1. Consider the regularization technique dropout (with hyper-parameter p, the probability of setting a particular input to 0). In class, we discussed scaling the inputs at inference time.

(a) Why is that scaling necessary? (Be specific and complete.)

Solution: Without any scaling, the average weighted input of the next layer would be $\frac{1}{1-p}$ higher during inference (without dropout), than during training (with dropout).

(b) How could scaling be done at training time instead? (Be specific in what scaling factor would be used.)

Solution: Scale each input in the dropout layer by p at inference time.

(c) List any advantages or disadvantages of scaling at training time rather than inference time.

Solution:

- By scaling at training time, we avoid extra computation at inference time. Inference time may have strict latencies, or be done on resource-constrained hardware (e.g., limited CPU power, limited battery life).
- If scaling at training time, we can modify the dropout hyper-parameter p over time without changing the average weighted input at the next layer.

2. A Generative Adversarial Network (GAN) consists of a generator, G, generating fakes, and a discriminator, D, that discriminates real objects from fake objects. The training of G and D consists of rounds where some training of one is done, and then training of the other is done. Please circle the true items:

A. D is given training instances from: ground truth real objects with a label of 1, and from generated fake objects with a label of 0.

B. D is given training instances consisting of pairs of objects: either one ground truth real object and one generated fake object, or two ground truth real objects.

Solution: D is given single object which it classifies as real or fake.

C. When doing a round of training G, ground truth real objects are necessary.

Solution: G just generates a random z, then creates a fake object and evaluates D on that fake object.

D. When doing a round of training D, ground truth real objects are necessary.
Solution: For training, D needs both ground truth real objects and fake objects from G.

E. Backpropagating error from the loss function L_G to weights in G require backpropagating errors from L_G to weights in D.

Solution: Poorly worded. When errors from the loss function L_G are backpropagated to weights in G, they must run through D’s network, since the path from the output of G to L_G passes through the D network. Thus, the error must be backpropagated to the activations in D, but that doesn’t require backpropagating to the weights in D (since during this backpropagation, the weights in D are frozen).

A better question would have been “Backpropagating error from the loss function L_G to weights in G require backpropagating errors from L_G to activations in $D.”’

The answer would have been true.

F. Backpropagating error from the loss function L_D to weights in D require backpropagating errors from L_D to weights in G.

Solution: No, because the path from the weights in D to the loss L_D doesn’t traverse the G network.