
Occupancy-Regulated Extension
Using Chunks to Build Levels

Peter Mawhorter Michael Mateas

Department of Computer Science
University of California Santa Cruz

August 25, 2010

expressiveintelligencestudio UC Santa Cruz



Motivation

I Existing generators impose constraints in pursuit of a goal.

expressiveintelligencestudio UC Santa Cruz



Motivation

I But human designers often create surprising levels.

expressiveintelligencestudio UC Santa Cruz

http://www.youtube.com/watch?v=TED_JqcRaVE


Motivation

I The goal: create levels that can routinely surprise their
creator.

expressiveintelligencestudio UC Santa Cruz



Insight

I Randomly placed components would be
surprising, but not interesting.

I Placing groups of components reduces entropy,
and can exploit human authoring.

I Occupancy can be used to constrain assembly of
chunks.

I Thus Occupancy-Regulated Extension.

expressiveintelligencestudio UC Santa Cruz



The ORE Algorithm

1. Select a context.

2. Pick a chunk to insert:

(i) Filter available chunks.

(ii) Select among compatible chunks.

3. Integrate the selected chunk into the level.

expressiveintelligencestudio UC Santa Cruz



Occupancy in ORE

I Occupancy is expressed as concrete anchor
points.

I Each chunk defines its own anchor points.

I These anchors determine how pieces can fit
together.

expressiveintelligencestudio UC Santa Cruz



Context Selection

I Picks a random anchor at which to add a chunk.

I Keeps track of used and unused anchors.

I Handles edge cases: might reset the list of used
anchors, or even improvise a new anchor.

expressiveintelligencestudio UC Santa Cruz



Example

I The initial context:

expressiveintelligencestudio UC Santa Cruz



Chunk Filtering

I Uses a notion of spatial compatibility to exclude
things that don’t fit.

I Determines type compatibility for overlapping
components.

I Filters out chunks that would extend outside of
the bounding box of the level.

I Considers each chunk in the library at each of
its anchors, so the algorithm isn’t directional.

expressiveintelligencestudio UC Santa Cruz



Example

I An example library:

expressiveintelligencestudio UC Santa Cruz



Example

I The matching anchors:

expressiveintelligencestudio UC Santa Cruz



Example

I The first match:

expressiveintelligencestudio UC Santa Cruz



Example

I The second match:

expressiveintelligencestudio UC Santa Cruz



Example

I The third match:

expressiveintelligencestudio UC Santa Cruz



Example

I One of the non-matches:

expressiveintelligencestudio UC Santa Cruz



Example

I Another non-match:

expressiveintelligencestudio UC Santa Cruz



Chunk Selection

I Considers only the first several (currently 17) filtered
chunks.

I Computes chunk metrics:

I f : Chunk default frequency, as defined in the library.

I b: Chunk boredom value: number of times the chunk has been
used so far.

I p: Chunk precision bias: 0.2 if the chunk is labeled as
“precise”; 1 otherwise.

I Calculates a weight for each chunk being considered:

I w = f ∗ 0.7b ∗ p

expressiveintelligencestudio UC Santa Cruz



Chunk Selection

I Uses weighted random selection with the computed
weights to choose a chunk to insert.

I Default chunk frequencies prevent complex chunks from
dominating the output.

I The boredom value helps ensure variety in chunk selection.

I The precision value is an example of a level design choice
encoded in the chunk selection policy.

expressiveintelligencestudio UC Santa Cruz



Example

I The weight for the first match might be:
w = 0.75 ∗ 0.70 ∗ 1 = 0.75

expressiveintelligencestudio UC Santa Cruz



Example

I The weight for the second match might be:
w = 1 ∗ 0.70 ∗ 1 = 1

expressiveintelligencestudio UC Santa Cruz



Example

I The weight for the third match might be:
w = 0.5 ∗ 0.70 ∗ 0.2 = 0.1

expressiveintelligencestudio UC Santa Cruz



Chunk Integration

I Removes any overlapping components from the
incoming chunk.

I Adds remaining components to the level under
construction.

I This step could be used to enforce some global
constraints.

expressiveintelligencestudio UC Santa Cruz



Example

I The result of integration, assuming the second match is
selected:

expressiveintelligencestudio UC Santa Cruz



Post-Processing

I Specifies and expands terrain sprites.

I Implements global constraints on the distribution
of enemies and powerups by removing some.

I Tries to patch up sprite inconsistencies.

expressiveintelligencestudio UC Santa Cruz



Example

I The level after post-processing:

expressiveintelligencestudio UC Santa Cruz



The Chunk Library

I A total of 42 chunks.

I Ranges from 3x2 to 10x10 tiles in size.

I Hand-crafted chunks, some with authored
complexity.

expressiveintelligencestudio UC Santa Cruz



Example Chunks

expressiveintelligencestudio UC Santa Cruz



Example Chunks

expressiveintelligencestudio UC Santa Cruz



Example Chunks

expressiveintelligencestudio UC Santa Cruz



Example Chunks

expressiveintelligencestudio UC Santa Cruz



Example Chunks

expressiveintelligencestudio UC Santa Cruz



Example Chunks

expressiveintelligencestudio UC Santa Cruz



Example Chunks

expressiveintelligencestudio UC Santa Cruz



Example Chunks

expressiveintelligencestudio UC Santa Cruz



Example Chunks

expressiveintelligencestudio UC Santa Cruz



Summary

I Using human-authored chunks, ORE assembles
a level by adding chunks one-at-a-time.

I The main constraint imposed is that added
chunks are anchored via potential positions.

I The algorithm is highly customizable, and
higher-level constraints can be imposed on it.

expressiveintelligencestudio UC Santa Cruz



Results

expressiveintelligencestudio UC Santa Cruz



Failures

expressiveintelligencestudio UC Santa Cruz



Failures

expressiveintelligencestudio UC Santa Cruz



Future Work

I On-line generation for dynamic difficulty
adjustment.

I An interface for mixed-initiative design.

I Automatic chunk library extraction.

I Application to other domains.

expressiveintelligencestudio UC Santa Cruz


