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Summary
Our goal is a model that can account for the dynamics of vehicles in a

traffic circle. Wemainly focuson the rate of entry into the circle todetermine
the bestway to regulate traffic. We assume that vehicles circulate in a single
lane and that only incoming traffic can be regulated (that is, incoming traffic
never has the right-of-way).
For our model, the adjustable parameters are the rate of entry into the

queue, the rate of entry into the circle (service rate), the maximum capacity
of the circle, and the rate of departure from the circle (departure rate). We
use a compartment model with the queue and the traffic circle as compart-
ments. Vehicles first enter the queue from the outside world, then enter the
traffic circle from the queue, and lastly exit the traffic circle to the outside
world. Wemodel both the service rate and the departure rate as dependent
on the number of vehicles inside the traffic circle.
Inaddition,weruncomputersimulations tohaveavisual representation

of what happens in a traffic circle during different situations. These allow
us to examine different cases, such as unequal traffic flow coming from
the different queues or some intersections having a higher probability of
being a vehicle destination than others. The simulation also implements
several life-like effects, such as how vehicles accelerate on an empty road
but decelerate when another vehicle is in front of them.
In many cases, we find that a high service rate is the optimal way to

maintain traffic flow, signifying that a yield sign for incoming traffic is
most effective. However, when the circle becomes more heavily trafficked,
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Figure 1. A simple traffic circle. Traffic circles may have more than one lane and may have a
different number of intersections.

a lower service rate better accommodates traffic, indicating that a traffic
light should be used. Thus, a light should be installed in most circle im-
plementations, with variable timing depending on the expected amount of
traffic.
The main advantage of our approach is that the model is simple and

allows us to see clearly the dynamics of the system. Also, the computer
simulations provide more in-depth information about traffic flow under
conditions that the model could not easily show, as well as enabling visual
observation of the traffic. Some disadvantages to our approach are that we
do not analyze the effects of multiple lanes nor stop lights to control the
flow of traffic within the circle. In addition, we have no way of analyzing
singular situations, such as vehicles that drive faster or slower than the rest
of the traffic circle, or pedestrians.

Introduction
Traffic circles, often called rotaries, are used to control vehicle flow

through an intersection. Depending on the goal, a traffic circle may take
different forms; Figure 1 shows a simple model. A circle can have one or
more lanes; vehicles that enter a traffic circle can be met by a stop sign, a
traffic light, or a yield sign; a circle can have a large or small radius; a circle
can confront roads containing different amounts of traffic. These features
affect the cost of the circle to build, the congestion that a vehicle confronts
as it circles, the travel time of a vehicle in the circle, and the size of the queue
of vehicles waiting to enter. Each of these variables could be a metric for
evaluating the efficacy a traffic circle.
Our goal is to determine how best to control traffic entering, exiting,

and traversing a traffic circle. We take as given the traffic circle capacity, the
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arrival and departure rates at each of the roads, and the initial number of
vehicles circulating in the rotary. Our metric is the queue length, or buildup, at
each of the enteringroads. Wetry tominimize thequeue lengthbyallowingthe
rate of entry from the queue into the circle to vary. For a vehicle to traverse
the rotary efficiently, its time spent in the queue should be minimized.
We make the following assumptions:

• We assume a certain time of day, so that the parameters are constant.
• There is a single lane of circulating traffic (all moving in the same direc-
tion).

• Nothing impedes the exit of traffic from the rotary.
• There are no singularities, such as pedestrians trying to cross.
• The circulating speed is constant (i.e., a vehicle does not accelerate or
decelerate to enter or exit the rotary).

• Any traffic light in place regulates only traffic coming into the circle.

The Models
A SimplifiedModel
Wemodel the system as being continuous; our approach can be thought

of as modeling the vehicle mass dynamics of a traffic circle. The simplest
model assumes that the rate of arrival to the back of the entering queue and
the rate of departure from the queue into the traffic circle are independent
of time. Thus, the rate of change in the length of the queue is

dQi

dt
= ai − si, (1)

where Qi is the number of cars in the queue coming in from the ith road,
ai is the rate of arrival of vehicles into the ith queue, and si is the rate of
removal, also called the service rate, from the ith queue into the traffic circle.
We introduce the parameter di, the rate at which vehicles exit the traffic

circle. We let C be the number of vehicles traveling in the circle. Then
we model the change in traffic in the rotary by the difference between the
influx and outflux of vehicles, where the outflux of vehicles depends on the
amount of traffic in the rotary:

dC

dt
=

X
si − C

X
di. (2)



COMAP, Inc. The UMAP Journal 107:1 September 6, 2009 2:41p.m. hmc.5180.ltx.tex page 250

250 The UMAP Journal 30.3 (2009)

An Intermediate Model
The model above simplifies the dynamics of a traffic circle. The most-

glaring simplifications are that there is no way to indicate that the circle
has a maximum capacity and that the flow rate into the traffic circle si does
not depend on the amount of traffic already circulating. These are both
corrected by proposing that the traffic circle has amaximum capacityCmax.
As the number of vehicles circling approaches this maximum capacity, it
should become more difficult for another vehicle to merge into the circle.
At the extreme, when the traffic circle is operating at capacity, no more
vehicles should be able to be added. Now, the si in the previous model can
be represented logistically as

si = ri

µ
1− C

Cmax

∂
,

where ri is how fast vehicles would join the circle if there were no traffic
slowing them down. Thus, the equation governing the rate at which the
ith queue length changes becomes

dQi

dt
= ai − ri

µ
1− C

Cmax

∂
, (3)

and the equation for the number of vehicles in the traffic circle becomes

dC

dt
=

X
ri

µ
1− C

Cmax

∂
−

X
diC. (4)

A CongestionModel
The previous twomodels still fail to take into account congestion,which

alters the circulation speed, which in turn affects the departure rate di of
vehicles from the circle. Equation (3) still holds, butwe need to vary di. The
vehicles will travel faster if there is no congestion, so they will be able to
depart at their fastest rate di,max. When the circle is operating at maximum
capacity, the departure rate will decrease to be di,min. Thus, the number of
vehicles present in the circle is affected positively in the samemanner as in
(4), but the lessening factor changes to the weighted average of the di,max

and di,min:

dC

dt
=

X
ri

µ
1− C

Cmax

∂

− C

∑X
di,max

µ
1− C

Cmax

∂
+

X
di,min

µ
C

Cmax

∂∏
. (5)
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Extending the Model Using Computer Simulation
We create a computer simulation in Matlab to account for variables that

would be too complicated to use in the mathematical model. The mathe-
matical model does not address the vehicles’ speeds while inside the traffic
circle, so the computer simulation focusesmostly on areas related to vehicle
speed:
• enabling drivers to accelerate to fill gaps in the traffic (with a maximum
speed),

• forcing drivers to decelerate to maintain distance between vehicles
• requiring that drivers accelerate and decelerate when entering and exit-
ing the circle,

• giving probabilistic weights to the different directions of travel,
• keeping track of time spent within the traffic circle for each vehicle, and
• giving each intersection a different vehicle introduction rate.
Figure 2 on p. 250 shows an outline of the program flow and design.

Simulation Assumptions
This model makes several key assumptions about the vehicles and the

circle:
• All vehicles are the same size, have the same top speed, and accelerate
and decelerate at the same rate.

• The circle has four intersections and a single lane of traffic.
• All drivers have the same spatial tolerance.
• There are no pedestrians trying to cross the circle.

Limitations
The assumption of one lane is not a key factor, because we assume that

vehicles travel at the same speed. Hence, we do not need to put the slow
vehicles in one lane and vehicles passing them in another lane. However,
in reality there will indeed be slower vehicles, and vehicles decelerating to
exit would offer opportunities for other vehicles to use a different lane to
maintain a faster speed. Additionally, we cannot let emergency vehicles
through the circle if there is only one lane; for a more detailed discussion
of emergency vehicles and traffic circles, see Mundell [n.d.].
By not allowing control devices inside the circle, we restrict possible

configurations. We also limit the effectiveness of our stoplight model; it
preventsvehicles fromentering the circle butdoesnot inhibit themovement
of vehicles within in the circle.
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Figure 2. Program flow. Each intersection is modeled as a queue of vehicles with a traffic control
device. Vehicles are added to the queue at a constant rate. For a vehicle to leave the queue and
enter the traffic circle, the area in the circle must be clear of other vehicles. Additionally, if the
queue has a traffic light, the light must be active.

Sincewe do not allow for different vehicle properties (size, acceleration,
top speed, etc.), we cannot model the effects of large trucks, motorcycles,
or other nonstandard vehicles (such as large and unwieldy emergency ve-
hicles) on the flow of traffic.
Givingall of thevehicles the sameaccelerationand top speed, alongwith

forcing all drivers to have the same spatial tolerance, prevents modeling
aggressivedrivers and their interactionwith timidones. Additionally, since
cars in the simulation decelerate before exiting, even if they are already
moving slowly, we generate a small proportion of false traffic backups.
Limiting the size andnumber of intersections of the circle does not really

limit our ability to model real-world traffic circles. Since we are mostly
looking at driver behavior with the computer simulation, we should see
the same behaviors as we scale up the circle and its corresponding traffic.
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Analyzing the Models
The Simplest Model
In all of the above models, the rate ri is indicative of the regulation

imposed at the ith intersection. A near-zero ri indicates that a traffic light
is in use; a larger ri indicates that a yield sign, regulating only the incoming
traffic, is in place.
For the simplest model, we can use (1) and (2) to find explicit formulae

for the queue length and the number of vehicles in the rotary by integrating
with respect to time:

Qi = [ai − si] t + Qi0, C =
P

siP
di

+
µ

C0 −
P

siP
di

∂
e−

P
dit.

Therefore, given the inputs of the system, we can predict the queue
length. To minimize the queue length, we solve (1) for when the queue
length is decreasing (dQi/dt < 0) and find that the si term should be max-
imized.

Intermediate Model
For the model with a carrying capacity, again we find explicit formulae

for the queue length and the number of vehicles in the rotary:

Qi =
∑
ai − ri

µ
1− C

Cmax

∂∏
t + Qi0,

C =
P

riP
ri

Cmax
+

P
di

+

√

C0 −
P

riP
ri

Cmax
+

P
di

!

e−
≥ P

ri
Cmax

+
P

di

¥
t.

We can also solve for where (3) is less than zero to find the service rates for
which the queue lengths are decreasing:

ri >
ai

1− C
Cmax

.

CongestionModel
In modeling congestion, the model is too complex to intuit what con-

ditions would minimize the queue length. The differential equation (5) is
quadratic:

dC

dt
= AC2 + BC + D,
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Figure 3. The relationship between dC/dt and C for the congestion model using sam-
ple parameters values r1 = r2 = r3 = r4 = 60, d1,max = d2,max = d3,max = d4,max = 2,
d1,min = d2,min = d3,min = d4,min = 0.5, and Cmax = 30.

where

A =
P

di,max

Cmax
−

P
di,min

Cmax
, B = −

µ P
ri

Cmax
+

X
di,max

∂
, D =

X
ri.

Since
P

di,max >
P

di,min, it will always be the case thatA > 0. In addi-
tion,B < 0 andD > 0. Thismeans that the curve for dC/dt is a concave-up
quadratic curve with a positive y-intercept and a global minimum at some
C > 0. Furthermore, for C = Cmax, we have

dC

dt
= −di,min

Cmax
,

which is always negative for di,min > 0. Thus, the global minimum for the
curve must be in the fourth quadrant. Figure 3 shows an example of such
a curve, using sample parameters.
We notice from Figure 3 that there are two equilibrium points for the

differential equation:

C = −B−
√

B2−4AD

2A
is a stable equilibrium point, and

C = −B+
√

B2−4AD

2A
is an unstable equilibrium point.

Also, since for C = Cmax, we have dC/dt < 0, the number of vehicles will
eventually decrease to an equilibrium value less than Climit < Cmax.
Since our metric for how well a traffic circle operates depends on how

many vehicles are in the queues, we would like the queue flow (ai − si) to
be as small as possible. In other words, we would like si to be as large as
possible. In the congestion model, the queue flow is given by (3).
Without loss of generality, we analyze queue 1. The equations for each

queue differ only by their ai and ri, and we keep these the same for each
queues in the simulations. Since the only changing variable in (3) is C,
when C = Climit the queue lengthQ1 will also be at its equilibrium.
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Using this fact, we can evaluate whether to use a traffic light or not
and how long the light should be red. We compare different values for the
service rate constantr1 and thevalueofdQ1/dtatC = Climit. The results can
be seen in Figure 4, which shows that when r1 increases, dQ1/dt decreases.

Figure 4. The relationship between r1 and dC/dt for the congestion model with
C = Climit. The parameter values are d1,max = d2,max = d3,max = d4,max = 2,
d1,min = d2,min = d3,min = d4,min = 0.5, Cmax = 30, and r1 changed from 1 to 60.

A real-life situation is congestion of the traffic circle. Decreasing d1,min

would cause vehicles to exit the circle more slowly when there is more
congestion. Using lower departure rates to approximate slower vehicle
speeds inside thecircle,wecanexaminewhathappens fordecreasingvalues
of d1,min. The results are shown in Figure 5. For values of d1,min < 0.5, the
smallest value for dQ1/dt is not at r1 = 60 but at a smaller value.
Another situation that the congestion model can approximate is addi-

tional lanes. A crude approximation is that each lane adds Cmax to the ca-
pacity. Figure 6 shows the results of plotting r1 versus theCmax for different
numbers of lanes. As in the previous plots, the correlation is negative.

Simulation Results
An interesting effect that we see in our simulation is the buildup of

vehicles in front of each exit. As vehicles decelerate to exit, they force
vehicles behind them todecelerate tomaintain a safedistance. This buildup
creates a longer queue at the intersection before the exit, since the buildup
prevents those vehicles from entering the circle. In Figure 7, we see a
large number of vehicles in the fourth queue and a buildup in the fourth
quadrant.
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Figure 5. The relationship between r1 and dC/dt for the congestion model with C = Climit, with
parameter values d1,max = d2,max = d3,max = d4,max = 2, and Cmax = 30. The values of r1

range from 1 to 60 for different values of d1,min.

Figure 6. The relationship between r1 and dC/dt for the congestion model with
C = Climit. The parameter values are d1,max = d2,max = d3,max = d4,max = 2,
d1,min = d2,min = d3,min = d4,min = 0.5, Cmax = 30, and r1 changed from 1 to 60.



COMAP, Inc. The UMAP Journal 107:1 September 6, 2009 2:41p.m. hmc.5180.ltx.tex page 257

One Ring to Rule Them All 257

Figure 7. Vehicles build up before the first intersection as vehicles slow down to exit. Additionally,
the queue at the fourth intersection is quite long, because vehicles cannot enter the traffic circle.

Another interesting element of real life that the simulation shows is the
bunching and expanding effect that vehicles experience. Because vehicles
can decelerate more quickly than they accelerate, the vehicles bunch up
behind a slowmovingvehicle, then expand again as that vehicle accelerates
into the free space ahead. Figure 8 shows an example of this compaction.

Figure 8. The arrow in the second quadrant points out a real-life effect, bunching, which happens
because drivers decelerate faster than they accelerate.

We test several rotaryandvehicle setups to explore optimal circledesign:
• A single intersection with high arrival and service rates creates a large
traffic buildup in the quadrant immediately following it, even though
the vehicles have random destinations. Figure 9 shows the buildup in
quadrant 1 when the first intersection (at angle 0) has a high arrival and
service rate. However, queue 1 is not appreciably longer than the others.
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Figure9. Thefirst intersectionhasbothhigharrival andservice rates,whichcreates a trafficbuildup
before the next intersection. However, the queue for the first intersection does not increase, since
there is limited traffic coming from the intersection behind it.

• One intersection having amuch higher chance of being a destination cre-
ates the expected buildup in front of the likely exit (Figure 10). However,
it also creates a substantial buildup in front of the previous exit and a se-
vere increase in that intersection’s queue as vehicles are prevented from
entering the circle. The buildup in the adjacent road must be taken into
account when constructing a traffic circle at a high-volume intersection.

• If one intersection has a high service rate and the standard arrival rate,
and another intersectionhas a high arrival rate and standard service rate,
the traffic distribution is mostly random, with a slight tendency towards
backups in the quadrant following the intersectionwithhigh service rate.
We expect this result, since the intersectionwith high service rate can add
only as many vehicles as in its queue, which is limited by its low arrival
rate. Also, the intersectionwith high arrival rate and low service rate has
a much longer queue than the other intersections, entirely as expected.

Conclusion
Wemodel the dynamics of a traffic circle to determine how best to regu-

late traffic into the circle. As shown in Figure 6 on p. 256, increased capacity
decreases the queue flow, which leads to a decrease in queue length. This
result indicates that amultiple-lane traffic circlemight better accommodate
more cars by decreasing the length of the queue in which they wait. How-
ever, as shown in the same figure, the marginal utility of increasing the
maximum capacity does decrease. When applying a cost function (with
cost proportional to the space that the circle occupies), there would exist an
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Figure 10. The first intersection has a higher probability of being chosen as a destination. This
creates a buildup in front of that intersection and a smaller buildup in front of the previous inter-
section. It also creates a very large increase in the queue of the previous intersection since those
vehicles cannot enter the full circle.

optimum size of the traffic circle.
Although the simplermodels indicate that lettingvehicles into the rotary

as fast as possible would be optimum, analysis of the congestion model
shows that if di,min is sufficiently small, then the highest service rate is no
longer optimal. The implication of this result is that traffic lights could
make travel through the rotary more efficient. When many vehicles use
the traffic circle, such as during the morning and evening commutes, there
could be enough vehicles so that the Climit is reached. In this case, using
traffic lights would help ease congestion. However, the duration of the red
light should be adjusted according to the di,min for the specific traffic circle.
In addition to the mathematical models, we create a computer simula-

tion that tracks individual vehicles’ progress through the traffic circle, and
their effect on other vehicles. Our simulation shows several traffic effects
that can be observed in real life, namely a buildup of vehicles in front of the
exits and vehicles bunching together and expanding apart as drivers brake
and accelerate. We also test several traffic circle configurations.

Recommendations
Based on both ourmathematical and computermodels, we recommend:

• Yield signs should be the standard traffic control device. Most of the
time, letting vehicles enter the circle as quickly as possible is optimal.

• For a high-traffic rotary, traffic lights should be used. With high traffic,
slowing the rate of entry into the circle helps prevent congestion.
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• If any single road has high traffic, its vehicles should be given prefer-
ence in entering the circle. Doing so helps prevent a large queue.

• Introduce separate exit lanes. Traffic can build up in front of each inter-
section as cars exit, so a separate exit lane could help keep trafficmoving.
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