CS 152—Notes on Optimization Algorithms (Rev. 2)

Neil Rhodes

September 30, 2019

Optimization Algorithms 1

The loss function, L, is a function of x, y, and, conceputally, Θ . We can think of L as taking note only x and y as parameters, but Θ as well, and can represent an evaluation of L as $L(\Theta; x, y)$ where I separate Θ from x and y with a semicolon because it seems like a different type of parameter than x and y.

The partial derivative $\frac{\partial L}{\partial \Theta_i}$ is also a function that takes Θ, x , and y as param-

eters. We can similarly represent an evaluation of that function as $\frac{\partial L}{\partial \Theta_i}(\Theta; x, y)$. I'll use a notation of V_t to represent the value of V at time t. I'll use Θ_t to represent the value of Θ at time t. $(\Theta_t)_i$ will represent the *i*'th parameter from $\Theta_t.$ For partial derivatives, though, which don't need to represent time, we'll use $\frac{\partial L}{\partial \Theta_i}$ to represent the partial derivative of L with respect to the *i*th parameter Θ_i (that is, the subscript will refer to the parameter, not to the timestep).

Standard optimization 1.1

$$(\Theta_t)_i = (\Theta_{t-1})_i - \lambda \frac{\partial L}{\partial \Theta_i} (\Theta_{t-1}; x, y)$$

1.2Momentum

$$(V_t)_i = \beta(V_{t-1})_i + (1 - \beta) \frac{\partial L}{\partial \Theta_i}(\Theta_{t-1}; x, y)$$
$$(\Theta_t)_i = (\Theta_{t-1})_i - \lambda V_t$$

Equivalently, we can compute all the elements of the vectors Θ_t and V_t in parallel:

$$V_t = \beta V_{t-1} + (1 - \beta) \frac{\partial L}{\partial \Theta} (\Theta_{t-1}; x, y)$$
$$\Theta_t = \Theta_{t-1} - \lambda V_t$$

1.3 Nesterov Momentum

The only difference with Nesterov Momentum from regular Momentum is the values we use when evaluating the partial derivative. We evaluate not at the location of the previous Θ , but instead at the value of the previous Θ adjusted by the previous V, since that's our best guess at this point as to where we'll end up. (We'll be moving by a previous V amount anyway, so we evaluate as if we had made that movement). Note that we must *subtract* the previous V from the current Θ since we always move the parameters in a direction that is negative to the gradient. We evaluate at that best guess since it should be a more accurate picture of the actual gradient value.

$$V_t = \beta V_{t-1} + (1-\beta) \frac{\partial L}{\partial \Theta_i} (\Theta_{t-1} - V_{t-1}; x, y)$$

$$\Theta_t = \Theta_{t-1} - \lambda V_t$$

1.4 Adagrad

With Adaptive Gradient, we step away from momentum and look at adjusting learning rates on a parameter-by-parameter basis. We define an overall max learning rate λ , and then calculate a learning rate for each timestep t, and parameter i:

$$(\lambda_t)_i = \frac{\lambda}{\sqrt{\epsilon + \sum_{k=1}^t \left(\frac{\partial L}{\partial \Theta_i}(\Theta_k; x, y)\right)^2}} \\ (\Theta_t)_i = (\Theta_{t-1})_i - (\lambda_t)_i \frac{\partial L}{\partial \Theta_i}(\Theta_{t-1}; x, y)$$

In the above formula, ϵ of 1 may be a good choice (it'll limit the resulting parameter-specific learning rate to be between 0 and λ). β is a hyperparameter (often around 0.9).

The denominator increases as there are many and/or large gradients. Thus, many and/or large gradients for a parameter reduce the learning rate for that parameter.

One disadvantage of Adagrad is that for a given parameter i, the sequence of learning rates $(\lambda_1)_i, (\lambda_2)_i, ...$ is monotonic decreasing. Thus, a parameter i can be doomed with a low learning rate even once it has paid its debt to society:)

1.5 RMSProp

With RMSProp, we adjust Adagrad to forget about old learning rates by using an exponential moving average of squared gradients rather than a sum-ofsquared gradients for all timesteps.

We define E_t to represent the exponential moving squared gradient with a decay factor of γ (between 0 and 1):

$$(E_t)_i = \gamma(E_{t-1})_i + (1 - \gamma) \left(\frac{\partial L}{\partial \Theta_i}(\Theta_{t-1}; x, y)\right)^2$$
$$(\lambda_t)_i = \frac{\lambda}{\sqrt{\epsilon + (E_t)_i}}$$
$$(\Theta_t)_i = (\Theta_{t-1})_i - (\lambda_t)_i \frac{\partial L}{\partial \Theta_i}(\Theta_{t-1}; x, y)$$

 γ is a hyperparameter (often around 0.9).

1.6 Adam

Adam (adapative moment estimation) is a combination of RMSProp with Momentum (with a slight twist where V_t and E_t are scaled to \hat{V}_t and \hat{E}_t):

$$V_{t} = \beta V_{t-1} + (1 - \beta) \frac{\partial L}{\partial \Theta} (\Theta_{t-1}; x, y)$$
$$\hat{V}_{t} = \frac{V_{t}}{1 - \beta^{t}}$$
$$E_{t} = \gamma E_{t-1} + (1 - \gamma) \left(\frac{\partial L}{\partial \Theta} (\Theta_{t-1}; x, y) \right)^{2}$$
$$\hat{E}_{t} = \frac{E_{t}}{1 - \gamma^{t}}$$
$$(\lambda_{t})_{i} = \frac{\lambda}{\sqrt{\epsilon + (\hat{E}_{t})_{i}}}$$
$$(\Theta_{t})_{i} = (\Theta_{t-1})_{i} - (\lambda_{t})_{i} (\hat{V}_{t})_{i}$$