April 1, 2019

ZFS
• Developed in early 2000’s at Sun (now Oracle)
Traditional FS: One/disk

FS

1 GB
Larger FS: One/many disk

- **FS**
 - 1 GB

- **Volume**
 - 2 GB Concat
 - Lower 1 GB
 - Upper 1 GB

- **Volume**
 - 2 GB Stripe
 - Even 1 GB
 - Odd 1 GB

- **Volume**
 - 1 GB Mirror
 - Left 1 GB
 - Right 1 GB
Pool approach
Advantages of pooling

- Dynamic filesystem size
- All storage in the pool is shared
- Easily add new drives to the pool (dynamic pool size)
Data integrity

- Checksumming
- Copy-on-write
- Transactional
Checksumming

Which of the following errors are caught if we store a checksum in each block?

- Bit rot
- Phantom writes
- Misdirected reads and writes
- Memory errors (cosmic ray)
- Driver bugs
- Accidental overwrite
Checksumming

• Which of the following errors are caught if we store a checksum along with a pointer to the block?

- Bit rot
- Phantom writes
- Misdirected reads and writes
- Memory errors (cosmic ray)
- Driver bugs
- Accidental overwrite
All problems in computer science can be solved by another level of indirection.
Figure from The Zettabyte File System, Bonwick et al.
Data virtual address

- Storage pool provides malloc/free for disk space
- Can allocate (variable-size) disk blocks and receive back data virtual addresses (128 bit!)
- Can deallocate data virtual addresses
- Translation from data virtual address to device and offset handled by Storage Pool Allocator
Copy-on-write

Copy-On-Write Transaction Groups (TXG’s)

1. Initial block tree

2. COW some blocks

3. COW indirect blocks

4. Rewrite uberblock (atomic)
Constant-time snapshots

- At end of transaction group, don’t free COWed blocks!
I/O Life Cycle: Writes

- Translated to object transactions by the ZFS Posix Layer:
 “Make these 5 changes to these 2 objects”

- Transactions bundled in Data Management Unit into transaction groups that flush when full (>\% of system memory) or at regular intervals (30 sec.)

- Blocks making up a transaction group are scheduled and then issued to physical media in the Storage Pool Allocator
I/O Life Cycle: Reads

- Heavy use of caching and prefetching
- If requested blocks are not cached, issues a prioritized I/O that has higher priority than pending writes
- Adaptive Replacement Cache tracks recently (and frequently) used blocks in main memory
Speed

• Copy-on-write design means random writes can be made sequential
• Dynamic striping across all underlying devices eliminates hot spots
• Intelligent resilvering\(^1\) copies only live data

\(^1\)Resilver: when an antique mirror gets tarnished or damaged, you make it shiny again by re-silvering it.