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Abstract

Several operating systems rely on non-scalable spin locks
for serialization. For example, the Linux kernel uses
ticket spin locks, even though scalable locks have better
theoretical properties. Using Linux on a 48-core ma-
chine, this paper shows that non-scalable locks can cause
dramatic collapse in the performance of real workloads,
even for very short critical sections. The nature and sud-
den onset of collapse are explained with a new Markov-
based performance model. Replacing the offending non-
scalable spin locks with scalable spin locks avoids the
collapse and requires modest changes to source code.

1 Introduction

It is well known that non-scalable locks, such as simple
spin locks, have poor performance when highly con-
tended [1, 7, 9]. It is also the case that many systems
nevertheless use non-scalable locks. However, we have
run into multiple situations in which system through-
put collapses suddenly due to non-scalable locks: for
example, a system that performs well with 25 cores com-
pletely collapses with 30. Equally surprising, the offend-
ing critical sections are often tiny. This paper argues that
non-scalable locks are dangerous. For concreteness, it
focuses on locks in the Linux kernel.

One piece of the argument is that non-scalable locks can
seriously degrade overall performance, and that the sit-
uations in which they may do so are likely to occur in
real systems. We exhibit a number of situations in which
the performance of plausible activities collapses dramati-
cally with more than a few cores’ worth of concurrency;
the cause is a rapid growth in locking cost as the number
of contending cores grows.

Another piece of the argument is that the onset of per-
formance collapse can be sudden as cores are added. A
system may have good measured performance with N
cores, but far lower total performance with just a few

more cores. The paper presents a predictive model of
non-scalable lock performance that explains this phe-
nomenon.

A third element of the argument is that critical sections
which appear to the eye to be very short, perhaps only
a few instructions, can nevertheless trigger performance
collapses. The paper’s model explains this phenomenon
as well.

Naturally we argue that one should use scalable locks [1,
7, 9], particularly in operating system kernels where
the workloads and levels of contention are hard to con-
trol. As a demonstration, we replaced Linux’s spin locks
with scalable MCS locks [9] and re-ran the software that
caused performance collapse. For 3 of the 4 benchmarks
the changes in the kernel were simple. For the 4th case
the changes were more involved because the directory
cache uses a complicated locking plan and the directory
cache in general is complicated. The MCS lock im-
proves scalability dramatically, because it avoids the per-
formance collapse, as expected. We experimented with
other scalable locks, including hierarchical ones [8], and
observe that the improvements are negligible or small—
the big win is going from non-scalable locks to scalable
locks.

An objection to this approach is that non-scalable behav-
ior should be fixed by modifying software to eliminate
serialization bottlenecks, and that scalable locks merely
defer the need for such modification. That observation is
correct. However, in practice it is not possible to elimi-
nate all potential points of contention in the kernel all at
once. Even if a kernel is very scalable at some point in
time, the same kernel is likely to have scaling bottlenecks
on subsequent generations of hardware. One way to view
scalable locks is as a way to relax the time-criticality of
applying more fundamental scaling improvements to the
kernel.

The main contribution of this paper is amplifying the
conclusion from previous work that non-scalable locks
have risks: not only do they have poor performance, but
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they can cause collapse of overall system performance.
More specifically, this paper makes three contributions.
First, we demonstrate that the poor performance of non-
scalable locks can cause performance collapse for real
workloads, even if the spin lock is protecting a very short
critical section in the kernel. Second, we propose a single
comprehensive model for the behavior of non-scalable
spin locks that fully captures all regimes of operation,
unlike previous models [6]. Third, we confirm on mod-
ern x86-based multicore processors that MCS locks can
improve maximum scalability without decreasing perfor-
mance, and conclude that the scaling and performance
benefits of the different types of scalable locks is small.

The rest of the paper is organized as follows. Section 2
demonstrates that non-scalable locks can cause perfor-
mance collapse for real workloads. Section 3 introduces
a Markov-based model that explains why non-scalable
locks can cause this collapse to happen, even for short
critical sections. Section 4 evaluates several scalable
locks on modern x86-based multicore processors to de-
cide which scalable lock to use to replace the offending
non-scalable locks. Section 5 reports on the results of us-
ing MCS locks to replace the non-scalable locks in Linux
that caused performance collapse. Section 6 relates our
findings and modeling to previous work. Section 7 sum-
marizes our conclusions.

2 Are non-scalable locks a problem?

This section demonstrates that non-scalable spin locks
cause performance collapse for some kernel-intensive
workloads. We present performance results from four
benchmarks demonstrating that critical sections that con-
sume less than 1% of the CPU cycles on one core can
cause performance to collapse on a 48-core x86 machine.

2.1 How non-scalable locks work

For concreteness we discuss the ticket lock used in the
Linux kernel, but any type of non-scalable lock will
exhibit the problems shown in this section. Figure 1
presents simplified C code from Linux. The ticket lock
is the default lock since kernel version 2.6.25 (released
in April 2008).

An acquiring core obtains a ticket and spins until its
turn is up. The lock has two fields: the number of the
ticket that is holding the lock (current_ticket) and

struct spinlock_t {
int current_ticket;
int next_ticket;

}

void spin_lock(spinlock_t *lock)
{
int t =
atomic_fetch_and_inc(&lock->next_ticket);

while (t != lock->current_ticket)
; /* spin */

}

void spin_unlock(spinlock_t *lock)
{
lock->current_ticket++;

}

Figure 1: Pseudocode for ticket locks in Linux.

the number of the next unused ticket (next_ticket). To
obtain a ticket number, a core uses an atomic increment
instruction on next_ticket. The core then spins until
its ticket number is current. To release the lock, a core
increments current_ticket, which causes the lock to
be handed to the core that is waiting for the next ticket
number.

If many cores are waiting for a lock, they will all have
the lock variables cached. An unlock will invalidate
those cache entries. All of the cores will then read the
cache line. In most architectures, the reads are serialized
(either by a shared bus or at the cache line’s home or
directory node), and thus completing them all takes time
proportional to the number of cores. The core that is next
in line for the lock can expect to receive its copy of the
cache line midway through this process. Thus the cost of
each lock handoff increases in proportion to the number
of waiting cores. Each inter-core operation takes on the
order of a hundred cycles, so a single release can take
many thousands of cycles if dozens of cores are waiting.
Simple test-and-set spin locks incur a similar O(N) cost
per release.

2.2 Benchmarks

We exercised spin locks in the Linux kernel with four
benchmarks: FOPS, MEMPOP, PFIND, and EXIM. Two are
microbenchmarks and two represent application work-
loads. None of the benchmarks involve disk I/O (the
file-system cache is pre-warmed). We ran the bench-
marks on a 48-core machine (eight 6-core 2.4 GHz AMD
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Opteron chips) running Linux kernel 2.6.39 (released in
May 2011).

FOPS creates a single file and starts one process on each
core. Each thread repeatedly opens and closes the file.

MEMPOP creates one process per core. Each pro-
cess repeatedly mmaps 64 kB of memory with the
MAP_POPULATE flag, then munmaps the memory. MAP_
POPULATE instructs the kernel to allocate pages and pop-
ulate the process page table immediately, instead of doing
so on demand when the process accesses the page.

PFIND searches for a file by executing several instances
of the GNU find utility. PFIND takes a directory and
filename as input, evenly divides the directories in the
first level of input directory into per-core inputs, and
executes one instance of find per core, passing in the
input directories. Before we execute the PFIND, we create
a balanced directory tree so that each instance of find
searches the same number of directories.

EXIM is a mail server. A single master process listens
for incoming SMTP connections via TCP and forks a
new process for each connection, which accepts the in-
coming message. We use the version of EXIM from
MOSBENCH [3].

2.3 Results

Figure 2 shows the results for all benchmarks. One might
expect total throughput to rise in proportion to the num-
ber of cores for a while, then level off to a flat line due
to some serial section. Throughput does increase with
more cores for a while, but instead of leveling off, the
throughput decreases after some number of cores. The
decreases are sudden; good performance with N cores is
often followed by dramatically lower performance with
one or two more cores.

FOPS. Figure 2(a) shows the total throughput of FOPS

as a function of the number of cores concurrently running
the benchmark. The performance peaks with two cores.
With 48 cores, the total throughput is about 3% of the
throughput on one core.

The performance collapse in Figure 2(a) is caused by a
per-entry lock in the file system name/inode cache. The
kernel acquires the lock when a file is closed in order to
decrement a reference count and possibly perform clean-
up actions. On average, the code protected by the lock
executes in only 92 cycles.

MEMPOP. Figure 2(b) shows the throughput of MEM-
POP. Throughput peaks at nine cores, at which point
it is 4.7× higher than with one core. Throughput de-
creases rapidly at first with more than nine cores, then
more gradually. At 48 cores throughput is about 35% of
the throughput achieved on one core. The performance
collapse in Figure 2(b) is caused by a non-scalable lock
that protects the data structure mapping physical pages
to virtual memory regions.

PFIND. Figure 2(c) shows the throughput of PFIND,
measured as the number of find processes that complete
every second. The throughput peaks with 14 cores, then
declines rapidly. The throughput with 48 cores is ap-
proximately equal to the throughput on one core. A non-
scalable lock protecting the block buffer cache causes
PFIND’s performance collapse.

EXIM. Figure 2(d) shows EXIM’s performance as a
function of the number of cores. The performance col-
lapse is caused by locks that protect the data structure
mapping physical pages to virtual memory regions. The
3.0.0 kernel (released in Aug 2011) fixes this collapse
by acquiring the locks involved in the bottlenecked op-
eration together, and then running with a larger critical
section.

Figure 3 shows measurements related to the most con-
tended lock for each benchmark, taken on one core. The
“Operation time” column indicates the total number of
cycles required to complete one benchmark operation
(opening a file, delivering a message, etc). The “Ac-
quires per operation” column shows how many times the
most contended lock was acquired per operation. The
“Average critical section time” column shows how long
the lock was held each time it was acquired. The “% of
operation in critical section” reflects the ratio of total
time per operation spent in the critical section to the total
time for each operation.

The last column of Figure 3 helps explain the point in
each graph at which collapse starts. For example, MEM-
POP spends 7% of its time in the bottleneck critical sec-
tion. Once 14 (i.e., 1.0/0.07) cores are active, one would
expect that critical section’s lock to be held by some core
at all times, and thus that cores would start to contend
for the lock. In fact MEMPOP starts to collapse somewhat
before that point, a phenomenon explained in the next
section.
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Figure 2: Sudden performance collapse with ticket locks.

Benchmark Operation time Top lock instance name Acquires per Average critical section % of operation in
(cycles) operation time (cycles) critical section

FOPS 503 d_entry 4 92 73%
MEMPOP 6852 anon_vma 4 121 7%
PFIND 2099 M address_space 70 K 350 7%
EXIM 1156 K anon_vma 58 165 0.8%

Figure 3: The most contended critical sections for each Linux microbenchmark, on a single core.
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As an example of a critical section that causes non-
scalability, Figure 4 shows the most contended critical
sections for EXIM. They involve adding and deleting an
element from a list, and consist of a handful of inlined
instructions.

2.4 Questions

The four graphs have common features which raise some
questions.

• Why does collapse start as early as it does? One
would expect collapse to start when there is a sig-
nificant chance that many cores need the same lock
at the same time. Thus one might expect MEMPOP

to start to see decline at around 14 cores (1.0/0.07).
But the onset occurs earlier, at nine cores.

• Why does performance ultimately fall so far?

• Why does performance collapse so rapidly? One
might expect a gradual decrease with added cores,
since each new core should cause each release of the
bottleneck lock to take a little more time. Instead,
adding just a few more cores causes a sharp drop in
total throughput. This is worrisome; it suggests that
a system that has been tested to perform well with
N cores might perform far worse with N +2 cores.

3 Model

This section presents a performance model for non-
scalable locks that answers the questions raised in the
previous section. It first describes the hardware cache
coherence protocol at a high level, which is representa-
tive of a typical x86 system, and then builds on the basic
properties of this protocol to construct a model for un-
derstanding performance of ticket spin locks. The model
closely predicts the observed collapse behavior.

3.1 Hardware cache coherence

Our model assumes a directory-based cache coherence
protocol. All directories are directly connected by an
inter-directory network. The cache coherence protocol is
a simplification of, but similar to, the implementation in
AMD Opteron [4] and Intel Xeon CPUs.

static void
anon_vma_chain_link(
struct anon_vma_chain *avc,
struct anon_vma *anon_vma)

{
spin_lock(&anon_vma->lock);
list_add_tail(&avc->same_anon_vma ,

&anon_vma->head);
spin_unlock(&anon_vma ->lock);

}

static void
anon_vma_unlink(
struct anon_vma_chain *avc,
struct anon_vma *anon_vma)

{
spin_lock(&anon_vma->lock);
list_del(&avc->same_anon_vma);
spin_unlock(&anon_vma ->lock);

}

Figure 4: The most contended critical sections from
EXIM. This compiler inlines the code for the list manipu-
lations, each of which are less than 10 instructions.

3.1.1 The directory

Each core has a cache directory. The hardware (e.g., the
BIOS) assigns evenly sized regions of DRAM to each
directory. Each directory maintains an entry for each
cache line in its local DRAM:

[ tag | state | core ID ]

The possible states are:

1. invalid (I) – the cache line is not cached;

2. shared (S) – the cache line is held in one or more
caches and matches DRAM;

3. modified (M) – the cache line is held in one cache
and does not match DRAM.

For modified cache lines the directory records the cache
that holds the dirty cache line.

Figure 5 presents the directory state transitions for loads
and stores. For example, when a core issues a load re-
quest for a cache line in the invalid state, the directory
sets the cache line state to shared.
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Figure 5: Directory transitions for loads and stores.
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Load – – DP
Store – BI DI

Figure 6: Probe messages for loads and stores.

3.1.2 Network messages

When a core begins accessing an uncached cache line,
it will send a load or store request to the cache line’s
home directory. Depending on the type of request and
the state of the cache line in the home directory, the
home directory may need to send probe messages to all
directories that hold the cache line.

Figure 6 shows the probe messages a directory sends
based on request type and state of the cache line. “BI”
stands for broadcast invalidate. “DP” stands for direct
probe. “DI” stands for direct invalidate. For example,
when a source cache issues a load request for a modified
cache line, the home directory sends a directed probe to
the cache holding the modified cache line. That cache
responds to the source cache with the contents of the
modified cache line.

3.2 Performance model for ticket locks

To understand the collapse observed in ticket-based spin
locks, we construct a model. One of the challenging
aspects of constructing an accurate model of spin lock
behavior is that there are two regimes of operation: when
not contended, the spin lock can be acquired quickly,
but when many cores try to acquire the lock at the same
time, the time taken to transfer lock ownership increases
significantly. Moreover, the exact point at which the
behavior of the lock changes is dependent on the lock us-
age pattern, and the length of the critical section, among
other parameters. Recent work [6] attempts to model this
behavior by combining two models—one for contention
and one for uncontended locks—into a single model, by
simply taking the max of the two models’ predictions.
However, this fails to precisely model the point of col-
lapse, and does not explain the phenomenon causing the
collapse.

0 k k+1 n

a0

s0

ak-1

sk-1

ak

sk

ak+1

sk+1

an-1

sn-1

. . . . . .

Figure 7: Markov model for a ticket spin lock for n cores.
State i represents i cores holding or waiting for the lock.
ai is the arrival rate of new cores when there are already i
cores contending for the lock. si is the service rate when
i+1 cores are contending.

To build a precise model of ticket lock behavior, we
build on queueing theory to model the ticket lock as a
Markov chain. Different states in the chain represent
different numbers of cores queued up waiting for a lock,
as shown in Figure 7. There are n+1 states in our model,
representing the fact that our system has a fixed number
of cores (n).

Arrival and service rates between different states rep-
resent lock acquisition and lock release. These rates
are different for each pair of states, modeling the non-
scalable performance of the ticket lock, as well as the
fact that our system is closed (only a finite number of
cores exist). In particular, the arrival rate from k to k+1
waiters, ak, should be proportional to the number of re-
maining cores that are not already waiting for the lock
(i.e., n− k). Conversely, the service rate from k+1 to k,
sk, should be inversely proportional to k, reflecting the
fact that transferring ownership of a ticket lock to the
next core takes linear time in the number of waiters.

To compute the arrival rate, we define a to be the average
time between consecutive lock acquisitions on a single
core. The rate at which a single core will try to acquire
the lock, in the absence of contention, is 1/a. Thus, if
k cores are already waiting for the lock, the arrival rate
of new contenders is ak = (n− k)/a, since we need not
consider any cores that are already waiting for the lock.

To compute the service rate, we define two more parame-
ters: s, the time spent in the serial section, and c, the time
taken by the home directory to respond to a cache line
request. In the cache coherence protocol, the home direc-
tory of a cache line responds to each cache line request
in turn. Thus, if there are k requests from different cores
to fetch the lock’s cache line, the time until the winner
(pre-determined by ticket numbers) receives the cache
line will be on average c · k/2. As a result, processing
the serial section and transferring the lock to the next
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holder when k cores are contending takes s+ ck/2, and
the service rate is sk =

1
s+ck/2 .

Unfortunately, while this Markov model accurately rep-
resents the behavior of a ticket lock, it does not match
any of the standard queueing theory that provides a sim-
ple formula for the behavior of the queueing model. In
particular, the system is closed (unlike most open-system
queueing models), and the service times vary with the
size of the queue.

To compute a formula, we derive it from first prin-
ciples. Let P0, . . . ,Pn be the steady-state probabili-
ties of the lock being in states 0 through n respec-
tively. Steady state means that the transition rates bal-
ance: Pk · ak = Pk+1 · sk. From this, we derive that
Pk = P0 · n!

ak(n−k)! ·∏
k
i=1(s+ ic). Since ∑

n
i=0 Pi = 1, we

get P0 = 1/
(

∑
n
i=0

(
n!

ai(n−i)! ∏
i
j=1(s+ jc)

))
, and thus:

Pk =

1
ak(n−k)! ·

k
∏
i=1

(s+ ic)

n
∑

i=0

(
1

ai(n−i)!

i
∏
j=1

(s+ jc)

) (1)

Given the steady-state probability for each number of
cores contending for the lock, we can compute the aver-
age number of waiting (idle) cores as the expected value
of that distribution, w = ∑

n
i=0 i ·Pi. The speedup achieved

in the presence of this lock and serial section can be
computed as n−w, since on average that many cores are
doing useful work, while w cores are spinning.

3.3 Validating the model

To validate our model, Figures 8 and 9 show the predicted
and actual speedup of a microbenchmark with a single
lock, which spends a fixed number of cycles inside of a
serial section protected by the lock, and a fixed number
of cycles outside of that serial section. Figure 8 shows
the predicted and actual speedup when the serial section
always takes 400 cycles to execute, but the non-serial
section varies from 12.5k to 200k cycles. As we can see,
the model closely matches the real hardware speedup for
all configurations.

In Figure 9, we also present the predicted and actual
speedup of the microbenchmark when the serial section
is always 2% of the overall execution time (on one core),
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Figure 8: Predicted and actual performance of ticket spin
locks with a 400-cycle serial section, for a microbench-
mark where the serial section accounts for a range of
fractions of the overall execution time on one core.
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Figure 9: Predicted and actual performance for a mi-
crobenchmark where the critical section accounts for
2% of the execution time on one core, but with varying
execution time for each invocation of the serial section.

but the time spent in the serial section varies from 400
to 25,600 cycles. Again, the model closely matches the
measured speedup. This gives us confidence that our
model accurately captures the relevant factors leading to
the performance collapse of ticket locks.

One difference between the predicted and measured
speedup is that the predicted collapse is slightly more
gradual than the collapse observed on real hardware.
This is because the ticket lock’s performance is unsta-
ble near the collapse point, and the model predicts the
average steady-state behavior. Our measured speedup
reports the throughput for a relatively short-running mi-
crobenchmark, which has not had the time to “catch” the
instability.
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3.4 Implications of model results

The behavior predicted by our model has several im-
portant implications. First, the rapid collapse of ticket
locks is an inherent property of their design, rather than
a performance problem with our experimental hardware.
Any cache-coherent system that matches our basic hard-
ware model will experience similarly sharp performance
degradation. The reason behind the rapid collapse can
be understood by considering the transition rates in the
Markov model from Figure 7. If a lock ever accumulates
a large number of waiters (e.g., reaches state n in the
Markov model), it will take a long time for the lock to
go back down to a small number of waiters, because the
service rate sk rapidly decays as k grows, for short serial
sections. Thus, once the lock enters a contended state, it
becomes much more likely that more waiters arrive than
that the current waiters will make progress in shrinking
the lock’s wait queue.

A more direct way to understand the collapse is that the
time taken to transfer the lock from one core to another
increases linearly with the number of contending cores.
However, this time effectively increases the length of the
serial section. Thus, as more cores are contending for the
lock, the serial section grows, increasing the probability
that yet another core will start contending for this lock.

The second implication is that the collapse of the ticket
lock only occurs for short serial sections, as can be seen
from Figure 9. This can be understood by consider-
ing how the service rate si decays for different lengths
of the serial section. For a short serial section time s,
sk =

1
s+ck/2 is strongly influenced by k, but for large s, sk

is largely unaffected by k. Another way to understand
this result is that, with fewer acquire and release opera-
tions, the ticket lock’s performance contributes less to
the overall application throughput.

The third implication is that the collapse of the ticket
lock prevents the application from reaching the maxi-
mum performance predicted by Amdahl’s law (for short
serial sections). In particular, Figure 9 shows that a mi-
crobenchmark with a 2% serial section, which may be
able to scale to 50 cores under Amdahl’s law, is able to
attain less than 10× scalability when the serial section is
400 cycles long.

4 Which scalable lock?

The literature has many proposals for scalable locks,
which avoid the collapse that ticket locks exhibit. Which
one should we use to replace contended ticket locks?
This section evaluates several scalable locks on modern
x86-based multicore processors.

4.1 Scalable locks

A common way of making the ticket lock more scalable
is to adjust its implementation to use proportional back-
off when the lock is contended. The challenge with
this approach is what constant to choose to multiply the
ticket number with. From our model we can conclude
that choosing the constant well is important only for
short critical section, because for large critical sections
collapse does not occur. For our experiments below, we
choose the best value by trying a range of values, and
selecting the one that gives the best performance. This
choice provides the best result that the proportional lock
could achieve.

Another approach is to replace the ticket lock with a
truly scalable lock. A scalable lock is one that generates
a constant number of cache misses per acquisition and
therefore avoids the collapse that non-scalable locks ex-
hibit. All of these locks maintain a queue of waiters and
each waiter spins on its own queue entry. The differences
in these locks are how the queue is maintained and the
changed necessary to the lock and unlock API.

MCS lock. The MCS lock [9] maintains an explicit
queue of qnode structures. A core acquiring the lock
adds itself with an atomic instruction to the end of the
list of waiters by having the lock point to its qnode, and
then sets the next pointer of the qnode of its predecessor
to point to its qnode. If the core is not at the head of the
queue, then it spins on its qnode. To avoid dynamically
allocating memory on each lock invocation, the qnode
is an argument to lock and unlock.

K42 lock. A potential downside of the MCS lock is
that it involves an API change. The K42 lock [2] is a
variant of the MCS lock that requires fewer API changes.
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Figure 10: Throughput for cores acquiring and releasing
a shared lock. Results start with two cores.

CLH lock. The CLH lock [5] is a variant of an MCS
lock where the waiter spins on its predecessor qnode,
which allows the queue of waiters to be implicit (i.e., the
qnode next pointer and its updates are unnecessary).

HCLH lock. The HCLH lock [8] is a hierarchical vari-
ant of the CLH lock, intended for NUMA machines. The
way we use it is to favor lock acquisitions from cores
that share an L3 cache with the core that currently holds
the lock, with the goal to reduce the cost of cache line
transfers between remote cores.

4.2 Results

Figure 10 shows the performance of the ticket lock, pro-
portional lock, MCS lock, K42 lock, and CLH lock on
our 48-core AMD machine. The benchmark uses one
shared lock. Each core loops, acquires the shared lock,
updates 4 shared cache lines, and releases the lock. The
time to update the 4 shared cache lines is similar between
runs using different locks, and increases gradually from
about 800 cycles on 2 cores to 1000 cycles in 48 cores.
On our x86 multicore machine, the HCLH lock improves
performance of the CLH lock by only 2%, and is not
shown.

All scalable locks scale better than ticket lock on this
benchmark because they avoid collapse. Using the CLH
lock results in slightly higher throughput over the MCS
lock, but not by much. The K42 lock achieves lower

Lock type Single Single Shared
acquire release acquire

MCS lock 25.6 27.4 53
CLH lock 28.8 3.9 517
Ticket lock 21.1 2.4 30
Proportional lock 22.0 2.8 30.2
K42 lock 47.0 23.8 74.9

Figure 11: Performance of acquiring and releasing an
MCS lock, a CLH lock, and a ticket lock. Single ac-
quire and release are measurements for one core. Shared
acquire is the time for a core to acquire a lock recently
released by another core. Numbers are in cycles.

throughput than the MCS lock because it incurs an addi-
tional cache miss on acquire. These results indicate that
for our x86 multicore machine, it does not matter much
which scalable lock to choose.

We also ran the benchmarks on a multicore machine with
Intel CPUs and measured performance trends similar to
those shown in Figure 10.

Another concern about different locks is the cost of lock
and unlock. Figure 11 shows the cost for each lock
in the uncontended and contended case. All locks are
relatively inexpensive to acquire on a single core with
no sharing. MCS lock and K42 lock are more expensive
to release on a single core, because, unlike the other
locks, they use atomic instructions to release the lock.
Acquiring a shared but uncontended lock is under 100
cycles for all locks, except the CLH lock. Acquiring the
CLH lock is expensive due to the overhead introduced
by the qnode recycling scheme for multiple cores.

5 Using MCS locks in Linux

Based on the result of the previous section, we replaced
the offending ticket locks with MCS locks. We first
describe the kernel changes to use MCS locks, and then
measure the resulting scalability for the 4 benchmarks
from Section 2.

5.1 Using MCS Locks

We replaced the three ticket spin locks that limited
benchmark performance with MCS locks. We modi-
fied about 1,000 lines of the Linux kernel (700 lines
for d_entry, 150 lines for anon_vma, and 150 lines for
address_space).
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Figure 12: Performance of benchmarks using ticket locks and MCS locks.

As noted earlier, MCS locks have a different API than the
Linux ticket spin lock implementation. When acquiring
an MCS lock, a core must pass a qnode variable into
mcs_lock, and when releasing that lock the core must
pass the same qnode variable to mcs_unlock. For each
lock a core holds, the core must use a unique qnode, but
it is acceptable to use the same qnode for locks held at
different times.

Many of our kernel modifications are straightforward.
We allocate an MCS qnode on the stack, replace
spin_lock and spin_unlock with mcs_lock and
mcs_unlock, and pass the qnode to the MCS acquire
and release functions.

In some cases, the Linux kernel acquires a lock in one
function and releases it in another. For this situation,
we stack-allocate a qnode on the call frame that is an
ancestor of both the call frame that calls mcs_lock and
the one that calls mcs_release. This pattern is common

in the directory cache, and partially explains why we
made so many modifications for the d_entry lock.

Another pattern, which we encountered only in the di-
rectory cache code that implements moving directory
entries, is changing the value of lock variables. When
the kernel moves a d_entry between two directories, it
acquires the lock of the d_entry->d_parent (which is
also a d_entry) and the target directory d_entry, and
then sets the value d_entry->d_parent to be the tar-
get d_entry. With MCS, we must make sure to unlock
d_entry->d_parent with the qnode originally used to
lock the target d_entry, instead the qnode original used
to lock d_entry->d_parent.

5.2 Results

The graphs in Figure 12 show the benchmark results from
replacing contended ticket locks with MCS locks. For a

10



large number of cores, using MCS improves performance
by at least 3.5× and in one case by more than 16×.

Figure 12(a) shows the performance of FOPS with MCS
locks. Going from one to two cores, performance with
both ticket locks and MCS locks increases. For more
than two cores, performance with the ticket spin lock
decreases continuously. Performance with MCS locks
initially also decreases from two to four cores, then re-
mains relatively stable. The reason for this decrease in
performance is that the time spent executing the critical
section increases from 450 cycles on two cores to 852
cycles on four cores. The critical section is executed
multiple times per-operation and modifies shared data,
which incurs costly cache misses. As more cores are
added, it is less likely that a core will have been the last
core to execute the critical section, and therefore it will
incur more cache misses, which will increase the length
of the critical section.

Figure 12(b) shows the performance of MEMPOP with
MCS locks. Performance with MCS and ticket locks
increases up to 9 cores, at which point the performance
with ticket locks collapses and continuously decreases
as more cores are used. The length of the critical sec-
tion is relatively short. It increases from 141 cycles on
one core to about 350 cycles on 10 cores. MCS avoids
the dramatic collapse from the short critical section and
increases maximum performance by 16.6×.

Figure 12(c) shows the performance of PFIND with MCS.
The address_space ticket spin lock performs well up
to 15 cores, then causes a performance drop that con-
tinues until 48 cores. The serial section updates some
shared data which increases the time spent in the criti-
cal section from 350 cycles on one core to about 1100
cycles on more than 44 cores. MCS provides a small
increase in maximum performance, but not as much as
with MEMPOP since the critical section is much longer.

Figure 12(d) shows the performance of EXIM with MCS.
Ticket spin locks perform well up to 39 cores, then cause
a performance collapse. The critical section is relatively
short (165 cycles on one core), so MCS improves maxi-
mum performance by 3.7× on 48 cores.

The results show that using scalable locks is not that
much work (e.g., less work than using RCU in the kernel)
and avoids the performance collapse that results from
non-scalable spin locks. The latter benefit is important
because institutions often use the same kernels for several

years, even as they upgrade to hardware with more cores
and the likelihood of performance cliffs increases.

6 Related Work

The literature on scalable and non-scalable locks is vast,
many practitioners are well familiar with the issues, and
it is well known that non-scalable locks behave poorly
under contention. The main contribution that this paper
adds is the observation that non-scalable locks can cause
system performance to collapse, as well as a model that
nails down why the performance collapse is so dramatic,
even for short critical sections.

Anderson [1] observes that the behavior of spin locks
can be “degenerative”. The MCS paper shows that ac-
quisition of a test-and-set lock increases linearly with
processors on the BBN Butterfly and that on the Symme-
try this cost manifests itself even with a small number of
processors [9]. Many researchers and practitioners have
written microbenchmarks that show that non-scalable
spin locks exhibit poor performance under contention on
modern hardware. This paper shows that non-scalable
locks can cause the collapse of system performance un-
der plausible workloads; that is, the locking costs for
short critical sections can be very large on the scale of
kernel execution time.

The Linux scaling study reports on the performance col-
lapse that ticket locks introduce on the EXIM benchmark,
but doesn’t explain the collapse [3]. This paper shows
the collapse and the suddenness with several workloads,
and provides a model that explains the acuteness.

Eyerman and Eeckhout [6] provide closed formulas to
reason about the speedup of parallel applications that
involve critical sections, pointing out that there is regime
in which applications achieve better speedup than Am-
dahl’s law predicts. Unfortunately, their model makes
a distinction between the contended and uncontended
regime and proposes formula for each regime. In addi-
tion, the formulas do not model the insides of locks; in-
stead, they assume scalable locks. This paper contributes
a comprehensive model that accurately predicts perfor-
mance across the whole spectrum from uncontended to
contended, and applies it to modeling the inside of locks.

7 Conclusion

This paper raises another warning about non-scalable
locks. Although it is well understood that non-scalable
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spin locks have poor performance, it is less well appre-
ciated that their poor performance can have dramatic
effect on overall system performance. This paper shows
that non-scalable locks can cause system performance
to collapse under real workloads and that the collapse is
sudden, and presents a Markov model that explains the
sudden collapse. We conclude that using non-scalable
locks is dangerous because a system that has been tested
with N cores may experience performance collapse at
a few more cores—or, put differently, if one upgrades
a machine in hopes of achieving higher performance,
one might run the risk of ending up with a performance
collapse. Scalable locking is a stop-gap solution that
avoids collapse, but achieving higher performance with
additional cores can require new designs using lock-free
data structures.
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