Types of RL algorithms

• Model-based
• Model-free
Types of Models

- Distributional model
- Sample model
What is planning?
Random-sample one-step tabular Q-planning

Loop forever:
1. Select a state, S, and an action A at random
2. Send S, A to a sample model and obtain a sample next reward R, and a sample next state, S'
3. Apply one-step tabular Q-learning to S, A, R, S'
 \[Q(S, A) \leftarrow Q(S, A) + \alpha[R + \gamma \max_a Q(S', a) - Q(S, A)] \]
Online planning

model → experience → model

value/policy → acting → direct RL

planning
Dyna Architecture
Tabular Dyna-Q Overview

- Direct RL method: one-step tabular Q-learning
- Model-learning method:
 - Assumes environment is deterministic
 - Table-based
 - Given $A_t, S_t \rightarrow R_{t+1}, S_{t+1}$, stores model$[(S_t, A_t)] = (R_{t+1}, S_{t+1})$
Tabular Dyna-Q Algorithm

Initialize $Q(s, a)$ and $Model(s, a)$ for all a, s

Loop forever:
1. $S \leftarrow$ current (nonterminal) state
2. $A \leftarrow \epsilon -$ greedy(S, Q)
3. Take action A; observe resultant reward R and state S'
4. $Q(S, A) \leftarrow Q(S, A) + \alpha[R + \gamma \max_a Q(S', a) - Q(S, A)]$
5. $Model(S, A) \leftarrow (R, S')$ (assumes deterministic environment)
6. Loop repeat n times
 - $S \leftarrow$ random previously observed state
 - $A \leftarrow$ random action previously taken in S
 - $R, S' \leftarrow Model(S, A)$
 - $Q(S, A) \leftarrow Q(S, A) + \alpha[R + \gamma \max_a Q(S', a) - Q(S, A)]$
Dyna Maze (Figure 8.2)
Dyna Maze (Figure 8.3)

WITHOUT PLANNING \((n=0)\)

WITH PLANNING \((n=50)\)
When the Model is Wrong: Optimistic Model
When the Model is Wrong: Pessimistic Model
Dyna-Q+: Dyna-Q + heuristics for encouraging

- Provide an implicit reward to exploring stale transitions

\[Q(S, A) \leftarrow Q(S, A) + \alpha [R + k \sqrt{\tau(S, A)} + \gamma \max_a Q(S', a) - Q(S, A)] \]

- Allow actions that had never been tried from a state to be considered in planning (initial model was that such an action led back to the same state with a reward of 0)
When the Model is Wrong: Optimistic Model
When the Model is Wrong: Pessimistic Model
Dyna-Q tries all state-action pairs uniformly.

Is there a better way?
Prioritized Sweeping (Det. Env.)

Initialize $Q(s, a)$ and $Model(s, a)$ for all $a, s, PQQueue$ to empty
Loop forever:
1. $S \leftarrow$ current (nonterminal) state; 2. $A \leftarrow$ policy(S, Q)
3. Take action A; observe resultant reward R and state S'
4. $Model(S, A) \leftarrow (R, S')$ (assumes deterministic environment)
5. $P = R + \gamma \max_a Q(S', a) - Q(S, A)$
6. If $P > \Theta$, insert (S, A) into $PQQueue$ with priority P
7. Loop repeat n times while $PQQueue$ is not empty
 a. $S, A = first(PQQueue); R, S' \leftarrow Model(S, A)$
 b. $Q(S, A) \leftarrow Q(S, A) + \alpha[R + \gamma \max_a Q(S', a) - Q(S, A)]$
 c. Loop for all \bar{S}, \bar{A} predicted to lead to S:
 i. $\bar{R} = \text{pred. reward for } \bar{S}, \bar{A}, S$
 ii. $P = \bar{R} + \gamma \max_a Q(S', a) - Q(\bar{S}, \bar{A})$
 iii. If $P > \Theta$, insert (\bar{S}, \bar{A}) into $PQQueue$ with priority P