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ABSTRACT

RadixVM is a new virtual memory system design that en-
ables fully concurrent operations on shared address spaces for
multithreaded processes on cache-coherent multicore com-
puters. Today, most operating systems serialize operations
such as mmap and munmap, which forces application de-
velopers to split their multithreaded applications into multi-
process applications, hoard memory to avoid the overhead
of returning it, and so on. RadixVM removes this burden
from application developers by ensuring that address space
operations on non-overlapping memory regions scale per-
fectly. It does so by combining three techniques: 1) it orga-
nizes metadata in a radix tree instead of a balanced tree to
avoid unnecessary cache line movement; 2) it uses a novel
memory-efficient distributed reference counting scheme; and
3) it uses a new scheme to target remote TLB shootdowns and
to often avoid them altogether. Experiments on an 80 core
machine show that RadixVM achieves perfect scalability for
non-overlapping regions: if several threads mmap or munmap
pages in parallel, they can run completely independently and
induce no cache coherence traffic.

1 INTRODUCTION

Multithreaded applications on many-core processors can be
bottlenecked by contended locks inside the operating system’s
virtual memory system. Because of complex invariants in vir-
tual memory systems, widely used kernels, such as Linux and
FreeBSD, have a single lock per shared address space. Recent
research shows how to run a page fault handler in parallel
with mmap and munmap calls in the same address space [7],
but still serializes mmap and munmap, which applications
use to allocate and return memory to the operating system.
However, if the mmap and munmap involve non-overlapping
memory regions in the shared address space, as is the case in
memory allocation and freeing, then in principle these calls
should be perfectly parallelizable because they operate on
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different parts of the address space. This paper contributes a
new virtual memory design that achieves this goal.

A typical virtual memory system supports three key op-
erations: mmap to add a region of memory to a process’s
address space, munmap to remove a region of memory from
the address space and the corresponding pages from the hard-
ware page tables, and pagefault, which inserts a page into the
hardware page tables at the faulting virtual address, allocating
a new physical page if necessary. This paper focuses on work-
loads in which multiple threads running in the same address
space frequently and concurrently invoke these operations.
Many multithreaded memory-intensive applications fit this
mold: mmap, munmap, and related variants often lie at the
core of high-performance memory allocators and garbage
collectors. Applications that frequently map and unmap files
also generate such workloads for the OS kernel.

Because operating systems serialize mmap and munmap
calls, even for non-overlapping memory regions, these appli-
cations can easily be bottlenecked by contention in the OS
kernel. As a result, application developers often work around
the virtual memory system to minimize or circumvent this
bottleneck. Multithreaded memory allocators provide a rich
set of workaround examples: they allocate memory in large
chunks from the operating system in each thread [21], batch
many munmaps [13], don’t return memory at all [15], or pro-
vide a loadable kernel module that implements custom VM
operations for the allocator [26]. Some workarounds have
deep structural implications, such as implementing an appli-
cation as communicating single-threaded processes instead
of as a single multi-threaded process [6].

Frequently these workarounds suffice to avoid the internal
VM bottleneck, but often come with other downsides. For
example, a Google engineer reported to us that Google’s mem-
ory allocator is reluctant to return memory to the OS precisely
because of scaling problems with munmap and as a result ap-
plications tie up gigabytes of memory until they exit. This
delays the start of other applications and can cause servers to
be used inefficiently. Engineers from other companies have
reported similar problems to us.

With increasing core counts, we believe these workarounds
will become increasingly complicated and their downsides
more severe, so this paper attacks the root cause of VM scal-
ability problems. This paper explores the design of a virtual
memory system in which virtual memory operations contend
only if they operate on overlapping memory regions. This
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ensures that if two threads operate on distinct ranges of vir-
tual memory, the VM system does not get in the way, and no
scalability workarounds are necessary. In this case, virtual
memory operations should scale perfectly with the number
of cores. If the application operates on the same shared re-
gion from multiple threads, sharing state between the two
threads is inevitable, but the shared state should be minimal
and constrained to the cores using the shared memory region.

There are several challenges in designing a virtual mem-
ory system in which the performance of parallel mmaps and
munmaps scales with the number of cores performing the
operations. First, there are complex invariants between differ-
ent parts of the virtual memory system. For example, when a
thread munmaps a region, the kernel must ensure that this re-
gion is removed from the hardware page tables before reusing
the physical memory; otherwise, other threads in the same
process can access memory that the kernel may have immedi-
ately repurposed for some other application. To provide this
semantics the kernel must enforce ordering on operations,
which can limit performance on larger numbers of cores. Sec-
ond, even a single contended cache line can become a scaling
bottleneck with many cores. One of our initial designs used a
lock-free concurrent skip list, but interior nodes in the skip
list became contended and limited scalability (see §5). Third,
shooting down the translation lookaside buffer (TLB) of other
cores—to ensure that no core caches an out-of-date mapping—
can become a scaling bottleneck. Fourth, many designs that
avoid the scaling problems in a straightforward manner have a
large memory overhead that grows with the number of cores.

This paper addresses these challenges in a new design,
which we call RadixVM. RadixVM uses three different ideas
that complement each other to enable munmap, mmap, and
page faults on non-overlapping memory regions to scale per-
fectly. First, it uses a carefully designed radix tree to record
mapped memory regions. Second, it uses a novel scalable
reference counting scheme for tracking when physical pages
are free and radix tree nodes are no longer used. Third, when
a page must be unmapped, it avoids shooting down hardware
TLBs that don’t have that page mapping cached. The com-
bination of these three ideas allows RadixVM to implement
a straightforward concurrency plan that ensures the correct-
ness of VM operations while allowing VM operations on
non-overlapping memory regions to scale.

We have implemented RadixVM in a new research ker-
nel derived from xv6 [9] because changing the Linux vir-
tual memory implementation is very labor intensive owing
to its overall complexity and how interconnected it is with
other kernel subsystems [7]. An experimental evaluation on
an 80 core machine with microbenchmarks that represent
common sharing patterns in multithreaded applications and a
parallel MapReduce library from MOSBENCH [6] show that
the RadixVM design scales for non-overlapping mmaps and
munmaps. A detailed breakdown shows that all three com-

ponents of RadixVM’s design are necessary to achieve good
scalability.

One downside of prototyping RadixVM on a research ker-
nel instead of Linux is that it is difficult to run large, complex
applications that traditionally place significant load on the
virtual memory system, such as the garbage collectors in Ora-
cle’s Java VM. Furthermore, RadixVM faces a chicken-and-
egg problem: many VM-intensive applications have already
been forced to design around the limitations of traditional VM
systems. As a result, our experimental evaluation focuses on
measuring RadixVM’s performance under microbenchmarks
that capture sharing patterns we have observed in VM-heavy
workloads on Linux.

The rest of the paper is organized as follows. §2 discusses
the related work. §3 presents the design of RadixVM. §4
summarizes our implementation. §5 evaluates RadixVM’s
performance, and §6 concludes.

2 RELATED WORK

RadixVM’s design builds on research in 5 different areas:
SMP Unix kernels, kernels designed for scalability, VM data
structures, TLB shootdown schemes, and scalable reference
counters. In each of these areas RadixVM makes a contribu-
tion, as we discuss in turn.

Unix kernels. The VM designs for Unix kernels and Win-
dows typically use a single read-write lock to protect a shared
address space, perhaps augmented with finer-grained locks
for operations on individual memory regions [1, 24, 27]. The
single read-write lock protects the OS index data structures
that map virtual addresses to metadata for mapped memory
regions, as well as invariants between the OS index data struc-
ture and the hardware page tables and TLBs. In our earlier
work on the Bonsai VM system, we described a lock-free
design for page faults in Linux, but that design still required
the use of Linux’s address space lock to serialize mmap and
munmap operations [7].

Scalable kernels. Quite a number of kernels have been de-
signed with the primary goal of scaling operating system ser-
vices to many cores, including K42 [20] and Tornado [14], as
well as more recent systems such as Barrelfish [3], Corey [5],
and fos [30]. K42 and Tornado use clustered objects to rep-
resent an address space, allowing a region list for an address
space to be replicated per processor. This design allows for
concurrent mmaps by threads in the same address space, at
the expense of munmaps, which need to contact every proces-
sor to update its local region list [14]. The RadixVM design
allows both mmaps and munmaps to run in parallel.

The Barrelfish and fos multikernel designs don’t support
shared hardware page tables and index structures between
kernel instances, and thus avoid their associated scaling bot-
tlenecks. Both kernels support multithreaded user-level appli-
cation that share memory, but require an expensive two-phase
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distributed TLB shootdown protocol to unmap memory (see
below).

Corey introduces the notion of an address range, which
allows an application to selectively share parts of its address
space, instead of being forced to make an all-or-nothing deci-
sion. RadixVM doesn’t expose this control to applications but
could benefit from allowing applications to control the trade-
offs between per-core page tables and shared page tables (see
§5).

VM data structures. One reason that widely used oper-
ating systems use a lock on the address space is that they
use complex index data structures to guarantee O(logn)
lookup time when a process has many mapped memory
regions. Linux uses a red-black tree for the regions [27],
FreeBSD uses a splay tree [1], and Solaris and Windows use
AVL trees [24, 29]. Because these data structures require re-
balancing when a memory region is inserted, they protect the
entire data structure with a single lock.

The Bonsai balanced tree allows for lock-free lookups but
serializes inserts and deletes in the Bonsai VM system [7].
Similarly, Howard and Walpole [18] propose a relativistic
red-black tree that supports lock-free lookups and which they
have extended to support concurrent inserts and deletes us-
ing software transactional memory [17]. They don’t describe,
however, how to apply this design to a virtual memory system,
which needs to maintain invariants beyond the structural cor-
rectness of the region tree (e.g., munmap must clear page ta-
bles and invalidate TLBs atomically with removing the region
from the tree). RadixVM opts instead for a radix-tree-based
data structure, which allows for concurrent non-overlapping
lookups, inserts, and deletes without the need for software
transactional memory. Furthermore, precise range locking
makes it possible to maintain cross-structure invariants.

TLB shootdown. In a multithreaded application, when a
thread removes a region from its address space, the operating
system must send shootdown interrupts to other processors to
ensure that those processors flush translations for that region
from their TLBs. Since these interrupts are expensive, many
operating systems implement a scheme that allows these in-
terrupts to be sent in parallel and to be batched [4]. The
Barrelfish operating system uses a distributed two-phase TLB
shootdown scheme (similar to Uhlig’s [28]), and exploits a
software broadcast tree to deliver the interrupts efficiently [3].

The main contribution of RadixVM’s scheme is to limit the
number of cores that must be contacted to perform the shoot-
down. x86 processors do not inform the kernel which TLBs
have which memory mappings cached, and therefore most
kernels conservatively send interrupts to all cores running the
application. RadixVM uses a scheme that precisely tracks
which cores may have each page mapping cached in their
TLBs, which allows RadixVM to send TLB shootdown inter-
rupts to just those cores and to entirely eliminate shootdowns
for mappings that are not shared between cores.

Scalable reference counters. RadixVM’s scheme for ref-
erence counting, Refcache, inherits ideas from sloppy coun-
ters [6], Scalable NonZero Indicators (SNZI) [12], distributed
counters [2], shared vs. local counts in Modula-2+ [11], and
approximate counters [8]. All of these techniques speed up
increment and decrement using per-core counters, and require
significantly more work to find the true total value. Refcache
is a scalable counter approach specialized for reference counts
where the true value needs to be known only when it reaches
zero. Unlike sloppy, SNZI, distributed, and approximate coun-
ters, it doesn’t require space proportional to the number of
cores per counter. Like sloppy counters, Refcache’s design in-
tentionally delays and batches zero detection to reduce cache
contention.

3 DESIGN

Achieving scalability for VM operations in different processes
is easy since these operations involve per-process data struc-
tures. RadixVM’s design is novel because it allows threads of
the same process to perform mmap, munmap, and pagefault
operations for non-overlapping memory regions in parallel.
That is, if n threads in the same process allocate more memory,
then these mmaps scale perfectly (they take the same amount
of time to execute regardless of n). Similarly, if a thread on
one core allocates memory and another thread in the same
process on another core returns a different memory region to
the operating system, then these operations do not slow each
other down or interfere with any other mmaps or munmaps
for different memory regions. Finally, if a core runs pagefault
for an address while other cores are performing operations on
regions that do not include that page, then RadixVM scales
perfectly. On the other hand, if an mmap and munmap involve
overlapping memory regions, or a thread faults on a page that
is being concurrently mmaped or munmaped, RadixVM seri-
alizes those operations. The scalability of this design is easy
for application developers to understand and take advantage
of: applications should simply avoid concurrent manipulation
of overlapping memory regions when possible.

To achieve perfect scalability on modern multicore com-
puters, RadixVM strives to ensure that cores don’t contend
for any cache lines when operating on non-overlapping re-
gions. On modern cache-coherent hardware, any contended
cache line can be a scalability risk because frequently written
cache lines must be re-read by other cores, an operation that
typically serializes at the cache line’s home node.

This section describes how RadixVM achieves perfect scal-
ability for operations on non-overlapping regions. We first
present the three key data structures that form the core of
RadixVM and then describe how RadixVM uses these to
implement standard VM operations.

3.1 Reference counting with Refcache
Reference counting is critical to many OS functions, and
RadixVM is no different. Since two virtual memory regions
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Figure 1: Refcache example showing a single object over eight epochs. Plus and minus symbols represent increment and
decrement operations, dotted lines show when cores flush these to the object’s global count, and blue circles show when each
core flushes its local reference cache. The loops around the global count show when the object is in core 0’s review queue and
the red zeroes indicate dirty zeroes.

may share the same physical pages, such as when forking a
process, RadixVM must have a way to decide when to free
the underlying physical pages. To do so, RadixVM reference
counts each physical page, but a simple scheme with a single
counter can result in scalability problems because threads will
contend for the counter. Likewise, RadixVM reference counts
nodes of its radix tree to determine when they are empty; a
single counter would cause operations on different parts of
the node to contend.

This section introduces Refcache, a novel reference count-
ing scheme that RadixVM uses to track and reclaim physical
memory pages and radix tree nodes. Refcache implements
space-efficient, lazy, scalable reference counting using per-
core reference delta caches. Refcache targets workloads that
can tolerate some latency in reclaiming resources and where
increment and decrement operations often occur on the same
core (e.g., the same thread that faulted pages into a mapped
memory region also unmaps that region).

In contrast with most scalable reference counting mecha-
nisms (see §2), Refcache requires space proportional to the
sum of the number of reference counted objects and the num-
ber of cores, rather than the product, and the per-core over-
head can be adjusted to trade off space and scalability by
controlling the reference delta cache conflict rate. This is
important when tracking every physical page in a large multi-
core system; at large core counts, typical scalable reference
counters would require more than half of physical memory
just to track the remaining physical memory.

Refcache batches increment and decrement operations, re-
ducing cache line movement while offering an adjustable time
bound on when an object will be garbage collected after its
reference count drops to zero. Objects that are manipulated
from only a single core do not require any per-object cache
line movement and Refcache itself requires only a small con-
stant rate of cache line movement for global maintenance.

Base Refcache. In Refcache, each reference counted object
has a global reference count (much like a regular reference
count) and each core also maintains a local, fixed-size cache
of deltas to objects’ reference counts. Incrementing or decre-
menting an object’s reference count modifies only the local,
cached delta and this delta is periodically flushed to the ob-
ject’s global reference count. The true reference count of an

object is thus the sum of its global count and any local deltas
for that object found in the per-core delta caches. The value
of the true count is generally unknown, but we assume that
once it drops to zero, it will remain zero (in the absence of
weak references, which we discuss later). Refcache depends
on this stability to detect a zero true count after some delay.

To detect a zero true reference count, Refcache divides
time into periodic epochs during which each core flushes
all of the reference count deltas in its cache, applying these
updates to the global reference count of each object. The
last core in an epoch to finish flushing its cache ends the
epoch and all of the cores repeat this process after some delay
(our implementation uses 10ms). Since these flushes occur
in no particular order and the caches batch reference count
changes, updates to the reference count can be reordered. As
a result, a zero global reference count does not imply a zero
true reference count. However, once the true count is zero,
there will be no more updates, so if the global reference count
of an object drops to zero and remains zero for an entire
epoch, then Refcache can guarantee that the true count is
zero and free the object. To detect this, the first core that sets
an object’s global reference count to zero adds the object to
a per-core review queue and reexamines it two epochs later
(which guarantees one complete epoch has elapsed) to decide
whether its true reference count is zero.

Figure 1 gives an example of a single object over the course
of eight epochs. Epoch 1 demonstrates the power of batching:
despite six reference count manipulations spread over three
cores, the object’s global reference count is never written to.
The remaining epochs demonstrate the complications that
arise from batching and the resulting lag between the true
reference count and the global reference count of an object.

Because of the flush order, the two updates in epoch 2 are
applied to the global reference count in the opposite order
of how they actually occurred. As a result, core 0 observes
the global count temporarily drop to zero when it flushes
in epoch 2, even though the true count is non-zero. This is
remedied as soon as core 1 flushes its increment, and when
core 0 reexamines the object at the beginning of epoch 4, after
all cores have again flushed their delta caches, it can see that
the global count is non-zero; hence, the zero count it observed
was not a true zero and the object should not be freed.
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It is necessary but not sufficient for the global reference
count to be zero when an object is reexamined; there must
also have been no deltas flushed to the object’s global count
in the interim, even if those deltas canceled or were zero. For
example, core 0 will observe a zero global reference count at
the end of epoch 4, and again when it reexamines the object
in epoch 6. However, the true count is not zero, and the global
reference count was temporarily non-zero during the epoch.
We call this a dirty zero and in this situation Refcache will
queue the object to be examined again two epochs later, in
epoch 8.

Weak references. As described, Refcache is well suited to
reference counts that track the true number of references to
an object, since there is no danger of the count going back
up once the object becomes unreachable. However, operat-
ing systems often need untracked references to objects; for
example, OS caches track objects that may be deleted at any
time, and may even need to bring an object’s reference count
back up from zero. RadixVM’s radix tree has similar require-
ments. To support such uses, we extend Refcache with weak
references, which provide a tryget operation that will either
increment the object’s reference count (even if it has reached
zero) and return the object, or will indicate that the object has
already been deleted.

A weak reference is simply a pointer marked with a “dying”
bit, along with a back-reference from the referenced object.
When an object’s global reference count initially reaches zero,
Refcache sets the weak reference’s dying bit. After this, tryget
can “revive” the object by atomically clearing the dying bit
and fetching the pointer value, and then incrementing the
object’s reference count as usual. When Refcache decides
to free an object, it first atomically clears both the dying bit
and the pointer in the weak reference. If this succeeds, it can
safely delete the object. If this fails, it reexamines the object
again two epochs later. In a race between tryget and deletion,
which operation succeeds is determined by which clears the
dying bit first.

Algorithm. The pseudocode for Refcache is given in Fig-
ure 2. Each core maintains a hash table storing its reference
delta cache and the review queue that tracks objects whose
global reference counts reached zero. A core reviews an object
after two epoch boundaries have passed so it can guarantee
that all cores have flushed their reference caches at least once.

All of the functions in Figure 2 execute with preemp-
tion disabled, meaning they are atomic with respect to each
other on a given core, which protects the consistency of
per-core data structures. Individual objects are protected by
fine-grained locks that protect the consistency of the object’s
fields.

For epoch management, our current implementation uses
a barrier scheme that tracks a global epoch counter, per-
core epochs, and a count of how many per-core epochs have
reached the current global epoch. This scheme suffices for our

inc(obj):
if local cache[hash(obj)].obj ̸= obj:

evict(local cache[hash(obj)])
local cache[hash(obj)]← ⟨obj, 0⟩

local cache[hash(obj)].delta += 1

tryget(weakref):
do:
⟨obj, dying⟩ ← weakref

while weakref.cmpxchng(⟨obj, dying⟩, ⟨obj, false⟩) fails
if obj is not null:

inc(obj)
return obj

flush():
evict all local cache entries and clear cache
update the current epoch

evict(obj, delta):
if delta = 0 and obj.refcnt ̸= 0: return
with obj locked:

obj.refcnt← obj.refcnt + delta
if obj.refcnt = 0:

if obj is not on any review queue:
obj.dirty← false
obj.weakref.dying← true
add ⟨obj, epoch⟩ to the local review queue

else:
obj.dirty← true

review():
for each ⟨obj, objepoch⟩ in local review queue:

if epoch < objepoch + 2: continue
with obj locked:

remove obj from the review queue
if obj.refcnt ̸= 0:

obj.weakref.dying← false
else if obj.dirty or obj.weakref.cmpxchng(⟨obj, true⟩,

⟨null, false⟩) fails:
obj.dirty← false
obj.weakref.dying← true
add ⟨obj, epoch⟩ to the local review queue

else:
free obj

Figure 2: Refcache algorithm. Each core calls flush and review
periodically. evict may be called by flush or because of a
collision in the reference cache. dec is identical to inc except
that it decrements the locally cached delta.
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benchmarks, but more scalable schemes are possible, such
as the tree-based quiescent state detection used by Linux’s
hierarchical RCU implementation [23].

Discussion. Refcache trades latency for scalability by
batching increment and decrement operations in per-core
caches. As a result, except when there are conflicts in the
reference delta cache, increment and decrement operations do
not share cache lines with other cores and communication is
necessary only when these caches are periodically reconciled.
Furthermore, because Refcache uses per-core caches rather
than per-core counts, it is more space-efficient than other
scalable reference counting techniques. While not all uses of
reference counting can tolerate Refcache’s latency, its scala-
bility and space-efficiency are well suited to the requirements
of RadixVM.

3.2 Radix tree
At its core, an address space is a mapping from virtual ad-
dresses to metadata and physical memory. To achieve per-
fectly scalable non-overlapping address space operations,
RadixVM needs a data structure that can track this mapping
and support mmaping and munmaping ranges of virtual ad-
dress space while avoiding contention between operations on
disjoint regions.

One option to avoid contention is to avoid sharing alto-
gether. For example, one could attempt to partition the address
space of a process statically among the cores, and have each
core manage its part of the address space. This option ensures
that operations on non-overlapping memory regions that are
in different partitions of the address space don’t contend for
cache lines because each region is in a different partition. The
downside of this option is that static partitioning complicates
sharing and requires the application developer to be aware of
the partitioning, so that each thread manipulates regions that
are in its partition. A more desirable solution is to use some
shared data structure that allows symmetric operations from
all threads to manage the shared address space, as all current
VM systems do.

In particular, a data structure that supports lock-free
operations—such as the Bonsai tree does for read opera-
tions [7]—seems promising, since it avoids cache line con-
tention due to locks. Lock-free operation, however, doesn’t
imply no cache line contention. For example, insert and
lookup operations for a lock-free concurrent skip list [16]
can result in contention for cache lines storing interior nodes
in the skip list—even when the lookup and insert involve dif-
ferent keys—because insert must modify interior nodes to
maintain O(logn) lookup time. As we will show in §5, this
read-write sharing scales badly with more cores, as more
cores need to reread cache lines modified by unrelated opera-
tions on other cores.

Any balanced tree or similar data structure suffers from
this unintended cache line contention. A (completely imprac-
tical) strawman solution is to represent a process’s virtual

VPN: 000 000000000 110000000 001010010

RW (anon)

010010

RW (anon)

RW /bin/ls

Figure 3: A radix tree containing both an anonymous mapping
and a file mapping. Blue indicates the path for looking up
the 36-bit virtual page number shown in bits at the top of the
figure. The last level of the tree contains separate mapping
metadata for each page.

memory by storing the metadata for each virtual page individ-
ually in a large linear array indexed by virtual page number.
In this linear representation, mmap, munmap, and pagefault
can lock and manipulate precisely the pages being mapped,
unmapped, or faulted. VM operations on non-overlapping
memory regions will access disjoint parts of the linear array
and thus scale perfectly. The design presented in this section
follows the same general scheme as this strawman design, but
makes its memory consumption practical using a multilevel,
compressed radix tree.

The index data structure of RadixVM resembles a hardware
page table structurally, storing mapping metadata in a fixed-
depth radix tree, where each level of the tree is indexed by
nine (or fewer) bits of the virtual page number (Figure 3).
Like the linear array, the radix tree supports only point queries
(not range queries) and iteration, but unlike the linear array,
RadixVM can compress repeated entries and lazily allocate
the nodes of the radix tree. Logically, any node that would
consist entirely of identical values is folded into a single value
stored in the parent node. This continues up to the root node
of the tree, allowing the radix tree to represent vast swaths of
unused virtual address space with a handful of NULL values
and to set large ranges to identical values very quickly. This
folding comes at a small cost: mmap operations that force
expansion of the radix tree may conflict with each other, even
if their regions do not ultimately overlap. However, such
conflicts are rare.

To record each mapping, RadixVM stores a separate copy
of the mapping metadata in the radix tree for each page in
the mapped range. This differs from a typical design that
allocates a single metadata object to represent the entire range
of a mapping (e.g., virtual memory areas in Linux). Storing
a separate copy of the metadata for each page makes sense
in RadixVM because the metadata is relatively small, and
eliminating shared objects avoids contention when a single
mapping needs to be split or merged by a subsequent mmap
or munmap call. Furthermore, the mapping metadata object is
designed so that it will initially be identical for every page of a
mapping, meaning that large mappings can created efficiently
and folded into just a few slots in the radix tree’s nodes.

Also unlike typical virtual memory system designs,
RadixVM stores pointers to physical memory pages in the
mapping metadata for pages that have been allocated. This
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is easy to do in RadixVM because, modulo folding, there
is a single mapping metadata object for each page. It’s also
important to have this canonical representation of the physical
memory backing a virtual address space because of the way
RadixVM handles TLB shootdown (see §3.3). This does in-
crease the space required by the radix tree, but, asymptotically,
it’s no worse than the hardware page tables, and it means that
the hardware page tables themselves are cacheable memory
that can be discarded by the OS to free memory.

To keep the memory footprint of the radix tree in check, the
OS must be able to free nodes that no longer contain any valid
mapping metadata. To accomplish this without introducing
contention, we leverage Refcache to scalably track the number
of used slots in each node. When this count drops to zero,
the radix tree can remove the node from the tree and delete
it. Since RadixVM may begin using a node again before
Refcache reconciles the used slot count, nodes link to their
children using weak references, which allows the radix tree
to revive nodes that go from empty to used before Refcache
deletes them, and to safely detect when an empty child node
has been deleted.

Collapsing the radix tree does introduce additional con-
tention; however, in contrast with more eager garbage col-
lection schemes, rapidly changing mappings cannot cause
the radix tree to rapidly delete and recreate nodes. Since a
node must go unused for at least two Refcache epochs before
it is deleted, any cost of deleting or recreating it (and any
additional contention that results) is amortized.

In contrast with more traditional balanced trees, using
a radix tree to manage address space metadata allows
RadixVM to achieve perfect scalability for operations on
non-overlapping ranges of an address space. This comes at
the cost of a potentially larger memory overhead; however,
address space layouts tend to exhibit good locality and fold-
ing efficiently compresses large ranges, making radix trees a
good fit for a VM system.

3.3 TLB shootdown
One complication with scaling mmap or munmap operations
is the per-core hardware page translation cache, which re-
quires explicit notifications (“TLB shootdowns”) when a page
mapping changes. Because TLB shootdowns must be deliv-
ered to every CPU that may have cached a page mapping
that’s being modified, and because hardware does not provide
information about which CPUs may have cached a particular
mapping, a conservative design must send TLB shootdown
interrupts to all CPUs using the same address space, which
limits scalability.

RadixVM achieves better scalability for mmap and
munmap by keeping track of more precise information about
the set of CPUs that may have accessed a given mapping, as
part of the mapping metadata. With a software-filled TLB,
the kernel can use TLB miss faults to track exactly which
CPUs have a given mapping cached. When a later mmap or

munmap changes this mapping, it can deliver shootdowns
only to cores that have accessed this mapping. On architec-
tures with hardware-filled TLBs such as the x86, our design
achieves the same effect using per-core page tables. If a thread
in an application allocates, accesses, and frees memory on
one core, with no other threads accessing the same memory
region, then RadixVM will perform no TLB shootdowns.

The obvious downside to this approach is the extra memory
required for per-core page tables. We show in §5.4 that this
overhead is small in practice compared to the total memory
footprint of an application, but for applications with poor
partitioning, it may be necessary for the application to provide
hints about widely shared regions so the kernel can share
page tables (similar to Corey address ranges [5]) or the kernel
could detect such regions automatically. The kernel could
also reduce overhead by sharing page tables between small
groups of cores or by simply discarding page table pages
when memory is low.

3.4 VM operations
The POSIX semantics of VM operations can make a scalable
implementation of the operations challenging [7]. But, with
the components described above, the RadixVM implementa-
tion of the VM operations is surprisingly straightforward. The
POSIX semantics that are challenging are the ones that relate
to ordering. For example, after the return of an munmap, no
thread should be able to access the unmapped pages. Simi-
larly, after mmap, every thread that experiences a pagefault
should be able to access the mapped pages. There is also some
complexity in pagefault because it is not just a read operation:
it may have to allocate physical pages and modify the address
space.

RadixVM primarily enforces correct ordering semantics by
always locking, from left to right, the radix tree entries for the
region affected by an operation. Each slot in the radix tree (in
both interior and leaf nodes) reserves one bit for this purpose.
As a result, two concurrent VM operations on overlapping
ranges will serialize when locking the leftmost overlapping
page.

When locking a region that has not been expanded out to
leaf nodes yet, RadixVM acquires locks on the corresponding
internal node slots instead. When RadixVM expands the tree
by allocating new nodes, it propagates the lock bit to every
entry in the newly allocated node, and unlocks the parent
interior node slot. Releasing the lock clears the lock bits
in the newly allocated child node. Tree traversal does not
require locks because it increments each node’s reference
count through a Refcache weak reference.

An mmap invocation first locks the range being mapped.
As above, if the leaf nodes for the range have already been al-
located, mmap locks the mapping metadata in the leaf nodes,
and if not, it locks the corresponding interior nodes. If there
are existing mappings within the range, mmap unmaps them,
as described later for munmap. mmap then fills in mapping
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metadata for the new mapping (protection level and flags ar-
guments to mmap, as well as what backs this virtual memory
range, such as a file or anonymous memory). If the mapping
covers an entire radix tree node, and the child nodes have not
been allocated yet, the radix tree collapses the mapping meta-
data into a single slot in the interior of the tree. Otherwise,
RadixVM copies the mapping metadata into each leaf node
entry in the range. Finally, RadixVM unlocks the range. Like
in other VM systems, mmap doesn’t allocate any physical
pages, but leaves that to pagefault, so that pages are allocated
only when they are used.

A pagefault invocation traverses the radix tree to find the
mapping metadata for the faulting address, and acquires a lock
on it. It then allocates a physical page, if one has not been
allocated yet, and stores it in the mapping metadata. Finally,
pagefault fills in the page table entry in the local core’s page
table, and adds the local core number to the TLB shootdown
list in the mapping metadata for that address. pagefault then
releases the lock and returns.

To implement munmap, RadixVM must clear mapping
metadata from the radix tree, clear page tables, invalidate
TLBs, and free physical pages. munmap begins by locking
the range being unmapped, after which it can scan the region’s
metadata to gather references to the physical pages backing
the region, collect the set of cores that have faulted pages
in the region into their per-core page tables, and clear each
page’s metadata. It can then send inter-processor interrupts to
the set of cores it collected in the first step. These interrupts
cause the remote cores (and the core running munmap) to
clear the appropriate range in their per-core page table and
invalidate the corresponding local TLB entries. Once all cores
have completed this shootdown process, munmap can safely
release its lock on the range and decrement the reference
counts on the physical pages that were unmapped.

Note that an invocation of pagefault on one core may con-
currently access a page that another core is in the process
of unmapping, but the mapping metadata lock makes this
work out correctly: either pagefault acquires the lock first
or munmap does. In the first case, the page fault succeeds,
which is okay since the pages must be inaccessible only after
munmap returns. In the second case, the munmap runs first
and removes the mapping for the unmapped range before
releasing the locks. Then, pagefault will see that there is no
mapping for the faulting address and will halt the faulting
thread.

3.5 Discussion
By combining Refcache for scalable reference counting,
radix trees for maintaining address space metadata, and per-
core page tables for precise TLB tracking and shootdown,
RadixVM is able to execute concurrent mmap, munmap, and
pagefault operations on the same address space in a way that
shares cache lines only when two operations manipulate over-
lapping regions and must be serialized. With the right data

Component Line count

Radix tree 1,376
Refcache 932
MMU abstraction 889
Syscall interface 632

Table 1: Major RadixVM components.

structures in place, RadixVM can achieve this with a straight-
forward concurrency plan based on precise range locking.
We confirm that RadixVM’s design translates into scalable
performance for non-overlapping VM operations in §5.

4 IMPLEMENTATION

A challenge for our research is what system to use for eval-
uating RadixVM. On one hand it is natural to use the Linux
kernel, since it is widely used, exhibits scaling problems be-
cause it serializes mmap and munmap operations (see §2),
and would allow a completely fair comparison with unmod-
ified Linux as well as with the Bonsai VM system, which
was integrated with Linux [7]. On the other hand, Linux com-
prises millions of lines of code and modifications can require
extraordinary amounts of work. We learned from our experi-
ence with the Bonsai VM system that modifying the Linux
VM system for parallelizing read-only operations is difficult,
and that modifying it for parallelizing write operations such
as mmap and munmap is infeasible for a small group of re-
searchers. Many different parts of the Linux kernel have their
hands in the internals of the VM system.

For this paper, therefore, we use a small, POSIX-like mono-
lithic kernel and operating system derived from xv6 [9]. This
OS provides a POSIX-like API, hardware support for large
multicore Intel and AMD 64-bit x86 processors, and a com-
plete enough implementation of the standard C library that
the benchmarks used in §5 can be compiled unmodified on
both Linux and our OS. Our OS is written mostly in C++ so
that we can create generic, reusable concurrent data struc-
tures (such as RadixVM’s radix tree) and algorithms (such as
Refcache’s algorithm), as well as take advantage of C++11’s
features for multithreaded programming such as standard
atomic types [19, §29]. Though our kernel lacks important
features (e.g., swapping), we do not believe they will impact
scalability of the basic POSIX VM operations.

Table 1 shows the lines of code for the major components
of RadixVM. The implementation of RadixVM is 3,829 lines
of code, and supports the full design described in §3, except
for radix tree collapsing. The MMU code provides an abstract
interface that is implemented both for per-core page tables,
which provide targeted TLB shootdowns, and for traditional
shared page tables. The RadixVM code relies heavily on
generic abstractions provided by our kernel, such as basic data
structures and synchronization primitives, which significantly
reduces the size of its implementation.
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5 EVALUATION

This section answers the following questions experimentally:

• Does RadixVM’s design matter for applications?

• Why does RadixVM’s design scale well?

• Is the memory overhead of RadixVM acceptable?

• Are all of RadixVM’s design ideas necessary to achieve
good scalability?

5.1 Experimental setup
To evaluate the impact of RadixVM on application perfor-
mance, we use Metis, a high-performance single-server mul-
tithreaded MapReduce library, to compute a word position
index from a 4 GB in-memory text file [10, 22]. Metis is a rep-
resentative choice because it exhibits several virtual memory
sharing patterns that are common in multithreaded applica-
tions: it uses core-local memory, it uses a globally shared
B+-tree to store key-value pairs, and it also has pairwise shar-
ing of intermediate results between Map tasks and Reduce
tasks. Metis also allows a direct comparison with the Bonsai
virtual memory system [7], which used Metis as its main
benchmark.

By default Metis uses the Streamflow memory alloca-
tor [25], which is written to minimize pressure on the VM
system, but nonetheless suffers from contention in the VM
system when running on Linux [7]. Previous systems that
used this library avoided contention for in-kernel locks by
using super pages and improving the granularity of the super
page allocation lock in Linux [6], or by having the memory
allocator pre-allocate all memory upfront [22]. While these
workarounds do allow Metis to scale on Linux, we wanted to
focus on the root scalability problem in the VM system rather
than the efficacy of workarounds and to eliminate compound-
ing factors from differing library implementations, so we use
a custom allocator on both Linux and RadixVM designed
specifically for Metis. In contrast with modern memory al-
locators, this allocator is simple and designed to have no
internal contention: memory is mapped in fixed-sized blocks,
free lists are exclusively per-core, and the allocator never
returns memory to the OS.

With this allocator, Metis stresses concurrent mmaps and
pagefaults, but not concurrent munmaps. We explore other
workloads using three microbenchmarks:

Local. Each thread mmaps a private region in the shared
address space, writes to all of the pages in the region,
and then munmaps its region. Many concurrent memory
allocators use per-thread memory pools that specifically
optimize for thread-local allocations and exhibit exactly
this pattern of address space manipulation [13, 15]. How-
ever, such memory allocators typically map memory in
large batches and conservatively return memory to the

operating system to avoid putting pressure on the virtual
memory system. Our microbenchmark does the opposite:
it uses 4 KB regions to maximally stress the VM system.

Pipeline. Each thread mmaps a region of memory, writes to
all of the pages in the region, and passes the region to the
next thread in sequence, which also writes to all of the
pages in the region, and then munmaps it. This captures
the pattern of a streaming or pipelined computation, such
as a Map task communicating with a Reduce task in
Metis.

Global. Each thread mmaps a part of a large region of mem-
ory, then all threads access all of the pages in the large
region in a random order. This simulates a widely shared
region such as a memory-mapped library or a shared
data structure like a hash table. In our microbenchmark,
each thread maps a 64 KB region.

These benchmarks capture common sharing patterns we
have observed in multi-threaded applications.

We run the three microbenchmarks and Metis on three dif-
ferent virtual memory systems: Linux (kernel version 3.5.7
from Ubuntu Quantal), Linux with the Bonsai VM system
(based on kernel version 2.6.37), and RadixVM on our re-
search OS. The microbenchmarks and Metis compile and run
on both Linux and our OS without modifications.

All experiments are performed on an 80 core machine with
eight 2.4 GHz 10 core Intel E7-8870 chips and 256 GB of
RAM on a Supermicro X8OBN base board. Each core has
32 KB of L1 data cache and 256 KB of L2 cache and each
chip has a shared 30 MB L3 cache. Experiments that vary the
number of cores enable whole chips at a time in order to keep
each core’s share of the L3 caches constant. We also report
single core numbers for comparison. For both application
benchmarks and microbenchmarks, we take the average of
three runs, though variance is consistently under 5% and
typically well under 1%.

5.2 Metis
There are two factors that determine the scalability of Metis:
contention induced by concurrent mmaps during the Map
phase and contention induced by concurrent pagefaults dur-
ing the Reduce phase. If the memory allocator uses a large
allocation unit, Metis can avoid the first source of contention
because the number of mmap invocations is small. There-
fore, we measure Metis using two different allocation units:
8 MB to stress pagefault and 64 KB to stress mmap. In the
8 MB configuration, Metis invokes mmap 4,145 times at
80 cores, and in the 64 KB configuration, it invokes mmap
232,464 times. In both cases, it invokes pagefault approx-
imately 10 million times, where 65% of these page faults
cause it to allocate new physical pages and the rest bring
pages already faulted on another core in to the per-core page
tables.
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Figure 4: Metis scalability for different VM systems and
allocation block sizes. RadixVM/8 MB and RadixVM/64 KB
perform identically, so their lines are indistinguishable.

Figure 4 shows how Metis scales for the inverse indexing
application for the three VM systems. Metis on RadixVM not
only scales near-linearly, but performs identically in both the
64 KB and 8 MB configurations because the allocation unit
size does not affect contention in RadixVM.

In contrast, Metis scales poorly on Linux in both configu-
rations, spending most of its time at high core counts in the
virtual memory system acquiring the address space lock rather
than performing useful computation. This is true even in the
pagefault-heavy configuration because, while pagefaults run
in parallel on Linux, acquiring the address space lock in
shared mode causes cache line movement.

For the 8 MB pagefault-heavy configuration, Bonsai scales
as well as RadixVM because pagefaults in the Bonsai VM
don’t acquire contended locks or write to shared cache lines
and hence run concurrently and without cache line contention.
Furthermore, in this configuration RadixVM and Bonsai per-
form similarly—RadixVM is ∼ 5% slower than Bonsai at all
core counts—suggesting that there is little or no sequential
performance penalty to RadixVM’s very different design. It’s
likely we could close this gap with further work on the se-
quential performance of our OS. With small allocation sizes,
Bonsai doesn’t scale well because of lock contention between
mmaps.

5.3 Microbenchmarks
To better understand the behavior of RadixVM under the
different address space usage patterns exhibited by Metis and
other applications, we turn to microbenchmarks.

Figure 5 shows the throughput of our three microbench-
marks on RadixVM, Bonsai, and Linux. For consistency, we
measure the total number of pages written per second in all
three benchmarks. In RadixVM, because of per-core page
tables, each of these writes translates into a page fault, even
if the page has already been allocated by another core. Be-
cause Linux and Bonsai use shared page tables, they incur
fewer page faults than RadixVM on the pipeline and global
microbenchmarks.

The local microbenchmark scales linearly on RadixVM.
This is the ideal situation for RadixVM because each thread
uses a separate part of the address space. Indeed, the bench-
mark causes essentially zero cross-socket memory references.
We observe about 75 L2 cache misses per iteration owing
to our CPU’s small L2 cache (about 64 of these are from
page zeroing) and about 50 L3 cache misses, also mostly
from page zeroing, but all are satisfied from the core’s local
DRAM. Likewise, because RadixVM can track remote TLBs
precisely, the local microbenchmark sends no TLB shoot-
downs. Because there is no lock contention, a small and fixed
number of cache misses, no remote DRAM accesses, and
no TLB shootdowns, the time required to mmap, pagefault,
and munmap is constant regardless of the number of cores.
Linux and Bonsai, on the other hand, slow down as we add
more cores. This is not unexpected: Linux acquires the shared
address space lock three times per iteration and Bonsai twice
per iteration, effectively serializing the benchmark. Further-
more, RadixVM has good sequential performance: at one
core, RadixVM’s performance is within 8% of Linux, and it
is likely this can be improved.

The pipeline microbenchmark scales well on RadixVM,
though not linearly, and significantly outperforms Linux and
Bonsai above one core. We observe similar cache miss rates
as the local microbenchmark and cross-socket memory refer-
ences consist solely of pipeline synchronization, synchro-
nization to return freed pages to their home nodes when
they are passed between sockets, and cross-socket shoot-
down IPIs. As expected, every munmap results in exactly
one remote TLB shootdown. However, the pipeline bench-
mark falls short of linear scalability because this one TLB
shootdown takes longer on average as we add cores; the proto-
col used by the APIC hardware to transmit the inter-processor
interrupts used for remote TLB shootdowns appears to be
non-scalable. Linux and Bonsai behave much like they did
for the local microbenchmark and for the same reasons and,
again, RadixVM’s single core performance is within 8% of
Linux.

Finally, the global microbenchmark also scales well
on RadixVM, despite being conceptually poorly suited to
RadixVM’s per-core page tables and targeted TLB shootdown.
In this benchmark, RadixVM’s performance is limited by the
cost of TLB shootdowns: at 80 cores, delivering shootdown
IPIs to the other 79 cores and waiting for acknowledgments
takes nearly a millisecond. However, at 80 cores, the shared
region is 20 MB, so this cost is amortized over a large number
of page faults. Linux and Bonsai do better on this bench-
mark than on the local and pipeline benchmarks because it
has a higher ratio of page faults to mmap and munmap calls.
Furthermore, because Linux and Bonsai use a single page
table per address space, they incur only a single page fault
per mapped page, while RadixVM incurs n page faults per
mapped page for n cores. Ultimately, this has little effect
on performance: the majority of these page faults only fill
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Figure 5: Throughput of local, pipeline, and global microbenchmarks as the total number of pages written per second.

a page table entry without allocating a new backing page;
even at 80 cores, when the locks in the radix tree are heavily
contended, these “fill” faults take only 1,200 cycles.

5.4 Memory overhead
One potential downside of RadixVM is increased memory
overhead both because a radix tree is a less-compact represen-
tation of virtual memory metadata than a traditional binary
tree of memory regions and because page tables are per-core
instead of shared.

To quantify the memory overhead of the radix tree, we took
snapshots of the virtual memory state of various memory-
intensive applications and servers running on Linux and mea-
sured the space required to represent the address space meta-
data in both Linux and RadixVM. Linux uses a single object
to represent each contiguous range of mapped memory (a
“VMA”), arranged in a red-black tree, which makes its ba-
sic metadata about address space layout very compact. As
a result, Linux must store information about the physical
pages backing mapped virtual pages separately, which it clev-
erly does in the hardware page table itself, making the hard-
ware page table a crucial part of the address space metadata.
RadixVM, on the other hand, stores both OS-specific meta-
data and physical page mappings together in the radix tree
and can freely discard and reconstruct hardware page tables.

Table 2 summarizes the memory overhead of these two
representations for four applications: the Firefox and Chrome
web browsers, after significant use by the authors, and the
Apache web server and MySQL database server used by the
EuroSys 2013 paper submission web site. Considered in the
context of the memory actually used by each application, the
radix tree constituted at most 3.7% of the application’s total
memory footprint (RSS).

While RadixVM can freely discard hardware page tables
under memory pressure, it’s interesting to consider the mem-
ory overhead of per-core page tables relative to shared page
tables. Per-core page tables could potentially require n times
more memory than shared page tables for n cores; however,
we expect most applications to exhibit better partitioning than
this. For example, Metis allocates about 38 GB of memory
when running on 80 cores; a shared page table requires an-
other 100 MB of memory (0.3% of the application’s memory

Linux Radix tree
RSS VMA tree Page table (rel. to Linux)

Firefox 352 MB 117 KB 1.5 MB 3.9 MB (2.4×)
Chrome 152 MB 124 KB 1.1 MB 2.4 MB (2.0×)
Apache 16 MB 44 KB 368 KB 616 KB (1.5×)
MySQL 84 MB 18 KB 348 KB 980 KB (2.7×)

Table 2: Memory usage for alternate VM representations.

use) while per-core page tables require 1.3 GB (3.6% of the
application’s memory use). Per-core page tables incur 13×
the memory overhead of a shared page table for Metis at 80
cores, noticeably less than the worst-case 80×. While per-
core page tables do require more memory, we believe that
the overhead for most applications will amount to a small
fraction of the overall memory use.

5.5 Breakdown of ideas
This section shows that each of the individual techniques
employed by RadixVM is important to its scalability.

Radix tree. RadixVM uses a radix tree because it never
induces cache line movement between non-overlapping ac-
cesses except during initialization, after collapsing, or when
cache line granularity results in false sharing. To assess the
scalability advantages of radix trees, we compare against a
concurrent skip list, another data structure that could sup-
port a concurrent VM system. Our skip list implementation
supports wait-free lookups and lock-free insert and delete
operations [16]. An earlier design of RadixVM used this im-
plementation until we discovered that it was a bottleneck.

To compare the skip list and the radix tree, we simulate an
address space with 1,000 regions (a typical number for a large
application). Readers continuously lookup a random key that
is present (like a pagefault) while zero or more cores modify
the data structure by continuously inserting a random key that
is not present (corresponding to mmap) and then deleting that
key (munmap).

Figure 6 shows the results for the skip list with 0, 1, and 5
writers. With only read sharing, lookup scales perfectly and
each core adds ∼5.7 million lookups per second. This is to be
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Figure 6: Total throughput of concurrent skip list lookups
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Figure 7: Total throughput of concurrent radix tree lookups
contending with inserts and deletes.

expected because each reader has the complete skip list in its
local cache and lookups don’t induce cache coherence traffic.

However, with even 1 core writing and the remaining cores
reading, lookups do not scale linearly. Even though the read-
ers and writers use different keys and hence modify different
regions of the skip list, lookup will occasionally read an in-
terior node of the skip list that an unrelated insert modified
to maintain the structure’s balance, resulting in cache line
contention that increases with the number of cores accessing
the skip list. Adding more writers increases the likelihood of
contention and with a mere five writers, lookup performance
plateaus at 64 million lookups per second. Write performance
also drops as the number of readers increases: a single writer
can perform about 1.4 million insert/delete pairs per second
with one concurrent reader, but only 0.3 million with 79 con-
current readers.

Figure 7 shows the equivalent results for the radix tree,
this time with 0, 10, and 40 writers. In contrast with the skip
list, the radix tree eliminates cache line contention by design:
since there are no writes to internal nodes once they’ve been
initialized, operations on unrelated keys don’t result in cache
line transfers. As a result, lookup throughput is unaffected
by writers. Likewise, while insert/delete throughput is lower
than the skip list (unlike a real address space, this benchmark
has no locality, so nearly every insert allocates a 4 KB node),
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Figure 8: Page sharing throughput for different reference
counting methods. Each iteration mmaps a shared physical
page and then munmaps it.

the insert/delete throughput does not change with the number
of lookups.

Reference counting. To measure the importance of Ref-
cache in isolation we use a microbenchmark that simulates
the behavior of mapping and unmapping shared libraries into
an address space. The microbenchmark allocates one page of
memory, which n threads repeatedly mmap into the address
space and then munmap, incrementing and decrementing the
reference count of the underlying physical page constantly
and concurrently from n cores. We measure this benchmark
with three different versions of RadixVM: one with Refcache,
one with a shared reference counter which is incremented
and decremented with an atomic instruction, and one with
an implementation of scalable reference counters based on
SNZI [12].

Figure 8 shows the results of this comparison. The Ref-
cache counters scale perfectly with an increasing number of
cores, while the shared counter doesn’t scale, as expected.
SNZI counters substantially outperform the shared counter,
but reach a scalability bottleneck as early as 10 cores. The
authors of SNZI counters report better scalability on a Sun
multicore computer [12], but our machine is much faster and
achieves much higher absolute throughput even at 10 cores
than the authors of SNZI report at 48 cores.

Refcache is able to achieve linear scalability in part be-
cause it delays zero detection, a trade-off that is worthwhile
in RadixVM. While Refcache guarantees a zero reference
count will be detected within two epochs, both shared ref-
erence counters and SNZI counters detect a zero reference
count immediately, and hence require significantly more com-
munication than Refcache.

Targeted TLB shootdown. Finally, we examine the ben-
efits of RadixVM’s per-core page tables with targeted TLB
shootdowns versus shared page tables with broadcast shoot-
downs. Figure 9 shows the throughput of the three mi-
crobenchmarks using these two approaches. Unsurprisingly,
the local and pipeline benchmarks suffer tremendously. Both
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Figure 9: Throughput of local, pipeline, and global microbenchmarks using per-core page tables and shared page tables.

benchmarks munmap individual pages on every core in every
iteration, and without the ability to track usage of these pages,
they must broadcast TLB shootdowns to all cores execut-
ing the benchmark in every iteration. At ∼500,000 cycles per
shootdown, both benchmarks grind to a halt. The performance
of the two schemes for the global microbenchmark is much
closer because this benchmark requires TLB shootdowns
to all cores executing the benchmark under both schemes.
However, despite the fact that, for n threads, per-core page
tables require this benchmark to take n times as many page
faults as shared page tables, per-core page tables nevertheless
outperform shared page tables because they eliminate cache
contention for accessing and modifying the shared page table
structure.

5.6 Discussion
The results in this section show that RadixVM achieves its
goal of allowing VM operations on non-overlapping regions
to scale with the number cores and that the combination of
techniques employed by RadixVM is necessary to achieve
this. RadixVM’s sequential performance is within ∼ 5% of
Linux, even though RadixVM has not been optimized for
single-core performance. As expected, RadixVM requires
more memory for address space structures than Linux: ad-
dress space metadata requires ∼ 2× more memory and per-
core page tables have potentially much higher overhead
(Metis exhibited 13× overhead); however, both represent
a small fraction of total application memory use. Further-
more, there are several techniques that can mitigate per-core
page table overhead, including simply discarding page table
memory.

6 CONCLUSION

This paper presented RadixVM, a new virtual memory design
that allows VM-intensive multithreaded applications to scale
with the number of cores. To achieve scalability, RadixVM
avoids cache line contention using three techniques: radix
trees, Refcache, and targeted TLB shootdowns. An evalu-
ation using the Metis MapReduce library and microbench-
marks that capture a range of common virtual memory use
patterns shows that RadixVM achieves its goal. We hope

RadixVM’s design will inspire other OS developers to pro-
vide scalable virtual memory primitives that obviate the need
for application-level workarounds.

The source code to RadixVM is available at
http://pdos.csail.mit.edu/multicore.

CHANGE LOG

2014-08-05 Corrected a bug in the flush operation in Fig-
ure 2 and the corresponding text. Previously, flush did not
evict cache entries with zero deltas, but in fact it is necessary
to evict these entries when the object’s reference count is
zero.

Added an optimization to evict to avoid locking the object
when flushing a zero delta in the common case where the
object’s reference count is non-zero.

Updated the Metis benchmark results in Figure 4 and §5.2.
We’ve rewritten the user space memory allocator used by
Metis to correct flaws in the old design that led to high frag-
mentation and poor sequential performance, especially with
small allocation units. Operations in the new allocator are
almost always constant time.
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