’t been directly applied to level generation. occupancy-
regulated extension is inspired by both of these approaches:
it uses level chunks as its core unit of operation, but has
the same context-based approach as case-based reasoning.
The key insight that allows it to be an effective algorithm is
the use of potential positions as anchor points. By focusing
on occupancy, diverse level chunks can be combined into
complex levels with emergent details while avoiding degen-
erate chaos. The focus on occupancy creates local constraints
that force chunks to fit together in meaningful ways, and,
combined with compatibility checking, prevents chunks from
interfering with each other too much. Once this balance is
achieved, the many desirable properties of the chunk-based
approach can be realized: the system is amenable to use as a
mixed-initiative tool, and supports customization of the basic
algorithm using chunk weights, alternate chunk libraries, and
component-aware post-processing. Ultimately, the quality of
the algorithm will be tested in the CIG 2010 level generation
competition, but the initial prospects for occupancy-regulated
extension as a procedural content generation algorithm are
good.

REFERENCES

[1] M. Persson, “Infinite Mario Bros,” (Game)
http://www.mojang.com/notch/mario/, last accessed: June 10,
2010.

[2] D. Yu, “Spelunky,” 2009, (Game) http://www.spelunkyworld.com/, last
accessed: June 10, 2010.

[3] K. Compton and M. Mateas, “Procedural level design for platform
games,” in Proceedings of the Second Artificial Intelligence and
Interactive Digital Entertainment Conference, 2006.

[4] G. Smith, M. Treanor, J. Whitehead, and M. Mateas, “Rhythm-based
level generation for 2d platformers,” in FDG ’09: Proceedings of the
4th International Conference on Foundations of Digital Games. New
York, NY, USA: ACM, 2009, pp. 175–182.

[5] G. Smith, J. Whitehead, and M. Mateas, “Tanagra: A mixed-initiative
level design tool,” in Proceedings of the 2010 International Conference
on the Foundations of Digital Games, 2010.

[6] N. Sorenson and P. Pasquier, “The evolution of fun: Automatic level
design through challenge modeling,” in Proceedings of the First Inter-
national Conference on Computational Creativity (ICCCX). ACM,
2010.

[7] C. Pedersen, J. Togelius, and G. Yannakakis, “Optimization of platform
game levels for player experience,” in Proceedings of the Fifth Arti-
ficial Intelligence and Interactive Digital Entertainment Conference,
2009.

[8] M. Jennings-Teats, G. Smith, and N. Wardrip-Fruin, “Polymorph: Dy-
namic difficulty adjustment through level generation,” in Proceedings
of the 2010 International Conference on the Foundations of Digital
Games, 2010.

[9] A. Laskov, “Level generation system for platform games based on a
reinforcement learning approach,” University of Edinburgh, Tech. Rep.
EDI-INF-IM090699, 2009.

[10] A. Aamodt and E. Plaza, “Case-based reasoning: Foundational issues,
methodological variations, and system approaches,” AI Communica-
tions, vol. 7, no. 1, pp. 39–59, 1994.

[11] G. Smith and J. Whitehead, “Analyzing the expressive range of a level
generator,” in Proceedings of the 2010 International Conference on the
Foundations of Digital Games, 2010.

