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Abstract
FSCQ is the first file system with a machine-checkable proof
(using the Coq proof assistant) that its implementation meets
its specification and whose specification includes crashes.
FSCQ provably avoids bugs that have plagued previous file
systems, such as performing disk writes without sufficient
barriers or forgetting to zero out directory blocks. If a crash
happens at an inopportune time, these bugs can lead to data
loss. FSCQ’s theorems prove that, under any sequence of
crashes followed by reboots, FSCQ will recover the file sys-
tem correctly without losing data.

To state FSCQ’s theorems, this paper introduces the Crash
Hoare logic (CHL), which extends traditional Hoare logic with
a crash condition, a recovery procedure, and logical address
spaces for specifying disk states at different abstraction levels.
CHL also reduces the proof effort for developers through
proof automation. Using CHL, we developed, specified, and
proved the correctness of the FSCQ file system. Although
FSCQ’s design is relatively simple, experiments with FSCQ
running as a user-level file system show that it is sufficient
to run Unix applications with usable performance. FSCQ’s
specifications and proofs required significantly more work
than the implementation, but the work was manageable even
for a small team of a few researchers.

1 Introduction
This paper describes Crash Hoare logic (CHL), which allows
developers to write specifications for crash-safe storage sys-
tems and also prove them correct. “Correct” means that, if
a computer crashes due to a power failure or other fail-stop
fault and subsequently reboots, the storage system will recover
to a state consistent with its specification (e.g., POSIX [34]).
For example, after recovery, either all disk writes from a file
system call will be on disk, or none will be. Using CHL we
build the FSCQ certified file system, which comes with a
machine-checkable proof that its implementation is correct.
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Proving that a file system is crash-safe is important, because
it is otherwise hard for the file-system developer to ensure
that the code correctly handles all possible points where a
crash could occur, both while a file-system call is running
and during the execution of recovery code. Often, a system
may work correctly in many cases, but if a crash happens at
a particular point between two specific disk writes, then a
problem arises [55, 70].

Current approaches to building crash-safe file systems fall
roughly into three categories (see §2 for more details): testing,
program analysis, and model checking. Although they are ef-
fective at finding bugs in practice, none of them can guarantee
the absence of crash-safety bugs in actual implementations.
This paper focuses precisely on this issue: helping developers
build file systems with machine-checkable proofs that they
correctly recover from crashes at any point.

Researchers have used theorem provers for certifying real-
world systems such as compilers [45], small kernels [43], ker-
nel extensions [61], and simple remote servers [30], but none
of these systems are capable of reasoning about file-system
crashes. Reasoning about crash-free executions typically in-
volves considering the states before and after some operation.
Reasoning about crashes is more complicated because crashes
can expose intermediate states.

Challenges and contributions. Building an infrastructure
for reasoning about file-system crashes poses several chal-
lenges. Foremost among those challenges is the need for a
specification framework that allows the file-system developer
to state the system behavior under crashes. Second, it is im-
portant that the specification framework allows for proofs to
be automated, so that one can make changes to a specifica-
tion and its implementation without having to redo all of the
proofs manually. Third, the specification framework must be
able to capture important performance optimizations, such
as asynchronous disk writes, so that the implementation of a
file system has acceptable performance. Finally, the specifica-
tion framework must allow modular development: developers
should be able to specify and verify each component in iso-
lation and then compose verified components. For instance,
once a logging layer has been implemented, file-system devel-
opers should be able to prove end-to-end crash safety in the
inode layer by simply relying on the fact that logging ensures
atomicity; they should not need to consider every possible
crash point in the inode code.

To meet these challenges, this paper makes the following
contributions:
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• The Crash Hoare logic (CHL), which allows programmers
to specify what invariants hold in case of crashes and which
incorporates the notion of a recovery procedure that runs
after a crash. CHL supports the construction of modular
systems through a notion of logical address spaces. Finally,
CHL allows for a high degree of proof automation.

• A model for asynchronous disk writes, specified using
CHL, that captures the notion of multiple outstanding
writes (which is important for performance). The model
allows file-system developers to reason about all possible
disk states that might result when some subset of these
writes is applied after a crash, and is compatible with proof
automation.

• A write-ahead log, FscqLog, certified with CHL, that pro-
vides all-or-nothing transactions on top of asynchronous
disk writes, and which provides a simple synchronous disk
abstraction to other layers in the file system.

• The FSCQ file system, built on top of FscqLog, which
is the first file system to be certified for crash safety. It
embeds design patterns that work well for constructing
modular certified file systems: the use of logical address
spaces to reason easily about inode numbers, directory
entries, file contents, and so on; a certified generic object
allocator that can be instantiated for disk blocks and inodes;
and a certified library for laying out data structures on disk.

• A specification of a subset of the POSIX file-system API
that captures its semantics under crashes. Recent work
has shown that many application developers misunderstand
crash properties of file systems [55]; our specification can
help application developers build applications on top of the
POSIX API and reason precisely about crash safety.

• An evaluation that shows that a certified file system can
achieve usable performance and run a wide range of un-
modified Unix applications.

• A case study of code evolution in FSCQ, demonstrating
that CHL combined with FSCQ’s design allows for incre-
mental changes to both the proof and the implementation.
This suggests that the FSCQ file system is amenable to
incremental improvements.

System overview. We have implemented the CHL speci-
fication framework with the widely used Coq proof assis-
tant [15], which provides a single programming language for
both proving and implementing. The source code is available
at https://github.com/mit-pdos/fscq-impl. Figure 1
shows the components involved in the implementation. CHL
is a small specification language embedded in Coq that allows
a file-system developer to write specifications that include the
notion of crash conditions and a recovery procedure, and to
prove that their implementations meet these specifications. We
have stated the semantics of CHL and proven it sound in Coq.

We implemented and certified FSCQ using CHL. That is,
we wrote specifications for a subset of the POSIX system calls
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Figure 1: Overview of FSCQ’s implementation. Rectangular boxes denote
source code; rounded boxes denote processes. Shaded boxes denote source
code written by hand. The dashed line denotes the Haskell compiler producing
an executable binary for FSCQ’s FUSE file server.

using CHL, implemented those calls inside of Coq, and proved
that the implementation of each call meets its specification.
CHL reduces the proof burden because it automates the chain-
ing of pre- and postconditions. Despite the automation, writing
specifications and proofs still took a significant amount of time,
compared to the time spent writing the implementation.

As a target for FSCQ’s completeness, we aimed for the
same features as the xv6 file system [16], a teaching operating
system that implements the Unix v6 file system with write-
ahead logging. FSCQ supports fewer features than today’s
Unix file systems; for example, it lacks support for multipro-
cessors and deferred durability (i.e., fsync). But, it supports
the core POSIX file-system calls, including support for large
files using indirect blocks, nested directories, and rename.

Using Coq’s extraction feature, we extract a Haskell imple-
mentation of FSCQ. We run this implementation combined
with a small (uncertified) Haskell driver as a FUSE [24] user-
level file server. This implementation strategy allows us to run
unmodified Unix applications but pulls in Haskell, our Haskell
driver, and the Haskell FUSE library as trusted components.

We compare the performance of the extracted FSCQ file
system with xv6 and ext4. FSCQ’s performance is close to
that of xv6, and FSCQ is about 2× slower than ext4 with
synchronous data journaling. For example, building the xv6
source code on the FSCQ and xv6 file systems takes 3.7s on
an SSD, while on ext4 with data journaling it takes 2.2s.
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Roadmap. The rest of the paper is organized as follows. §2
relates FSCQ to previous work. §3 introduces the CHL speci-
fication framework. §4 describes how proofs of CHL specifi-
cations can be partially automated. §5 describes FscqLog, the
FSCQ file system, and the design patterns that we used to build
and certify FSCQ. §6 summarizes FSCQ’s implementation
and how we produce a running file system. §7 evaluates this
implementation. §8 summarizes alternative approaches that
we tried before settling on CHL. §9 concludes.

2 Related Work
We were motivated to design and build FSCQ by several lines
of prior work: (1) research that has found and fixed bugs in
file systems, (2) formal reasoning about file systems, (3) the
recent successes in verification of complete systems, and (4)
formalization of failure models, which we discuss in turn.

Finding and fixing bugs in file systems. Previous papers
have studied bugs in file systems [47] and in applications
that make inconsistent assumptions about the underlying file
systems [55, 70]. One recent example is the 2013 Bitcoin
bounty for tracking down a serious bug that corrupted financial
transactions stored in a LevelDB database [21].

Model-checking [67–69] and fuzz-testing [35] techniques
are effective at detecting file-system bugs. They enumerate
possible user inputs and disk states, inject crashes, and look
for cases where the file system encounters a bug or violates
its invariants. These techniques find real bugs, and we use
some of them in §7.3 to do an end-to-end check on FSCQ
and its specifications. However, these techniques often cannot
check all possible execution paths and thus cannot guarantee
bug-free systems.

When faced with file-system inconsistencies, system admin-
istrators run tools such as fsck [4: §42] and SQCK [29] to
detect and repair corruption [17]. By construction, certified
file systems avoid inconsistencies caused by software bugs.

Formal reasoning about file systems. Building a correct file
system has been an attractive goal for verification [23, 36].
There is a rich literature of formalizing file systems using
many specification languages, including ACL2 [5], Alloy [37],
Athena [3], Isabelle/HOL [62], PVS [32], SSL [25], Z [6],
KIV [19], and combinations of them [22]. Most of these
specifications do not model crashes. The ones that do, such
as the work by Kang and Jackson [37], do not connect the
specification to an executable implementation.

The closest effort in this area is work in progress by Schell-
horn, Pfähler, and others to verify a flash file system called
Flashix [20, 54, 58]. They aim to produce a verified file sys-
tem for raw flash, to support a POSIX-like interface, and to
handle crashes. One difference from our work is that Flashix
specifications are abstract state machines; in contrast, CHL
specifications are written in a Hoare-logic style with pre- and
postconditions. One downside of CHL is that all procedures
(including internal layers inside the file system) must have

explicit pre- and postconditions. However, CHL’s approach
has two advantages. First, developers can easily write CHL
specifications that capture asynchronous I/O, such as for write-
back disk caches. Second, it allows for proof automation.
Since Flashix is not available yet, it is difficult for us to do a
more detailed comparison (e.g., how much proof effort Flashix
requires, what is captured in the Flashix specification, or how
Flashix performs).

In concurrent work, Ntzik et al. [52] extend Views [18] with
fault conditions, which are similar to CHL’s crash conditions.
Because Views deals with shared-memory concurrency, their
logic models both volatile state and durable state. CHL models
only durable state, and relies on its shallow embedding in Coq
for volatile state. Their paper focuses on the design of the logic,
illustrating it with a logging system modeled on the ARIES
recovery algorithm [50]. Their aim isn’t to build a complete
verified system, and their logic lacks, for example, logical
address spaces, which help proof automation and certifying
FSCQ in a modular fashion.

Certified systems software. The last decade has seen tremen-
dous progress in certifying systems software, which inspired
us to work on FSCQ. The CompCert compiler [45] is formally
specified and verified in Coq. As a compiler, CompCert does
not deal with crashes, but we adopt CompCert’s validation
approach for proving FSCQ’s cache-replacement algorithm.

The seL4 project [43] developed a formally verified mi-
crokernel using the Isabelle proof assistant. Since seL4 is a
microkernel, its file system is not part of the seL4 kernel. seL4
makes no guarantees about the correctness of the file system.
seL4 itself has no persistent state, so its specification does not
make statements about crashes.

A recent paper [42] argues that file systems deserve verifi-
cation too, and describes work-in-progress on BilbyFS, which
uses layered domain-specific languages, but appears not to
handle crashes [41]. Two other position papers [1, 9] also
argue for verifying storage systems. One of them [9] sum-
marizes our initial thinking about different ways of writing
system specifications, including Hoare-style ones.

Verve [66], Bedrock [12, 13], Ironclad [30], and Certi-
KOS [28] have shown that proof automation can considerably
reduce the burden of proving. Of these, Bedrock, Verve, and
Ironclad are the most related to this work, because they sup-
port proof automation for Hoare logic. We also adopt a few
Coq libraries from Bedrock. Our main contribution here is to
extend Hoare logic with crash predicates, recovery procedures,
and logical address spaces, while keeping a high degree of
proof automation.

Reasoning about failures. Failures are a core concern in dis-
tributed systems, and TLA [44] has been used to prove that
distributed-system protocols adhere to some specification in
the presence of node and network failures, and to specify
fault-tolerant replicated storage systems [26]. However, TLA
reasons purely about designs and not about executable code.
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Verdi [63] reasons about distributed systems written in Coq
and can extract the implementation into executable code. How-
ever, Verdi’s node-failure model is a high-level description of
what state is preserved across reboots, which is assumed to be
correct. Extracted code must use other software (such as a file
system) to preserve state across crashes, and Verdi provides no
proof that this is done correctly. FSCQ and CHL address this
complementary problem: reasoning about crash safety starting
from a small set of assumptions (e.g., atomic sector writes).

Project Zap [53, 60] and Rely [8] explore using type sys-
tems to mitigate transient faults (e.g., due to charged particles
randomly flipping bits in a CPU) in cases when the system
keeps executing after a fault occurs. These models consider
possible faults at each step of a computation. The type system
enables the programmer to reason about the results of running
the program in the presence of faults, or to ensure that a pro-
gram will correctly repeat its computation enough times to
detect or mask faults. In contrast, CHL’s model is fail-stop:
every fault causes the system to crash and reboot.

Andronick [2] verified anti-tearing properties for smart-card
software, which involves being prepared for the interruption
of code at any point. This verification proceeds by instrument-
ing C programs to call, between any two atomic statements,
a function that may nondeterministically choose to raise an
uncatchable exception. In comparison, CHL handles the ad-
ditional challenges of asynchronous disk writes and layered
abstractions of on-disk data structures.

3 Crash Hoare Logic
Our goal is to allow developers to certify the correctness of
a storage system formally—that is, to prove that it functions
correctly during normal operation and that it recovers prop-
erly from any possible crashes. As mentioned in the abstract,
a file system might forget to zero out the contents of newly
allocated directory or indirect blocks, leading to corruption
during normal operation, or it might perform disk writes with-
out sufficient barriers, leading to disk contents that might be
unrecoverable. Prior work has shown that even mature file
systems in the Linux kernel have such bugs during normal
operation [47] and in crash recovery [69].

To prove that an implementation meets its specification, we
must have a way for the developer to state what correct behav-
ior is under crashes. To do so, we extend Hoare logic [33],
where specifications are of the form {P} procedure {Q}. Here,
procedure could be a sequence of disk operations (e.g., read
and write), interspersed with computation, that manipulates
the persistent state on disk, such as the implementation of the
rename system call or a lower-level operation such as allo-
cating a disk block. P corresponds to the precondition that
should hold before procedure is run, and Q is the postcondi-
tion. To prove that a specification is correct, we must prove
that procedure establishes Q, assuming P holds before invok-
ing procedure. In our rename system call example, P might
require that the file system be represented by some tree t, and

Q might promise that the resulting file system is represented
by a modified tree t′ reflecting the rename operation.

Hoare logic is insufficient to reason about crashes, because
a crash may cause procedure to stop at any point in its execu-
tion and may leave the disk in a state where Q does not hold
(e.g., in the rename example, the new file name has been cre-
ated already, but the old file name has not yet been removed).
Furthermore, if the computer reboots, it often runs a recovery
procedure (such as fsck) before resuming normal operation.
Hoare logic does not provide a notion that at any point during
procedure’s execution, a recovery procedure may run.

CHL extends Hoare logic with crash conditions, logical
address spaces, and recovery execution semantics. These
three extensions together allow developers to write concise
specifications for storage systems, including specifying the
correct behavior in the presence of crashes. As we will show
in §5, these features allow us to state precise specifications
(e.g., in the case of rename, that once recovery succeeds, either
the entire rename operation took effect, or none of it did) and
prove that implementations meet them. However, for the rest
of this section, we will consider much simpler examples to
explain the basics of CHL.

3.1 Example
Many file-system operations must update two or more disk
blocks as an atomic operation; for example, when creating a
file, the file system must both mark an inode as allocated as
well as update the directory in which the file is created (to
record the file name with the allocated inode number). To
ensure correct behavior under crashes, a common approach is
to run the operation in a transaction. The transaction system
guarantees that, in the case of a crash, either all disk writes
succeed or none do. Using transactions, a file system can avoid
the undesirable intermediate state where the inode is allocated
but not recorded in the directory, effectively losing an inode.
Many file systems, including widely used file systems such as
Linux’s ext4 [59], use transactions exactly for this reason.

def atomic_two_write(a1, v1, a2, v2):
log_begin()
log_write(a1, v1)
log_write(a2, v2)
log_commit()

Figure 2: Pseudocode of atomic_two_write

The simple procedure shown in Figure 2 captures the
essence of file-system calls that must update two or more
blocks. The procedure performs two disk writes inside of
a transaction using a write-ahead log, which supplies the
log_begin, log_commit, and log_write APIs. The procedure
log_write appends a block’s content to an in-memory log,
instead of updating the disk block in place. The procedure
log_commit writes the log to disk, writes a commit record,
and then copies the block contents from the log to the blocks’
locations on disk. If this procedure crashes and the system
reboots, the recovery procedure of the transaction system runs.
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The recovery procedure looks for the commit record. If there
is a commit record, it completes the transaction by copying the
block contents from the log into the proper locations and then
cleans the log. If there is no commit record, then the recovery
procedure just cleans the log.

If there is a crash during recovery, then after reboot the
recovery procedure runs again. In principle, this may happen
several times. If the recovery finishes, however, then either
both blocks have been updated or neither have. Thus, in the
atomic_two_write procedure from Figure 2, the transaction
system guarantees that either both writes happen or none do,
no matter when and how many crashes happen.

CHL makes it possible to write specifications for proce-
dures such as atomic_two_write and the write-ahead logging
system, as we will explain in the rest of the section.

3.2 Crash conditions
CHL needs a way for developers to write down predicates
about disk states, such as a description of the possible interme-
diate states where a crash could occur. For modularity, CHL
should allow reasoning about just one part of the disk, rather
than having to specify the contents of the entire disk at all
times. For example, we want to specify what happens with
the two blocks that atomic_two_write updates and not have
to say anything about the rest of the disk.

To do this, CHL employs separation logic [56], which is a
way of combining predicates on disjoint parts of a store (in
our case, the disk). The basic predicate in separation logic is a
points-to relation, written as a 7→ v, which means that address
a has value v. Given two predicates x and y, separation logic
allows CHL to produce a combined predicate x ⋆ y. The ⋆
operator means that the disk can be split into two disjoint parts,
where one satisfies the x predicate, and the other satisfies y.

To reason about the behavior of a procedure in the pres-
ence of crashes, CHL allows a developer to capture both the
state at the end of the procedure’s crash-free execution and
the intermediate states during the procedure’s execution in
which a crash could occur. For example, Figure 3 shows the
CHL specification for FSCQ’s disk_write. (In our imple-
mentation of CHL, these specifications are written in Coq
code; we show here an easier-to-read version.) We will de-
scribe the precise notation shortly, but for now, note that
the specification has four parts: the procedure about which
we are reasoning, disk_write(a, v); the precondition, disk:
a 7→ ⟨v0, vs⟩ ⋆ other_blocks; the postcondition if there are
no crashes, disk: a 7→ ⟨v, [v0]⊕ vs⟩ ⋆ other_blocks; and the
crash condition, disk: a 7→ ⟨v0, vs⟩ ⋆ other_blocks ∨ a 7→
⟨v, [v0]⊕ vs⟩ ⋆ other_blocks. Moreover, note that the crash
condition specifies that disk_write could crash in two possi-
ble states (either before making the write or after).

The specification in Figure 3 captures asynchronous writes.
To do so, CHL models the disk as a (partial) function from a
block number to a tuple, ⟨v,vs⟩, consisting of the last-written
value v and a set of previous values vs, one of which could

SPEC disk_write(a, v)
PRE disk: a 7→ ⟨v0, vs⟩ ⋆ other_blocks
POST disk: a 7→ ⟨v, [v0]⊕ vs⟩ ⋆ other_blocks
CRASH disk: a 7→ ⟨v0, vs⟩ ⋆ other_blocks ∨

a 7→ ⟨v, [v0]⊕ vs⟩) ⋆ other_blocks

Figure 3: Specification for disk_write

appear on disk after a crash. Block numbers greater than the
size of the disk do not map to anything. Reading from a block
returns the last-written value, since even if there are previous
values that might appear after a crash, in the absence of a
crash a read should return the last write. Writing to a block
makes the new value the last-written value and adds the old
last-written value to the set of previous values. Reading or
writing a block number that does not exist causes the system
to “fail” (as opposed to finishing or crashing). Finally, CHL’s
disk model supports a sync operation, which waits until the
last-written value is on disk and discards previous values.

Returning to Figure 3, the disk_write specification asserts
through the precondition that the address being written, a,
must be valid (i.e., within the disk’s size), by stating that
address a points to some value ⟨v0, vs⟩ on disk. The spec-
ification’s postcondition asserts that the block being modi-
fied will contain the new value ⟨v, [v0]⊕ vs⟩; that is, the new
last-written value is v, and v0 is added to the set of previous
values. The specification also asserts through the crash condi-
tion that disk_write could crash in a state that satisfies a 7→
⟨v0, vs⟩ ⋆ other_blocks ∨ a 7→ ⟨v, [v0]⊕vs⟩ ⋆ other_blocks,
i.e., either the write did not happen (a still has ⟨v0, vs⟩), or it
did (a has ⟨v, [v0]⊕ vs⟩). Finally, the specification asserts that
the rest of the disk is unaffected: if other disk blocks satisfied
some predicate other_blocks before disk_write, they will still
satisfy the same predicate afterwards.

One subtlety of CHL’s crash conditions is that they describe
the state of the disk just before the crash occurs, rather than
just after. Right after a crash, CHL’s disk model specifies
that each block nondeterministically chooses one value from
the set of possible values before the crash. For instance, the
first line of Figure 3’s crash condition says that the disk still
“contains” all previous writes, represented by ⟨v0,vs⟩, rather
than a specific value that persisted across the crash, chosen
out of [v0]⊕ vs. This choice of representing the state before
the crash rather than after the crash allows the crash condition
to be similar to the pre- and postconditions. For example, in
Figure 3, the state of other sectors just before a crash matches
the other_blocks predicate, as in the pre- and postconditions.
However, describing the state after the crash would require
a more complex predicate (e.g., if other_blocks contains un-
synced disk writes, the state after the crash must choose one
of the possible values). Making crash conditions similar to
pre- and postconditions is good for proof automation (as we
describe in §4).

The specification of disk_write captures two important
behaviors of real disks—that I/O can happen asynchronously
and that writes can be reordered—in order to achieve good
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performance. CHL could model a simpler synchronous disk
by specifying that a points to a single value (instead of a set
of values) and changing the crash condition to say that either
a points to the new value (a 7→ v) or a points to the old value
(a 7→ v0). This change would simplify proofs, but this model
of a disk would be accurate only if the disk were running in
synchronous mode with no write buffering, which achieves
lower performance.

The disk_write specification states that blocks are written
atomically; that is, after a crash, a block must contain either
the last-written value or one of the previous values, and partial
block writes are not allowed. This is a common assumption
made by file systems, as long as each block is exactly one
sector, and we believe it matches the behavior of many disks
in practice (modern disks often have 4 KB sectors). Using
CHL, we could capture the notion of partial sector writes by
specifying a more complicated crash condition, but the speci-
fication shown here matches the common assumption about
atomic sector writes. We leave to future work the question of
how to build a certified file system without that assumption.

Much like other Hoare-logic-based approaches, CHL re-
quires developers to write complete specifications for every
procedure, including internal ones (e.g., allocating an object
from a free bitmap). This requires stating precise precondi-
tions and postconditions. In CHL, developers must also write
crash conditions for every procedure. In practice, we have
found that the crash conditions are often simpler to state than
the pre- and postconditions. For example, in FSCQ, most crash
conditions in layers above the log simply state that there is an
active (uncommitted) transaction; only the top-level system-
call code begins and commits transactions.

3.3 Logical address spaces
The above example illustrates how CHL can specify predicates
about disk contents, but file systems often need to express sim-
ilar predicates at other levels of abstraction as well. Consider
the Unix pwrite system call. Its specification should be sim-
ilar to disk_write, except that it should describe offsets and
values within the file’s contents, rather than block numbers
and block values on disk. Expressing this specification directly
in terms of disk contents is tedious. For example, describing
pwrite might require saying that we allocated a new block
from the bitmap allocator, grew the inode, perhaps allocated
an indirect block, and modified some disk block that happens
to correspond to the correct offset within the file. Writing such
complex specifications is also error-prone, which can result in
significant wasted effort in trying to prove an incorrect spec.

To capture such high-level abstractions in a concise manner,
we observe that many of these abstractions deal with logical
address spaces. For example, the disk is an address space from
disk-block numbers to disk-block contents; the inode layer
is an address space from inode numbers to inode structures;
each file is a logical address space from offsets to data within
that file; and a directory is a logical address space from file

names to inode numbers. Building on this observation, CHL
generalizes the separation logic for reasoning about the disk
to similarly reason about higher-level address spaces like files,
directories, or the logical disk contents in a logging system.

SPEC atomic_two_write(a1, v1, a2, v2)
PRE disk: log_rep(NoTxn, start_state)

start_state: a1 7→ vx ⋆ a2 7→ vy ⋆ others
POST disk: log_rep(NoTxn, new_state)

new_state: a1 7→ v1 ⋆ a2 7→ v2 ⋆ others
CRASH disk: log_intact(start_state, new_state)

Figure 4: Specification for atomic_two_write

As an example of address spaces, consider the specifica-
tion of atomic_two_write, shown in Figure 4. Rather than
describe how atomic_two_write modifies the on-disk data
structures, the specification introduces new address spaces,
start_state and new_state, which correspond to the contents
of the logical disk provided by the logging system. Logical
address spaces allow the developer of the logging system to
state a clean specification, which provides the abstraction of a
simple, synchronous disk to higher layers in the file system.
Developers of higher layers can then largely ignore the details
of the underlying asynchronous disk.

Specifically, in the precondition, a1 7→ vx applies to the ad-
dress space representing the starting contents of the logical
disk, and in the postcondition, a1 7→ v1 applies to the new con-
tents of the logical disk. Like the physical disk, these address
spaces are partial functions from addresses to values (in this
case, mapping 64-bit block numbers to 4 KB block values).
Unlike the physical disk, the logical disk address space pro-
vided by the logging system associates a single value with
each block, rather than a set of values, because the transaction
system exports a sound synchronous interface, proven correct
on top of the asynchronous interface below.

To make this specification precise, we must describe what
it means for the transaction’s logical disk to have value v1 at
address a1. We do this by connecting the transaction’s logical
address spaces, start_state and new_state, to their physical
representation on disk. For instance, we specify where the
starting state is stored on disk and how the new state is log-
ically constructed (e.g., by applying the log contents to the
starting state). We specify this connection using a represen-
tation invariant; in this example, the representation invariant
log_rep is a predicate describing the physical disk contents.
log_rep takes logical address spaces as arguments and

specifies how those logical address spaces are represented
on disk. Several states of the logging system are possible;
log_rep(NoTxn, start_state) means the disk has no active
transaction and is in state start_state. In Figure 4, the log_rep
invariant shows up twice. It is first applied to the disk ad-
dress space, representing the physical disk contents, in the
precondition. Here, it relates the starting disk contents to the
start_state logical address space. log_rep also shows up in
the postcondition, where it connects the physical disk state
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after atomic_two_write returns and the logical address space
new_state. Syntactically, we use the notation “las: predicate”
to say that the logical address space las matches a particular
predicate; this is used both to apply a representation invari-
ant to an address space (such as log_rep in the disk address
space) as well as to write other predicates about an address
space (such as a1 7→ v1 in new_state).

Representation invariants can be thought of as macros,
which boil down to a set of “points-to” relationships. For
instance, Figure 5 shows part of the log_rep definition for an
interesting case, namely an active transaction. It says that, in
order for a transaction to be in an ActiveTxn state, the com-
mit block must contain zero, all of the blocks in start_state
must be on disk, and cur_state is the result of replaying the
in-memory log starting from start_state. The arrow notation,
→, denotes implication; that is, if start_state[a] = v, then it
must be that a 7→ ⟨v,∅⟩. replay is the one part of log_rep
that does not boil down to points-to predicates: it is simply
a function that takes one logical name space and produces
another logical name space (by applying log entries). Note
that, by using ∅ as the previous value sets, log_rep requires
that all blocks must have been synced.

log_rep(ActiveTxn, start_state, cur_state) :=
COMMITBLOCK 7→ ⟨0,∅⟩⋆ (∀a, start_state[a] = v → a 7→ ⟨v,∅⟩)
∧ replay(start_state, inMemoryLog) = cur_state

Figure 5: Part of log_rep representation invariant

The crash condition of atomic_two_write, from Figure 4,
describes all of the states in which atomic_two_write could
crash using log_intact(d1, d2), which stands for all possi-
ble log_rep states that recover to transaction states d1 or d2.
Using log_intact allows us to concisely capture all possible
crash states during atomic_two_write, including crashes deep
inside any procedure that atomic_two_write might call (e.g.,
crashes inside log_commit).

3.4 Recovery execution semantics
Crash conditions and address spaces allow us to specify the
possible states in which the computer might crash in the middle
of a procedure’s execution. But we also need a way to reason
about recovery, including crashes during recovery.

For example, we want to argue that a transaction provides
all-or-nothing atomicity: if atomic_two_write crashes prior
to invoking log_commit, none of the calls to log_writewill be
applied; after log_commit returns, all of them will be applied;
and if atomic_two_write crashes during log_commit, either
all or none of them will take effect. To achieve this property,
the transaction system must run log_recover after every crash
to roll forward any committed transaction, including after
crashes during log_recover itself.

The specification of the log_recover procedure is shown
in Figure 6. It says that, starting from any state matching
log_intact(last_state, committed_state), log_recover
will either roll back the transaction to last_state or will roll

forward a committed transaction to committed_state. Fur-
thermore, the specification is idempotent, since the crash condi-
tion implies the precondition; this will allow for log_recover
to crash and restart multiple times.

SPEC log_recover()
PRE disk: log_intact(last_state, committed_state)
POST disk: log_rep(NoTxn, last_state) ∨

log_rep(NoTxn, committed_state)
CRASH disk: log_intact(last_state, committed_state)

Figure 6: Specification of log_recover

To state that log_recover must run after a crash, CHL pro-
vides a recovery execution semantics. In contrast to CHL’s
regular execution semantics, which talks about a procedure
producing either a failure (accessing an invalid disk block), a
crash, or a finished state, the recovery semantics talks about
two procedures executing (a normal procedure and a recovery
procedure) and producing either a failure, a completed state
(after finishing the normal procedure), or a recovered state
(after finishing the recovery procedure). This regime models
the notion that the normal procedure tries to execute and reach
a completed state, but if the system crashes, it starts running
the recovery procedure (perhaps multiple times if there are
crashes during recovery), which produces a recovered state.

SPEC atomic_two_write(a1, v1, a2, v2)≫ log_recover
PRE disk: log_rep(NoTxn, start_state)

start_state: a1 7→ vx ⋆ a2 7→ vy ⋆ others
POST disk: log_rep(NoTxn, new_state) ∨

(ret = recovered ∧ log_rep(NoTxn, start_state))
new_state: a1 7→ v1 ⋆ a2 7→ v2 ⋆ others

Figure 7: Specification for atomic_two_write with recovery. The≫ operator
indicates the combination of a regular procedure and a recovery procedure.

Figure 7 shows how to extend the atomic_two_write spec-
ification to include recovery execution using the≫ notation.
The postcondition indicates that, if atomic_two_write finishes
without crashing, both blocks were updated, and if one or
more crashes occurred, with log_recover running after each
crash, either both blocks were updated or neither was. The
special ret variable indicates whether the system reached a
completed or a recovered state and in this case enables callers
of atomic_two_write to conclude that, if atomic_two_write
completed without crashes, it updated both blocks (i.e., updat-
ing none of the blocks is allowed only if the system crashed
and recovered).

Note that distinguishing the completed and recovered states
allows the specification to state stronger properties for com-
pletion than recovery. Also note that the recovery-execution
version of atomic_two_write does not have a crash condition,
because the execution always succeeds, perhaps after running
log_recover many times.

In this example, the recovery procedure is just log_recover,
but the recovery procedure of a system built on top of the
transaction system may be composed of several recovery pro-
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log_recover

PRE

POST

RECOVER

if bnum >= NDIRECT:
    indirect = log_read(inode.blocks[NDIRECT])
    return indirect[bnum - NDIRECT]
else:
    return inode.blocks[bnum]

if

log_read

return

return

Figure 8: Example control flow of a CHL procedure that looks up the address of a block in an inode, with support for indirect blocks. (The actual code in FSCQ
checks for some additional error cases.) Gray boxes represent the specifications of procedures. The dark red box represents the recovery procedure. Green and
pink boxes represent preconditions and crash conditions, respectively. Blue boxes represent postconditions. Dashed arrows represent logical implication.

cedures. For example, recovery in a file system consists of
first reading the superblock from disk to locate the log and
then running log_recover.

4 Proving specifications
The preceding section explains how to write specifications
using CHL. This section describes how to prove that an im-
plementation meets its specification. A key challenge in the
design of CHL was to reduce the proof burden on developers.
In developing FSCQ, we often refactored specifications and
implementations, and each time we did so we had to redo the
corresponding proofs. To reduce the burden of proving, we
designed CHL so that it allows for stylized proofs. As a result
of this design, several proof steps can be done automatically,
as we describe in this section.

Even with this automation, a significant amount of manual
effort is still required for proving. First, CHL itself must be
proven to be sound, which we have done as part of imple-
menting CHL in Coq; developers using CHL need not redo
this proof. Second, each application that uses CHL typically
requires a significant amount of effort to develop its specifica-
tions and proofs, because there are many aspects that cannot
be fully automated. We examine the amount of work required
to build the FSCQ file system in more detail in §7.

4.1 Overview
To get some intuition for how CHL can help automate proofs,
consider the control flow of the example procedure in Figure 8.
The outer box corresponds to the top-level specification of
a procedure; in this example, it is a procedure that returns
the address of the bnumth block from an inode, with recovery-
execution semantics. It has a precondition, a postcondition,
and a recovery condition.

The arrows correspond to the procedure’s control flow, and
smaller boxes correspond to procedures that the top-level pro-
cedure invokes (e.g., log_read). Each of these procedures has
a precondition, a postcondition, and a crash condition. In the
figure, after calling the if statement, the procedure can follow
two different paths: it may call log_read and then return, or

it may immediately return a different value. More compli-
cated procedures may have more complicated control flows,
including loops.

The top-level procedure also has a recovery procedure (e.g.,
log_recover). The recovery procedure has a precondition,
postcondition, and recovery condition. The recovery proce-
dure may be invoked at any point after a crash. To capture
this, the control flow can jump from the crash condition of a
procedure to the recovery procedure. The recovery procedure
can itself crash, so there is also an arrow from the recovery
procedure’s crash condition to its own precondition.

Proving the correctness of the top-level procedure p entails
proving that, if p is executed and the precondition held before
p started running, either 1) its postcondition holds; or 2) the
recovery condition holds after recovery finishes. For the first
case, we must show that the precondition of the top-level pro-
cedure implies the precondition of the first procedure invoked,
that the postcondition of the first procedure called implies the
precondition of the next procedure invoked in the control flow,
and so on. Similarly for the second case, we must prove that
the crash condition of each procedure implies the precondition
of the recovery procedure, and so on.

In both cases, the logical implications follow exactly the
control flow of the procedure, which allows for a high degree
of automation. Our implementation of CHL automatically
chains the pre- and postconditions based on the control flow
of the procedure. If a precondition is trivially implied by a
preceding postcondition in the control flow, then the developer
does not have to prove anything. In practice this is often the
case, and the developer must prove only the representation
functions (e.g., log_rep and log_intact). The rest of this sec-
tion describes this automation in more detail, while explicitly
noting what must be proven by hand by developers. The basic
strategy is inspired by the Bedrock system [12] but extends
the approach to handle crashes and address spaces.

4.2 Proving without recovery
CHL’s proof strategy consists of the following steps:
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Phase 1: Procedure steps. The first phase of CHL’s proof
strategy is to turn the theorem about p’s specification into a
series of proof obligations that will be proven in the next phase.
Specifically, CHL considers every step in p (e.g., a procedure
call) and reasons about what the state of the system is before
and after that step. CHL assumes that each step already has
a proven specification. The base primitives (e.g., disk_read
and disk_write) of CHL have proven specifications provided
by the implementation of CHL.

CHL starts by assuming that the initial state matches the
precondition, and, for every step in p, generates two proof
obligations: (1) that the current condition (either p’s precon-
dition or the previous step’s postcondition) implies the step’s
precondition, and (2) that the step’s crash condition implies p’s
crash condition. At the end of p, CHL generates a final proof
obligation that the final condition implies p’s postcondition.

SPEC log_begin()
PRE disk: log_rep(NoTxn, start_state)
POST disk: log_rep(ActiveTxn, start_state, start_state)
CRASH disk: log_intact(start_state, start_state)

Figure 9: Specification for log_begin

For example, consider the atomic_two_write procedure
from Figure 2, whose specification is shown in Figure 4. As
the first step, CHL considers the call to log_begin and, us-
ing the specification shown in Figure 9, generates two proof
obligations: that atomic_two_write’s precondition matches
the precondition of log_begin, and that log_begin’s crash
condition implies atomic_two_write’s crash condition.

SPEC log_write(a, v)
PRE disk: log_rep(ActiveTxn, start_state, old_state)

old_state: a 7→ v0 ⋆ other_blocks
POST disk: log_rep(ActiveTxn, start_state, new_state)

new_state: a 7→ v ⋆ other_blocks
CRASH disk: log_rep(ActiveTxn, start_state, any_state)

Figure 10: Specification for FscqLog’s write

When specifications involve multiple address spaces, CHL
recursively matches up the address spaces starting from the
built-in disk address space. For instance, the next step in
atomic_two_write is the call to log_write, whose specifica-
tion appears in Figure 10. By matching up the disk address
spaces in log_begin’s postcondition and log_write’s precon-
dition, CHL concludes that the address space called start_state
in atomic_two_write is the same as the old_state address
space in log_write. CHL then generates another proof obli-
gation that the predicate for start_state in atomic_two_write
implies the predicate for old_state in log_write.

Phase 2: Predicate implications. Some obligations gener-
ated in phase 1 are trivial, such as that the precondition of
atomic_two_write implies the precondition of log_begin;
since the two are identical, CHL immediately proves the im-
plication between them.

For more complicated cases, CHL relies on separation logic
to prove the obligations and to help carry information from pre-
condition to postcondition. Continuing with our example, con-
sider the proof obligation generated at atomic_two_write’s
first call to log_write, which requires us to prove that a1 7→

vx ⋆ a2 7→ vy ⋆ others implies a1 7→ v0 ⋆ other_blocks.
Because ⋆ applies only to disjoint predicates, CHL matches
up a1 7→ vx with a1 7→ v0 (thereby setting v0 to vx) and “can-
cels out” these terms from both sides of the implication obli-
gation. CHL then sets the arbitrary other_blocks predicate
from log_write’s precondition to a2 7→ vy ⋆ others. This
has two effects: first, it proves this particular obligation, and
second, it carries over information about a2 7→ vy into sub-
sequent proof obligations that mention other_blocks from
log_write’s postcondition (such as atomic_two_write’s next
call to log_write).

Some implication obligations cannot be proven by CHL
automatically and require developer input. This usually oc-
curs when the developer is working with multiple levels of
abstraction, where one predicate mentions a higher-level repre-
sentation invariant (e.g., a directory represented by a function
from file names to inode numbers) but the other predicate talks
about lower-level state (e.g., a directory represented by a set
of directory entries in a file).

4.3 Proving recovery specifications
So far, we described how CHL proves specifications about pro-
cedures without recovery. Proofs of specifications that involve
a recovery procedure, such as Figure 7, are also automated in
CHL: if the recovery procedure is idempotent (i.e., its crash
condition implies its precondition), CHL can automatically
prove the specification of procedure p with recovery based
on the spec of p without recovery. For instance, since the
log_recover procedure is idempotent (see Figure 6), CHL
can automatically prove the specification shown in Figure 7
based on the spec from Figure 4.

5 Building a file system
This section describes FSCQ, a simple file system that we
specified and certified using CHL. FSCQ’s design closely
follows the xv6 file system. The key differences are the lack
of multiprocessor support and the use of a separate bitmap
for allocating inodes (instead of using a particular inode type
to represent a free state). The rest of this section describes
FSCQ, the challenges we encountered in proving FSCQ, and
the design patterns that we came up with for addressing them.

5.1 Overview
Figure 11 shows the overall components that make up FSCQ.
FscqLog provides a simple write-ahead log, which FSCQ uses
to update several disk blocks atomically. The other compo-
nents provide simple implementations of standard file-system
abstractions. The Cache module provides a buffer cache. Bal-
loc implements a bitmap allocator, used for both block and
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inode allocation. Inode implements an inode layer; the most
interesting logic here is combining the direct and indirect
blocks together into a single list of block addresses. Inode
invokes Balloc to allocate indirect blocks. BFile implements
a block-level file interface, exposing to higher levels an inter-
face where each file is a list of blocks. BFile invokes Balloc to
allocate file data blocks. Dir implements directories on top of
block-level files. ByteFile implements a byte-level interface
to files, where each file is an array of bytes. DirTree combines
directories and byte-level files into a hierarchical directory-
tree structure; it invokes Balloc to allocate/deallocate inodes
when creating/deleting files or subdirectories. Finally, FS
implements complete system calls in transactions.

Cache FscqLog

Inode Balloc

BFile

Dir ByteFile

FSDirTree

Figure 11: FSCQ components. Arrows represent procedure calls.

Figure 12 shows FSCQ’s disk layout. The layout block
contains information about where all other parts of the file
system are located on disk and is initialized by mkfs.

File
data

Block
bitmaps

Inodes Inode
bitmaps

Log
length

Log
header

Log
data

Layout
block

Figure 12: FSCQ on-disk layout

5.2 Disk and crash model
FSCQ builds on the specification for disk_write shown in Fig-
ure 3, which allows FSCQ to perform asynchronous disk oper-
ations and captures the fact that, after a crash, not every issued
write will be reflected in the disk state. The other two disk op-
erations that CHL models are reading a disk block (disk_read)
and waiting until all write operations have reached nonvolatile
memory (disk_sync).
disk_sync takes a block address as an extra argument to

indicate which block must be synced. The per-address vari-
ant of disk_sync discards all previous values for that block,
making the last-written value the only possible value that
can appear after a crash. All other blocks remain unchanged,
which enables separation-logic-based local reasoning about
sync operations. At execution time, consecutive invocations
of per-address disk_syncs are collapsed into a single global
disk_sync operation, achieving the desired performance.

5.3 POSIX specification
FSCQ provides a POSIX-like interface at the top level; the
main differences from POSIX are (i) that FSCQ does not
support hard links, and (ii) that FSCQ does not implement file
descriptors and instead requires naming open files by inode
number. FSCQ relies on the FUSE driver to maintain the
mapping between open file descriptors and inode numbers.

One challenge is specifying the behavior of POSIX calls
under crashes. The POSIX standard is vague about what
the correct behavior is after a crash. File systems in prac-
tice implement different semantics, which cause problems for
applications that need to implement application-level crash
consistency on top of a file system [55]. We decided to specify
all-or-nothing atomicity with respect to crashes and immediate
durability (i.e., when a system call returns, its effects are on
disk). In future work, we would like to allow applications
to defer durability by specifying and supporting system calls
such as fsync.

SPEC rename(cwd_ino, oldpath, newpath)≫ fs_recover
PRE disk: log_rep(NoTxn, start_state)

start_state: tree_rep(old_tree) ∧
find_subtree(old_tree, cwd) = cwd_tree ∧
tree_inum(cwd_tree) = cwd_ino

POST disk: ((ret = (completed, NoErr) ∨ ret = recovered) ∧
log_rep(NoTxn, new_state)) ∨

((ret = (completed, Error) ∨ ret = recovered) ∧
log_rep(NoTxn, start_state))

new_state: tree_rep(new_tree) ∧
mover = find_subtree(cwd_tree, oldpath) ∧
pruned = tree_prune(cwd_tree, oldpath) ∧
grafted = tree_graft(pruned, newpath, mover) ∧
new_tree = update_subtree(old_tree, cwd, grafted)

Figure 13: Specification for rename with recovery

Figure 13 shows FSCQ’s specification for its most com-
plicated system call, rename, in combination with FSCQ’s
recovery procedure fs_recover. rename’s precondition re-
quires that the directory tree is in a consistent state, matching
the tree_rep invariant, and that the caller’s current working
directory inode, cwd_ino, corresponds to some valid path
name in the tree. The postcondition asserts that rename will
either return an error, with the tree unchanged, or succeed,
with the new tree being logically described by the functions
tree_prune, tree_graft, etc. These functions operate on a
logical representation of the directory tree structure, rather
than on low-level disk representations, and are defined in a
few lines of code each. In case of a crash, the state will either
have no effects of rename or will be as if rename had finished.

5.4 FscqLog
To run system calls as transactions, FSCQ uses FscqLog, a
simple write-ahead logging system. Figure 14 shows the
pseudocode for FscqLog’s implementation. The specifica-
tions of log_begin (Figure 9), log_write (Figure 10), and
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log_recover (Figure 6) are the specifications for the corre-
sponding procedures in FscqLog’s API. FscqLog does not
aim to achieve the high performance of sophisticated logging
systems but captures the core idea of write-ahead logging.

inMemoryLog = {}

def log_begin(): pass

def log_write(a, v): inMemoryLog[a] = v

def log_read(a):
if inMemoryLog.has_key(a): return inMemoryLog[a]
else: return disk_read(a)

def log_flush():
i = 0
for (a, v) in inMemoryLog.iteritems():

if i >= LOGSIZE: return None
disk_write(LOGSTART + i, v)
logHeader.sector[i] = a
i = i + 1

logHeader.len = len(inMemoryLog)
return logHeader

def log_apply():
for (a, v) in inMemoryLog.iteritems():

disk_write(a, v)

def log_commit():
logHeader = log_flush()
if logHeader is None: return False
disk_sync()
disk_write(COMMITBLOCK, logHeader)
disk_sync()
log_apply()
disk_sync()
logHeader.len = 0
disk_write(COMMITBLOCK, logHeader)
disk_sync()
inMemoryLog = {}
return True

def log_abort(): inMemoryLog = {}

def log_recover():
logHeader = disk_read(COMMITBLOCK)
for i in range(0, logHeader.len):

v = disk_read(LOGSTART + i)
disk_write(logHeader.sector[i], v)

disk_sync()
logHeader.len = 0
disk_write(COMMITBLOCK, logHeader)
disk_sync()

Figure 14: Pseudocode for FscqLog

FscqLog allows only one transaction at a time and assumes
that the memory is large enough to hold an in-memory log
for the current transaction. More sophisticated logging sys-
tems remove such restrictions, but even for this simple design
the logging protocol is complex because disk_write is asyn-
chronous. After a crash, the logging system can be in one of
seven states: NoTxn (no active transaction), ActiveTxn (a trans-
action has started), LogFlushed (log_flush has happened),
CommittedUnsync (commit block has been written), Commit-

tedSync (commit block has been synced), AppliedUnsync (log
has been applied), and AppliedSync (log has been applied and
synced). We proved that FscqLog is always in one of these
states, which correspond to natural phases in the FscqLog
implementation. Different invariants might hold for different
states. The publicly exported specs of the FscqLog methods
only mention states NoTxn and ActiveTxn, since recovery code
hides the others.

After a crash, FSCQ’s recovery procedure fs_recover reads
the layout block to determine where the log is located, and
invokes FscqLog’s log_recover to bring the disk to a consis-
tent state. We have proven that log_recover always correctly
recovers from each of the seven states after a crash.

By using FscqLog, FSCQ can factor out crash recovery.
FSCQ updates the disk only through log_write and wraps
those writes into transactions at the system-call granularity to
achieve crash safety. For example, FSCQ wraps each system
call like open, unlink, etc, in an FscqLog transaction, similar
to atomic_two_write in Figure 2. This allows us to prove that
the entire system call is atomic. That is, we can prove that the
modifications a system call makes to the disk (e.g., allocating
a block to grow a file, then writing that block, and so on) all
happen or none happen, even if the system call fails due to a
crash after issuing some log_writes.

Furthermore, although FscqLogmust deal with the complex-
ity of asynchronous writes, it presents to higher-level software
a simpler synchronous interface, because transactions hide the
asynchrony by providing all-or-nothing atomicity. We were
able to do this because the transaction API exposes a logical
address space that maps each block to unique block contents,
even though the physical disk maps each block to a tuple of
a last-written value and a set of previous values. As a result,
software written on top of FscqLog does not have to worry
about asynchronous writes.

5.5 Using address spaces
Since transactions take care of crashes, the remaining chal-
lenge lies in specifying the behavior of a file system and prov-
ing that the implementation meets its specification on a reliable
disk. As mentioned in §3.3, CHL’s address spaces help ex-
press predicates about address spaces at different levels of
abstraction. For example, consider the specification shown
in Figure 15 for file_bytes_write, which overwrites exist-
ing bytes. This specification uses separation logic in four
different address spaces: the bare disk (which implements
asynchronous writes and matches the log_rep predicate); the
abstract disks inside the transaction, old_state and new_state
(which have synchronous writes and match the files_rep
predicate); the address spaces of files indexed by inode num-
ber, old_files and new_files; and finally the address spaces of
file bytes indexed by offset, old_f.data and new_f.data. The use
of separation logic within each address space allows us to con-
cisely specify the behavior of file_bytes_write at all these
levels of abstraction. Furthermore, CHL applies its proof au-
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tomation machinery to separation logic in every address space.
This helps developers construct short proofs about higher-level
abstractions.

SPEC file_bytes_write(inum, off, len, bytes)
PRE disk: log_rep(ActiveTxn, start_state, old_state)

old_state: files_rep(old_files) ⋆ other_state
old_files: inum 7→ old_f ⋆ other_files
old_f.data: [off . . .off + len) 7→ old_bytes ⋆ other_bytes

POST disk: log_rep(ActiveTxn, start_state, new_state)
new_state: files_rep(new_files) ⋆ other_state
new_files: inum 7→ new_f ⋆ other_files ∧

new_f.attr = old_f.attr
new_f.data: [off . . .off + len) 7→ bytes ⋆ other_bytes

CRASH disk: log_rep(ActiveTxn, start_state, any_state)

Figure 15: Specification for writing to a file

5.6 Resource allocation
File systems must implement resource allocation at multiple
levels of abstraction—in particular, allocating disk blocks and
allocating inodes. We built and proved correct a common
allocator in FSCQ. It works by storing a bitmap spanning
several contiguous blocks, with bit i corresponding to whether
object i is available. FSCQ instantiates this allocator for both
disk-block and inode allocation, each with a separate bitmap.

Writing a naïve specification of the allocator is straightfor-
ward: freeing an object adds it to a set of free objects, and
allocating returns one of these objects. The allocator’s repre-
sentation invariant asserts that the free set is correctly encoded
using “one” bits in the on-disk bitmap. However, the caller
of the allocator must prove more complex statements—for
example, that any object obtained from the allocator is not
already in use elsewhere. Reproving this property from first
principles each time the allocator is used is labor-intensive.

To address this problem, FSCQ’s allocator provides a
free_objects_pred(obj_set) predicate that can be applied to
the address space whose resources are being allocated. This
predicate is defined as a set of (∃v, i 7→ v) predicates for each i
in obj_set, combined using the ⋆ operator. obj_set is typically
the allocator’s set of free object IDs, so this predicate states
that every free object ID points to some value.

Using free_objects_pred simplifies reasoning about re-
source allocation, because it can be combined with other pred-
icates about the objects that are currently in use (e.g., disk
blocks used by files), to give a complete description of the ad-
dress space in question. The disjoint nature of the ⋆ operator
precisely capture the idea that all objects are either available
(and managed by the allocator) or are in use (and match some
other predicate about the in-use objects).

For example, Figure 16 shows the representation invariant
for FSCQ’s file layer, which is typically applied to FscqLog’s
abstract disk address space, as shown in Figure 15. The ab-
stract disk, according to Figure 16, is split up into four disjoint
parts: the allocation bitmap (represented by allocator_rep),

files_rep(files) := ∃ free_blocks, ∃ inodes,
allocator_rep(free_blocks) ⋆
inode_rep(inodes) ⋆
files_inuse_rep(inodes, files) ⋆
free_objects_pred(free_blocks)

Figure 16: Representation invariant for FSCQ’s file layer

the inode area (represented by inode_rep), file data blocks
(represented by files_inuse_rep), and free blocks (described
by free_objects_pred). The allocator’s representation invari-
ant (allocator_rep) connects the on-disk bitmap to the set of
available blocks (free_blocks). The file_inuse_rep function
combines the inode state in inodes (containing a list of block
addresses for each inode) and the logical file state files to pro-
duce a predicate describing the blocks currently used by all
files. Finally, free_objects_pred asserts that the free blocks
are disjoint from blocks used by the other three predicates.

The same pattern applies to allocating inodes as well. The
only difference is that, in files_rep, the predicate describing
the actual bitmap, allocator_rep, and the predicate describ-
ing the available objects, free_objects_pred, were both ap-
plied to the same address space (the abstract disk). In the case
of inodes, the two predicates are applied to different address
spaces: the bitmap predicate is applied to the abstract disk, but
free_objects_pred is applied to the inode address space.

5.7 On-disk data structures
Another common task in a file system is to lay out data struc-
tures in disk blocks. For example, this shows up when storing
several inodes in a block; storing directory entries in a file;
storing addresses in the indirect block; and even storing indi-
vidual bits in the allocator bitmap blocks. To factor out this
pattern, we built the Rec library for packing and unpacking
data structures into bit-level representations. We often use this
library to pack multiple fields of a data structure into a single
bit vector (e.g., the bit-level representation of an inode) and
then to pack several of these bit-vectors into one disk block.

Definition inode_type : Rec.type := Rec.RecF ([
("len", Rec.WordF 64); (* number of blocks *)
("attr", iattr_type); (* file attrs *)
("iptr", Rec.WordF 64); (* indirect ptr *)
("blks", Rec.ArrayF 5 (Rec.WordF 64))]).

Figure 17: FSCQ’s on-disk inode layout

For example, Figure 17 shows FSCQ’s on-disk inode struc-
ture, in Coq syntax. The first field is len, storing the number
of blocks in the inode, as a 64-bit integer (Rec.WordF indicates
a word field). The other fields are the file’s attributes (such as
the modification time), the indirect block pointer iptr, and a
list of 5 direct block addresses, blks.

The library proves basic theorems, such as the fact that
accesses to different fields are commutative, that reading a
field returns the last write, and that packing and unpacking are
inverses of each other. As a result, code using these records
does not have to prove low-level facts about layout in general.
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5.8 Buffer cache
The design of our buffer cache has one interesting aspect: how
it implements replacement policies. We wanted the flexibility
to use different replacement algorithms, but proving the cor-
rectness of each algorithm posed a nontrivial burden. Instead,
we borrowed the validation approach from CompCert [45]:
rather than proving that the replacement algorithm always
works, FSCQ checks if the result is safe (i.e., is a currently
cached block) before evicting that block. If the replacement
algorithm malfunctions, FSCQ evicts the first block in the
buffer cache. This allows FSCQ to implement replacement
algorithms in unverified code while still guaranteeing overall
correctness.

6 Prototype implementation
The implementation follows the organization shown in Fig-
ure 1 in §1. FSCQ and CHL are implemented using Coq,
which provides a single programming language for implemen-
tation, stating specifications, and proving them. Figure 18
breaks down the source code of FSCQ and CHL. Because
Coq provides a single language, proofs are interleaved with
source code and are difficult to separate. The development
effort took several researchers about a year and a half; most
of it was spent on proofs and specifications. Checking the
proofs takes 11 hours on an Intel i7-3667U 2.00 GHz CPU
with 8 GB DRAM. The proofs are complete; we used Coq’s
Print Assumptions command to verify that FSCQ did not
introduce any unproven axioms or assumptions.

Component Lines of code

Fixed-width words 2,691
CHL infrastructure 5,835
Proof automation 2,304
On-disk data structures 7,572
Buffer cache 660
FscqLog 3,163
Bitmap allocator 441
Inodes and files 2,930
Directories 4,489
FSCQ’s top-level API 1,312

Total 31,397

Figure 18: Combined lines of code and proof for FSCQ components

CHL. CHL is implemented as a domain-specific language in-
side of Coq, much like a macro language (i.e., using a shallow
embedding). We specified the semantics of this language and
proved that it is sound. For example, we proved the standard
Hoare-logic specifications for the for and if combinators.
We also proved the specifications of disk_read, disk_write
(whose spec is in Figure 3 in §3), and disk_sync manually,
starting from CHL’s execution and crash model. Much of the
automation (e.g., the chaining of pre- and postconditions) is
implemented using Ltac, Coq’s domain-specific language for
proof search.

FSCQ. We implemented FSCQ also inside of Coq, writing
the specifications using CHL. We proved that the implemen-
tation obeys the specifications, starting from the basic opera-
tions in CHL. FscqLog simplified FSCQ’s specification and
implementation tremendously, because much of the detailed
reasoning about crashes is localized in FscqLog.

FSCQ file server. We produced running code by using Coq’s
extraction mechanism to generate equivalent Haskell code
from our Coq implementation. We wrote a driver program
in Haskell (400 lines of code) along with an efficient Haskell
reimplementation of fixed-size words, disk-block operations,
and a buffer-cache replacement policy (350 more lines of
Haskell). The extracted code, together with this driver and
word library, allows us to efficiently execute our certified
implementation.

To allow applications to use FSCQ, we exported FSCQ as a
FUSE file system, using the Haskell FUSE bindings [7] in our
Haskell FSCQ driver. We mount this FUSE FSCQ file system
on Linux, allowing Linux applications to use FSCQ without
any modifications. Compiling the Coq and Haskell code to
produce the FUSE executable, without checking proofs, takes
a little under two minutes.

Limitations. Although extraction to Haskell simplifies the
process of generating executable code from our Coq implemen-
tation, it adds the Haskell compiler and runtime into FSCQ’s
trusted computing base. In other words, a bug in the Haskell
compiler or runtime could subvert any of the guarantees that
we prove about FSCQ. We believe this is a reasonable trade-
off, since our goal is to certify higher-level properties of the
file system, and other projects have shown that it is possible to
extend certification all the way to assembly [12, 30, 43].

Another limitation of the FSCQ prototype lies in dealing
with in-memory state in Coq, which is a functional language.
CHL’s execution model provides a mutable disk but gives
no primitives for accessing mutable memory. We address
this by explicitly passing an in-memory state variable through
all FSCQ functions. This contains the current buffer cache
state (a map from address to cached block value), as well as
the current transaction state, if present (an in-memory log of
blocks written in the current transaction). In the future, we
want to support multiprocessors where several threads share a
mutable buffer cache, and we will address this limitation.

A limitation of FscqLog’s implementation is that it does not
guarantee how much log space is available to commit a trans-
action; if a transaction performs too many writes, log_commit
can return an error. Some file systems deal with this by rea-
soning about how many writes each transaction can generate
and ensuring that the log has sufficient space before starting
a transaction. We have not done this in FSCQ yet, although
it should be possible to expose the number of available log
entries in FscqLog’s representation invariant. Instead, we al-
low log_commit to return an error, in which case the entire
transaction (e.g., system call) aborts and returns an error.
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Figure 19: Running time for each phase of the application benchmark suite, and for delivering 200 messages with mailbench

7 Evaluation
To evaluate FSCQ, this section answers several questions:

• Is FSCQ complete enough for realistic applications, and
can it achieve reasonable performance? (§7.1)

• What kinds of bugs do FSCQ’s theorems preclude? (§7.2)

• Does FSCQ recover from crashes? (§7.3)

• How difficult is it to build and evolve the code and proofs
for FSCQ? (§7.4)

7.1 Application performance
FSCQ is complete enough that we can use FSCQ for software
development, running a mail server, etc. For example, we have
used FSCQ with the GNU coreutils (ls, grep, etc.), editors
(vim and emacs), software development tools (git, gcc, make,
and so on), and running a qmail-like mail server. Applications
that, for instance, use extended attributes or create very large
files do not work on FSCQ, but there is no fundamental reason
why they could not be made to work.

Experimental setup. We used a set of applications represent-
ing typical software development: cloning a git repository,
compiling the sources of the xv6 file system and the LFS
benchmark [57] using make, running the LFS benchmark, and
deleting all of the files to clean up at the end. We also run
mailbench, a qmail-like mail server from the sv6 operating
system [14]. This models a real mail server, where using
FSCQ would ensure email is not lost even in case of crashes.

We compare FSCQ’s performance to two other file sys-
tems: the Linux ext4 file system and the file system from the
xv6 operating system (chosen because its design is similar to
FSCQ’s). We modified xv6 to use asynchronous disk writes
and ported the xv6 file system to FUSE so that we can run it
in the same way as FSCQ. Finally, to evaluate the overhead of
FUSE, we also run the experiments on top of ext4 mounted
via FUSE.

To make a meaningful comparison, we run the file systems
in synchronous mode; i.e., every system call commits to disk
before returning. (Disk writes within a system call can be asyn-
chronous, as long as they are synced at the end.) For FSCQ

and xv6, this is the standard mode of operation. For ext4, we
use the data=journal and sync options. Although this is not
the default mode of operation for ext4, the focus of this evalua-
tion is on whether FSCQ can achieve good performance for its
design, not whether its simple design can match that of a so-
phisticated file system like ext4. To give a sense of how much
performance can be obtained through further optimizations
or spec changes, we measure ext4 in three additional configu-
rations: the journal_async_commit mode, which uses check-
sums to commit in one disk sync instead of two (“ext4-journal-
async” in our experiments); the data=ordered mode, which is
incompatible with journal_async_commit (“ext4-ordered”);
and the default data=ordered and async mode, which does
not sync to disk on every system call (“ext4-async”).

We ran all of these experiments on a quad-core Intel i7-
3667U 2.00 GHz CPU with 8 GB DRAM running Linux 3.19.
The file system was stored on a separate partition on an Intel
SSDSCMMW180A3L flash SSD. Running the experiments
on an SSD ensures that potential file-system CPU bottlenecks
are not masked by a slow rotational disk. We compiled FSCQ’s
Haskell code using GHC 7.10.2.

Results. The results of running our experiments are shown in
Figure 19. The first conclusion is that FSCQ’s performance
is close to that of the xv6 file system. The small gap between
FSCQ and xv6 is due to the fact that FSCQ’s Haskell imple-
mentation uses about 4× more CPU time than xv6’s. This
can be reduced by generating C or assembly code instead of
Haskell. Second, FUSE imposes little overhead, judging by
the difference between ext4 and ext4-fuse. Third, both FSCQ
and xv6 lag behind ext4. This is due to the fact that our bench-
marks are bottlenecked by syncs to the SSD, and that ext4
has a more efficient logging design that defers applying the
log contents until the log fills up, instead of at each commit.
This allows ext4 to commit a transaction with two disk syncs,
compared to four disk syncs for FSCQ and xv6. For exam-
ple, mailbench requires 10 transactions per message, and the
SSD can perform a sync in about 2.8 msec. This matches
the observed performance of ext4 (64 msec per message) and
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xv6 and FSCQ (103 and 118 msec per message respectively).
FSCQ is slightly slower than xv6 due to CPU overhead.

Finally, there is room for even further optimizations: ext4’s
journal_async_commit commits with one disk sync instead
of two, achieving almost twice the throughput in some cases;
data=ordered avoids writing file data twice, achieving almost
twice the throughput in other cases; and asynchronous mode
achieves much higher throughput by avoiding disk syncs alto-
gether (at the cost of not persisting data right away).

7.2 Bug discussion
To understand whether FSCQ eliminates real problems that
arise in current file systems, we consider broad categories of
bugs that have been found in real-world file systems [47, 69]
and discuss whether FSCQ’s theorems eliminate similar bugs:

1. Violating file or directory invariants, such as all link counts
adding up [64] or the absence of directory cycles [49].

2. Improper handling of unexpected corner cases, such as
running out of blocks during rename [27].

3. Mistakes in logging and recovery logic, such as not issuing
disk writes and syncs in the right order [39].

4. Misusing the logging API, such as freeing an indirect block
and clearing the pointer to it in different transactions [38].

5. Low-level programming errors, such as integer over-
flows [40] or double frees [11].

6. Resource allocation bugs, such as losing disk blocks [65]
or returning ENOSPC when there is available space [51].

7. Returning incorrect error codes [10].

8. Bugs due to concurrent execution of system calls, such as
races between two threads allocating blocks [48].

Some categories of bugs (#1–5) are eliminated by FSCQ’s
theorems and proofs. For example, FSCQ’s representation
invariant for the entire file system enforces a tree shape for
it, and the specification guarantees that it will remain a tree
(without cycles) after every system call.

With regards to resource allocation (#6), FSCQ guarantees
resources are never lost, but our prototype’s specification does
not require that the system be out of resources in order to return
an out-of-resource error. Strengthening the specification (and
proving it) would eliminate this class of bugs.

Incorrect error codes (#7) can be a problem for our FSCQ
prototype in cases where we did not specify what exact code
(e.g., EINVAL or ENOTDIR) should be returned. Extending the
specification to include specific error codes could avoid these
bugs, at the cost of more complex specifications and proofs.
On the other hand, FSCQ can never have a bug where an
operation fails without an error code being returned.

Multi-processor bugs (#8) are out of scope for our FSCQ
prototype, because it does not support multi-threading.

7.3 Crash recovery
We proved that FSCQ implements its specification, but in
principle it is possible that the specification is incomplete or
that our unproven code (e.g., the FUSE driver) has bugs. To
do an end-to-end check, we ran two experiments. First, we ran
fsstress from the Linux Test Project, which issues random
file-system operations; this did not uncover any problems.
Second, we experimentally induced crashes and verified that
each resulting disk image after recovery is consistent.

In particular, we created an empty file system using mkfs,
mounted it using FSCQ’s FUSE interface, and then ran a work-
load on the file system. The workload creates two files, writes
data to the files, creates a directory and a subdirectory under
it, moves a file into each directory, moves the subdirectory to
the root directory, appends more data to one of the files, and
then deletes the other file. During the workload, we recorded
all disk writes and syncs. After the workload completed, we
unmounted the file system and constructed all possible crash
states. We did this by taking a prefix of the writes up to some
sync, combined with every possible subset of writes from that
sync to the next sync. For the workload described above, this
produced 320 distinct crash states.

For each crash state, we remounted the file system (which
runs the recovery procedure) and then ran a script to examine
the state of the file system, looking at directory structure, file
contents, and the number of free blocks and inodes. For the
above workload, this generates just 10 distinct logical states
(i.e., distinct outputs from the examination script). Based on a
manual inspection of each of these states, we conclude that all
of them are consistent with what a POSIX application should
expect. This suggests that FSCQ’s specifications, as well as
the unverified components, are likely to be correct.

7.4 Development effort
The final question is, how much effort is involved in devel-
oping FSCQ? One metric is the size of the FSCQ code base,
reported in Figure 18; FSCQ consists of about 30,000 lines of
code. In comparison, the xv6 file system is about 3,000 lines
of C code, so FSCQ is about 10× larger, but this includes a
significant amount of CHL infrastructure, including libraries
and proof machinery, which is not FSCQ-specific.

A more interesting question is how much effort is required
to modify FSCQ, after an initial version has been developed
and certified. Does adding a new feature to FSCQ require
reproving everything, or is the work commensurate with the
scale of the modifications required to support the new feature?
To answer this question, the rest of this section presents several
case studies, where we had to add a significant feature to FSCQ
after the initial design was already complete.

Asynchronous disk writes. We initially developed FSCQ
and FscqLog to operate with synchronous disk writes. Imple-
menting asynchronous disk writes required changing about
1,000 lines of code in the CHL infrastructure and changing
over half of the implementations and proofs for FscqLog.
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However, layers above FscqLog did not require any changes,
since FscqLog provided the same synchronous disk abstrac-
tion in both cases.

Indirect blocks. Initially, FSCQ supported only direct
blocks. Adding indirect blocks required changing about 1,500
lines of code and proof in the Inode layer, including infras-
tructure changes for reasoning about on-disk objects that span
multiple disk blocks (the inode and its indirect block). We
made almost no changes to code above the Inode layer; the
only exception was BFile, in which we had to fix about 50
lines of proof due to a hard-coded constant bound for the
maximum number of blocks per file.

Buffer cache. We added a buffer cache to FSCQ after we
had already built FscqLog and several layers above it. Since
Coq is a pure functional language, keeping buffer-cache state
required passing the current buffer-cache object to and from
all functions. Incorporating the buffer cache required changing
about 300 lines of code and proof in FscqLog, to pass around
the buffer-cache state, to access disk via the buffer cache and
to reason about disk state in terms of buffer-cache invariants.
We also had to make similar straightforward changes to about
600 lines of code and proof for components above FscqLog.

Optimizing log layout. FscqLog’s initial design used one
disk block to store the length of the on-disk log and another
block to store a commit bit, indicating whether log recov-
ery should replay the log contents after a crash. Once we
introduced asynchronous writes, storing these fields separately
necessitated an additional disk sync between writing the length
field and writing the commit bit. To avoid this sync, we mod-
ified the logging protocol slightly: the length field was now
also the commit bit, and the log is applied on recovery iff
the length is nonzero. Implementing this change required
modifying about 50 lines of code and about 100 lines of proof.

7.5 Evaluation summary
Although FSCQ is not as complete and high-performance as
today’s high-end file systems, our results demonstrate that
this is largely due to FSCQ’s simple design. Furthermore,
the case studies in §7.4 indicate that one can improve FSCQ
incrementally. In future work we hope to improve FSCQ’s
logging to batch transactions and to log only metadata; we
expect this will bring FSCQ’s performance closer to that of
ext4’s logging. The one exception to incremental improvement
is multiprocessor support, which may require global changes
and is an interesting direction for future research.

8 Discussion
In earlier stages of this project, we considered (and imple-
mented) several different verification approaches. Here we
briefly summarize a few of these alternatives and the problems
that caused us to abandon them.

Our first approach, influenced by CompCert [46], organized
the system as a number of abstraction layers (such as blocks,

inodes, directories, and pathnames), each with its own domain-
specific language. Specifications took the form of an abstract
machine for each domain-specific language. Implementations
compiled higher-level languages into lower-level ones, and
proofs showed simulation relations between the concrete ma-
chine and the specification’s abstract machine. We abandoned
this approach for two reasons. First, at the time, we had not
yet come up with the idea of crash conditions; without them,
it was difficult to prove the idempotence of log recovery. Sec-
ond, we had no notion of separation logic for logical address
spaces; without it, we statically partitioned disk blocks be-
tween higher layers (such as file data blocks vs. directory
blocks), which made it difficult to reuse blocks for different
purposes. Switching from this compiler-oriented approach
to a Hoare-logic-based approach also allowed us to improve
proof automation.

Another approach we explored is to reason about execu-
tion traces [31], an approach commonly used for reasoning
about concurrent events. Under this approach, the developer
would have to show that every possible execution trace of disk
read, write, and sync operations, intermingled with crashes
and recovery, obeys a specification (e.g., rename is atomic).
Although execution traces allow reasoning about ordering of
regular execution, crashes, and recovery, it is cumbersome to
write file-system invariants for execution traces at the level
of disk operations. Many file-system invariants also do not
involve ordering (e.g., every block should be allocated only
once).

9 Conclusion
This paper’s contributions are CHL and a case study of ap-
plying CHL to build FSCQ, the first certified crash-safe file
system. CHL allowed us to concisely and precisely specify the
expected behavior of FSCQ. Because of CHL’s proof automa-
tion, the burden of proving that FSCQ meets its specification
was manageable. The benefit of the verification approach is
that FSCQ has a machine-checked proof that FSCQ avoids
bugs that have a long history of causing data loss in previous
file systems. For critical infrastructure such as a file system,
the cost of proving seems a reasonable price to pay. We hope
that others will find CHL useful for constructing crash-safe
storage systems.
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