1. Name each gate of an LSTM and give a short description of what it does:
 - **Gate 1**

 Solution: Forget gate: controls how much of the previous c_{t-1} makes it into c_t. ($c_t = f_t \odot c_{t-1} + ...$). If the forget gate is 1, all of the previous cell state makes it into this cell state. If 0, none of it.
 - **Gate 2**

 Solution: Input gate: controls how much of the calculation based on x_t and h_{t-1} makes it into c_t. (0 means none, 1 means all.)
 - **Gate 3**

 Solution: Output gate: controls how much of c_t makes it into h_t. (0 means none, 1 means all.)

2. Can the gates have different values at different timesteps i and j if the inputs at those timesteps, x_i and x_j are identical? Why or why not?

 Solution: A gate can have different values at different timesteps because it depends not only on x_t but also on h_{t-1} which may be different at timestep i and timestep j. This question was not entirely clear: of course the different gates can have different values (even at the same timestep). For a given gate, though, can its value be different at different timesteps with the same input?