

One Ring to Rule Them All: Optimizing Traffic Circles

Aaron Abromowitz

Andrea Levy

Russell Melick

Harvey Mudd College

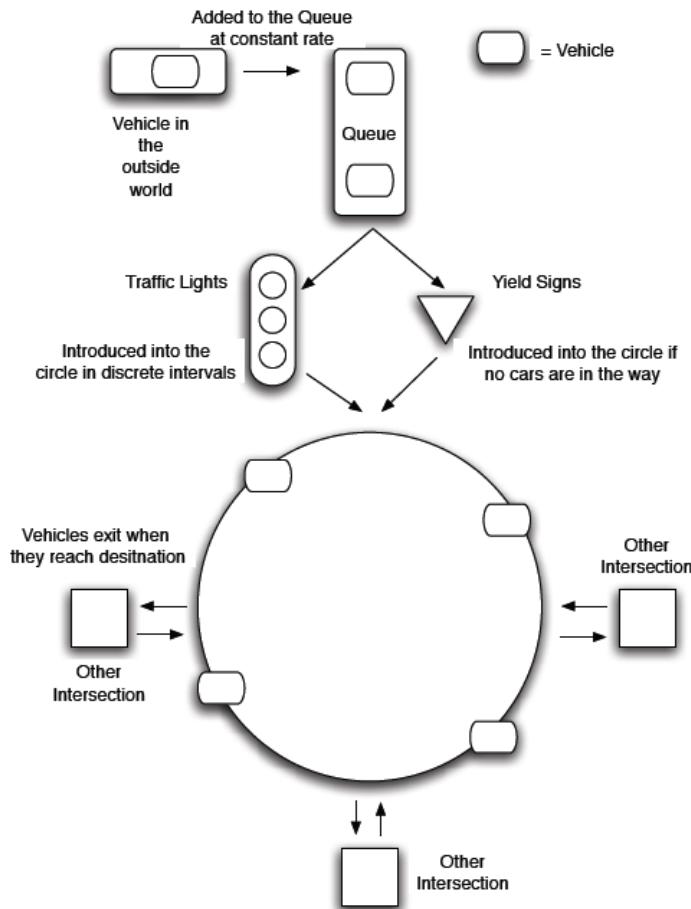
8th August 2009

Problem

- “use a model to determine how best to control traffic flow in, around, and out of a circle”
- Implement yield signs or traffic signals to regulate incident traffic

Terminology

- Arrival rate
- Service rate
- Queue flow
- Circle capacity
- Departure rate



The “Best” Traffic Circle

- Possible measures of traffic circle quality
 - Time
 - From arrival to departure
 - To circulate
 - Buildup
 - In the queue
 - Congestion in the circle

Objective

- Our approach: minimize buildup in queue
 - Correlated to minimization arrival until departure time
 - Much of time lost (in our experience) is waiting to enter the circle
 - Impatience: waiting in line isn't any fun

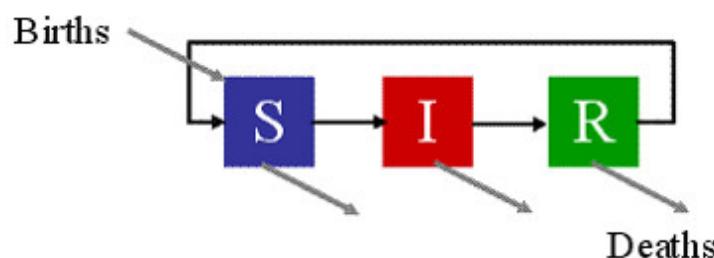
Our Approach

- Mathematical Models
 - Model typical behavior
- Computer Simulation
 - Address some of the limitations of the mathematical model

Mathematical Models

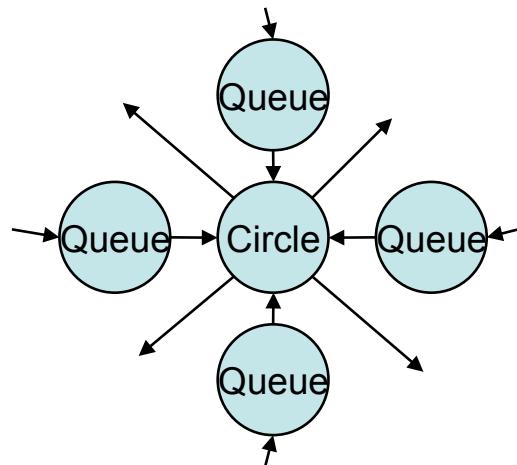
Compartment Models

- Used to describe flows between groups
- Classic example: SIR model (susceptible, infected, recovered)
 - Models infectious diseases



Our Compartment Model

- Groups: cars inside traffic circle, cars in queues
- Flows: from outside world to queue, from queue to circle, from circle to outside world



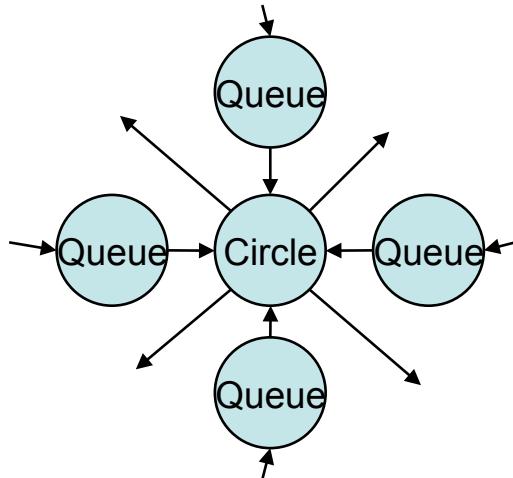
Assumptions and Restrictions

- Cars enter queues at a constant rate
- Cars are modeled continuously rather than discretely
- We cannot model the activity of individual cars
- We cannot model stop lights inside the circle

Basic Model

$$\frac{dQ}{dt} = a - s$$

$$\frac{dC}{dt} = s - d * C$$



Q	# of cars in queue
C	# of cars in circle
a	Rate of cars entering into the queue
s	Rate of cars entering the circle from the queue
d	Rate of cars leaving the circle
t	time

Problem with s and d

- Problem: It is inaccurate to assume that s and d will be constant
 - They are both affected by the number of cars already in the circle
- Solution: make them dependent on C

New Forms of s and d

$$s = r * \left(1 - \frac{C}{C_{\max}}\right)$$

$$d = d_{\max} * \left(1 - \frac{C}{C_{\max}}\right) + d_{\min} * \left(\frac{C}{C_{\max}}\right)$$

C	# of cars in circle
s	Rate of cars entering the circle from the queue
r	Rate of cars entering when the circle is empty
d	Rate of cars leaving the circle
C_{\max}	Maximum # of cars allowed in the circle
d_{\max}	Speed of cars in the circle when it is completely empty
d_{\min}	Speed of cars in the circle when it is completely full

Congestion Model

$$\frac{dQ}{dt} = a - r * \left(1 - \frac{C}{C_{\max}}\right)$$

$$\frac{dC}{dt} = r * \left(1 - \frac{C}{C_{\max}}\right) - C * \left(d_{\max} * \left(1 - \frac{C}{C_{\max}}\right) + d_{\min} * \left(\frac{C}{C_{\max}}\right)\right)$$

Q	# of cars in queue
C	# of cars in circle
a	Rate of cars entering into the queue
r	Rate of cars entering when the circle is empty
C_{\max}	Maximum # of cars allowed in the circle
d_{\max}	Speed of cars in the circle when it is completely empty
d_{\min}	Speed of cars in the circle when it is completely full
t	time

Finding Solutions

- Q has an explicit solution which is exponential

$$Q = \left(a - r * \left(1 - \frac{C}{C_{\max}}\right)\right) * t + Q_0$$

- C 's equation is too complicated to give us any information

Simplifying C'

- We can put C' into quadratic form

$$\frac{dC}{dt} = A * C^2 + B * C + D$$

- where

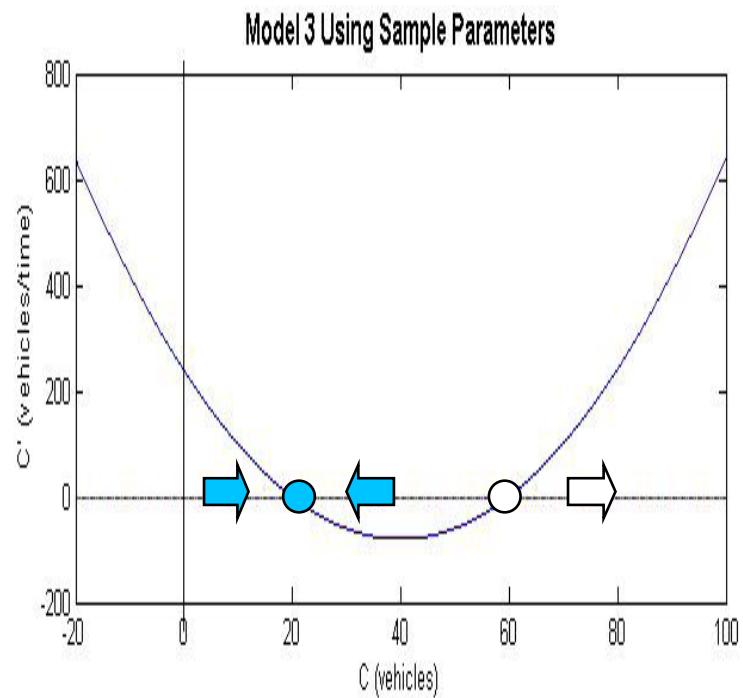
$$A = \frac{d_{\max} - d_{\min}}{C_{\max}}$$

$$B = -\left(\frac{r}{C_{\max}} + d_{\max}\right)$$

$$D = r$$

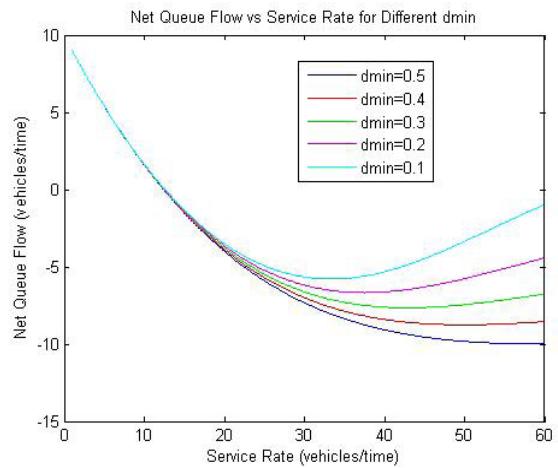
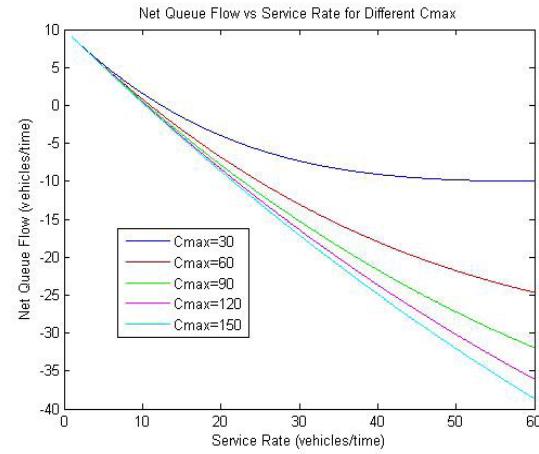
Looking at C Graphically

- $A>0$, $B<0$, and $D>0$ which gives this form of graph
- $C'<0$ for $C = C_{\max}$ so any solution will reach a critical C value



Varying Parameters

- Different values of d_{\min} give us different optimal values of r
- Flow is improved for larger values of C_{\max}



Matlab Simulation

Drivers

- Assured clear distance
 - Entering the circle
 - Acceleration into open space
 - Braking for slow drivers
- Acceleration when entering circle
- Braking for exits

Driver Limitations

- Single type of vehicle
- Single type of driver

Traffic

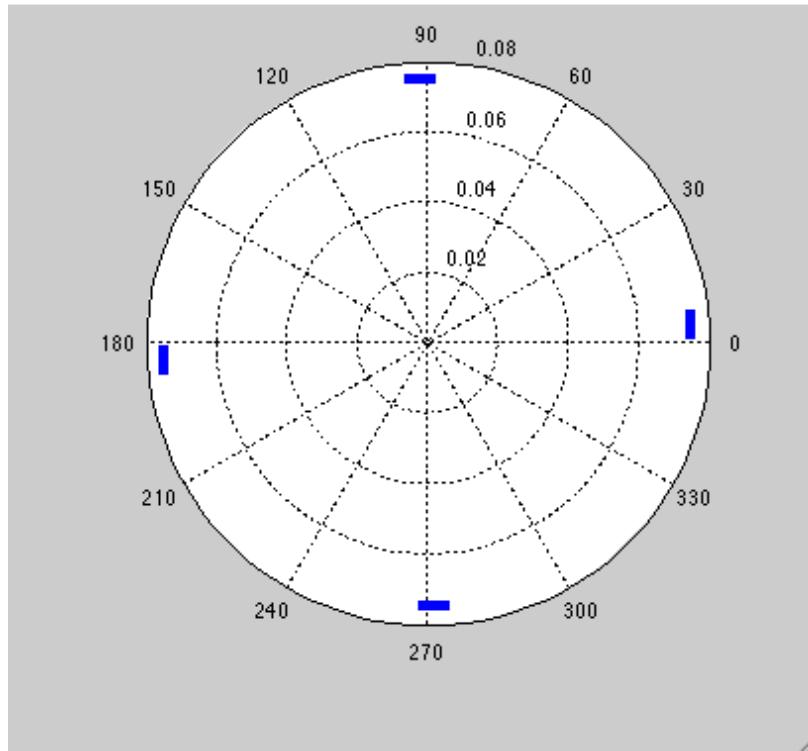
- Four roads meet at a traffic circle
- Queues of traffic at each intersection
 - Different arrival rates
 - Traffic control devices
 - Yield and Highway Stoplight
- Different destinations
 - Randomized
 - Dependent on initial intersection

Traffic Limitations

- Four road setup
 - Equally spaced
- Fixed size of the circle
 - Single lane
- Traffic control devices
 - None allowed inside circle

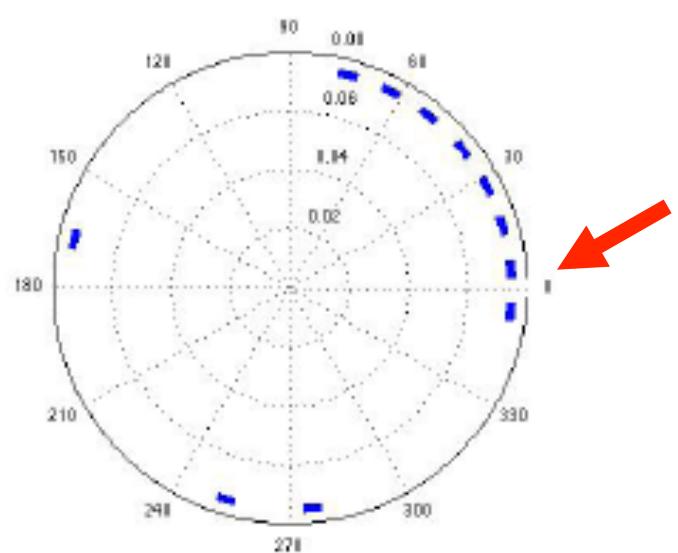
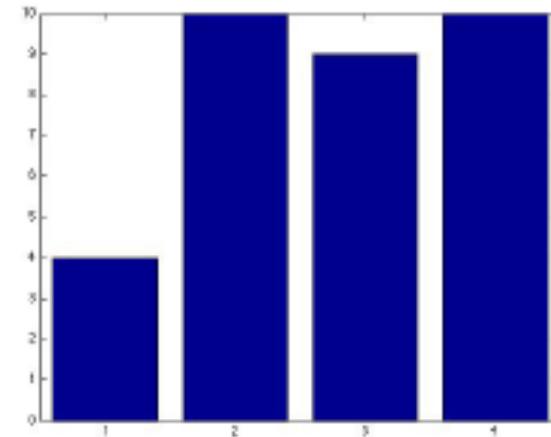
Simulation Demonstration

 Note new toolbar buttons: [data brushing](#) & [linked plots](#)



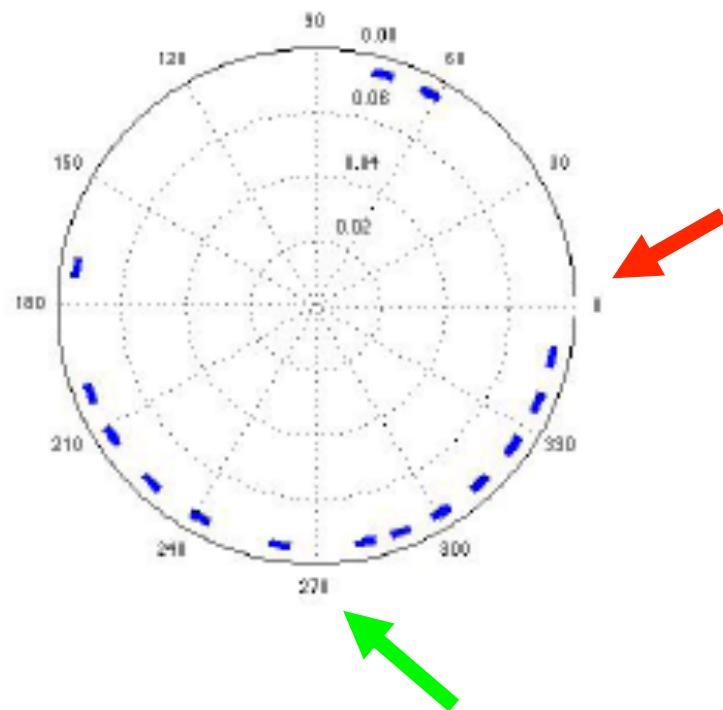
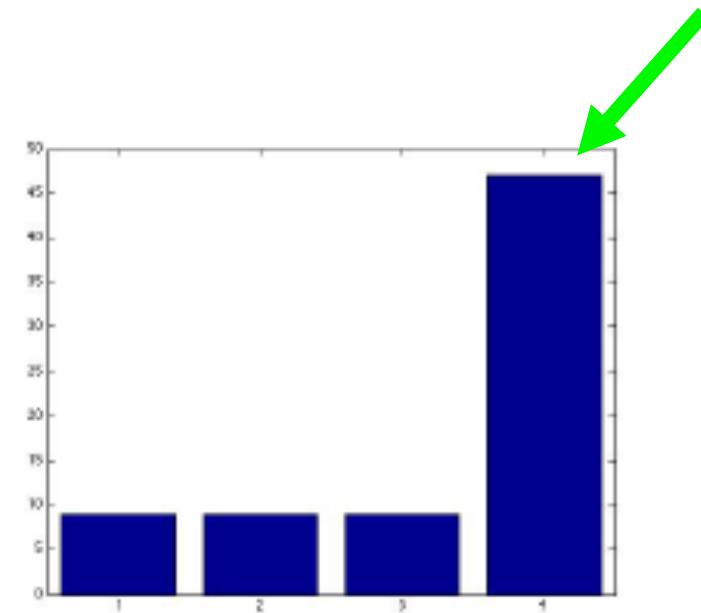
Simulation Results

- Single intersection with higher traffic



Popular Intersection Results

- Large buildup in previous intersection



Results (cont.)

- Different queues have high service (enter circle) and high arrival (arrive at intersection) rates
- Mostly random

Conclusions

- Most of the time, letting vehicles enter the circle as quickly as possible is optimal.
- During periods of high traffic, slowing the rate of entry into the circle helps prevent congestion.

Conclusions (cont.)

- If any single road has high traffic, its vehicles should be given preference in entering the circle. This will help prevent a large queue.
- Traffic often builds up in front of each intersection as cars exit, so a separate exit lane could help keep traffic moving.

References

- Rahmi Akcelik. Roundabout model calibration issues and a case study. TRB National Roundabout Conference, May 2005. URL http://www.aasidra.com/documents/TRBRouConf2005_AKCELIK_RouModelCalib.pdf.
- Jim Mundell. Constructing and maintaining traffic calming devices. Seattle Department of Transportation. URL <http://www.seattle.gov/Transportation/docs/TORONTO4.pdf>. Viewed on 2009 Feb 8.
- Eugene Russell. Roundabout design for capacity and safety the uk empirical methodology. Kansas State Center for Transportation Research and Training, 2004. URL <http://www.k-state.edu/roundabouts/research/RACapacity.pdf>.

Acknowledgements

- Mathematics Department, Harvey Mudd College
 - Professor Rachel Levy
- COMAP
- Mathematics Association of America

Questions

