Images from:
- David Foster, Applied Data Science
- Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm by Silver, et al., 2017
- Mastering the game of Go without human knowledge, Silver, et al., 2017
Outline

- Monte Carlo Tree Search refresher
- DeepMind’s AlphaGo (and successors)
MCTS Refresher

- Monte Carlo Tree Search takes a state, root, and rollout policy $\pi_{rollout}$ and produces an improved action

- Algorithm:

 repeat many times:

 selected = Select(root)
 expanded = Expand(selected)
 reward = Simulate(expanded, $\pi_{rollout}$)
 Backup(expanded, reward)

 Choose root’s child action with highest $n(v)$
MCTS nodes in tree

- Each node, v stores:
 - $n(v)$: number of times that node has participated in a simulation
 - $q(v)$: total reward attributed to that node during simulations
MCTS Select

Select(v)
 if node is terminal or has an unexpanded child, return v
 else return child of v with highest
 \[UCT(v) = \frac{q(v)}{n(v)} + c \sqrt{\frac{\log n(v.parent)}{n(v)}} \]
MCTS Expand

Expand(v)
 if node is terminal:
 return v
 c = create random child node of v
 q(c) = n(c) = 0
 return c
MCTS Simulate

Simulate($v, \pi_{rollout}$)

Choose actions starting from v according to policy $\pi_{rollout}$ until a terminal state is reached

return immediate reward leading to that terminal state
MCTS Backup

Backup(v, reward)
 for all nodes from v up to the root:
 n(v) += 1
 q(v) += reward
Outline

• Monte Carlo Tree Search refresher

• DeepMind’s AlphaGo (and successors)
History

• AlphaGo, 2015
 • Hand-crafted features and trained on human plays
 • Two Neural Networks: One to learn the value function, one to learn policy function
 • Policy function trained on large body of human plays
History

• AlphaGo Zero, 2017

 • No prior knowledge of Go (no hand-crafted features, no training on human games). All self-play

 • Single Residual Neural Network learns both value and policy functions

 • Keeps best-neural-network-so-far (new champion if beats >55% of games against old champion)
History

- **AlphaZero, 2017**
 - No current best Neural Net. Always uses the latest NN.
 - Same network (other than input and head) with almost same hyper-parameters can learn Go, Chess, and Shogi
 - One hyper-parameter is scaled based on number of possible actions
History

- MuZero, 2019
 - Doesn’t know the rules of the game (During MCTS, must use learned representation of the game dynamics)
 - Extended to work with Atari games as well as Go.
3 Policy Networks

Given the game state, what is the value of an action?
Hand-crafted Features

- SL/RL example features:
 - Is a move at this point a successful ladder capture
 - How many opponent stones would be captured playing at this point

- Rollout example features:
 - Move matches 3x3 pattern around the move (69938 features)
 - Move saves stones from capture
Value network

- Like SL network, but has only a single output:

What is the value of a game state?
Overview of Training

• Initialize Neural Network

• Repeat in parallel:

 1. Self-play a game. Do MCTS for each move.
 MCTS(P, s) is a new policy, π, more accurate than P.

 • For each state, record state, π(s), win_lose_or_draw_result

 2. Create mini batch of 2048 states from the most recent
 500,000 games

 • Use mini batch to train RL network and value network
How is Policy network used?

- As tree policy in MCTS to guide action selection

- When choosing an action from a node s_t in the MCTS tree:

$$a_t = \arg\max_a (Q(S_t, a) + U(s_t, a))$$

- bonus (incorporates tree policy and exploration bonus):

$$U(s, a) \propto \frac{P(s, a)}{1 + N(s, a)}$$
How is Value network used?

• To help get better simulation results

• After we have expanded node: \(n_e \), we do simulation:
 • Do rollout (to obtain win/draw/lose) to estimate value: \(v_1(n_e) \)
 • Also use value network to estimate value: \(v_2(n_e) \)

• Use weighted average as value: \(\lambda v_1(n_e) + (1 - \lambda)v_2(n_e) \)
Monte Carlo Tree Search (MCTS)

Each state has edges for all legal actions:

For each edge keep:

$N(s, a)$: how many times has this state/action pair been seen

$W(s, a)$: total action-value

$Q(s, a)$: mean action-value: $W(s, a)/N(s, a)$

$P(s, a)$: prior probability of selecting that edge
MCTS for AlphaGo

- Monte Carlo Tree Search takes a state, root, a tree policy \(\pi_{tree} \), a rollout policy \(\pi_{rollout} \), a state value approximator and produces an improved action.

- Algorithm:

 repeat many times:

 \[
 \text{expanded} = \text{Select}(\text{root}) \\
 \text{reward} = \text{Evaluate}(\text{expanded}, \pi_{rollout}, \text{vapprox}) \\
 \text{Backup}(\text{expanded}, \text{reward}) \\
 \]

 Choose root’s child action with highest \(n(v) \)
MCTS: Select

- Different from MCTS we’ve seen:

\[
\text{Select}(n):
\]
\[
\quad \text{if } n \text{ is terminal:}
\]
\[
\quad \quad \text{return } n
\]
\[
\quad \text{child} = \text{child with highest } Q+U \text{ (including unexpanded children)}
\]
\[
\quad \text{if } \text{child is expanded:}
\]
\[
\quad \quad \text{return Select(child)}
\]
\[
\quad \text{return Expand(child)}
\]
Evaluate(n, $\pi_{rollout}$, v_{approx})

Choose actions starting from n according to policy $\pi_{rollout}$ until a terminal state is reached

v_1 is value of that terminal state according to Go rules
v_2 is $v_{approx}(n)$

return $\lambda v_1 + (1 - \lambda) v_2$
MCTS: Select

\[U(s, a) \propto \frac{P(s, a)}{1 + N(s, a)} \]

- \(U \) is upper-confidence bound
- Constant of proportionality decreases over time

\[Q + U \]

\[\max \]
MCTS: Expand & Evaluate

\[v_\theta \left(\begin{array}{c} \vdots \end{array} \right) \sim p_\pi \to r \left(\begin{array}{c} \vdots \end{array} \right) \]
MCTS: Backup

For each ancestor edge:

\[N(s, a) + = 1 \]
\[W(s, a) + = r \]
Self-play
Learn through self-play

- Get rid of handcrafted features
- No network weights pretrained from human games
- One shared network to compute both policy and value
- Simplified MCTS: no rollouts!
AlphaGo Zero: What is a game state for Go?

- 19 x 19 x 17 stack
- Current position of black's stones
- ...and for the previous 7 time periods
- 1 if black stone here
 0 if black stone not here
- All 1 if black to play
 All 0 if white to play
- Current position of white's stones
- ...and for the previous 7 time periods
The Neural Network

Value head

Policy head

Neural Network

Input (Game state)

Multi-task learning!
Value (V) Head

$\mathbb{R} \in [0, 1]:$ probability of winning for current player
Policy (P) Head

19x19+1 probabilities

- Softmax
- Fully-connected
- BatchNorm
- 2 1x1 Conv

19x19 places to play stone
1 way to pass
Overview of Training

• Initialize Neural Network

• Repeat in parallel:

 MCTS(P, s) is a new policy, π, more accurate than P.
 • For each state, record state, $\pi(s)$, win_lose_or_draw_result

 2. Create mini batch of 2048 states from the most recent 500,000 games
 • Use mini batch to train Neural Network

For chess, took 9 hours to run

Total of 700,000 mini batches
Self-play

\[s_1 \xrightarrow{a_1 \sim \pi_1} s_2 \xrightarrow{a_2 \sim \pi_2} s_3 \xrightarrow{a_t \sim \pi_t} s_T \]

\[\pi_1 \xrightarrow{\text{histogram}} \pi_2 \xrightarrow{\text{histogram}} \pi_3 \xrightarrow{\text{histogram}} Z \]
Neural Net Training

\[L = (z - v)^2 - \pi^T \log p + c\|\Theta\|^2 \]
Neural Net Training

• Update Θ so that:

 • Given an input state, s_i, f_Θ produces output that is closer to:

 • For value portion: z, the actual result of the game

 • For action portion: π_i, the MCTS-improved policy based on the neural net’s p_i
Monte Carlo Tree Search (MCTS)

Each state has edges for all legal actions:
For each edge keep:
- \(N(s, a) \): how many times has this state/action pair been seen
- \(W(s, a) \): total action-value
- \(Q(s, a) \): mean action-value: \(W(s, a)/N(s, a) \)
- \(P(s, a) \): prior probability of selecting that edge
Explore/Exploit

- Two sources to encourage exploration:
 - Dirichlet noise added to top-level $P(s)$ of MCTS
 - Non-zero chance of any move happening
 - Upper-confidence bound when evaluating move in MCTS
 - Encourage actions whose confidence is low

Dirichlet noise: sums to given value (so can be a probability), and, with parameter used in AlphaGoZero, makes most of the probability focused in small area.
MCTS: Evaluate

\[(p, v) = f_\theta \left(\begin{array}{c}
P \\
V \\
V \\
P \\
\end{array} \right) \]
MCTS: Backup

For each ancestor edge:

\[N(s, a) + = 1 \]
\[W(s, a) + = V(s_{\text{leaf}}) \]
MCTS: Play

$$\pi(a | s_0) = \frac{N(s_0, a)^{1/\tau}}{\sum_b N(s_0, b)^{1/\tau}}$$

τ is a temperature constant: starts near 1 and ends close to zero. For play: close to zero.

After an action is chosen from π, keep tree starting from resulting state, clear rest of tree.
What Go-specific knowledge is used?

- Network knows input format (19x19 board, etc.)
- Network knows how many possible actions (19x19+1)
- MCTS knows which actions lead to which states
- MCTS knows whether a state is terminal
- MCTS knows how to score a terminal state
- MCTS does dihedral reflection or rotation (takes advantage of symmetry of Go board)