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Motivation

I Existing generators impose constraints in pursuit of a goal.
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Motivation

I But human designers often create surprising levels.
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http://www.youtube.com/watch?v=TED_JqcRaVE


Motivation

I The goal: create levels that can routinely surprise their
creator.
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Insight

I Randomly placed components would be
surprising, but not interesting.

I Placing groups of components reduces entropy,
and can exploit human authoring.

I Occupancy can be used to constrain assembly of
chunks.

I Thus Occupancy-Regulated Extension.
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The ORE Algorithm

1. Select a context.

2. Pick a chunk to insert:

(i) Filter available chunks.

(ii) Select among compatible chunks.

3. Integrate the selected chunk into the level.

expressiveintelligencestudio UC Santa Cruz



Occupancy in ORE

I Occupancy is expressed as concrete anchor
points.

I Each chunk defines its own anchor points.

I These anchors determine how pieces can fit
together.
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Context Selection

I Picks a random anchor at which to add a chunk.

I Keeps track of used and unused anchors.

I Handles edge cases: might reset the list of used
anchors, or even improvise a new anchor.
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Example

I The initial context:
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Chunk Filtering

I Uses a notion of spatial compatibility to exclude
things that don’t fit.

I Determines type compatibility for overlapping
components.

I Filters out chunks that would extend outside of
the bounding box of the level.

I Considers each chunk in the library at each of
its anchors, so the algorithm isn’t directional.
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Example

I An example library:
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Example

I The matching anchors:
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Example

I The first match:
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Example

I The second match:
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Example

I The third match:
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Example

I One of the non-matches:
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Example

I Another non-match:
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Chunk Selection

I Considers only the first several (currently 17) filtered
chunks.

I Computes chunk metrics:

I f : Chunk default frequency, as defined in the library.

I b: Chunk boredom value: number of times the chunk has been
used so far.

I p: Chunk precision bias: 0.2 if the chunk is labeled as
“precise”; 1 otherwise.

I Calculates a weight for each chunk being considered:

I w = f ∗ 0.7b ∗ p
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Chunk Selection

I Uses weighted random selection with the computed
weights to choose a chunk to insert.

I Default chunk frequencies prevent complex chunks from
dominating the output.

I The boredom value helps ensure variety in chunk selection.

I The precision value is an example of a level design choice
encoded in the chunk selection policy.
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Example

I The weight for the first match might be:
w = 0.75 ∗ 0.70 ∗ 1 = 0.75
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Example

I The weight for the second match might be:
w = 1 ∗ 0.70 ∗ 1 = 1
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Example

I The weight for the third match might be:
w = 0.5 ∗ 0.70 ∗ 0.2 = 0.1
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Chunk Integration

I Removes any overlapping components from the
incoming chunk.

I Adds remaining components to the level under
construction.

I This step could be used to enforce some global
constraints.
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Example

I The result of integration, assuming the second match is
selected:
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Post-Processing

I Specifies and expands terrain sprites.

I Implements global constraints on the distribution
of enemies and powerups by removing some.

I Tries to patch up sprite inconsistencies.
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Example

I The level after post-processing:
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The Chunk Library

I A total of 42 chunks.

I Ranges from 3x2 to 10x10 tiles in size.

I Hand-crafted chunks, some with authored
complexity.
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Example Chunks
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Example Chunks
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Example Chunks
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Example Chunks
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Example Chunks
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Example Chunks
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Example Chunks
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Example Chunks
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Example Chunks
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Summary

I Using human-authored chunks, ORE assembles
a level by adding chunks one-at-a-time.

I The main constraint imposed is that added
chunks are anchored via potential positions.

I The algorithm is highly customizable, and
higher-level constraints can be imposed on it.
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Results
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Failures
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Failures

expressiveintelligencestudio UC Santa Cruz



Future Work

I On-line generation for dynamic difficulty
adjustment.

I An interface for mixed-initiative design.

I Automatic chunk library extraction.

I Application to other domains.
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