NOTE: you do not need a calculator for this quiz.
Assume you have a binary classification problem where \(f, \hat{y}, \) and loss function \(L \) are defined as:

\[
\begin{align*}
 f(x) &= a_0 + a_1 x + a_2 x^2 \\
 \hat{y} &= \sigma(f(x)) \\
 L(x, y) &= -(y \ln \hat{y} + (1 - y) \ln(1 - \hat{y}))
\end{align*}
\]

Let the learning rate, \(\lambda \), be .001, and the coefficients be:

\[
\begin{align*}
 a_0 &= -2 \\
 a_1 &= 1 \\
 a_2 &= 1
\end{align*}
\]

Assume one iteration of gradient descent with the training item:

\[
\begin{align*}
 x &= -2 \\
 y &= 1
\end{align*}
\]

Assume the simple optimization method: \(a_i = a_i - \lambda \frac{\partial L}{\partial a_i} \).

1. To reduce the loss, should each coefficient decrease (become more negative) or increase (become more positive) (circle one):

 1. \(a_0 \) decrease or increase?

 Solution: increase. Increasing \(a_0 \) increases \(f \) which increases sigmoid which increases \(\hat{y} \).

 2. \(a_1 \) decrease or increase?

 Solution: decrease. Decreasing \(a_1 \) increases \(f \) (since \(x \) is negative) which increases sigmoid which increases \(\hat{y} \).

 3. \(a_2 \) decrease or increase?

 Solution: increase. Increasing \(a_0 \) increases \(f \) which increases sigmoid which increases \(\hat{y} \).

2. What is the new value of \(a_1 \)?
Solution:

\[f(x) = -2 + 1 \times -2 + 1 \times (-2)^2 = -2 - 2 + 4 = 0 \]
\[\hat{y} = \sigma(f(x)) = \sigma(0) = 0.5 \]
\[\frac{\partial L}{\partial f} = (\hat{y} - y) = (0.5 - 1) = -0.5 \]
\[\frac{\partial f}{\partial a_1} = x = -2 \]
\[a_1 = a_1 - \lambda \frac{\partial L}{\partial a_1} \]
\[= a_1 - \lambda \frac{\partial L}{\partial f} \frac{\partial f}{\partial a_1} \]
\[= 1 - .001 \times -0.5 \times -2 \]
\[= 1 - .001 = 0.999 \]