What is planning?
Tabular Dyna-Q Algorithm

Initialize $Q(s, a)$ and $Model(s, a)$ for all a, s
Loop forever:
1. $S \leftarrow$ current (nonterminal) state
2. $A \leftarrow \epsilon$-greedy(S, Q)
3. Take action A; observe resultant reward R and state S'
4. $Q(S, A) \leftarrow Q(S, A) + \alpha[R + \gamma \max_a Q(S', a) - Q(S, A)]$
5. $Model(S, A) \leftarrow (R, S')$ (assumes deterministic environment)
6. Loop repeat n times
 $S \leftarrow$ random previously observed state
 $A \leftarrow$ random action previously taken in S
 $R, S' \leftarrow Model(S, A)$
 $Q(S, A) \leftarrow Q(S, A) + \alpha[R + \gamma \max_a Q(S', a) - Q(S, A)]$
Dyna Maze (Figure 8.2)
Dyna Maze (Figure 8.3)

WITHOUT PLANNING ($n=0$)

WITH PLANNING ($n=50$)
When the Model is Wrong: Optimistic Model

![Cumulative reward vs. Time steps graph showing Dyna-Q performance over time.](image-url)
When the Model is Wrong: Pessimistic Model
Dyna-Q+: Dyna-Q + heuristics for encouraging model updates

- Provide an implicit reward to exploring stale transitions

\[Q(S, A) \leftarrow Q(S, A) + \alpha[R + \kappa \sqrt{\tau(S, A)} + \gamma \max_a Q(S', a) - Q(S, A)] \]

- Allows actions that have never been tried from a state to be considered in planning (initial model: such an action leads back to the same state with a reward of 0)
When the Model is Wrong: Optimistic Model
When the Model is Wrong: Pessimistic Model
Dyna-Q tries all state-action pairs uniformly.

Is there a better way?
Prioritized Sweeping (Det. Env.)

Initialize $Q(s, a)$ and $Model(s, a)$ for all a, s, $PQueue$ to empty
Loop forever:
1. $S \leftarrow$ current (nonterminal) state; 2. $A \leftarrow$ policy(S, Q)
3. Take action A; observe resultant reward R and state S'
4. $Model(S, A) \leftarrow (R, S')$ (assumes deterministic envrionment)
5. $P = R + \gamma \max_a Q(S', a) - Q(S, A)$
6. If $P > \Theta$, insert (S, A) into $PQueue$ with priority P
7. Loop repeat n times while $PQueue$ is not empty
 a. $S, A = \text{first}(PQueue); R, S' \leftarrow Model(S, A)$
 b. $Q(S, A) \leftarrow Q(S, A) + \alpha[R + \gamma \max_a Q(S', a) - Q(S, A)]$
 c. Loop for all \bar{S}, \bar{A} predicted to lead to S:
 i. $\bar{R} = \text{pred. reward for } \bar{S}, \bar{A}, S$
 ii. $P = \bar{R} + \gamma \max_a Q(S', a) - Q(\bar{S}, \bar{A})$
 iii. If $P > \Theta$, insert (\bar{S}, \bar{A}) into $PQueue$ with priority P
Dimensions

- Update state/action values
- Optimal vs. arbitrary policy
- Expected vs. sample updates
Expected updates > sample updates?
Expected updates > sample updates?
Trajectory Sampling

Sampling:

• Uniform
• According to on-policy distribution
Trajectory Sampling

Sampling:

• Uniform
• According to on-policy distribution
When to plan

• In the background
• At decision time