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What is a Behavior Tree?

I A tree:
I Leaf nodes are primitive behaviors (“throw grenade”).
I Internal nodes are abstract behaviors (“attack”).

I This tree is evaluated to decide on a behavior.
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An Example
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What About FSMs?

I In a finite state machine, state transitions are explicit

I In a behavior tree, state preconditions are explicit

I A simple FSM corresponds to a behavior list, a behavior
tree is the equivalent of an HFSM

I Preconditions are less numerous than transitions
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Behavior Selection

I Each behavior has preconditions which determine which
can be selected

I Starting with the root, each behavior picks one of its
available children to run

I This choice can be random or prioritized, or may use some
other scheme

I Once a leaf is chosen, that concrete behavior is activated

I When a behavior finishes, behavior selection starts over
again at the root
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Success and Failure

I Primitive behaviors may succeed or fail

I Higher-level behaviors depend on their children to succeed

I Failure may cause the parent to select an alternate child
instead of failing immediately
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A Behavior Tree in Action
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A Behavior Tree in Action

behavior Engage { behavior Retreat {

preconditions ( preconditions (

health > 10% health < 50%

and or

have_weapon outnumbered

) )

children ( children (

Attack Take_Cover

Covering_Fire Flee

) )

} }
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A Behavior Tree in Action

I health: 90%, weapon: rifle, outnumbered: false
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A Behavior Tree in Action

behavior Attack { behavior Covering_Fire {

preconditions ( preconditions (

have_weapon have_ranged_weapon

) and

children ( ally_under_fire

Ranged_Attack )

Melee_Attack action (

Throw_Grenade Covering_Fire_Action

) )

} }
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A Behavior Tree in Action

I weapon: rifle, ally under fire: false

Engage

Retreat

Combat

Flee

Attack

Covering
Fire

Ranged
Attack

Melee
Attack

Take
Cover

expressiveintelligencestudio UC Santa Cruz



A Behavior Tree in Action
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A Behavior Tree in Action

behavior Ranged_Attack { behavior Melee_Attack {

preconditions ( preconditions (

have_ranged_weapon have_melee_weapon

and and

opponent_in_range opponent_in_melee

) )

action ( action (

Ranged_Attack_Action Melee_Attack_Action

) )

} }
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A Behavior Tree in Action

I weapon: rifle, opponent range: 20m
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Some Caveats

I Rather than selecting a single child behavior, a node
might run its children sequentially or in parallel

I Besides preconditions, a behavior might have context
conditions

I High-priority behaviors might preempt low-priority ones

I In some systems, multiple behaviors might run at the
same time

I Behavior selection can happen in response to an event
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Behavior Priorities

behavior Engage { behavior Retreat {

preconditions ( preconditions (

health > 10% health < 50%

and or

have_weapon outnumbered

) )

priority ( priority (

10 5 + (.5 - health%)*20 +

) (outnumbered ? 10 : 0)

children ( )

Attack children (

Covering_Fire Take_Cover

) Flee

} )

}
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Behavior Priorities

I health: 20%, weapon: rifle, outnumbered: false
I Priorities: Engage: 10, Retreat: 11
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Behavior Trees in Halo 2

I Prioritized child selection drives most choices

I Impulse behaviors add some dynamic links to the tree

I Precondition checks are optimized using behavior tags

I Event-driven impulses allow more dynamic behavior

I Behavior options are limited via styles
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Query-Enabled Behavior Trees

I Dynamic selection of child behaviors

I Uses case-based reasoning to select behavior candidates at
runtime

I Selection is based largely on the variables used within the
behaviors

I This is equivalent to making all of the cases children of
each query node and performing prioritized selection at
the query node using the case similarity metric
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Reactive Planning

I Corresponds to a behavior tree that uses asynchronous
selection, with all sorts of details thrown in

I While traditional planning uses an algorithm to search the
space of all possible plans, reactive planning relies on the
architect to describe the space of all permitted plans

I A reactive planner then selects eagerly and randomly from
actions within this plan space, and tries something
different whenever anything fails
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Reactive Planning Example

sequential behavior vultureAttack(PlayerUnitWME vulture)

{

int vultureID, ex, ey;

with (success_test {

(vulture.getHasTask()==false &&

vulture.getOrder()==PlayerGuard)

query = (UnitQueryWME fresh==true)

(query.setIsEnemy(true))

(query.setLocationUnit(vulture.getID()))

(query.setIsGround(true))

(UnitQueryWME nearest::enemyID)

(EnemyUnitWME ID==enemyID realX::ex realY::ey)

}) wait;

...
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Reactive Planning Example (continued)

...

mental_act {

vulture.hasTask();

vultureID = vulture.getID();

}

// attack and wait for the command to be issued

act attackMovePixel(vultureID, ex, ey);

subgoal WaitFrames(1);

}
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Advantages of Behavior Trees

I Practical and intuitive

I More scalable than finite state machines

I Afford fine-grained and dynamic control over behavior
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Disadvantages of Behavior Trees

I Coordination of multiple agents can be difficult

I Control is implicit, so bugs can be hard to understand and
to fix

I Require some optimizations to fit into modern games
I This is why full reactive planning for game agents would be

difficult
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Discussion Topics

I Questions?

I Are there ‘tradeoffs’ between behavior trees and reactive
planning? What would you need to consider if you were
building a game and deciding between them?

I Compared to FSMs, what do BTs make easy? What do
they make hard?

I What dictates the structure of a behavior tree? In terms
of design, what are the driving concerns?

I Are there other ways to solve the problems brought up by
the query-enabled BTs paper?
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