An Analysis of Linux Scalability to Many Cores

Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev,
M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich
MIT CSAIL

ABSTRACT

This paper analyzes the scalability of seven system appli-
cations (Exim, memcached, Apache, PostgreSQL, gmake,
Psearchy, and MapReduce) running on Linux on a 48-
core computer. Except for gmake, all applications trigger
scalability bottlenecks inside a recent Linux kernel. Us-
ing mostly standard parallel programming techniques—
this paper introduces one new technique, sloppy coun-
ters—these bottlenecks can be removed from the kernel
or avoided by changing the applications slightly. Modify-
ing the kernel required in total 3002 lines of code changes.
A speculative conclusion from this analysis is that there
is no scalability reason to give up on traditional operating
system organizations just yet.

1 INTRODUCTION

There is a sense in the community that traditional kernel
designs won’t scale well on multicore processors: that
applications will spend an increasing fraction of their time
in the kernel as the number of cores increases. Promi-
nent researchers have advocated rethinking operating sys-
tems [10, 28, 43] and new kernel designs intended to al-
low scalability have been proposed (e.g., Barrelfish [11],
Corey [15], and fos [53]). This paper asks whether tradi-
tional kernel designs can be used and implemented in a
way that allows applications to scale.

This question is difficult to answer conclusively, but
we attempt to shed a small amount of light on it. We
analyze scaling a number of system applications on
Linux running with a 48-core machine. We examine
Linux because it has a traditional kernel design, and be-
cause the Linux community has made great progress in
making it scalable. The applications include the Exim
mail server [2], memcached [3], Apache serving static
files [1], PostgreSQL [4], gmake [23], the Psearchy file
indexer [35, 48], and a multicore MapReduce library [38].
These applications, which we will refer to collectively
as MOSBENCH, are designed for parallel execution and
stress many major Linux kernel components.

Our method for deciding whether the Linux kernel
design is compatible with application scalability is as
follows. First we measure scalability of the MOSBENCH
applications on a recent Linux kernel (2.6.35-rc5, released
July 12, 2010) with 48 cores, using the in-memory tmp£fs
file system to avoid disk bottlenecks. gmake scales well,

but the other applications scale poorly, performing much
less work per core with 48 cores than with one core. We
attempt to understand and fix the scalability problems, by
modifying either the applications or the Linux kernel. We
then iterate, since fixing one scalability problem usually
exposes further ones. The end result for each applica-
tion is either good scalability on 48 cores, or attribution
of non-scalability to a hard-to-fix problem with the ap-
plication, the Linux kernel, or the underlying hardware.
The analysis of whether the kernel design is compatible
with scaling rests on the extent to which our changes to
the Linux kernel turn out to be modest, and the extent
to which hard-to-fix problems with the Linux kernel ulti-
mately limit application scalability.

As part of the analysis, we fixed three broad kinds of
scalability problems for MOSBENCH applications: prob-
lems caused by the Linux kernel implementation, prob-
lems caused by the applications’ user-level design, and
problems caused by the way the applications use Linux
kernel services. Once we identified a bottleneck, it typi-
cally required little work to remove or avoid it. In some
cases we modified the application to be more parallel, or
to use kernel services in a more scalable fashion, and in
others we modified the kernel. The kernel changes are all
localized, and typically involve avoiding locks and atomic
instructions by organizing data structures in a distributed
fashion to avoid unnecessary sharing. One reason the
required changes are modest is that stock Linux already
incorporates many modifications to improve scalability.
More speculatively, perhaps it is the case that Linux’s
system-call API is well suited to an implementation that
avoids unnecessary contention over kernel objects.

The main contributions of this paper are as follows.
The first contribution is a set of 16 scalability improve-
ments to the Linux 2.6.35-rc5 kernel, resulting in what we
refer to as the patched kernel, PK. A few of the changes
rely on a new idea, which we call sloppy counters, that
has the nice property that it can be used to augment shared
counters to make some uses more scalable without having
to change all uses of the shared counter. This technique
is particularly effective in Linux because typically only
a few uses of a given shared counter are scalability bot-
tlenecks; sloppy counters allow us to replace just those
few uses without modifying the many other uses in the
kernel. The second contribution is a set of application

benchmarks, MOSBENCH, to measure scalability of op-
erating systems, which we make publicly available. The
third is a description of the techniques required to im-
prove the scalability of the MOSBENCH applications. Our
final contribution is an analysis using MOSBENCH that
suggests that there is no immediate scalability reason to
give up on traditional kernel designs.

The rest of the paper is organized as follows. Section 2
relates this paper to previous work. Section 3 describes
the applications in MOSBENCH and what operating sys-
tem components they stress. Section 4 summarizes the
differences between the stock and PK kernels. Section 5
reports on the scalability of MOSBENCH on the stock
Linux 2.6.35-rc5 kernel and the PK kernel. Section 6
discusses the implications of the results. Section 7 sum-
marizes this paper’s conclusions.

2 RELATED WORK

There is a long history of work in academia and industry
to scale Unix-like operating systems on shared-memory
multiprocessors. Research projects such as the Stanford
FLASH [33] as well as companies such as IBM, Se-
quent, SGI, and Sun have produced shared-memory ma-
chines with tens to hundreds processors running variants
of Unix. Many techniques have been invented to scale
software for these machines, including scalable locking
(e.g., [41]), wait-free synchronization (e.g., [27]), mul-
tiprocessor schedulers (e.g., [8, 13, 30, 50]), memory
management (e.g., [14, 19, 34, 52, 57]), and fast message
passing using shared memory (e.g., [12, 47]). Textbooks
have been written about adapting Unix for multiproces-
sors (e.g., [46]). These techniques have been incorporated
in current operating systems such as Linux, Mac OS X,
Solaris, and Windows. Cantrill and Bonwick summarize
the historical context and real-world experience [17].

This paper extends previous scalability studies by ex-
amining a large set of systems applications, by using a
48-core PC platform, and by detailing a particular set of
problems and solutions in the context of Linux. These
solutions follow the standard parallel programming tech-
nique of factoring data structures so that each core can
operate on separate data when sharing is not required, but
such that cores can share data when necessary.

Linux scalability improvements. Early multiproces-
sor Linux kernels scaled poorly with kernel-intensive par-
allel workloads because the kernel used coarse-granularity
locks for simplicity. Since then the Linux commu-
nity has redesigned many kernel subsystems to im-
prove scalability (e.g., Read-Copy-Update (RCU) [39],
local run queues [6], libnuma [31], and improved
load-balancing support [37]). The Linux symposium
(www. linuxsymposium.org) features papers related to
scalability almost every year. Some of the redesigns are
based on the above-mentioned research, and some com-

panies, such as IBM and SGI [16], have contributed code
directly. Kleen provides a brief history of Linux kernel
modifications for scaling and reports some areas of poor
scalability in a recent Linux version (2.6.31) [32]. In this
paper, we identify additional kernel scaling problems and
describes how to address them.

Linux scalability studies. Gough et al. study the scal-
ability of Oracle Database 10g running on Linux 2.6.18
on dual-core Intel Itanium processors [24]. The study
finds problems with the Linux run queue, slab alloca-
tor, and I/O processing. Cui et al. uses the TPCC-UVa
and Sysbench-OLTP benchmarks with PostgreSQL to
study the scalability of Linux 2.6.25 on an Intel 8-core
system [56], and finds application-internal bottlenecks
as well as poor kernel scalability in System V IPC. We
find that these problems have either been recently fixed
by the Linux community or are a consequence of fixable
problems in PostgreSQL.

Veal and Foong evaluate the scalability of Apache run-
ning on Linux 2.6.20.3 on an 8-core AMD Opteron com-
puter using SPECweb2005 [51]. They identify Linux scal-
ing problems in the kernel implementations of scheduling
and directory lookup, respectively. On a 48-core com-
puter, we also observe directory lookup as a scalability
problem and PK applies a number of techniques to ad-
dress this bottleneck. Pesterev et al. identify scalability
problems in the Linux 2.6.30 network code using mem-
cached and Apache [44]. The PK kernel addresses these
problems by using a modern network card that supports a
large number of virtual queues (similar to the approach
taken by Route Bricks [21]).

Cui et al. describe microbenchmarks for measuring
multicore scalability and report results from running them
on Linux on a 32-core machine [55]. They find a number
of scalability problems in Linux (e.g., memory-mapped
file creation and deletion). Memory-mapped files show
up as a scalability problem in one MOSBENCH application
when multiple threads run in the same address space with
memory-mapped files.

A number of new research operating systems use scal-
ability problems in Linux as motivation. The Corey pa-
per [15] identified bottlenecks in the Linux file descriptor
and virtual memory management code caused by unneces-
sary sharing. Both of these bottlenecks are also triggered
by MOSBENCH applications. The Barrelfish paper [11]
observed that Linux TLB shootdown scales poorly. This
problem is not observed in the MOSBENCH applications.
Using microbenchmarks, the fos paper [53] finds that the
physical page allocator in Linux 2.6.24.7 does not scale
beyond 8 cores and that executing the kernel and applica-
tions on the same core results in cache interference and
high miss rates. We find that the page allocator isn’t a
bottleneck for MOSBENCH applications on 48 cores (even
though they stress memory allocation), though we have

reason to believe it would be a problem with more cores.
However, the problem appears to be avoidable by, for
example, using super-pages or modifying the kernel to
batch page allocation.

Solaris scalability studies. Solaris provides a UNIX
API and runs on SPARC-based and x86-based multi-
core processors. Solaris incorporates SNZIs [22], which
are similar to sloppy counters (see section 4.3). Tseng
et al. report that SAP-SD, IBM Trade and several syn-
thetic benchmarks scale well on an 8-core SPARC system
running Solaris 10 [49]. Zou et al. encountered coarse
grained locks in the UDP networking stack of Solaris
10 that limited scalability of the OpenSER SIP proxy
server on an 8-core SPARC system [29]. Using the mi-
crobenchmarks mentioned above [55], Cui ef al. compare
FreeBSD, Linux, and Solaris [54], and find that Linux
scales better on some microbenchmarks and Solaris scales
better on others. We ran some of the MOSBENCH appli-
cations on Solaris 10 on the 48-core machine used for
this paper. While the Solaris license prohibits us from re-
porting quantitative results, we observed similar or worse
scaling behavior compared to Linux; however, we don’t
know the causes or whether Solaris would perform better
on SPARC hardware. We hope, however, that this paper
helps others who might analyze Solaris.

3 THE MOSBENCH APPLICATIONS

To stress the kernel we chose two sets of applications:
1) applications that previous work has shown not to
scale well on Linux (memcached; Apache; and Metis, a
MapReduce library); and 2) applications that are designed
for parallel execution and are kernel intensive (gmake,
PostgreSQL, Exim, and Psearchy). Because many ap-
plications are bottlenecked by disk writes, we used an
in-memory tmpfs file system to explore non-disk limita-
tions. We drive some of the applications with synthetic
user workloads designed to cause them to use the ker-
nel intensively, with realism a secondary consideration.
This collection of applications stresses important parts
of many kernel components (e.g., the network stack, file
name cache, page cache, memory manager, process man-
ager, and scheduler). Most spend a significant fraction
of their CPU time in the kernel when run on a single
core. All but one encountered serious scaling problems
at 48 cores caused by the stock Linux kernel. The rest of
this section describes the selected applications, how they
are parallelized, and what kernel services they stress.

3.1 Mail server

Exim [2] is a mail server. We operate it in a mode where
a single master process listens for incoming SMTP con-
nections via TCP and forks a new process for each con-
nection, which in turn accepts the incoming mail, queues
it in a shared set of spool directories, appends it to the

per-user mail file, deletes the spooled mail, and records
the delivery in a shared log file. Each per-connection pro-
cess also forks twice to deliver each message. With many
concurrent client connections, Exim has a good deal of
parallelism. It spends 69% of its time in the kernel on
a single core, stressing process creation and small file
creation and deletion.

3.2 Object cache

memcached [3] is an in-memory key-value store often
used to improve web application performance. A single
memcached server running on multiple cores is bottle-
necked by an internal lock that protects the key-value hash
table. To avoid this problem, we run multiple memcached
servers, each on its own port, and have clients determin-
istically distribute key lookups among the servers. This
organization allows the servers to process requests in par-
allel. When request sizes are small, memcached mainly
stresses the network stack, spending 80% of its time pro-
cessing packets in the kernel at one core.

3.3 Web server

Apache [1] is a popular Web server, which previous work
(e.g., [51]) has used to study Linux scalability. We run a
single instance of Apache listening on port 80. We config-
ure this instance to run one process per core. Each process
has a thread pool to service connections; one thread is
dedicated to accepting incoming connections while the
other threads process the connections. In addition to the
network stack, this configuration stresses the file system
(in particular directory name lookup) because it stats and
opens a file on every request. Running on a single core,
an Apache process spends 60% of its execution time in
the kernel.

3.4 Database

PostgreSQL [4] is a popular open source SQL database,
which, unlike many of our other workloads, makes exten-
sive internal use of shared data structures and synchro-
nization. PostgreSQL also stresses many shared resources
in the kernel: it stores database tables as regular files
accessed concurrently by all PostgreSQL processes, it
starts one process per connection, it makes use of kernel
locking interfaces to synchronize and load balance these
processes, and it communicates with clients over TCP
sockets that share the network interface.

Ideally, PostgreSQL would scale well for read-mostly
workloads, despite its inherent synchronization needs.
PostgreSQL relies on snapshot isolation, a form of opti-
mistic concurrency control that avoids most read locks.
Furthermore, most write operations acquire only row-
level locks exclusively and acquire all coarser-grained
locks in shared modes. Thus, in principle, PostgreSQL
should exhibit little contention for read-mostly workloads.
In practice, PostgreSQL is limited by bottlenecks in both

its own code and in the kernel. For a read-only work-
load that avoids most application bottlenecks, PostgreSQL
spends only 1.5% of its time in the kernel with one core,
but this grows to 82% with 48 cores.

3.5 Parallel build

gmake [23] is an implementation of the standard make
utility that supports executing independent build rules
concurrently. gmake is the unofficial default benchmark
in the Linux community since all developers use it to
build the Linux kernel. Indeed, many Linux patches
include comments like “This speeds up compiling the
kernel.” We benchmarked gmake by building the stock
Linux 2.6.35-rc5 kernel with the default configuration
for x86_64. gmake creates more processes than there are
cores, and reads and writes many files. The execution
time of gmake is dominated by the compiler it runs, but
system time is not negligible: with one core, 7.6% of the
execution time is system time.

3.6 File indexer

Psearchy is a parallel version of searchy [35, 48], a pro-
gram to index and query Web pages. We focus on the
indexing component of searchy because it is more system
intensive. Our parallel version, pedsort, runs the searchy
indexer on each core, sharing a work queue of input files.
Each core operates in two phases. In phase 1, it pulls input
files off the work queue, reading each file and recording
the positions of each word in a per-core hash table. When
the hash table reaches a fixed size limit, it sorts it alpha-
betically, flushes it to an intermediate index on disk, and
continues processing input files. Phase 1 is both compute
intensive (looking up words in the hash table and sorting
it) and file-system intensive (reading input files and flush-
ing the hash table). To avoid stragglers in phase 1, the
initial work queue is sorted so large files are processed
first. Once the work queue is empty, each core merges
the intermediate index files it produced, concatenating the
position lists of words that appear in multiple intermedi-
ate indexes, and generates a binary file that records the
positions of each word and a sequence of Berkeley DB
files that map each word to its byte offset in the binary
file. To simplify the scalability analysis, each core starts
a new Berkeley DB every 200,000 entries, eliminating
a logarithmic factor and making the aggregate work per-
formed by the indexer constant regardless of the number
of cores. Unlike phase 1, phase 2 is mostly file-system
intensive. While pedsort spends only 1.9% of its time
in the kernel at one core, this grows to 23% at 48 cores,
indicating scalability limitations.

3.7 MapReduce

Metis is a MapReduce [20] library for single multicore
servers inspired by Phoenix [45]. We use Metis with an
application that generates inverted indices. This workload

allocates large amounts of memory to hold temporary
tables, stressing the kernel memory allocator and soft page
fault code. This workload spends 3% of its runtime in the
kernel with one core, but this rises to 16% at 48 cores.

4 KERNEL OPTIMIZATIONS

The MOSBENCH applications trigger a few scalability
bottlenecks in the kernel. We describe the bottlenecks
and our solutions here, before presenting detailed per-
application scaling results in Section 5, because many
of the bottlenecks are common to multiple applications.
Figure 1 summarizes the bottlenecks. Some of these prob-
lems have been discussed on the Linux kernel mailing
list and solutions proposed; perhaps the reason these solu-
tions have not been implemented in the standard kernel is
that the problems are not acute on small-scale SMPs or
are masked by I/O delays in many applications. Figure 1
also summarizes our solution for each bottleneck.

4.1 Scalability tutorial

Why might one expect performance to scale well with the
number of cores? If a workload consists of an unlimited
supply of tasks that do not interact, then you’d expect to
get linear increases in total throughput by adding cores
and running tasks in parallel. In real life parallel tasks
usually interact, and interaction usually forces serial ex-
ecution. Amdahl’s Law summarizes the result: however
small the serial portion, it will eventually prevent added
cores from increasing performance. For example, if 25%
of a program is serial (perhaps inside some global locks),
then any number of cores can provide no more than 4-
times speedup.

Here are a few types of serializing interactions that
the MOSBENCH applications encountered. These are all
classic considerations in parallel programming, and are
discussed in previous work such as [17].

e The tasks may lock a shared data structure, so that
increasing the number of cores increases the lock
wait time.

e The tasks may write a shared memory location, so
that increasing the number of cores increases the
time spent waiting for the cache coherence proto-
col to fetch the cache line in exclusive mode. This
problem can occur even in lock-free shared data
structures.

e The tasks may compete for space in a limited-size
shared hardware cache, so that increasing the number
of cores increases the cache miss rate. This problem
can occur even if tasks never share memory.

o The tasks may compete for other shared hardware
resources such as inter-core interconnect or DRAM

Parallel accept Apache
Concurrent accept system calls contend on shared socket fields. =~ =- User per-core backlog queues for listening sockets.
dentry reference counting Apache, Exim

File name resolution contends on directory entry reference counts.

Mount point (vEsmount) reference counting

Use sloppy counters to reference count directory entry objects.

Apache, Exim

Walking file name paths contends on mount point reference counts.

IP packet destination (dst-entry) reference counting

Use sloppy counters for mount point objects.

memcached, Apache

IP packet transmission contends on routing table entries.

Protocol memory usage tracking

Use sloppy counters for IP routing table entries.

memcached, Apache

Cores contend on counters for tracking protocol memory consumption.

Acquiring directory entry (dentry) spin locks

=

Use sloppy counters for protocol usage counting.

Apache, Exim

Walking file name paths contends on per-directory entry spin locks.

Mount point table spin lock

=

Use a lock-free protocol in dlookup for checking filename matches.

Apache, Exim

Resolving path names to mount points contends on a global spin lock.
Adding files to the open list

=

Use per-core mount table caches.

Apache, Exim

Cores contend on a per-super block list that tracks open files.
Allocating DMA buffers

Use per-core open file lists for each super block that has open files.

memcached, Apache

DMA memory allocations contend on the memory node 0 spin lock.

False sharing in net_device and device

=

Allocate Ethernet device DMA buffers from the local memory node.

memcached, Apache, PostgreSQL

False sharing causes contention for read-only structure fields.

False sharing in page

Place read-only fields on their own cache lines.

Exim

False sharing causes contention for read-mostly structure fields.

inode lists

=

Place read-only fields on their own cache lines.

memcached, Apache

Cores contend on global locks protecting lists used to track inodes.

Dcache lists

=

Avoid acquiring the locks when not necessary.

memcached, Apache

Cores contend on global locks protecting lists used to track dentrys.

Per-inode mutex

=

Avoid acquiring the locks when not necessary.
PostgreSQL

Cores contend on a per-inode mutex in 1seek.

=

Use atomic reads to eliminate the need to acquire the mutex.

Super-page fine grained locking Metis
Super-page soft page faults contend on a per-process mutex. = Protect each super-page memory mapping with its own mutex.
Zeroing super-pages Metis

Zeroing super-pages flushes the contents of on-chip caches.

=

Use non-caching instructions to zero the contents of super-pages.

Figure 1: A summary of Linux scalability problems encountered by MOSBENCH applications and their corresponding fixes. The fixes add 2617 lines

of code to Linux and remove 385 lines of code from Linux.

interfaces, so that additional cores spend their time
waiting for those resources rather than computing.

e There may be too few tasks to keep all cores busy,
so that increasing the number of cores leads to more
idle cores.

Many scaling problems manifest themselves as delays
caused by cache misses when a core uses data that other
cores have written. This is the usual symptom both for
lock contention and for contention on lock-free mutable
data. The details depend on the hardware cache coherence
protocol, but the following is typical. Each core has a
data cache for its own use. When a core writes data that
other cores have cached, the cache coherence protocol
forces the write to wait while the protocol finds the cached
copies and invalidates them. When a core reads data
that another core has just written, the cache coherence
protocol doesn’t return the data until it finds the cache that
holds the modified data, annotates that cache to indicate
there is a copy of the data, and fetches the data to the
reading core. These operations take about the same time

as loading data from off-chip RAM (hundreds of cycles),
so sharing mutable data can have a disproportionate effect
on performance.

Exercising the cache coherence machinery by modify-
ing shared data can produce two kinds of scaling problems.
First, the cache coherence protocol serializes modifica-
tions to the same cache line, which can prevent parallel
speedup. Second, in extreme cases the protocol may
saturate the inter-core interconnect, again preventing addi-
tional cores from providing additional performance. Thus
good performance and scalability often demand that data
be structured so that each item of mutable data is used by
only one core.

In many cases scaling bottlenecks limit performance
to some maximum, regardless of the number of cores. In
other cases total throughput decreases as the number of
cores grows, because each waiting core slows down the
cores that are making progress. For example, non-scalable
spin locks produce per-acquire interconnect traffic that is
proportional to the number of waiting cores; this traffic
may slow down the core that holds the lock by an amount
proportional to the number of waiting cores [41]. Acquir-

ing a Linux spin lock takes a few cycles if the acquiring
core was the previous lock holder, takes a few hundred
cycles if another core last held the lock and there is no
contention, and are not scalable under contention.

Performance is often the enemy of scaling. One way
to achieve scalability is to use inefficient algorithms, so
that each core busily computes and makes little use of
shared resources such as locks. Conversely, increasing
the efficiency of software often makes it less scalable, by
increasing the fraction of time it uses shared resources.
This effect occurred many times in our investigations of
MOSBENCH application scalability.

Some scaling bottlenecks cannot easily be fixed, be-
cause the semantics of the shared resource require serial
access. However, it is often the case that the implementa-
tion can be changed so that cores do not have to wait for
each other. For example, in the stock Linux kernel the set
of runnable threads is partitioned into mostly-private per-
core scheduling queues; in the common case, each core
only reads, writes, and locks its own queue [36]. Many
scaling modifications to Linux follow this general pattern.

Many of our scaling modifications follow this same
pattern, avoiding both contention for locks and contention
for the underlying data. We solved other problems using
well-known techniques such as lock-free protocols or fine-
grained locking. In all cases we were able to eliminate
scaling bottlenecks with only local changes to the kernel
code. The following subsections explain our techniques.

4.2 Multicore packet processing

The Linux network stack connects different stages of
packet processing with queues. A received packet typ-
ically passes through multiple queues before finally ar-
riving at a per-socket queue, from which the application
reads it with a system call like read or accept. Good
performance with many cores and many independent net-
work connections demands that each packet, queue, and
connection be handled by just one core [21, 42]. This
avoids inter-core cache misses and queue locking costs.
Recent Linux kernels take advantage of network cards
with multiple hardware queues, such as Intel’s 82599
10Gbit Ethernet IXGBE) card, or use software tech-
niques, such as Receive Packet Steering [26] and Receive
Flow Steering [25], to attempt to achieve this property.
With a multi-queue card, Linux can be configured to as-
sign each hardware queue to a different core. Transmit
scaling is then easy: Linux simply places outgoing pack-
ets on the hardware queue associated with the current
core. For incoming packets, such network cards provide
an interface to configure the hardware to enqueue incom-
ing packets matching a particular criteria (e.g., source IP
address and port number) on a specific queue and thus
to a particular core. This spreads packet processing load
across cores. However, the IXGBE driver goes further:

for each core, it samples every 20" outgoing TCP packet
and updates the hardware’s flow directing tables to de-
liver further incoming packets from that TCP connection
directly to the core.

This design typically performs well for long-lived con-
nections, but poorly for short ones. Because the technique
is based on sampling, it is likely that the majority of
packets on a given short connection will be misdirected,
causing cache misses as Linux delivers to the socket on
one core while the socket is used on another. Furthermore,
because few packets are received per short-lived connec-
tion, misdirecting even the initial handshake packet of a
connection imposes a significant cost.

For applications like Apache that simultaneously ac-
cept connections on all cores from the same listening
socket, we address this problem by allowing the hard-
ware to determine which core and thus which application
thread will handle an incoming connection. We modify
accept to prefer connections delivered to the local core’s
queue. Then, if the application processes the connection
on the same core that accepted it (as in Apache), all pro-
cessing for that connection will remain entirely on one
core. Our solution has the added benefit of addressing
contention on the lock that protects the single listening
socket’s connection backlog queue.

To implement this, we configured the IXGBE to direct
each packet to a queue (and thus core) using a hash of the
packet headers designed to deliver all of a connection’s
packets (including the TCP handshake packets) to the
same core. We then modified the code that handles TCP
connection setup requests to queue requests on a per-core
backlog queue for the listening socket, so that a thread
will accept and process connections that the IXGBE di-
rects to the core running that thread. If accept finds the
current core’s backlog queue empty, it attempts to steal
a connection request from a different core’s queue. This
arrangement provides high performance for short connec-
tions by processing each connection entirely on one core.
If threads were to move from core to core while handling
a single connection, a combination of this technique and
the current sampling approach might be best.

4.3 Sloppy counters

Linux uses shared counters for reference-counted garbage
collection and to manage various resources. These coun-
ters can become bottlenecks if many cores update them.
In these cases lock-free atomic increment and decrement
instructions do not help, because the coherence hardware
serializes the operations on a given counter.

The MOSBENCH applications encountered bottle-
necks from reference counts on directory entry objects
(dentrys), mounted file system objects (vEsmounts), net-
work routing table entries (dst_entrys), and counters

Core 0

(s
(|
[
[]

(s
(|
(s
()
e~

dent
refceonu ?; | E |! |!

Core 1l
\/\
N

Time

Figure 2: An example of the kernel using a sloppy counter for dentry
reference counting. A large circle represents a local counter, and a gray
dot represents a held reference. In this figure, a thread on core O first
acquires a reference from the central counter. When the thread releases
this reference, it adds the reference to the local counter. Finally, another
thread on core 0 is able to acquire the spare reference without touching
the central counter.

tracking the amount of memory allocated by each net-
work protocol (such as TCP or UDP).

Our solution, which we call sloppy counters, builds on
the intuition that each core can hold a few spare references
to an object, in hopes that it can give ownership of these
references to threads running on that core, without having
to modify the global reference count. More concretely,
a sloppy counter represents one logical counter as a sin-
gle shared central counter and a set of per-core counts
of spare references. When a core increments a sloppy
counter by V, it first tries to acquire a spare reference
by decrementing its per-core counter by V. If the per-
core counter is greater than or equal to V', meaning there
are sufficient local references, the decrement succeeds.
Otherwise the core must acquire the references from the
central counter, so it increments the shared counter by
V. When a core decrements a sloppy counter by V/, it
releases these references as local spare references, incre-
menting its per-core counter by V. Figure 2 illustrates
incrementing and decrementing a sloppy counter. If the
local count grows above some threshold, spare references
are released by decrementing both the per-core count and
the central count.

Sloppy counters maintain the invariant that the sum
of per-core counters and the number of resources in use
equals the value in the shared counter. For example, a
shared dentry reference counter equals the sum of the
per-core counters and the number of references to the
dentry currently in use.

A core usually updates a sloppy counter by modifying
its per-core counter, an operation which typically only
needs to touch data in the core’s local cache (no waiting
for locks or cache-coherence serialization).

We added sloppy counters to count references to
dentrys, vismounts, and dst_entrys, and used sloppy
counters to track the amount of memory allocated by
each network protocol (such as TCP and UDP). Only

uses of a counter that cause contention need to be mod-
ified, since sloppy counters are backwards-compatible
with existing shared-counter code. The kernel code that
creates a sloppy counter allocates the per-core counters.
It is occasionally necessary to reconcile the central and
per-core counters, for example when deciding whether an
object can be de-allocated. This operation is expensive,
so sloppy counters should only be used for objects that
are relatively infrequently de-allocated.

Sloppy counters are similar to Scalable NonZero Indi-
cators (SNZI) [22], distributed counters [9], and approxi-
mate counters [5]. All of these techniques speed up incre-
ment/decrement by use of per-core counters, and require
significantly more work to find the true total value. Sloppy
counters are attractive when one wishes to improve the
performance of some uses of an existing counter without
having to modify all points in the code where the counter
is used. A limitation of sloppy counters is that they use
space proportional to the number of cores.

4.4 Lock-free comparison

We found situations in which MOSBENCH applications
were bottlenecked by low scalability for name lookups
in the directory entry cache. The directory entry cache
speeds up lookups by mapping a directory and a file name
to a dentry identifying the target file’s inode. When
a potential dentry is located, the lookup code acquires
a per-dentry spin lock to atomically compare several
fields of the dentry with the arguments of the lookup
function. Even though the directory cache has been op-
timized using RCU for scalability [40], the dentry spin
lock for common parent directories, such as /usr, was
sometimes a bottleneck even if the path names ultimately
referred to different files.

We optimized dentry comparisons using a lock-free
protocol similar to Linux’ lock-free page cache lookup
protocol [18]. The lock-free protocol uses a generation
counter, which the PK kernel increments after every mod-
ification to a directory entry (e.g.,mv foo bar). During
a modification (when the dentry spin lock is held), PK
temporarily sets the generation counter to 0. The PK ker-
nel compares dentry fields to the arguments using the
following procedure for atomicity:

o If the generation counter is 0, fall back to the lock-
ing protocol. Otherwise remember the value of the
generation counter.

e Copy the fields of the dentry to local variables. If
the generation afterwards differs from the remem-
bered value, fall back to the locking protocol.

e Compare the copied fields to the arguments. If there
is a match, increment the reference count unless it is
0, and return the dentry. If the reference count is 0,
fall back to the locking protocol.

The lock-free protocol improves scalability because it
allows cores to perform lookups for the same directory
entries without serializing.

4.5 Per-core data structures

We encountered three kernel data structures that caused
scaling bottlenecks due to lock contention: a per-super-
block list of open files that determines whether a read-
write file system can be remounted read-only, a table of
mount points used during path lookup, and the pool of
free packet buffers. Though each of these bottlenecks is
caused by lock contention, bottlenecks would remain if
we replaced the locks with finer grained locks or a lock
free protocol, because multiple cores update the data struc-
tures. Therefore our solutions refactor the data structures
so that in the common case each core uses different data.

We split the per-super-block list of open files into per-
core lists. When a process opens a file the kernel locks
the current core’s list and adds the file. In most cases
a process closes the file on the same core it opened it
on. However, the process might have migrated to another
core, in which case the file must be expensively removed
from the list of the original core. When the kernel checks
if a file system can be remounted read-only it must lock
and scan all cores’ lists.

We also added per-core vEsmount tables, each acting
as a cache for a central vfsmount table. When the kernel
needs to look up the vEsmount for a path, it first looks in
the current core’s table, then the central table. If the latter
succeeds, the result is added to the per-core table.

Finally, the default Linux policy for machines with
NUMA memory is to allocate packet buffers (skbuffs)
from a single free list in the memory system closest to the
I/0 bus. This caused contention for the lock protecting
the free list. We solved this using per-core free lists.

4.6 Eliminating false sharing

We found some MOSBENCH applications caused false
sharing in the kernel. In the cases we identified, the ker-
nel located a variable it updated often on the same cache
line as a variable it read often. The result was that cores
contended for the falsely shared line, limiting scalabil-
ity. Exim per-core performance degraded because of false
sharing of physical page reference counts and flags, which
the kernel located on the same cache line of a page vari-
able. memcached, Apache, and PostgreSQL faced simi-
lar false sharing problems with net_device and device
variables. In all cases, placing the heavily modified data
on a separate cache line improved scalability.

4.7 Avoiding unnecessary locking

For small numbers of cores, lock contention in Linux
does not limit scalability for MOSBENCH applications.
With more than 16 cores, the scalability of memcached,
Apache, PostgreSQL, and Metis are limited by waiting for

Stock ——3
PK mmmmm

08— -

il

Exim memcached Apache PostgreSQL —gmake pedsort Metis

Per-core throughput at 48 cores relative to 1 core

Figure 3: MOSBENCH results summary. Each bar shows the ratio of
per-core throughput with 48 cores to throughput on one core, with 1.0
indicating perfect scalability. Each pair of bars corresponds to one
application before and after our kernel and application modifications.

and acquiring spin locks and mutexes' in the file system
and virtual memory management code. In many cases we
were able to eliminate acquisitions of the locks altogether
by modifying the code to detect special cases when ac-
quiring the locks was unnecessary. In one case, we split
a mutex protecting all the super page mappings into one
mutex per mapping.

5 EVALUATION

This section evaluates the MOSBENCH applications on
the most recent Linux kernel at the time of writing
(Linux 2.6.35-rc5, released on July 12, 2010) and our
modified version of this kernel, PK. For each applica-
tion, we describe how the stock kernel limits scalability,
and how we addressed the bottlenecks by modifying the
application and taking advantage of the PK changes.

Figure 3 summarizes the results of the MOSBENCH
benchmark, comparing application scalability before and
after our modifications. A bar with height 1.0 indicates
perfect scalability (48 cores yielding a speedup of 48).
Most of the applications scale significantly better with
our modifications. All of them fall short of perfect scal-
ability even with those modifications. As the rest of this
section explains, the remaining scalability bottlenecks are
not the fault of the kernel. Instead, they are caused by
non-parallelizable components in the application or un-
derlying hardware: resources that the application’s design
requires it to share, imperfect load balance, or hardware
bottlenecks such as the memory system or the network
card. For this reason, we conclude that the Linux ker-
nel with our modifications is consistent with MOSBENCH
scalability up to 48 cores.

For each application we show scalability plots in the
same format, which shows throughput per core (see, for
example, Figure 4). A horizontal line indicates perfect

! A thread initially busy waits to acquire a mutex, but if the wait time
is long the thread yields the CPU.

scalability: each core contributes the same amount of
work regardless of the total number of cores. In practice
one cannot expect a truly horizontal line: a single core
usually performs disproportionately well because there
is no inter-core sharing and because Linux uses a stream-
lined lock scheme with just one core, and the per-chip
caches become less effective as more active cores share
them. For most applications we see the stock kernel’s line
drop sharply because of kernel bottlenecks, and the PK
line drop more modestly.

5.1 Method

We run the applications that modify files on a tmpfs in-
memory file system to avoid waiting for disk I/O. The
result is that MOSBENCH stresses the kernel more it would
if it had to wait for the disk, but that the results are not
representative of how the applications would perform
in a real deployment. For example, a real mail server
would probably be bottlenecked by the need to write each
message durably to a hard disk. The purpose of these
experiments is to evaluate the Linux kernel’s multicore
performance, using the applications to generate a reason-
ably realistic mix of system calls.

We run experiments on a 48-core machine, with a Tyan
Thunder S4985 board and an M4985 quad CPU daughter-
board. The machine has a total of eight 2.4 GHz 6-core
AMD Opteron 8431 chips. Each core has private 64 Kbyte
instruction and data caches, and a 512 Kbyte private L2
cache. The cores on each chip share a 6 Mbyte L3 cache,
1 Mbyte of which is used for the HT Assist probe fil-
ter [7]. Each chip has 8 Gbyte of local off-chip DRAM.
A core can access its L1 cache in 3 cycles, its L2 cache in
14 cycles, and the shared on-chip L3 cache in 28 cycles.
DRAM access latencies vary, from 122 cycles for a core
to read from its local DRAM to 503 cycles for a core to
read from the DRAM of the chip farthest from it on the
interconnect. The machine has a dual-port Intel 82599
10Gbit Ethernet (IXGBE) card, though we use only one
port for all experiments. That port connects to an Ethernet
switch with a set of load-generating client machines.

Experiments that use fewer than 48 cores run with
the other cores entirely disabled. memcached, Apache,
Psearchy, and Metis pin threads to cores; the other ap-
plications do not. We run each experiment 3 times and
show the best throughput, in order to filter out unrelated
activity; we found the variation to be small.

5.2 Exim

To measure the performance of Exim 4.71, we configure
Exim to use tmp£s for all mutable files—spool files, log
files, and user mail files—and disable DNS and RFC1413
lookups. Clients run on the same machine as Exim. Each
repeatedly opens an SMTP connection to Exim, sends 10
separate 20-byte messages to a local user, and closes the
SMTP connection. Sending 10 messages per connection

0T T T T T T

T T T
Stock - - -
PK —

600 - PK user time —0—
PK system time —&—

— 4000

CPU time (use

Throughput (messages / sec / core)

0 | | | | | | | | | | | 0
12 16 20 24 28 32 36 40 44 48
Cores

Figure 4: Exim throughput and runtime breakdown.

prevents exhaustion of TCP client port numbers. Each
client sends to a different user to prevent contention on
user mail files. We use 96 client processes regardless of
the number of active cores; as long as there are enough
clients to keep Exim busy, the number of clients has little
effect on performance.

We modified and configured Exim to increase perfor-
mance on both the stock and PK kernels:

e Berkeley DB v4.6 reads /proc/stat to find the number
of cores. This consumed about 20% of the total run-
time, so we modified Berkeley DB to aggressively
cache this information.

e We configured Exim to split incoming queued mes-
sages across 62 spool directories, hashing by the
per-connection process ID. This improves scala-
bility because delivery processes are less likely to
create files in the same directory, which decreases
contention on the directory metadata in the kernel.

e We configured Exim to avoid an exec() per mail
message, using deliver_drop_privilege.

Figure 4 shows the number of messages Exim can pro-
cess per second on each core, as the number of cores
varies. The stock and PK kernels perform nearly the
same on one core. As the number of cores increases, the
per-core throughput of the stock kernel eventually drops
toward zero. The primary cause of the throughput drop
is contention on a non-scalable kernel spin lock that se-
rializes access to the vismount table. Exim causes the
kernel to access the vismount table dozens of times for
each message. Exim on PK scales significantly better,
owing primarily to improvements to the vEsmount ta-
ble (Section 4.5) and the changes to the dentry cache
(Section 4.4).

Throughput on the PK kernel degrades from one to
two cores, while the system time increases, because of
the many kernel data structures that are not shared with
one core but must be shared (with cache misses) with

300000

250000 p=

200000

150000

100000

Throughput (requests / sec / core)

50000

0 | | | | | | | | | | |
16 20 24 28 32 36 40 44 48
Cores

Figure 5: memcached throughput.

two cores. The throughput on the PK kernel continues
to degrade; however, this is mainly due to application-
induced contention on the per-directory locks protecting
file creation in the spool directories. As the number of
cores increases, there is an increasing probability that
Exim processes running on different cores will choose the
same spool directory, resulting in the observed contention.

We foresee a potential bottleneck on more cores due
to cache misses when a per-connection process and the
delivery process it forks run on different cores. When
this happens the delivery process suffers caches misses
when it first accesses kernel data—especially data related
to virtual address mappings—that its parent initialized.
The result is that process destruction, which frees virtual
address mappings, and soft page fault handling, which
reads virtual address mappings, execute more slowly with
more cores. For the Exim configuration we use, however,
this slow down is negligible compared to slow down that
results from contention on spool directories.

5.3 memcached

We run a separate memcached 1.4.4 process on each
core to avoid application lock contention. Each server is
pinned to a separate core and has its own UDP port. Each
client thread repeatedly queries a particular memcached
instance for a non-existent key because this places higher
load on the kernel than querying for existing keys. There
are a total of 792 client threads running on 22 client
machines. Requests are 68 bytes, and responses are 64.
Each client thread sends a batch of 20 requests and waits
for the responses, timing out after 100 ms in case packets
are lost.

For both kernels, we use a separate hardware receive
and transmit queue for each core and configure the
IXGBE to inspect the port number in each incoming
packet header, place the packet on the queue dedicated to
the associated memcached’s core, and deliver the receive
interrupt to that core.

Figure 5 shows that memcached does not scale well on
the stock Linux kernel.

10

20000 ——T—T—T—T—T—T 100

T T T
Stock - - -
PK —

PK user time —0—

PK system time —2— _|

80
15000
60
10000
40

CPU time (psec / request)

5000

Throughput (requests / sec / core)

20

P T T T S S Y Y AN Rl s I8
I 4 8 12 16 20 24 28 32 36 40 44 48
Cores

Figure 6: Apache throughput and runtime breakdown.

One scaling problem occurs in the memory allocator.
Linux associates a separate allocator with each socket to
allocate memory from that chip’s attached DRAM. The
stock kernel allocates each packet from the socket nearest
the PCI bus, resulting in contention on that socket’s allo-
cator. We modified the allocation policy to allocate from
the local socket, which improved throughput by ~30%.

Another bottleneck was false read/write sharing of
IXGBE device driver data in the net.device and
device structures, resulting in cache misses for all cores
even on read-only fields. We rearranged both structures
to isolate critical read-only members to their own cache
lines. Removing a single falsely shared cache line in
net_device increased throughput by 30% at 48 cores.

The final bottleneck was contention on the dst_entry
structure’s reference count in the network stack’s destina-
tion cache, which we replaced with a sloppy counter (see
Section 4.3).

The “PK” line in Figure 5 shows the scalability of
memcached with these changes. The per core throughput
drops off after 16 cores. We have isolated this bottleneck
to the IXGBE card itself, which appears to handle fewer
packets as the number of virtual queues increases. As a
result, it fails to transmit packets at line rate even though
there are always packets queued in the DMA rings.

To summarize, while memcached scales poorly, the
bottlenecks caused by the Linux kernel were fixable and
the remaining bottleneck lies in the hardware rather than
in the Linux kernel.

5.4 Apache

A single instance of Apache running on stock Linux scales
very poorly because of contention on a mutex protecting
the single accept socket. Thus, for stock Linux, we run
a separate instance of Apache per core with each server
running on a distinct port. Figure 6 shows that Apache
still scales poorly on the stock kernel, even with separate
Apache instances.

For PK, we run a single instance of Apache 2.2.14 on
one TCP port. Apache serves a single static file from an

ext3 file system; the file resides in the kernel buffer cache.
We serve a file that is 300 bytes because transmitting a
larger file exhausts the available 10 Gbit bandwidth at a
low server core count. Each request involves accepting a
TCP connection, opening the file, copying its content to a
socket, and closing the file and socket; logging is disabled.
We use 58 client processes running on 25 physical client
machines (many clients are themselves multi-core). For
each active server core, each client opens 2 TCP connec-
tions to the server at a time (so, for a 48-core server, each
client opens 96 TCP connections).

All the problems and solutions described in Section 5.3
apply to Apache, as do the modifications to the dentry
cache for both files and sockets described in Section 4.
Apache forks off a process per core, pinning each new pro-
cess to a different core. Each process dedicates a thread
to accepting connections from the shared listening socket
and thus, with the accept queue changes described in Sec-
tion 4.2, each connection is accepted on the core it initially
arrives on and all packet processing is performed local to
that core. The PK numbers in Figure 6 are significantly
better than Apache running on the stock kernel; however,
Apache’s throughput on PK does not scale linearly.

Past 36 cores, performance degrades because the net-
work card cannot keep up with the increasing workload.
Lack of work causes the server idle time to reach 18% at
48 cores. At 48 cores, the network card’s internal diagnos-
tic counters show that the card’s internal receive packet
FIFO overflows. These overflows occur even though the
clients are sending a total of only 2 Gbits and 2.8 million
packets per second when other independent tests have
shown that the card can either receive upwards of 4 Gbits
per second or process 5 million packets per second.

We created a microbenchmark that replicates the
Apache network workload, but uses substantially less
CPU time on the server. In the benchmark, the client ma-
chines send UDP packets as fast as possible to the server,
which also responds with UDP packets. The packet mix
is similar to that of the Apache benchmark. While the mi-
crobenchmark generates far more packets than the Apache
clients, the network card ultimately delivers a similar num-
ber of packets per second as in the Apache benchmark
and drops the rest. Thus, at high core counts, the network
card is unable to deliver additional load to Apache, which
limits its scalability.

5.5 PostgreSQL

We evaluate Linux’s scalability running PostgreSQL 8.3.9
using both a 100% read workload and a 95%/5%
read/write workload. The database consists of a sin-
gle indexed 600 Mbyte table of 10,000,000 key-value
pairs stored in tmpfs. We configure PostgreSQL to use
a 2 Gbyte application-level cache because PostgreSQL
protects its cache free-list with a single lock and thus

11

25000 T T T T T T T T T T 1 90
Stock - - -
Stock + mod PG - = = gq
P]g(K+ mod PG ——
. | user time —o—
g 20000 < PK system time —&—— 70
g . ~
3 5
§ 60 ES
< 15000 50 3
L 2
: £
E) \ -1 40 o
= 10000 - \ £
£ \ <302
g \‘ N
£ 5000 - \ 1
el = 10
A A A A A A A A A A A

0
1 4 8 12 16 20 24 28 32 48

Cores

36 40 44

Figure 7: PostgreSQL read-only workload throughput and runtime
breakdown.

2500771 T T T T T T_T T 90
Stock - - -
Stock + mod PG - = = gq
PPK+ mod PG ——
—_ user time —9—

g 20000 PK system time —&—=3 70
g ~
X 5
2 g
= 15000 =
g 50 §
g ' 2
g) — 40 3
5 10000 - Y £
_gu v -1 30 E
IS L o

£ 5000 - Voo ®

N
=10
0 A A A A A A A A A A A 0
1 4 8 12 16 20 24 28 32 36 40 44 48

Cores

Figure 8: PostgreSQL read/write workload throughput and runtime
breakdown.

scales poorly with smaller caches. While we do not pin
the PostgreSQL processes to cores, we do rely on the
IXGBE driver to route packets from long-lived connec-
tions directly to the cores processing those connections.

Our workload generator simulates typical high-
performance PostgreSQL configurations, where middle-
ware on the client machines aggregates multiple client
connections into a small number of connections to the
server. Our workload creates one PostgreSQL connection
per server core and sends queries (selects or updates) in
batches of 256, aggregating successive read-only transac-
tions into single transactions. This workload is intended to
minimize application-level contention within PostgreSQL
in order to maximize the stress PostgreSQL places on the
kernel.

The “Stock” line in Figures 7 and 8 shows that Post-
greSQL has poor scalability on the stock kernel. The first
bottleneck we encountered, which caused the read/write
workload’s total throughput to peak at only 28 cores, was
due to PostgreSQL’s design. PostgreSQL implements
row- and table-level locks atop user-level mutexes; as
a result, even a non-conflicting row- or table-level lock
acquisition requires exclusively locking one of only 16
global mutexes. This leads to unnecessary contention for
non-conflicting acquisitions of the same lock—as seen in

the read/write workload—and to false contention between
unrelated locks that hash to the same exclusive mutex. We
address this problem by rewriting PostgreSQL’s row- and
table-level lock manager and its mutexes to be lock-free
in the uncontended case, and by increasing the number of
mutexes from 16 to 1024.

The “Stock + mod PG” line in Figures 7 and 8 shows
the results of this modification, demonstrating improved
performance out to 36 cores for the read/write workload.
While performance still collapses at high core counts,
the cause of this has shifted from excessive user time to
excessive system time. The read-only workload is largely
unaffected by the modification as it makes little use of
row- and table-level locks.

With modified PostgreSQL on stock Linux, through-
put for both workloads collapses at 36 cores, with sys-
tem time rising from 1.7 pseconds/query at 32 cores to
322 useconds/query at 48 cores. The main reason is the
kernel’s 1seek implementation. PostgreSQL calls 1seek
many times per query on the same two files, which in turn
acquires a mutex on the corresponding inode. Linux’s
adaptive mutex implementation suffers from starvation
under intense contention, resulting in poor performance.
However, the mutex acquisition turns out not to be neces-
sary, and PK eliminates it.

Figures 7 and 8 show that, with PK’s modified 1seek
and smaller contributions from other PK changes, Post-
greSQL performance no longer collapses. On PK, Post-
greSQL’s overall scalability is primarily limited by con-
tention for the spin lock protecting the buffer cache page
for the root of the table index. It spends little time in the
kernel, and is not limited by Linux’s performance.

5.6 gmake

We measure the performance of parallel gmake by build-
ing the object files of Linux 2.6.35-rc5 for x86_64. All
input source files reside in the buffer cache, and the output
files are written to tmpfs. We set the maximum number
of concurrent jobs of gmake to twice the number of cores.

Figure 9 shows that gmake on 48 cores achieves ex-
cellent scalability, running 35 times faster on 48 cores
than on one core for both the stock and PK kernels. The
PK kernel shows slightly lower system time owing to the
changes to the dentry cache. gmake scales imperfectly
because of serial stages at the beginning of the build and
straggling processes at the end.

gmake scales so well in part because much of the CPU
time is in the compiler, which runs independently on
each core. In addition, Linux kernel developers have
thoroughly optimized kernel compilation, since it is of
particular importance to them.

5.7 Psearchy/pedsort

Figure 10 shows the runtime for different versions of
pedsort indexing the Linux 2.6.35-rc5 source tree, which

12

T T T T T T 1 T T 1 800
St(l)’(’é -
6 PK user time —o—"] 700
2 [PK system time —&—
8 600
S
']
] 500 :E'
z T 3
= — 400 =
P
e 5L £
5 — 300 5
£ =
5 2+)}
g - 200
=
=
- — 100
A—A—A—
0 | | | | | | | | | | |
1 4 8§ 12 16 20 24 28 32 36 40 44 48
Cores
Figure 9: gmake throughput and runtime breakdown.
T T T T T T T T T T
Stock + Threads - - - _] 120
50 — Stock + Procs = = =
Stock + Procs RR ——
. RR user time —0—
o RR system time 100
S 40
< i~
5 e,
] 80 3
= 30F 2
€ - Y
S T — 60 g
= =
£ 0 2
2 — 40 ©
£
10 [~ 9
PO e s S S o S 0
1 4 8§ 12 16 20 24 28 32 36 40 44 48

Cores

Figure 10: pedsort throughput and runtime breakdown.

consists of 368 Mbyte of text across 33,312 source files.
The input files are in the buffer cache and the output
files are written to tmpfs. Each core uses a 48 Mbyte
word hash table and limits the size of each output index
to 200,000 entries (see Section 3.6). As a result, the
total work performed by pedsort and its final output are
independent of the number of cores involved.

The initial version of pedsort used a single process with
one thread per core. The line marked “Stock + Threads” in
Figure 10 shows that it scales badly. Most of the increase
in runtime is in system time: for 1 core the system time
is 2.3 seconds, while at 48 cores the total system time is
41 seconds.

Threaded pedsort scales poorly because a per-process
kernel mutex serializes calls to mmap and munmap for a
process’ virtual address space. pedsort reads input files
using libc file streams, which access file contents via
mmap, resulting in contention over the shared address
space, even though these memory-mapped files are logi-
cally private to each thread in pedsort. We avoided this
problem by modifying pedsort to use one process per
core for concurrency, eliminating the mmap contention by
eliminating the shared address space. This modification
involved changing about 10 lines of code in pedsort. The
performance of this version on the stock kernel is shown
as “Stock + Procs” in Figure 10. Even on a single core,

the multi-process version outperforms the threaded ver-
sion because any use of threads forces glibc to use slower,
thread-safe variants of various library functions.

With a small number of cores, the performance of the
process version depends on how many cores share the per-
socket L3 caches. Figure 10’s “Stock + Procs” line shows
performance when the active cores are spread over few
sockets, while the “Stock + Procs RR” shows performance
when the active cores are spread evenly over sockets. As
corroborated by hardware performance counters, the latter
scheme provides higher performance because each new
socket provides access to more total L3 cache space.

Using processes, system time remains small, so the ker-
nel is not a limiting factor. Rather, as the number of cores
increases, pedsort spends more time in the glibc sorting
function msort_with_tmp, which causes the decreasing
throughput and rising user time in Figure 10. As the num-
ber of cores increases and the total working set size per
socket grows, msort_with_tmp experiences higher L3
cache miss rates. However, despite its memory demands,
msort_with_tmp never reaches the DRAM bandwidth
limit. Thus, pedsort is bottlenecked by cache capacity.

5.8 Metis

We measured Metis performance by building an inverted
index from a 2 Gbyte in-memory file. As for Psearchy,
we spread the active cores across sockets and thus have
access to the machine’s full L3 cache space at 8§ cores.

The “Stock + 4 KB pages” line in Figure 11 shows
Metis’ original performance. As the number of cores
increases, the per-core performance of Metis decreases.
Metis allocates memory with mmap, which adds the new
memory to a region list but defers modifying page ta-
bles. When a fault occurs on a new mapping, the kernel
locks the entire region list with a read lock. When many
concurrent faults occur on different cores, the lock itself
becomes a bottleneck, because acquiring it even in read
mode involves modifying shared lock state.

We avoided this problem by mapping memory with
2 Mbyte super-pages, rather than 4 Kbyte pages, using
Linux’s hugetlbfs. This results in many fewer page
faults and less contention on the region list lock. We
also used finer-grained locking in place of a global mutex
that serialized super-page faults. The “PK + 2MB pages”
line in Figure 11 shows that use of super-pages increases
performance and significantly reduces system time.

With super-pages, the time spent in the kernel becomes
negligible and Metis’ scalability is limited primarily by
the DRAM bandwidth required by the reduce phase. This
phase is particularly memory-intensive and, at 48 cores,
accesses DRAM at 50.0 Gbyte/second, just shy of the
maximum achievable throughput of 51.5 Gbyte/second
measured by our microbenchmarks.

13

BT T T T T T T T T T 20

Stock + 4KB pages - - -

PK + 2MB pages
Stock user time - A-

PK user time —0—

system time —4&— _|

30

[
=)

25

20
100

Throughput (jobs / hour / core)
CPU time (sec / job)

50

51 A

LA - A AT
0,,.$.-$-4--4—-é"? PPN
1 4 8§ 12 16 20 24 28 32 36
Cores

Figure 11: Metis throughput and runtime breakdown.

Application | Bottleneck

Exim App: Contention on spool directories
memcached | HW: Transmit queues on NIC
Apache HW: Receive queues on NIC
PostgreSQL | App: Application-level spin lock
gmake App: Serial stages and stragglers
pedsort HW: Cache capacity

Metis HW: DRAM throughput

Figure 12: Summary of the current bottlenecks in MOSBENCH, at-
tributed either to hardware (HW) or application structure (App).

5.9 Evaluation summary

Figure 3 summarized the significant scalability improve-
ments resulting from our changes. Figure 12 summarizes
the bottlenecks that limit further scalability of MOSBENCH
applications. In each case, the application is bottle-
necked by either shared hardware resources or application-
internal scalability limits. None are limited by Linux-
induced bottlenecks.

6 DISCUSSION

The results from the previous section show that the MOS-
BENCH applications can scale well to 48 cores, with mod-
est changes to the applications and to the Linux kernel.
Different applications or more cores are certain to reveal
more bottlenecks, just as we encountered bottlenecks at
48 cores that were not important at 24 cores. For exam-
ple, the costs of thread and process creation seem likely
to grow with more cores in the case where parent and
child are on different cores. Given our experience scaling
Linux to 48 cores, we speculate that fixing bottlenecks
in the kernel as the number of cores increases will also
require relatively modest changes to the application or
to the Linux kernel. Perhaps a more difficult problem is
addressing bottlenecks in applications, or ones where ap-
plication performance is not bottlenecked by CPU cycles,
but by some other hardware resource, such as DRAM
bandwidth.

Section 5 focused on scalability as a way to increase
performance by exploiting more hardware, but it is usu-
ally also possible to increase performance by exploiting

a fixed amount of hardware more efficiently. Techniques
that a number of recent multicore research operating sys-
tems have introduced (such as address ranges, dedicating
cores to functions, shared memory for inter-core message
passing, assigning data structures carefully to on-chip
caches, etc. [11, 15, 53]) could apply equally well to
Linux, improving its absolute performance and benefiting
certain applications. In future work, we would like to
explore such techniques in Linux.

One benefit of using Linux for multicore research is that
it comes with many applications and has a large developer
community that is continuously improving it. However,
there are downsides too. For example, if future processors
don’t provide high-performance cache coherence, Linux’s
shared-memory-intensive design may be an impediment
to performance.

7 CONCLUSION

This paper analyzes the scaling behavior of a traditional
operating system (Linux 2.6.35-rc5) on a 48-core com-
puter with a set of applications that are designed for par-
allel execution and use kernel services. We find that we
can remove most kernel bottlenecks that the applications
stress by modifying the applications or kernel slightly.
Except for sloppy counters, most of our changes are ap-
plications of standard parallel programming techniques.
Although our study has a number of limitations (e.g., real
application deployments may be bottlenecked by 1/O), the
results suggest that traditional kernel designs may be com-
patible with achieving scalability on multicore comput-
ers. The MOSBENCH applications are publicly available
athttp://pdos.csail.mit.edu/mosbench/, so that
future work can investigate this hypothesis further.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd,
Brad Chen, for their feedback. This work was partially
supported by Quanta Computer and NSF through award
numbers 0834415 and 0915164. Silas Boyd-Wickizer is
partially supported by a Microsoft Research Fellowship.
Yandong Mao is partially supported by a Jacobs Presi-
dential Fellowship. This material is based upon work
supported under a National Science Foundation Graduate
Research Fellowship.

REFERENCES

[1] Apache HTTP Server, May 2010.
httpd.apache.org/.

http://

[2] Exim, May 2010. http://www.exim.org/.

[3] Memcached, May http://

memcached.org/.

2010.

14

[4] PostreSQL, May 2010.
www.postgresql.org/.

http://

[5] The search for fast, scalable counters, May 2010.
http://lwn.net/Articles/170003/.

[6] J. Aas. Understanding the Linux 2.6.8.1
CPU scheduler, February 2005. http://
josh.trancesoftware.com/linux/.

[71 AMD, Inc. Six-core AMD opteron processor
features. http://www.amd.com/us/products/
server/processors/six-core-opteron/
Pages/six-core-opteron-key-architectural

-features.aspx.

T. E. Anderson, B. N. Bershad, E. D. Lazowska,
and H. M. Levy. Scheduler activations: Effective
kernel support for the user-level management of
parallelism. In Proc. of the 13th SOSP, pages 95—
109, 1991.

[9] J. Appavoo, D. D. Silva, O. Krieger, M. Auslander,
M. Ostrowski, B. Rosenburg, A. Waterland, R. W.
Wisniewski, J. Xenidis, M. Stumm, and L. Soares.
Experience distributing objects in an SMMP OS.

ACM Trans. Comput. Syst., 25(3):6, 2007.

[10] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny,
K. Keutzer, J. Kubiatowicz, N. Morgan, D. Pat-
terson, K. Sen, J. Wawrzynek, D. Wessel, and
K. Yelick. A view of the parallel computing land-

scape. Commun. ACM, 52(10):56-67, 2009.

[11] A. Baumann, P. Barham, P.-E. Dagand, T. Haris,
R. Isaacs, S. Peter, T. Roscoe, A. Schiipbach, and
A. Singhania. The Multikernel: a new OS architec-
ture for scalable multicore systems. In Proc of the

22nd SOSP, Big Sky, MT, USA, Oct 2009.

[12] B. N. Bershad, T. E. Anderson, E. D. Lazowska,
and H. M. Levy. Lightweight remote procedure call.

ACM Trans. Comput. Syst., 8(1):37-55, 1990.

[13] D. L. Black. Scheduling support for concurrency
and parallelism in the Mach operating system. Com-

puter, 23(5):35-43, 1990.

[14] W. Bolosky, R. Fitzgerald, and M. Scott. Simple but
effective techniques for NUMA memory manage-
ment. In Proc. of the 12th SOSP, pages 19-31, New

York, NY, USA, 1989. ACM.

[15] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao,
F. Kaashoek, R. Morris, A. Pesterev, L. Stein,
M. Wu, Y. D. Y. Zhang, and Z. Zhang. Corey: An
operating system for many cores. In Proc. of the 8th

OSDI, December 2008.

[16] R. Bryant, J. Hawkes, J. Steiner, J. Barnes, and
J. Higdon. Scaling linux to the extreme. In Proceed-
ings of the Linux Symposium 2004, pages 133148,
Ottawa, Ontario, June 2004.

[17] B. Cantrill and J. Bonwick. Real-world concurrency.
Commun. ACM, 51(11):34-39, 2008.

[18] J. Corbet. The lockless page cache, May 2010.
http://lwn.net/Articles/291826/.

[19] A.L. Cox and R. J. Fowler. The implementation of
a coherent memory abstraction on a NUMA multi-

processor: Experiences with platinum. In Proc. of
the 12th SOSP, pages 32—-44, 1989.

[20] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. Commun. ACM,

51(1):107-113, 2008.

[21] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun,
K. Fall, G. Iannaccone, A. Knies, M. Manesh, and
S. Ratnasamy. RouteBricks: Exploiting parallelism
to scale software routers. In Proc of the 22nd SOSP,

Big Sky, MT, USA, Oct 2009.

[22] F. Ellen, Y. Lev, V. Luchango, and M. Moir. SNZI:
Scalable nonzero indicators. In PODC 2007, Port-

land, Oregon, USA, Aug. 2007.

[23] GNU Make, May 2010. http://www.gnu.org/

software/make/.

[24] C. Gough, S. Siddha, and K. Chen. Kernel
scalability—expanding the horizon beyond fine
grain locks. In Proceedings of the Linux Sympo-
sium 2007, pages 153-165, Ottawa, Ontario, June

2007.

[25] T. Herbert. rfs: receive flow steering, September

2010. http://lwn.net/Articles/381955/.

[26] T. Herbert. rps: receive packet steering, September
2010. http://lwn.net/Articles/361440/.

[27] M. Herlihy. Wait-free synchronization. ACM Trans.
Program. Lang. Syst., 13(1):124-149, 1991.

[28] J. Jackson. Multicore requires OS rework
Windows architect advises. PCWorld mag-
azine, 2010. http://www.pcworld. com/
businesscenter/article/191914/
multicore_requires_os_rework_windows
_architect_advises.html.

[29] Z.Jia, Z. Liang, and Y. Dai. Scalability evaluation
and optimization of multi-core SIP proxy server. In

Proc. of the 37th ICPP, pages 43-50, 2008.

15

[30] A.R. Karlin, K. Li, M. S. Manasse, and S. S. Ow-
icki. Empirical studies of competitive spinning for a
shared-memory multiprocessor. In Proc. of the 13th
SOSP, pages 41-55, 1991.

[31] A. Kleen. An NUMA API for Linux, August
2004. http://www.firstfloor.org/ " andi/

numa.html.

[32] A.Kleen. Linux multi-core scalability. In Proceed-

ings of Linux Kongress, October 2009.

[33] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Si-
moni, K. Gharachorloo, J. Chapin, D. Nakahira,
J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum,
and J. Hennessy. The Stanford FLASH multipro-
cessor. In Proc. of the 21st ISCA, pages 302-313,

1994.

[34] R. P. LaRowe, Jr., C. S. Ellis, and L. S. Kaplan.
The robustness of NUMA memory management. In

Proc. of the 13th SOSP, pages 137-151, 1991.

J. Li, B. T. Loo, J. M. Hellerstein, M. F. Kaashoek,
D. Karger, and R. Morris. On the feasibility of peer-
to-peer web indexing and search. In Proc. of the 2nd
IPTPS, Berkeley, CA, February 2003.

(35]

[36] Linux 2.6.35-rc5 source, July
2010. Documentation/scheduler/

sched-design-CFS. txt.

[37] Linux kernel mailing list, May 2010. http://

kerneltrap.org/node/8059.

[38] Y. Mao, R. Morris, and F. Kaashoek. Optimizing
MapReduce for multicore architectures. Technical

Report MIT-CSAIL-TR-2010-020, MIT, 2010.

[39] P. E. McKenney, D. Sarma, A. Arcangeli, A. Kleen,
O. Krieger, and R. Russell. Read-copy update. In
Proceedings of the Linux Symposium 2002, pages

338-367, Ottawa, Ontario, June 2002.

[40] P. E. McKenney, D. Sarma, and M. Soni. Scal-
ing dcache with rcu, Jan. 2004. http://

www.linuxjournal.com/article/7124.

[41] J. M. Mellor-Crummey and M. L. Scott. Algorithms
for scalable synchronization on shared-memory mul-
tiprocessors. ACM Trans. Comput. Syst., 9(1):21-65,

1991.

[42] E. M. Nahum, D. J. Yates, J. F. Kurose, and
D. Towsley. Performance issues in parallelized net-
work protocols. In Proc. of the 1st OSDI, page 10,

Berkeley, CA, USA, 1994. USENIX Association.

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

D. Patterson. The parallel revolution has started:
are you part of the solution or the prolem? In
USENIX ATEC, 2008. www.usenix.org/event/
usenix08/tech/slides/patterson.pdf.

A. Pesterev, N. Zeldovich, and R. T. Morris. Lo-
cating cache performance bottlenecks using data
profiling. In Proceedings of the ACM EuroSys Con-
ference (EuroSys 2010), Paris, France, April 2010.

C. Ranger, R. Raghuraman, A. Penmetsa, G. Brad-
ski, and C. Kozyrakis. Evaluating MapReduce for
multi-core and multiprocessor system. In Proceed-
ings of HPCA. IEEE Computer Society, 2007.

C. Schimmel. UNIX systems for modern architec-
tures: symmetric multiprocessing and caching for
kernel programmers. Addison-Wesley, 1994.

M. D. Schroeder and M. Burrows. Performance
of Firefly RPC. In Proc. of the 12th SOSP, pages
83-90, 1989.

J. Stribling, J. Li, I. G. Councill, M. F. Kaashoek,
and R. Morris. Overcite: A distributed, cooperative
citeseer. In Proc. of the 3rd NSDI, San Jose, CA,
May 2006.

J. H. Tseng, H. Yu, S. Nagar, N. Dubey, H. Franke,
P. Pattnaik, H. Inoue, and T. Nakatani. Performance
studies of commercial workloads on a multi-core
system. IEEE Workload Characterization Sympo-
sium, pages 57-65, 2007.

R. Vaswani and J. Zahorjan. The implications of
cache affinity on processor scheduling for multipro-
grammed, shared memory multiprocessors. In Proc.
of the 13th SOSP, pages 26-40, 1991.

B. Veal and A. Foong. Performance scalability of
a multi-core web server. In Proceedings of the 3rd

16

[52]

(53]

[54]

[55]

[56]

[57]

ACM/IEEE Symposium on Architecture for Network-
ing and Communications Systems, pages 57-66,
New York, NY, USA, 2007.

B. Verghese, S. Devine, A. Gupta, and M. Rosen-
blum. Operating system support for improving data
locality on CC-NUMA compute servers. In Proc.
of the 7th ASPLOS, pages 279-289, New York, NY,
USA, 1996. ACM.

D. Wentzlaff and A. Agarwal. Factored operating
systems (fos): the case for a scalable operating
system for multicores. SIGOPS Oper. Syst. Rev.,
43(2):76-85, 20009.

C. Yan, Y. Chen, and S. Yuanchun. Parallel scalabil-

ity comparison of commodity operating systems on
large scale multi-cores. In Proceedings of the work-

shop on the interaction between Operating Systems
and Computer Architecture (WIOSCA 2009).

C. Yan, Y. Chen, and S. Yuanchun. OSMark: A
benchmark suite for understanding parallel scalabil-
ity of operating systems on large scale multi-cores.
In 2009 2nd International Conference on Computer

Science and Information Technology, pages 313—
317, 2009.

C. Yan, Y. Chen, and S. Yuanchun. Scaling OLTP
applications on commodity multi-core platforms.
In 2010 IEEE International Symposium on Perfor-
mance Analysis of Systems & Software (ISPASS),
pages 134-143, 2010.

M. Young, A. Tevanian, R. F. Rashid, D. B. Golub,
J. L. Eppinger, J. Chew, W. J. Bolosky, D. L. Black,
and R. V. Baron. The duality of memory and commu-
nication in the implementation of a multiprocessor
operating system. In Proc. of the 11th SOSP, pages
63-76, 1987.

