
Behavior Trees and Reactive Planning

Peter Mawhorter

October 8, 2010

expressiveintelligencestudio UC Santa Cruz

What is a Behavior Tree?

I A tree:
I Leaf nodes are primitive behaviors (“throw grenade”).
I Internal nodes are abstract behaviors (“attack”).

I This tree is evaluated to decide on a behavior.

expressiveintelligencestudio UC Santa Cruz

An Example

Engage

Retreat

Combat

Flee

Attack

Covering
Fire

Ranged
Attack

Melee
Attack

Take
Cover

expressiveintelligencestudio UC Santa Cruz

What About FSMs?

I In a finite state machine, state transitions are explicit

I In a behavior tree, state preconditions are explicit

I A simple FSM corresponds to a behavior list, a behavior
tree is the equivalent of an HFSM

I Preconditions are less numerous than transitions

expressiveintelligencestudio UC Santa Cruz

Behavior Selection

I Each behavior has preconditions which determine which
can be selected

I Starting with the root, each behavior picks one of its
available children to run

I This choice can be random or prioritized, or may use some
other scheme

I Once a leaf is chosen, that concrete behavior is activated

I When a behavior finishes, behavior selection starts over
again at the root

expressiveintelligencestudio UC Santa Cruz

Success and Failure

I Primitive behaviors may succeed or fail

I Higher-level behaviors depend on their children to succeed

I Failure may cause the parent to select an alternate child
instead of failing immediately

expressiveintelligencestudio UC Santa Cruz

A Behavior Tree in Action

Engage

Retreat

Combat

Flee

Attack

Covering
Fire

Ranged
Attack

Melee
Attack

Take
Cover

expressiveintelligencestudio UC Santa Cruz

A Behavior Tree in Action

behavior Engage { behavior Retreat {

preconditions (preconditions (

health > 10% health < 50%

and or

have_weapon outnumbered

))

children (children (

Attack Take_Cover

Covering_Fire Flee

))

} }

expressiveintelligencestudio UC Santa Cruz

A Behavior Tree in Action

I health: 90%, weapon: rifle, outnumbered: false

Engage

Retreat

Combat

Flee

Attack

Covering
Fire

Ranged
Attack

Melee
Attack

Take
Cover

expressiveintelligencestudio UC Santa Cruz

A Behavior Tree in Action

I health: 90%, weapon: rifle, outnumbered: false

Engage

Retreat

Combat

Flee

Attack

Covering
Fire

Ranged
Attack

Melee
Attack

Take
Cover

expressiveintelligencestudio UC Santa Cruz

A Behavior Tree in Action

behavior Attack { behavior Covering_Fire {

preconditions (preconditions (

have_weapon have_ranged_weapon

) and

children (ally_under_fire

Ranged_Attack)

Melee_Attack action (

Throw_Grenade Covering_Fire_Action

))

} }

expressiveintelligencestudio UC Santa Cruz

A Behavior Tree in Action

I weapon: rifle, ally under fire: false

Engage

Retreat

Combat

Flee

Attack

Covering
Fire

Ranged
Attack

Melee
Attack

Take
Cover

expressiveintelligencestudio UC Santa Cruz

A Behavior Tree in Action

I weapon: rifle, ally under fire: false

Engage

Retreat

Combat

Flee

Attack

Covering
Fire

Ranged
Attack

Melee
Attack

Take
Cover

expressiveintelligencestudio UC Santa Cruz

A Behavior Tree in Action

behavior Ranged_Attack { behavior Melee_Attack {

preconditions (preconditions (

have_ranged_weapon have_melee_weapon

and and

opponent_in_range opponent_in_melee

))

action (action (

Ranged_Attack_Action Melee_Attack_Action

))

} }

expressiveintelligencestudio UC Santa Cruz

A Behavior Tree in Action

I weapon: rifle, opponent range: 20m

Engage

Retreat

Combat

Flee

Attack

Covering
Fire

Ranged
Attack

Melee
Attack

Take
Cover

expressiveintelligencestudio UC Santa Cruz

A Behavior Tree in Action

I weapon: rifle, opponent range: 20m

Engage

Retreat

Combat

Flee

Attack

Covering
Fire

Ranged
Attack

Melee
Attack

Take
Cover

expressiveintelligencestudio UC Santa Cruz

Some Caveats

I Rather than selecting a single child behavior, a node
might run its children sequentially or in parallel

I Besides preconditions, a behavior might have context
conditions

I High-priority behaviors might preempt low-priority ones

I In some systems, multiple behaviors might run at the
same time

I Behavior selection can happen in response to an event

expressiveintelligencestudio UC Santa Cruz

Behavior Priorities

behavior Engage { behavior Retreat {

preconditions (preconditions (

health > 10% health < 50%

and or

have_weapon outnumbered

))

priority (priority (

10 5 + (.5 - health%)*20 +

) (outnumbered ? 10 : 0)

children ()

Attack children (

Covering_Fire Take_Cover

) Flee

})

}

expressiveintelligencestudio UC Santa Cruz

Behavior Priorities

I health: 20%, weapon: rifle, outnumbered: false
I Priorities: Engage: 10, Retreat: 11

Engage

Retreat

Combat

Flee

Attack

Covering
Fire

Ranged
Attack

Melee
Attack

Take
Cover

expressiveintelligencestudio UC Santa Cruz

Behavior Priorities

I health: 20%, weapon: rifle, outnumbered: false
I Priorities: Engage: 10, Retreat: 11

Engage

Retreat

Combat

Flee

Attack

Covering
Fire

Ranged
Attack

Melee
Attack

Take
Cover

expressiveintelligencestudio UC Santa Cruz

Behavior Trees in Halo 2

I Prioritized child selection drives most choices

I Impulse behaviors add some dynamic links to the tree

I Precondition checks are optimized using behavior tags

I Event-driven impulses allow more dynamic behavior

I Behavior options are limited via styles

expressiveintelligencestudio UC Santa Cruz

Query-Enabled Behavior Trees

I Dynamic selection of child behaviors

I Uses case-based reasoning to select behavior candidates at
runtime

I Selection is based largely on the variables used within the
behaviors

I This is equivalent to making all of the cases children of
each query node and performing prioritized selection at
the query node using the case similarity metric

expressiveintelligencestudio UC Santa Cruz

Reactive Planning

I Corresponds to a behavior tree that uses asynchronous
selection, with all sorts of details thrown in

I While traditional planning uses an algorithm to search the
space of all possible plans, reactive planning relies on the
architect to describe the space of all permitted plans

I A reactive planner then selects eagerly and randomly from
actions within this plan space, and tries something
different whenever anything fails

expressiveintelligencestudio UC Santa Cruz

Reactive Planning Example

sequential behavior vultureAttack(PlayerUnitWME vulture)

{

int vultureID, ex, ey;

with (success_test {

(vulture.getHasTask()==false &&

vulture.getOrder()==PlayerGuard)

query = (UnitQueryWME fresh==true)

(query.setIsEnemy(true))

(query.setLocationUnit(vulture.getID()))

(query.setIsGround(true))

(UnitQueryWME nearest::enemyID)

(EnemyUnitWME ID==enemyID realX::ex realY::ey)

}) wait;

...

expressiveintelligencestudio UC Santa Cruz

Reactive Planning Example (continued)

...

mental_act {

vulture.hasTask();

vultureID = vulture.getID();

}

// attack and wait for the command to be issued

act attackMovePixel(vultureID, ex, ey);

subgoal WaitFrames(1);

}

expressiveintelligencestudio UC Santa Cruz

Advantages of Behavior Trees

I Practical and intuitive

I More scalable than finite state machines

I Afford fine-grained and dynamic control over behavior

expressiveintelligencestudio UC Santa Cruz

Disadvantages of Behavior Trees

I Coordination of multiple agents can be difficult

I Control is implicit, so bugs can be hard to understand and
to fix

I Require some optimizations to fit into modern games
I This is why full reactive planning for game agents would be

difficult

expressiveintelligencestudio UC Santa Cruz

Discussion Topics

I Questions?

I Are there ‘tradeoffs’ between behavior trees and reactive
planning? What would you need to consider if you were
building a game and deciding between them?

I Compared to FSMs, what do BTs make easy? What do
they make hard?

I What dictates the structure of a behavior tree? In terms
of design, what are the driving concerns?

I Are there other ways to solve the problems brought up by
the query-enabled BTs paper?

expressiveintelligencestudio UC Santa Cruz

