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Abstract
Andromeda is an LCF-style proof assistant where the user builds derivable judgments by writing
code in a meta-level programming language AML. The only trusted component of Andromeda
is a minimalist nucleus (an implementation of the inference rules of an object-level type theory),
which controls construction and decomposition of type-theoretic judgments.

Since the nucleus does not perform complex tasks like equality checking beyond syntactic
equality, this responsibility is delegated to the user, who implements one or more equality checking
procedures in the meta-language. The AML interpreter requests witnesses of equality from user
code using the mechanism of algebraic operations and handlers. Dynamic checks in the nucleus
guarantee that no invalid object-level derivations can be constructed.

To demonstrate the flexibility of this system structure, we implemented a nucleus consisting
of dependent type theory with equality reflection. Equality reflection provides a very high level of
expressiveness, as it allows the user to add new judgmental equalities, but it also destroys desirable
meta-theoretic properties of type theory (such as decidability and strong normalization).

The power of effects and handlers in AML is demonstrated by a standard library that provides
default algorithms for equality checking, computation of normal forms, and implicit argument
filling. Users can extend these new algorithms by providing local “hints” or by completely re-
placing these algorithms for particular developments. We demonstrate the resulting system by
showing how to axiomatize and compute with natural numbers, by axiomatizing the untyped
λ-calculus, and by implementing a simple automated system for managing a universe of types.
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5:2 Andromeda Proof Assistant

1 Introduction

A type theory can be interesting and very useful, yet lack metatheoretic properties (e.g.,
decidability) that permit a straightforward implementation. In fact, the more flexible and
expressive the theory, the less likely these properties will hold. Nevertheless, even very
expressive type theories deserve automated support in the form of proof assistants. The
question is how a useful proof assistant can make minimal demands on the properties of the
underlying object language. In this paper, we describe the structure of one such system.

Andromeda is an LCF-style proof assistant [12] in which (derivable) judgments are the
fundamental data of the system. These judgments are opaque except within a tiny, trusted
nucleus that implements rules of the underlying type theory (to construct new judgments
from old) and also implements valid inversion principles (to decompose judgments into
sub-judgments). The untrusted remainder of the hard-coded system is a small interpreter for
AML, an ML-like meta-language [18] extended with algebraic operations and handlers [21].

The AML interpreter builds and decomposes judgments by making (dynamically checked)
requests of the trusted nucleus. When these requests would fail (e.g., because a function is
being applied to an argument, and in violation of the appropriate typing rule the domain
type of the function is not syntactically identical to the type of the argument), the interpreter
triggers a suitable algebraic operation to request additional information (e.g., evidence of
equality between the mismatched types) from the user.

User-level AML code directs the construction of judgments, and consists of computations
that construct and pattern-match judgment values and user-level handlers that intercept and
respond to algebraic operations triggered during judgment construction. The consequence of
this design is that most proof-assistant functionality – including equality checking, normal-
ization, unification, and proof tactics – is handled at the user level. Effects and handlers
allow default implementations (necessarily incomplete for an undecidable object language)
that can be overridden using nested handlers, providing specialized algorithms for specific
trouble spots.

The specific expressive object language is largely independent of this system design, but
some readers may find our chosen type theory independently interesting. The type theory
currently implemented in Andromeda is dependent type theory with equality reflection, the
principle that propositionally equal terms are judgmentally equal:

Γ ` u : EqA(s, t)
Γ ` s ≡ t : A

From a mathematical point of view, equality reflection is appealing and natural, as it
makes equality in type theory behave like ordinary equality in mathematics. (In Coq, for
example, the types “vector of length 0 + n” and “vector of length n” are equal because
0 + n and n are judgmentally equal, but a “vector of length n + 0” requires an explicit
coercion to be used as a “vector of length n” because n+ 0 is only propositionally equal to n.)
From the perspective of homotopy type theory, equality reflection is suitable for “set-level”
mathematics, i.e., those mathematical structures that do not exhibit any higher homotopical
phenomena. Among these are substantial parts of algebra, analysis, and logic, including
many aspects of meta-theory of type theory.

Building equality reflection into a proof assistant has practical advantages. First, equality
reflection lets users axiomatize type-theoretic constructions such as natural numbers with
judgmental equalities, meaning that we can implement a smaller trusted core type theory
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with a wider variety of possible user extensions. Second, applications of equality reflection
are not recorded in the conclusion, and omitting the explicit equality eliminators keeps terms
smaller and simpler.

The proof assistant NuPRL [2] validated equality reflection by implementing so-called
computational type theory, a specific interpretation of type theory akin to realizability models.
More recently, however, equality reflection has fallen into disrepute among computer scientists
and computationally minded mathematicians. It causes the loss of useful meta-theoretic
properties such as strong normalization of terms and decidability of type checking [14], the
cornerstones of modern proof assistants like Coq [7], Agda [19] and Lean [10]. Even the
property “if an application of a lambda abstraction to an argument is well typed, then its
β-reduct is well typed” may not hold if the user assumes nonstandard type equalities.

Nevertheless, the use of effects and handlers allows Andromeda to take advantage of
equality reflection and to deal with its negative consequences gracefully.

Contributions. The present paper should be read as a progress report on the development
of Andromeda; the system and the underlying type theory may evolve as we gain more
experience and consider a wider variety of applications. We focus on the following points of
interest:

the goals of Andromeda and the structure of the system (§2);
the impact of equality reflection on both the design of the type-theoretic nucleus and the
details of its implementation (§3, Appendix A);
features of the meta-language that allow a variety of proof-development techniques to be
implemented at the user level (§4);
a discussion of the soundness of the system (§5);
a prototype standard library that provides user-extensible equality checking and implicit-
argument filling (§6);
axiomatization of additional type-theoretic structures (dependent sums, natural numbers,
untyped λ-calculus, and universes), with the desired judgmental equalities and support
for automation (§7).

Andromeda is free software, available at http://www.andromeda-prover.org/. Contri-
butions, questions, and requests are most welcome.

2 An overview of Andromeda

Andromeda follows design principles that are similar to those of other proof assistants:
The system should work well in the common case. Equality reflection affords many
possibilities for complicating one’s life, but we expect most applications to be very
reasonable. If the user introduces new computation and extensionality rules that play
nicely with the existing ones, the system should work smoothly. Nevertheless, less common
scenarios should still work, possibly with more effort on the part of the user.
The user cannot be expected to write down explicit typing annotations on all terms, or
hold in their head various bureaucratic matters, such as the typing contexts. Therefore,
the system should take care of low-level details.
There should be a clearly delineated nucleus that is the only part of the implementation
that the user has to trust3 in order to believe that Andromeda never produces an invalid

3 Except for trusting the OCaml compiler, the operating system, the hardware, and the absence of
malicious cosmic rays.
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5:4 Andromeda Proof Assistant

judgment. The nucleus should be as small as possible and its functionality should
implement type theory in the most straightforward way possible.
A consequence of this minimalism is that the system should be user extensible, so that
additional functionality can be introduced without breaking trust.

Andromeda is implemented in the tradition of Robin Milner’s Logic for Computable
Functions (LCF) [12]. The current implementation, in OCaml [20], consists of around 9500
lines of source code, of which the nucleus comprises 1900 lines. These are very low numbers
that clearly classify Andromeda as a prototype. However, we do not expect the nucleus to
grow significantly.

The core of Andromeda is the trusted nucleus that directly implements inference rules
and inversion rules for dependent type theory with equality reflection. By design, it is the
only part of the system that can create and manipulate type-theoretic judgments. The
nucleus is small and simple, as it does not perform any proof search, unification, equality
checking, or normalization. (It cannot, since equality checking is in general undecidable and
there is no reasonable notion of normal form [14].) Whenever evidence of equality is needed
as a premise to an inference rule, it must be provided to the nucleus explicitly.

The user interacts with the system by writing code in the Andromeda meta-language
(AML), a general-purpose programming language in the style of ML. AML exposes the
nucleus datatype judgment as an abstract datatype of its own. Because judgments may only
be constructed by the nucleus, neither the OCaml implementation of AML nor any user
code written in AML need be trusted. AML handles only trivial syntactic equality checks.
All other evidence of equality is obtained from user-level code, through the mechanism of
algebraic operations and handlers [22, 3] (§4.3).

Users are free to organize their AML code in any way they see fit. In most cases they
would likely want a good axiomatization of standard type constructors (dependent sums,
inductive types, universes, etc.), equality checking algorithms that work well in the common
cases, and conveniences such as resolution of implicit arguments. These ought to be provided
by a standard library (§6). In principle, there may be several such libraries, or even several
equality checking algorithms in a single library. The handlers mechanism allows flexible and
local uses of several different equality checking algorithms.

AML is statically typed – and this caught many silly errors while we were coding a
standard library – but the AML type system is unrelated to the soundness of the system.
Bugs in AML code either prevent code from constructing the desired judgments or construct
an unintended judgment, but the abstract type of judgments and run-time checks in the
nucleus ensure that only derivable judgments are ever constructed. Any other memory-safe
metalanguage (e.g., one modeled on Python or Scheme) would be equally sound, if less
robust.

Andromeda in action

Before looking at the three constituent parts of Andromeda in more detail, we provide a
small worked example. At this point we cannot explain all the technical details, so we focus
on emphasizing the important points and showcasing what Andromeda can do.

We begin by declaring some constants that Andromeda adds to the ambient signature:
constant A : Type
constant a : A
constant b : A
constant P : A → Type
constant v : P a
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Andromeda manipulates only judgments. Thus the above declaration binds the AML variable
a to the nucleus judgment ` a : A, not to a bare symbol (and similarly for b, v, A and P).
Nevertheless, it is often convenient to think of a judgment as “a term with a given type,
possibly depending on some hypotheses”.

Let us first show that the type of transport is inhabited:
Π (x y : A), x ≡ y → P x → P y

In intensional type theory we would use a J eliminator, but here we should be able to use the
curried term λ x y ξ u, u. Indeed, u may be converted from P x to P y because these are
equal types by an application of the congruence rule for applications and equality reflection
of ξ : x ≡ y. The Andromeda standard library, which is implemented at the user-level,
does all this for us if we tell it to use ξ as an equality hint while checking that u has type P y:
λ (x y : A) (ξ : x ≡ y) (u : P x), (now hints = add_hint ξ in (u : P y))

The above is not a proof term but an AML computation that generates a judgment. In
particular, AML immediately evaluates the command inside the λ. While doing so it will find
it needs a witness for the equality between P x (the type of u) and P y (the type ascribed
to u); it requests one using the operations and handler mechanism. The standard library
handles this, employing an equality checking algorithm that eventually uses the hint ξ to
equate x and y, and passing back the requested evidence to AML. Then, AML asks the
nuclues to apply equality reflection to obtain the judgmental equality of P x and P y (at
which point the equality witness provided by the standard library is discarded) and to apply
conversion. The interaction betwen AML and the nuclues proceeds in this fashion until the
judgment witnessing transport is constructed.

If we need to write add_hint to guide the type checker, one might ask why this is better
than the intentional approach of applying a J eliminator with ξ to coerce u from P x to
P y. A single add_hint is like the incorporation of a computation rule that can handle an
arbitrarily complex development, whereas J is like a single application of a computation rule
that has to be repeated at every point where the rule is to be applied.

The other benefit, apparent even here, is that without J the proof term is smaller. In the
end, the judgment built by the nucleus is the expected one:
` λ (x : A) (y : A) (_ : x ≡ y) (u : P x), u

: Π (x : A) (y : A), x ≡ y → P x → P y

Although ξ does not appear explicitly in the conclusion, Andromeda is aware it was used.
This tracking process becomes apparent if we temporarily hypothesize an equality a ≡ b
and use it as a hint while constructing a judgment that v above has type P b,
assume ζ : a ≡ b in

now hints = add_hint ζ in (v : P b)

This AML expression causes the nucleus to build the hypothetical judgment:
ζ 0 : a ≡ b ` v : P b

The assume construct generated a fresh variable ζ0 of type a ≡ b and bound the AML
variable ζ to the judgment ζ0 : a ≡ b ` ζ0 : a ≡ b. Because ζ0 was used to convert
P a to P v, the nucleus produced a judgment that depends on it.

The AML interpreter communicates with user-level code by invoking operations to be
handled, but user-level operations are useful as well. Let us define a simple auto tactic for
automatically inhabiting simple types. We first need an AML function, called derive, which

TYPES 2016
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attempts to inhabit a given type from the currently available hypotheses by performing a
recursive search. This takes about 40 lines of uneventful code, shown in Appendix B. Then
we declare a new operation that takes no arguments and yields judgments,

operation auto : judgment

and install a global handler that handles it:

handle
| auto : ?Surr ⇒

match Surr with
| Some ?T ⇒ derive T
| None ⇒ failure
end

end

When the handler intercepts the operation auto, the surroundings of the occurrence of auto
may or may not have indicated an expected result type T. If it does, the handler calls
derive T to inhabit the type, otherwise it fails by triggering the operation failure (also
defined in the appendix) because it has no information on what type to inhabit.

Now we can use auto to inhabit types. For example,

λ (X : Type), (auto : X → X)

constructs the judgment

` λ (X : Type) (x : X), x
: Π (X : Type), X → X

Given types A, B, and C, the computation

auto : (A → B → C) → (A → B) → (A → C)

results in the judgment

` λ (x : A → B → C) (x0 : A → B) (x1 : A), x x1 (x0 x1)
: (A → B → C) → (A → B) → A → C

The Andromeda standard library (§6) takes full advantage of operations and handlers to
produce equality proofs and coercions, with default implementations that users can override
with local handlers when the standard heuristics fail.

3 The nucleus

The nucleus is the part of the system that implements the object-level type theory. Its
functionality includes the following:

formation and decomposition of term and type judgments,
construction of equality judgments,
substitution and syntactic equality checking,
pretty-printing of judgments and export to JSON.

Before discussing some of these features we take a closer look at the type theory implemented
by Andromeda, and engineering issues that it raises.
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3.1 Type theory with equality reflection
The Andromeda nucleus implements an extensional Martin-Löf type theory [17, 14] with
dependent products

∏
(x:A) B and equality types EqA(s, t). Complete rules are provided in

Appendix A. Fundamentally, the system is not too far removed from the more common
intensional Martin-Löf type theory, but instead of a J eliminator for equality types, we have
equality reflection and uniqueness of equality terms:

eq-reflection
Γ ` u : EqA(s, t)
Γ ` s ≡ t : A

eq-eta
Γ ` t : EqA(s, u) Γ ` v : EqA(s, u)

Γ ` t ≡ v : EqA(s, u)

The J eliminator can easily be derived from these rules, but direct use of equality reflection
is generally simpler. Streicher’s K eliminator and uniqueness of identity proofs [25] are also
derivable in this setting.

Equality reflection invalidates some common structural rules and inversion principles,
so we make further small changes to the type theory to compensate. First, it is usual for
products to satisfy an injectivity property, i.e., if

∏
(x:A1) A2 and

∏
(x:B1) B2 are equal then

A1 equals B1 and A2 equals B2. But in our type theory injectivity fails because under the
assumption

p : EqType((Nat→ Nat), (Nat→ Bool)) (1)

Nat → Nat and Nat → Bool are equal by reflection, without equality of Nat and Bool.4
This may seem a very technical point, but usually one relies on injectivity to prove that
β-reductions preserve types. Indeed, under assumption (1) the identity function on Nat also
has type Nat→ Bool, and hence by applying it to 0 and β-reducing, we can show that 0 has
type Bool, even though Nat and Bool are not equal.

Andromeda’s solution, following [14], is to add explicit typing annotations that can
typically be omitted in intentional type theories. A λ-abstraction λx:A.B . t is annotated
not only with the domain A of the bound variable but also with the type B of the body t,
and an application s @x:A.B t is similarly annotated with the type of the function being
applied. These annotations ensure that terms have unique types up to equality: working
again under the assumption (1), we can apply the identity function at type Nat→ Nat to get
(λx:Nat.Nat . x) @x:Nat.Nat 0 of type Nat, or at Nat→ Bool to get (λx:Nat.Nat . x) @x:Nat.Bool 0
of type Bool. Crucially, the typing annotations now prevent the latter term from β-reducing
to 0, as the β-rule requires that the function and the application match:

prod-beta
Γ, x :A ` s : B Γ ` t : A

Γ ` (λx:A.B . s) @x:A.B t ≡ s[t/x] : B[t/x]

Another principle that fails in the presence of equality reflection is strengthening, which
says that we may safely remove from the context any hypothesis that is not explicitly
mentioned in the conclusion of a judgment. Indeed,

p : EqType(Nat→ Nat,Nat→ Bool) ` (λx:Nat.Nat . x) @x:Nat.Bool 0 : Bool

4 The assumption that the Cantor space and the Baire space are equal may seem odd, but it is consistent.
For instance, in classical set theory and in the effective topos the two are isomorphic, and with a little
work we can arrange them to be equal.

TYPES 2016
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becomes invalid if we remove p, even though there is no explicit use of p in the conclusion.
For similar reasons exchange is not valid: given types X and Y , the context

x : X, p : EqType(X,Y ), q : EqY (x, x)

becomes invalid if we exchange the order of p and q, even though their types do not refer
to each other. The loss of strengthening and exchange is inconvenient; we discuss an
implementation-level solution in §3.2.

Perhaps the biggest difference between Andromeda and standard type theory is that we
currently postulate a single universe Type and the rule that makes Type an element of itself:

ty-type
Γ ctx

Γ ` Type : Type

From a logical point of view this is an inconsistent assumption, as Girard’s paradox implies that
every type is inhabited [11]. From an engineering point of view, however, Type : Type is very
useful. For Andromeda implementers, it allows a much simpler implementation strategy with
fewer different judgment forms. For Andromeda users, it allows postponing the complexities
of dealing with type universes and universe levels, and instead focus on other aspects of
derivations. (For the same reason, both Coq and Agda allow the assumption Type : Type
as an option.) Nevertheless, although users are unlikely to stumble into inconsistencies by
accident, we ultimately want a sound foundation, and plan to remove ty-type, as discussed
in §9.

3.2 Implementation of type theory
The type theory implemented in the nucleus differs from the one presented in several ways.
The changes are inessential from a theoretical point of view, but have significant practical
impact. We describe them in this section.

Signatures

In Andromeda the user extends the type theory by postulating constants, i.e., they work in
type theory over a signature. In this respect Andromeda is much like other proof assistants
that allow the user to state axioms and postulates. The signature is controlled by the nucleus
through an abstract datatype whose interface is very simple: there is an empty signature,
and a signature may be extended with a new constant of a given closed type (which may
refer to the previously declared constants). Because signatures are ever increasing, judgments
derived over a signature remain valid when the signature changes.

Inversion principles and natural types

The nucleus implements inversion principles for deconstruction of judgments into sub-
judgments; these are exposed in AML through pattern matching, cf. §4.4. For example,
an application Γ ` s @x:A.B t : C can be decomposed into Γ ` s :

∏
(x:A) B, Γ ` t : A and

Γ ` C type. The type-theoretic justification for this operation is an inversion principle: if
Γ ` s@x:A.B t : C is derivable then so are Γ ` s :

∏
(x:A) B, Γ ` t : A and Γ ` C type. Proving

the principle is not hard but neither is it a complete triviality, because the application could
have been formed with the use of type conversions. Similar inversion principles hold for other
term and type formers.
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If we decompose an application, as above, and put it back together using the application
formation rule, we get the judgment Γ ` s@x:A.B t : B[t/x]. The application has received its
“natural type”, which may not be the original type C. Nevertheless, the types are equal by
uniqueness of typing:

If Γ ` t : A1 and Γ ` t : A2 then Γ ` A1 ≡ A2.

The nucleus provides evidence of uniqueness of typing by generating, given Γ ` t : A, a witness
for equality of A and the natural type N (t) of t, which is read off the typing annotations:

N (Type) = Type N (
∏

(x:A) B) = Type

N (EqA(s, t)) = Type N (λx:A.B . t) =
∏

(x:A) B

N (s@x:A.B t) = B[t/x] N (reflA t) = EqA(t, t)

The natural types of variables and constants are read off the context and the signature,
respectively. Note that the natural type is the one we get if we deconstruct a term judgment
and construct it back again. In the standard library the equality of the original type and the
natural type is needed in several places during equality checking.

Assumption sets

The nucleus is responsible for decomposing judgments into their component parts, a facility
used by pattern matching in AML. For example, we can combine

f : Nat→ Nat ` f : Nat→ Nat and x : Nat ` x : Nat

(using weakening and application) to get

f : Nat→ Nat, x : Nat ` f @_:Nat.Nat x : Nat,

But if we naively pattern-match on this application to get the function part and the argument
part (as judgments), we would get the constituents in weakened form

f : Nat→ Nat, x : Nat ` f : Nat→ Nat and f : Nat→ Nat, x : Nat ` x : Nat.

In a system with strengthening, we could immediately see that x is unnecessary in the first
judgment and f in the second. The loss of strengthening is inconvenient enough that we
restore it by explicitly keeping track of dependencies on the assumptions in the context.

In the implementation we use terms with assumptions, which are ordinary terms that
have every subterm annotated with a set of variables, called the assumptions, indicating
explicitly which part of the context a subterm depends on. Thus Γ ` tα : Aβ means that we
may restrict Γ to variables in α to obtain a smaller context Γ�α in which it is still possible to
show that t has type A. Similarly, Γ�β suffices to derive the judgment that A is a type. The
types and terms appearing in the context are themselves annotated with assumptions, which
endows contexts with the structure of directed acyclic graphs. (In the implementation they
are stored as such.)

This means that Andromeda can compose and decompose judgments without information
loss. The application above will be recorded internally as:

f : (Nat∅ → Nat∅)∅, x : Nat∅ ` (f{f} @_:Nat∅.Nat∅
x{x}){f,x} : Nat∅.

and it is straightforward to recover the two original sub-judgments.
Constants from the signature are not included in assumption sets, since they are om-

nipresent anyhow.

TYPES 2016
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Context joins

The standard rules of inference require the contexts of the premises to match, for instance
the application rule term-app does not allow a change of the context:

Γ ` s :
∏

(x:A) B Γ ` t : A
Γ ` s@x:A.B t : B[t/x]

If we implemented the rule exactly as is, the user would have to plan dependence on hypotheses
carefully in advance, which is impractical. Instead, we rely on admissibility of weakening
to enlarge contexts as necessary. In every inference rule we accept premises with arbitrary
contexts that are then joined to form a single extended context, for instance the application
rule becomes

Γ ` s :
∏

(x:A) B ∆ ` t : A
Γ ./ ∆ ` s@x:A.B t : B[t/x]

The context join Γ ./ ∆ is the smallest context that extends both Γ and ∆. In terms
of directed acyclic graphs it is just the union of graphs. A context join fails if there is a
hypothesis that has different types in Γ and ∆, or if the join would create a cyclic dependency
of hypotheses. In practice such failures are infrequent; λ, Π, and assume create globally fresh
object-level variables, so there is no direct way to create two contexts with the same variable
at different types.5

Andromeda automatically tracks assumption sets and contexts. Even though the imple-
mentation makes an effort to keep them small, they may not be unique or minimal: they
merely reflect a history of how judgments were constructed.

4 The Andromeda meta-language

The Andromeda meta-language (AML) is a programming language in the style of ML [18].
We review its structure and capabilities, focusing on the parts that are peculiar to Andromeda.
For constructs that are standard in the ML-family of languages, such as type definitions,
let-bindings, recursive functions, etc., we refer the reader to the Andromeda reference page.6

In order to distinguish the expressions of AML from the expressions of the object-level
type theory, we refer to the former as computations to emphasize that their evaluation may
have side effects (such as printing things on the screen), and to the latter as (type-theoretic)
terms. We refer to the types of AML as ML-types.

Keep in mind that the ML-level computations can never enter the object-level terms, as
the nucleus knows nothing about AML. What looks like AML code inside an object-level
term is always just AML code that constructs a judgment. For example, a pattern match
inside a λ-abstraction, λ(x:A), match . . . end, is a computation that evaluates the match
statement immediately to obtain an object-level term, which is then abstracted. In contrast,
the ML-level function fun x ⇒ match . . . end does suspend the evaluation of its body.

5 An indirect method to obtain unjoinable contexts is to take a single judgment with the context
X:Type, x:X and explicitly substitute in two different ways, replacing X with two distinct types.

6 http://www.andromeda-prover.org/meta-language.html

http://www.andromeda-prover.org/meta-language.html
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4.1 ML-types

AML is equipped with static type inference in the style of Hindley-Milner parametric
polymorphism [9]. It supports definitions of parametric ML-types, including inductive types.
The only non-standard aspect of the ML-type inference arises from the fact that application
is overloaded, as it is used both for invoking ML-level application and for building object-level
applications. For instance the type of f, defined by

let f x y = x y

could be either judgment→ judgment→ judgment or (α→ β)→ α→ β; in such cases the
inferred type constraints are postponed until we are sure that x will be a judgment or that at
least one of x and y will not. This strategy works well in practice, with only the occasional
application constraint remaining unresolved at the top level.

4.2 Pattern matching

AML pattern matching in match statements and let-bindings is more flexible than that of
Standard ML and related languages. AML patterns need not be linear (i.e., a pattern variable
may appear several times in a pattern) and variables may be interpolated into patterns.
Pattern variables are prefixed with ? so that they can be distinguished from interpolated
variables. For example,

the pattern (?x, ?y) matches any pair,
the pattern (?x, ?x) matches a pair whose components are equal,
the pattern (?x, y) matches a pair whose second component equals the value of y.

Equality in pattern matching always means syntactic identity (α-equivalence in the case of
object-level terms), not arbitrary judgmental equalities. The flexibility of pattern matching
is handy when we match on values of type judgment; see §4.4, where we also discuss patterns
for deconstruction of typing judgments.

4.3 Operations and handlers

During evaluation of a computation of ML-type judgment the interpreter may need evidence
of equality between two types (in order to present it to the nucleus), which it gets by passing
control back to user code, together with information on what needs to be done, and how to
resume the evaluation once the evidence is obtained. To accomplish this, AML is equipped
with algebraic operations and handlers [22] in the style of Eff [3]. We recommend [23, 3] for
background reading, and give just a quick overview here. A more detailed discussion on the
use of algebraic operations and handlers for the purposes of computing judgments can be
found in §4.4.

One way to think of an operation is as a generalized resumable exception: when an
operation is invoked it “propagates” outward to the innermost handler that handles it. The
handler may then perform an arbitrary computation, and using yield c it may resume the
execution at the point at which the operation was invoked, yielding the value of c as the result
of the operation. Similarly, we can think of a handler as a generalized exception handler,
except that it handles one or more operations, as well as values (computations which do not
invoke an operation). An example of handlers in action is given in §7.1.
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4.4 The datatype judgment
In Andromeda the user always works with an entire judgment Γ ` t : A, and never a bare
term t. Similarly a type A never stands by itself, but always in a judgment Γ ` A : Type.
The judgments are represented by values of a special primitive type judgment.

Judgment forms

The OCaml interface for the nucleus uses distinct abstract datatypes to represent the different
judgment forms. These distinctions are not visible to the user, because AML exposes all
forms through the single datatype judgment whose values are judgments of the form Γ ` t : A.
This is possible because Type : Type and equality reflection let us express the three forms
Γ ` A type, Γ ` s ≡ t : A, and Γ ` A ≡ B as Γ ` A : Type, Γ ` p : EqA(s, t), and
Γ ` q : EqType(A,B), respectively.

We hope the user finds it simpler to access all object-level entities in a uniform way. On
the other hand, having more precise judgment types in AML would help catch potential
errors. We discuss this particular design choice in §9.

In AML no direct datatype constructors for judgment are available. (Even at the level of
OCaml implementation the datatype constructors are invisible outside the nucleus.) Instead,
the user may invoke primitive computations of type judgment that look like term constructors,
but really correspond to inference rules of type theory. For instance, an application c1 c2,
where c1 and c2 are computations of type judgment, computes an instance of the term-app
rule (actually, the version with context joins). The user does not have to provide the explicit
typing annotations on the application, as these are derived using a bidirectional typing
strategy, as described next.

Inferring and checking modes of evaluation

There are two modes of AML evaluation, inferring and checking. In inferring mode the type
of the result is unconstrained. In checking mode the type is prescribed in advance: there
is given a type A (or more precisely, a judgment Γ ` A : Type) and the computation must
evaluate to a judgment of the form ∆ ` t : A where ∆ extends Γ.

For instance, an application c1 c2 is evaluated in inferring mode as follows. First c1 is
evaluated in inferring mode to Γ ` s :

∏
(x:A) B (we discuss what happens if the type of s is

not a product below), then c2 is evaluated in checking mode at type A to ∆ ` t : A, and the
result is Γ ./ ∆ ` s@x:A.B t : B[t/x].

Judgment computations

The following primitives for computing judgments are provided:
Primitives for term and type formation:

Type Π(x:c1), c2 c1 c2 λ(x:c1), c2 c1 ≡ c2 refl c.

Note that the notation c1 ≡ c2 is used for the equality type, rather than for judgmental
equality, which the user never writes down explicitly. We emphasize again that these
are not datatype constructors for forming terms and types of the object-level type
theory, but primitive computations, with possible side effects, that build judgments from
sub-judgments by passing through the nucleus.
Type ascription c1 : c2, which first evaluates c2 to Γ ` A : Type and then evaluates c1 in
checking mode at type A.
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Top-level constant declarations, which introduce new constants.
The computation assume x : c1 in c2, which evaluates c1 in inferring mode to Γ ` A : Type,
and then c2 with x let-bound to Γ, xi :A ` xi : A, where xi is a freshly generated name.
This should not be confused with constant declarations: a constant is an omnipresent
part of the signature, while an assumption is local to a judgment in which it appears,
and is tracked in assumption sets. Furthermore, we may replace an assumption with a
term, using the substitution primitive, but not a constant.
Substitution c1 wherex = c2, which replaces x with the value of c2 in the value of c1,
assuming the types match.
The computation occurs c1 c2, which evaluates c1 to a judgment ∆ ` x : A and c2 to
a judgment Γ ` t : B, and checks whether x appears in Γ. It returns None if not, and
Some(Ξ ` C : Type) if x appears in Γ as a variable of type C.
Computations that generate witnesses for the β-rule and the congruence rules. There are
no primitive computations for extensionality rules eq-eta and prod-eta because they
can be declared with a constant by the user. Indeed, we do so in the standard library.
The computation natural c, which witnesses uniqueness of typing. It evaluates c to a
judgment Γ ` t : A and outputs a witness for equality of A and the natural type N (t) of t.
The witnesses are needed when a tactic deconstructs a term and puts it back together,
thus obtaining the original term at its natural type.

Judgment patterns

Apart from computations that form judgments, we also need flexible ways of analyzing and
deconstructing them. In AML this is done with the match statement and judgment patterns
of the form ` p1 : p2, where p2 may be omitted, and p1 and p2 are among the following:

Anonymous pattern _, pattern variables ?x, and interpolated variables x.
Patterns for matching terms and types:

Type Π(?x:p1), p2 p1 p2 λ(?x:p1), p2 p1 ≡ p2 refl p.

Note that the patterns for products and abstractions “open up” the binders so that it is
possible to pattern-match under the binders; the judgment matched by p2 can have the
bound variable in its context.
Patterns for matching free variables _atom ?x and constants _constant ?x.

More precisely, when Γ ` t : A is matched with ` p1 : p2, the term t is matched with p1 and
the type A with p2. Assuming the match succeeds, the pattern variables in p1 and p2 are
bound to sub-judgments that are obtained through inversion lemmas §3.2. The contexts
of the sub-judgments are kept minimal thanks to assumption sets. Examples of pattern
matching are shown in Appendix B.

Pattern matching is always executed at the AML level; patterns and the match statements
exist only as computations, and are not part of the object-level terms. To highlight this point,
we show the difference between a match inside λ-abstraction and an AML function. Assuming
a type A with two constants a, b : A and an endofunction f : A → A, the computation

(λ (x : A), match x with
| ` ?g ?y ⇒ y
| ` _ ⇒ b

end ) (f a)

evaluates to the judgment ` (λ (x : A), b) (f a) : A, while
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(fun x ⇒ match x with
| ` ?g ?y ⇒ y
| ` _ ⇒ b

end ) (f a)

evaluates to the judgment ` a : A. In the former case matching occurred inside the
abstraction, so x evaluated to ` x : A and the second clause matched; in the latter case
matching took place when the function was applied, so x was bound to ` f a : A and the
first clause matched.

The AML interpreter matches a judgment against a pattern by first asking the nucleus to
invert the judgment. The nucleus returns information about which inversion was used and
what constituent parts it produced, from which the interpreter calculates whether the pattern
matches and how. If there are sub-patterns, the process continues recursively. Pattern
matching uses syntactic equality (up to α-equivalence) and never triggers any operations,
although an inexhaustive match may fail.

At present there are no judgment patterns for analyzing the context of a judgment.
Instead, the primitive computation context c evaluates c to a judgment Γ ` t : A and gives
the list of all hypotheses in Γ, sorted so that each hypothesis is preceded by its dependencies.

Equality checks and coercions

AML only verifies syntactic equality automatically. It delegates any other equality Γ `
s ≡ t : A by triggering the operation equal (Γ ` s : A) (Γ ` t : B), which passes control
back to the user-level AML code. The operation may go unhandled, in which case an error
is reported, or it may be intercepted by a handler in the user code. The handler may do
whatever it wants, but the intended use is for it to attempt to calculate evidence of the
given equality. The handler yields None if it fails to compute the evidence (in which case the
interpreter reports an error), or Some(∆ ` ξ : EqA(s, t)) if it finds a witness ∆ ` ξ : EqA(s, t).
Note that the handler is itself a piece of AML code that may recursively trigger further
operations and handling thereof.

Apart from equality checking, there are other situations in which the AML interpreter
triggers an operation:

It may happen that AML needs to know why a given type Γ ` A : Type is equal to a
product type. Unless A is already syntactically equal to a product type, the interpreter
triggers an operation as_prod (Γ ` A : Type). It expects a handler to yield None upon
failure, or Some(∆ ` ξ : EqType(A,

∏
(x:B) C)) witnessing that A is equal to a product

type.
Similarly, if AML needs to know why Γ ` A : Type is equal to an equality type, it
triggers an operation as_eq (Γ ` A : Type). It expects the handler to yield None or
Some(∆ ` ξ : EqType(A,EqB(s, t))).
If an inferring term evaluates to Γ ` t : A in checking mode at type ∆ ` B : Type, the
interpreter does not ask for evidence that A and B are equal, but instead triggers the
operation coerce (Γ ` t : A) (∆ ` B : Type) that gives the user code an opportunity to
replace t with a value of type B. The handler must yield:

NotCoercible to indicate failure to coerce t to B,
Convertible(Ξ ` ξ : EqType(A,B)) to indicate that A and B are equal, so that AML
may apply conversion to t, or
Coercible(Ξ ` s : B) to have t replaced with s.

This mechanism allows the user to implement various strategies for coercion of values,
and control them completely through handlers.
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If the head c1 of an application c1 c2 evaluates to a term Γ ` t : A where A is not a product
type, the interpreter asks the user code to convert t to a function by triggering the operation
coerce_fun (Γ ` t : A). The handler should yield NotCoercible, Convertible(∆ ` ξ :
EqType(A,

∏
(x:B) C)), or Coercible(∆ ` s :

∏
(x:B) C), as the case may be.

4.5 References and dynamic variables
As a convenience, AML provides ML-style mutable references. They are used to store the
current state of implicit arguments in the standard library (see §6.3).

AML also supports dynamic variables. These are globally defined mutable values with
dynamic binding discipline. A dynamic variable x is declared and initialized with the top-level
command dynamic x = c. The computation now x = c1 in c2 changes x to the value of c1
locally in the computation of c2.

AML maintains a dynamic variable hypotheses. It is a list of judgments that plays a
role in evaluation of computations under binders. To evaluate λ(x:A), c, AML generates
a fresh variable xi of type A, binds x to the judgment xi : A ` xi : A, prepends it to
hypotheses, evaluates c, and abstracts xi to get the final result. By accessing hypotheses
the computation c may discover under what binders it is evaluated. For example, in §2 the
handler for the auto tactic searched hypotheses for ways of inhabiting a type.

The standard library uses dynamic variables betas, etas, hints, and reducing to store
β-hints, η-hints, general hints, and reduction directives. It is important for these variables to
follow a dynamic binding discipline so that local equality hints work correctly (see §6.2).

5 Soundness of Andromeda

Soundness in Andromeda has both theoretical and engineering aspects.
Theoretical soundness pertains to the differences between the original type theory, (Ap-

pendix A) and the type theory implemented in the nucleus (§3.2), which uses assumption
sets, context joins, and natural types. In the following we write sσ for a term s decorated
with assumptions σ, i.e., if we remove assumptions sets from the decorated term sσ we get
the ordinary term s. We follow a similar convention for types and context.

I Claim 5.1. Given a context Γ, a term s and a type A:
1. If Γ ` s : A is derivable in the original type theory, then ∆δ ` sσ : Aα is derivable for

some ∆δ, sσ, and Aα such that ∆ is a subcontext of Γ.
2. If Γγ ` sσ : Aα is derivable in the implemented type theory, then Γ ` s : A is derivable in

the original type theory.
We cannot call the statement a theorem because we have not yet proved it in detail. We
leave the task as future work for this progress report, and note that we do not anticipate
a particularly enlightening or difficult proof, just the usual grinding of cases by structural
induction. The most interesting part of the proof will likely by the formalization of the
implemented type theory from §3.2, which we have postponed because it has been regularly
modified as we gained experience with the implementation.

The second aspect of soundness is an engineering question: how do we know that the
implementation of Andromeda works as intended?

I Claim 5.2. If Andromeda evaluates a computation to a judgment, then the judgment is
derivable from the implemented type theory with respect to the signature containing all the
constants declared by the user.
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Let us reiterate the design choices we have made to give credence to the claim. In
the OCaml implementation the datatypes representing the judgment forms are all abstract
and kept opaque by an interface to a small trusted OCaml module, the nucleus. We rely
on the soundness of OCaml’s type system to ensure that the untrusted remainder of the
system cannot forge new values of these abstract types.7 The nucleus is kept as simple as
possible, and it only supports very straightforward type-theoretic constructions which directly
correspond to applications of inference rules and admissible rules. Everything else, the AML
type inference, the core AML intepreter, the implementation of operations and handlers,
and the user code, is on the other side of the barrier and does not influence soundness. In
particular, the nucleus does not know anything about AML at all, does not trigger operations,
and no AML code can ever enter the object-level terms (so there is no question about having
pattern matching, exotic terms involving AML code, or any other part of AML at the object
level).

Formally verifying the 1900 lines of the nucleus code is still a tall order to handle, and at
present we have no plans to do it. Once we have formulated the implemented type theory, a
careful code review of the nucleus will probably unearth some bugs, and hopefully not very
many!

There is a third kind of soundness, namely the consistency of the underlying type theory.
Obviously, since we included Type : Type the theory is at present inconsistent in the sense
that all types are inhabited and all judgmental equalities derivable. As soon as we remove
Type : Type the theory becomes consistent, since what remains are just bare products and
equality types with reflection, and these are consistent in virtue of having a model (such as
the hereditarily finite sets). We discuss removal of Type : Type in §9.

6 The standard library

To test the viability of our design we implemented a small standard library in AML. By
design, anything that is implemented in AML is safe: it may not work as expected, or diverge,
but it will never produce an invalid judgment, or derive an invalid equality. (Of course, this
does not say much until we have dealt with Type : Type.)

6.1 Equality checking
The most substantial part of the library is a user-extensible equality checking algorithm with
rudimentary support for implicit arguments, based on similar ones by Stone and Harper [24]
and Coquand [8]. It computes a witness of equality Γ ` s ≡ t : A in two phases:

The type directed phase computes the weak head-normal form (whnf) of type A to
see whether any extensionality rules apply. For instance, if A normalizes to a product∏

(x:B) C, the algorithm applies function extensionality prod-eta to reduce the equality
to Γ, y :B ` s @x:B.C y ≡ s @x:B.C y : B[y/x] at a smaller type. Similarly, if A is an
equality type the equality checks succeeds immediately by uniqueness of equality proofs
eq-eta. Extensionality rules including prod-eta and eq-eta are user defined (see §6.2).
Once the type-directed phase simplifies the type so that no further extensionality rules
apply, the normalization phase computes the weak head-normal forms of s and t and
compares them structurally, which generates new equality problems involving subterms.

7 If we were to reimplement the system in an unsafe language such as C, or if we lacked faith in OCaml,
additional mechanisms such as cryptographic signatures could be used.
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The equality checking algorithm relies on the computation of weak head-normal forms
of terms, which is also implemented by the standard library. Given a term Γ ` t : A, the
library computes a witness Γ ` ξ : EqA(t, t′) where t′ is in weak head-normal form. It does
so by chaining together a sequence of computation rules using transitivity of equality. By
default the only computation rule is prod-beta for reducing β-redices, but the user may
install additional rules as explained in §6.2.

6.2 Equality hints

The equality checking algorithm can be extended by the user with new rules, which we call
equality hints. There are three kinds:

an η-hint, or an extensionality hint, is a term whose type has the form∏
(x1:A1) · · ·

∏
(xn:Am)

∏
(y1:B)

∏
(y2:B) EqC1(t1, s1)→ · · · → EqCm

(tm, sm)→ EqB(y1, y2).

It is a universally quantified equation with equational preconditions, where the left-hand
and the right-hand side of the equation are distinct variables. The equality checking
algorithm matches such a hint against the goal. If the match succeeds, the goal is reduced
to deriving the preconditions.
a β-hint, or a computation hint, is a term whose type is a universally quantified equation∏

(x1:A1) · · ·
∏

(xn:Am) EqC(s, t).

The weak head-normal form algorithm matches the left-hand side s of the equation against
the term. If the match succeeds, it performs a reduction step from s to t.
a general hint is a term whose type is a universally quantified equation∏

(x1:A1) · · ·
∏

(xn:Am) EqC(s, t).

The equality checking algorithm matches such a hint against the goal during the type
directed phase to see whether it can immediately dispose of the goal.

In addition, the user may give a reduction strategy for a given constant by specifying which of
its arguments should be reduced eagerly. This is necessary for the equality checking algorithm
to work correctly when we introduce new eliminators. For instance, when we axiomatize
simple products A×B, the extensionality rule

∏
(A:Type)

∏
(B:Type)

∏
(x,y:A×B)

EqA(fstAB x, fstAB y)→ EqA(sndAB x, sndAB y)→ EqA×B(x, y)

only works correctly if we also specify that the normal form of a projection fstAB t should
have t normalized, and similarly for snd. Another example is the recursor for natural numbers,
which should eagerly reduce the number at which it is applied.

Examples of equality hints and uses of reduction strategies will be shown in §7. Let us
only remark that the hints and reduction strategies may be installed locally, even under a
binder using a temporary equality assumption, and that the user is free to install whatever
hints they wish, including ones that break completeness of the algorithm. However, as long
as hints are confluent and strongly normalizing, the algorithm behaves sensibly.
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6.3 Implicit arguments
The standard library provides basic support for implicit arguments. In other systems these
are usually implemented with meta-variables, which are not available in AML. In their place,
we use ordinary fresh variables generated using the assume construct. We refer to these as
implicit variables. We collect constraints through the operations and handlers mechanism,
and resolve them using a simple first-order unification procedure.

More precisely, in the standard library we declare operations
operation ? : judgment
operation resolve : judgment → judgment

The user may place ? anywhere where they want the term to be derived automatically, and
call resolve c to replace the implicit variables with their derived values in the judgment
computed by c.

The handler provided by the library keeps a list of implicit variables it has introduced so far,
as well as their types and known solutions. The operation ? may be triggered either in checking
or inferring mode. In checking mode at type A and under binders x1 : B1, . . . , xn : Bn, the
handler introduces a fresh implicit variable M of type

∏
(x1:B1) . . .

∏
(xn:Bn) A and yields

M x1 . . . xn. In inferring mode the type A is not available. For simplicity, at present the
library will report an error, although it might be better to create an implicit variable for the
A : Type.

During equality checking we may discover that M x1 . . . xn should be equal to a term t

in which M does not occur. In this case, using assume again, the handler generates a term
ξ : Eq(M,λx1 . . . xm . t), stores it, and also installs it as a β-hint, so that subsequent equality
checks take it into account.

The operation resolve c is used to replace the implicit variables with their inferred
values in the judgment computed by c. Such replacement does not happen automatically
because the library cannot guess when is the best moment for doing so. It may be necessary
to evaluate several computations before all the implicit variables become known, so we let
the user control when resolution should happen.

While we feel quite encouraged by our implementation of equality checking, the implicit
arguments feel a bit heavy-handed, and are quite slow. They are a satisfactory proof of
concept and a demonstration of the flexibility of operations and handlers, but we need to
improve it quite a bit before it becomes useful.

7 Examples

In this section we show Andromeda at work through several examples.

7.1 Proving equality with handlers
As explained in §4.3, when AML is faced with proving a non-trivial equality, it delegates it
to user code by triggering the operation equal. To see how this works, let us walk through a
computation that constructs a term witnessing symmetry of equality (without the standard
library installed):
λ (A : Type) (x y : A) (p : x ≡ y),

( handle
refl x : y ≡ x

with
| equal x y ⇒ yield (Some p)
end)
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The λ-abstraction introduces a type A, elements x, y of type A, and a witness p of equality
between x and y. Next, the type ascription is evaluated, with the enveloping handler installed.
First y ≡ x is evaluated to the equality type EqA(y, x) and then refl x is evaluated in
checking mode at this type. This triggers a sub-computation of x and verification that x
equals y (and a trivial equality check that x equals to itself). At this point AML triggers the
operation equal x y, asking for evidence of equality. The enveloping handler intercepts the
operation and yields the evidence p.

The result of the computation is displayed by Andromeda without typing annotations
and assumption sets as
` λ (A : Type) (x : A) (y : A) (_ : x ≡ y), refl x

: Π (A : Type) (x : A) (y : A), x ≡ y → y ≡ x

7.2 Dependent sums
Our second example shows how to axiomatize dependent sums. This time we use the
standard library and rely on its equality checking. We start by postulating the type and
term constructors:
constant Σ : Π (A : Type) (B : A → Type), Type
constant existT : Π (A : Type) (B : A → Type) (a : A), B a → Σ A B

Next, we postulate the projections and tell the standard library that that the third argument
of a projection should be evaluated eagerly, so that we get a working extensionality rule later
on:
constant π1 : Π (A : Type) (B : A → Type), Σ A B → A
now reducing = add_reducing π1 [lazy , lazy , eager]

constant π2 : Π (A : Type) (B : A → Type) (p : Σ A B), B (π1 A B p)
now reducing = add_reducing π2 [lazy , lazy , eager]

It remains to postulate equalities, and install them as hints. The β-rules are straightforward,
except that we must install the β-rule for the first projection before we postulate the second
projection, or else Andromeda does not know why the second projection is well typed:
constant π1 _β :

Π (A : Type) (B : A → Type) (a : A) (b : B a),
(π1 A B ( existT A B a b) ≡ a)

now betas = add_beta π1 _β

constant π2 _β :
Π (A : Type) (B : A → Type) (a : A) (b : B a),

(π2 A B ( existT A B a b) ≡ b)

now betas = add_beta π2 _β

Similarly, to convince Andromeda that the extensionality rule is well typed, we need to
install a local hint, as follows (the function symmetry is part of the standard library and it
computes the symmetric version of an equality):
constant Σ_η :

Π (A : Type) (B : A → Type) (p q : Σ A B)
(ξ : π1 A B p ≡ π1 A B q),
now hints = add_hint ( symmetry ξ ) in
π2 A B p ≡ π2 A B q → p ≡ q

now etas = add_eta Σ_η
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7.3 Natural numbers
The standard library provides functions for calculating weak head-normal forms that can be
used as a computation device at the level of type-theoretic terms. We show how this is done
by axiomatizing natural numbers and computing with them.

We postulate the type of natural numbers and its constructors
constant nat : Type
constant O : nat
constant S : nat → nat

and the induction principle
constant nat_rect : Π (P : nat → Type),

P O → (Π (n : nat), P n → P (S n)) → Π (m : nat), P m

The weak head-normal form of the eliminator should have the fourth argument normalized:
now reducing = add_reducing nat_rect [lazy , lazy , lazy , eager]

To get computation going, we need the computation rules for the eliminator:
constant nat_β_O :

Π (P : nat → Type) (x : P O) (f : Π (n : nat), P n → P (S n)),
nat_rect P x f O ≡ x

constant nat_β_S :
Π (P : nat → Type) (x : P O) (f : Π (n : nat), P n → P (S n))

(m : nat),
nat_rect P x f (S m) ≡ f m ( nat_rect P x f m)

which we install as β-hints:
now betas = add_betas [nat_β_O , nat_β_S]

At this point, we can compute with the recursor, but there is a better way. In Andromeda
there is no built-in notion of “definition” at the level of type theory (one can always use
ML-level let-bindings, but those are always evaluated which has the undesirable effect of
complete unfolding of all definitions). Instead, we break down a definition into a declaration
of the constant and its defining equality. If we install the defining equality as a β-hint, a
definition behaves like it would in other proof assistants, but that is just one possibility.

For example, we may define addition as follows:
constant ( + ) : nat → nat → nat
constant plus_def :

Π (n m : nat), n + m ≡ nat_rect (λ _, nat) n (λ _ x, S x) m

Note that plus_def could be written as
constant plus_def ’ :

( + ) ≡ (λ (n m : nat), nat_rect (λ _, nat) n (λ _ x, S x) m)

The difference between the two is visible when we use them as β-hints: plus_def will unfold
only after it has been applied to two arguments, whereas plus_def’ will do so immediately.

We can derive Peano axioms by using plus_def as a local β-hint:
let plus_O =

now betas = add_beta plus_def in
(λ n, refl n) : Π (n : nat), n + O ≡ n

let plus_S =
now betas = add_beta plus_def in

(λ n m, refl (n + (S m))) : Π (n m : nat), n + (S m) ≡ S (n + m)
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We are free to use the Peano axioms for computation rather than plus_def, so we install
them globally as β-hints:
now betas = add_betas [plus_O , plus_S ]

It should be clear from this that Andromeda is quite flexible, which is good for experimentation
and tight control of how things are done, but is also bad because the user has to be more
specific in what they want. The overall usability of the system depends on having a good
standard library with sensible default settings.

The definition of multiplication and its Peano axioms are derived similarly:
constant ( * ) : nat → nat → nat
constant mult_def :

Π (n m : nat), n * m ≡ nat_rect (λ _, nat) O (λ _ x, x + n) m

let mult_O =
now betas = add_beta mult_def in

(λ n, refl O) : Π (n : nat), n * O ≡ O

let mult_S =
now betas = add_beta mult_def in

(λ n m, refl (n * (S m))) : Π (n m : nat), n * (S m) ≡ n * m + n

now betas = add_betas [mult_O , mult_S ]

To compute with numbers, we use the standard library function whnf that computes evidence
that the given term is equal to its weak head-normal form:
do now reducing = add_reducing S [eager] in

now reducing = add_reducing ( * ) [eager , eager] in
now reducing = add_reducing ( + ) [eager , eager] in

whnf ((S (S (S O))) * (S (S (S (S O)))))

The do command is the top-level command for evaluating a computation. Notice that
we locally set the arguments of the successor constructor, addition, and multiplication to
be computed eagerly. The effect of this is that the weak head-normal form is not weak
or head-normal anymore, but rather a strongly normalizing call-by-value strategy. Thus
Andromeda outputs
` refl (S (S (S (S (S (S (S (S (S (S (S (S O ))))))))))))

: S (S (S O)) * S (S (S (S O))) ≡
S (S (S (S (S (S (S (S (S (S (S (S O )))))))))))

It would be easy to obtain just the result, which is the left-hand side of the equality type.
Notice that the proof of equality between 3 × 4 and 12 is a reflexivity term, even though
the normalization procedure generated the proof by stringing together a large number of
reduction steps. In order to keep equality proofs small, the standard library aggressively
replaces equality proofs with reflection terms, using the fact that whenever p : EqA(s, t) then
also reflA t : EqA(s, t).

7.4 Untyped λ-calculus
An example that cannot be done easily in proof assistants based on intensional type theory
is in order. Let us axiomatize the untyped λ-calculus as a type that is judgmentally equal to
its own function space, and show that it possesses a fixed-point operator.

We first postulate that there is a type equal to its function space:
constant D : Type
constant D_reflexive : D ≡ (D → D)
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We must not install D_reflexive as a β-hint because it would lead to non-termination.
Instead, we install it and its symmetric version as general hints:
now hints = add_hints [ D_reflexive , symmetry D_reflexive ]

With these, whenever AML needs to know that D and D → D are equal, the standard library
will provide D_reflexive, or its symmetric version, as evidence.

Now, we can simply define the fixed-point operator:
let fix =

(λ f,
let y = (λ x : D, f ((x : D → D) x)) in
y y)

: (D → D) → D

The self-application of x is well-typed because Andromeda knows that x of type D also has
type D → D, thanks to the hints. We did have to explicitly coerce x to the function type.
(An alternative would be to use the coercion mechanism, which is demonstrated in §7.5.)
Once we overcome the problem of typing the fixed-point operator, the usual mechanisms
suffice to show that it does in fact compute fixed points:
let fix_eq =

(λ f, refl (fix f)) : Π (f : D → D), fix f ≡ f (fix f)

It is a bit trickier to give a type to a term without weak head-normal form, such as
(λx. x x)(λx. x x). We must block β-reduction of this particular β-redex, without blocking
all of them. To achieve this, we first introduce an alias D’ for the type D:
constant D’ : Type
constant eq_D_D ’ : D ≡ D’

Next, we define the auxiliary term δ and give it the type D → D:
let δ = (λ x : D, (x : D → D) x)

We now form the self-application δ δ at type D’:
let Ω =

now hints = add_hints [eq_D_D ’, symmetry eq_D_D ’] in
(δ : D’ → D’) (δ : D) : D

We have the desired term in which β-reduction is blocked because the inner λ-abstractions
are typed at D and the outer application at D’. From here, Andromeda happily computes
with Ω without ever attempting to reduce it (installing eq_D_D’ as a global hint would be a
mistake).

The preceding example should be taken as a proof of concept only. We have reached the
limits of our small standard library. A more serious development of the untyped λ-calculus
would use a custom equality-checking algorithm instead of manually juggling hints and type
ascriptions.

7.5 Universes
The final example shows how to use coercions and operations to implement a universe à la
Tarski. We postulate a universe U, whose elements should be thought of as names of types,
with an operation El that converts the names to the corresponding types:
constant U : Type
constant El : U → Type
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Because El is an eliminator, its normal form should have the argument in normal form, so
we tell the library to normalize it eagerly:
now reducing = add_reducing El [eager]

Next, we postulate that the universe contains names for products and equality types, and
install the relevant equations as β-hints:
constant pi : Π (a : U), (El a → U) → U
constant El_pi :

Π (a : U) (b : El a → U), El (pi a b) ≡ (Π (x : El a), El (b x))
now betas = add_beta El_pi

constant eq : Π (a : U), El a → El a → U
constant El_eq :

Π (a : U) (x y : El a), El (eq a x y) ≡ (x ≡ y)
now betas = add_beta El_eq

For testing purposes we put the name b of a basic type B into the universe:
constant B : Type
constant b : U
constant El_b : El b ≡ B
now betas = add_beta El_b

In principle we can work with U and El, but explicit uses of El gets tedious quickly. Ideally
we want Andromeda to translate between names and their types automatically, which is
achieved with a handler that intercepts coercion requests. It is easy to coerce names to types
with El, for instance:
handle

(λ x : b, x) : pi b (λ _, b)
with

| coerce (` ?t : U) (` Type) ⇒ yield ( Coercible (El t))
end

In the λ-abstraction AML found the name b but expected a type, therefore it triggered a
coercion operation. The handler intercepted it and yielded El b. The process was repeated
when AML found pi b (λ _, b) instead of a type. The final result printed by Andromeda
is
` λ (x : El b), x : El (pi b (λ (_ : El b), b))

We have to work harder to perform the reverse coercion, when a type is encountered where
its code was expected. One first has to implement an AML function name_of that takes a
type and returns its name, if it can find one. We do not show its implementation here, and
ask the interested readers to consult the examples that come with the source code. Using
name_of we can handle translation between types and names in both directions with the
handler
let universe_handler =
handler

| coerce (` ?a : U) (` Type) ⇒ yield ( Coercible (El a))
| coerce (` ?T : Type) (` U) ⇒

match name_of T with
| None ⇒ yield NotCoercible
| Some ?name ⇒ yield ( Coercible name)
end

end

We added a clause that intercepts coercions from Type to U and uses name_of. The handler
automatically translates names to types and vice versa. For instance, the computation
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with universe_handler handle
(Π (x : b), x ≡ x) : U

evaluates to
` pi b (λ (y : El b), eq b y y) : U

In one direction the handler coerced the name b to the type B, and in the other the type
Π (x : B), x ≡ x to its name, as shown above.

8 Related work

Andromeda draws heavily on the experience and ideas from other proof assistants. It is
difficult to do justice to all of them. Its overall design follows the tradition of LCF [12] and
its descendants [15, 16, 13]. However, LCF and many of its descendants use Church’s simple
type theory [6], whereas Andromeda is based on the dependent type theory of Martin-Löf [17].
Consequently, Andromeda cannot advantageously integrate the ML-level and the object-level
types. There is by necessity a sharp distinction between the statically typed ML-level and
the dynamically evaluated type-theoretic judgments.

It makes sense to compare Andromeda to other proof assistants based on dependent
type theory [19, 7, 10]. For instance, the evaluation strategy for judgments in Andromeda is
based on bidirectional type-checking found in dependently-typed assistants. Andromeda is
primarily a special-purpose programming language, whereas Coq, Agda, and Lean are tools
for interactive proof development. The difference in philosophy of design is visible in the level
of control given to the user. Andromeda gives the user full control of the system, and expects
them to implement their own proof development tools, whereas Coq and Agda provide more
of an end-user environment with a rich selection of ready-made tools. It is interesting to note
that recently Coq and Agda have both started giving the user more control. New versions of
Coq allow the use of tactics inside type-theoretic terms [26, §2.11.2] and allow fine-tuning of
Coq’s unification algorithm [27]. Agda even lets the user install new normalization rules [1]
that might break the system.

We already mentioned that NuPRL [2] validates equality reflection by interpreting types
as partial equivalence relations on terms of a computational model, namely an extension of
the untyped λ-calculus. We do not wish to make such a commitment in Andromeda, and
instead allow interpretations that are inconsistent with computational type theory.

9 Future work

We feel that Andromeda shows a promising way to design a proof assistant based on type
theory with equality reflection, but much remains to be done.

Syntactic sugar and end-user support

AML turned out to be a useful tool for the implementers of the standard library. If we
imagine that the end-user is a mathematician who just wants to do mathematics, without
learning the intricacies of operations and handlers, then we need further support for creating
a more user friendly environment. There ought to be ways of introducing new syntactic
constructs, and reasonable error reporting by the standard library. We are not quite sure
how to provide such functionality. The approach taken by Bowman [4] seems interesting.
Another possibility is to allow user-defined notations in the style of Coq, or to completely
separate the end-user interface and AML.
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Formal verification of the meta-theoretic properties

While we carefully designed the underlying type theory and made sure it is precisely clear
what the type-theoretic rules are, we have not formally verified that the system has the desired
meta-theoretic properties, such as uniqueness of typing, validity of inversion principles, and
well-behaved context joins. We expect no trouble here, but do insist on formal verification.
In the early stages of implementation we managed to delude ourselves more than once about
the properties of the underlying type theory.

Recording derivations

Like all LCF-style proof assistants, Andromeda does not record derivations, only their
conclusions. (In fact, all practical proof assistants do this, though some implement type
theories that allow derivations to be reconstructed.) There might be situations in which
we wish to record or communicate the derivation. For instance, we might want to send the
derivation to another proof assistant for independent verification. This can be accomplished
with a minor modification of AML: if we implement all calls of AML to the nucleus as
operations (whose default handler is the nucleus), then the user can intercept them and
do whatever they like: record them, communicate them, or modify them to obtain a proof
translation. Alternatively, the judgment type in the nucleus could be made into the type of
derivations with no breaking changes to the interface.

Removal of Type : Type

A major forthcoming modification of the current system is elimination of Type : Type. The
syntax of AML takes advantage of Type : Type to conflate term and type judgments within a
single abstract type judgment.

But the nucleus does not rely on Type : Type at all and separates the various judgment
forms into separate abstract datatypes. There is no technical difficulty in removing Type :
Type, but the question is what to replace it with. One possibility is to add a basic type
U and a basic type family El indexed by U, and then use these as a Tarski-style universe,
with a standard library employing techniques of §7.5 to make the system usable. (This can
be extended to multiple universes if desired.) Paolo Capriotti’s recently suggested such a
setup [5], based on semantic considerations in categories of presheaves. Finally, AML could
be modified to support several abstract datatypes, one for each form of object-level judgment.

Once this is done, several interesting possibilities arise. The user could hypothesize any
universe structure they like, including putting back Type : Type. We might even be able to
remove equality reflection from the nucleus, and make it user-definable. We hope to report
on these exciting developments in the near future.

References
1 Andreas Abel and Jesper Cockx. Sprinkles of extensionality for your vanilla type theory.

In 22nd International Conference on Types for Proofs and Programs, TYPES 2016, Novi
Sad, Serbia, May 2016.

2 S.F. Allen, M. Bickford, R.L. Constable, R. Eaton, C. Kreitz, L. Lorigo, and E. Moran.
Innovations in computational type theory using Nuprl. Journal of Applied Logic, 4(4):428–
469, 2006.

3 Andrej Bauer and Matija Pretnar. Programming with algebraic effects and handlers. Jour-
nal of Logical and Algebraic Methods in Programming, 84(1):108–123, January 2015.

TYPES 2016



5:26 Andromeda Proof Assistant

4 William J. Bowman. Growing a proof assistant. In Higher-Order Programming with Effects,
2016.

5 Paolo Capriotti. Notions of type formers. In 23rd International Conference on Types for
Proofs and Programs (TYPES). Budapest, Hungary, May 29–June 1 2017.

6 Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5(2):56–68, 1940. doi:10.2307/2266170.

7 Coq Development Team. The Coq proof assistant. Available at http://coq.inria.fr/,
2016.

8 Thierry Coquand. An Algorithm for Testing Conversion in Type Theory. In Gérard Huet
and G. Plotkin, editors, Logical frameworks, pages 255–277. Cambridge University Press,
1991.

9 Luis Damas and Robin Milner. Principal type-schemes for functional programs. In Pro-
ceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’82), pages 207–212, 1982.

10 Leonardo de Moura, Soonho Kong, Floris van Doorn, Jakob von Raumer, and Jeremy
Avigad. The Lean theorem prover (system description). In 25th International Conference
on Automated Deduction (CADE-25), 2015.

11 Jean-Yves Girard. Interprétation fonctionelle et élimination des coupures de l’arithmétique
d’ordre supérieur. PhD thesis, Université Paris VII, 1972.

12 Michael J. Gordon, Arthur J. Milnter, and Christopher P. Wadsworth. Edinburgh LCF:
A Mechanized Logic of Computation. Number 78 in Lecture Notes in Computer Science.
Springer-Verlag, 1979.

13 John Harrison. The HOL Light theorem prover. Available at https://www.cl.cam.ac.uk/
~jrh13/hol-light/.

14 Martin Hofmann. Extensional constructs in intensional type theory. CPHC/BCS distin-
guished dissertations. Springer, 1997.

15 HOL Interactive Theorem Prover. Available at https://hol-theorem-prover.org.
16 Isabelle proof assistant. Available at https://isabelle.in.tum.de.
17 Per Martin-Löf and Giovanni Sambin. Intuitionistic type theory. Studies in Proof Theory.

Bibliopolis, 1984.
18 Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT Press,

1990.
19 Ulf Norell. Towards a practical programming language based on dependent type theory. PhD

thesis, Chalmers University of Technology, 2007.
20 OCaml programming language. Available at https://ocaml.org.
21 Gordon D. Plotkin and Matija Pretnar. Handlers of algebraic effects. In Proceedings of the

18th European Symposium on Programming Languages and Systems, pages 80–94, 2009.
22 Gordon D. Plotkin and Matija Pretnar. Handling algebraic effects. Logical Methods in

Computer Science, 9(4), 2013. doi:10.2168/LMCS-9(4:23)2013.
23 Matija Pretnar. An introduction to algebraic effects and handlers. invited tutorial paper.

Electronic Notes in Theoretical Computer Science, 319:19–35, 2015. doi:10.1016/j.entcs.
2015.12.003.

24 Christopher A. Stone and Robert Harper. Extensional equivalence and singleton types.
ACM Transactions on Computational Logic, 7(4):676–722, October 2006.

25 Thomas Streicher. Investigations into intensional type theory. Habilitation Thesis, Ludwig-
Maximilians Universität, 1993.

26 Coq Development Team. The Coq proof assistant reference manual, version 8.5. Available
at https://coq.inria.fr/distrib/8.5/refman/.

http://dx.doi.org/10.2307/2266170
http://coq.inria.fr/
https://www.cl.cam.ac.uk/~jrh13/hol-light/
https://www.cl.cam.ac.uk/~jrh13/hol-light/
https://hol-theorem-prover.org
https://isabelle.in.tum.de
https://ocaml.org
http://dx.doi.org/10.2168/LMCS-9(4:23)2013
http://dx.doi.org/10.1016/j.entcs.2015.12.003
http://dx.doi.org/10.1016/j.entcs.2015.12.003
https://coq.inria.fr/distrib/8.5/refman/


A. Bauer, G. Gilbert, P. G. Haselwarter, M. Pretnar, and C. A. Stone 5:27

27 Beta Ziliani and Matthieu Sozeau. A Unification Algorithm for Coq featuring Universe
Polymorphism and Overloading. In ACM SIGPLAN International Conference on Func-
tional Programming 2015, 2015.

A The rules of type theory

In this appendix we give the formulation of type theory in a declarative way that minimizes
the number of judgments, and so is better suited for a semantic account. We omit formal
treatment of bound variables and substitution, which is standard.

A.1 Syntax

Contexts

Γ,∆ ::= • empty context
| Γ, x :A context Γ extended with x : A

Terms and types

s, t, A,B ::= Type universe
|

∏
(x:A) B product

| EqA(s, t) equality type
| x variable
| λx:A.B . t λ-abstraction
| s@x:A.B t application
| reflA t reflexivity

A.2 Judgments

Γ ctx Γ is a well formed context
Γ ` t : A t is a well formed term of type A in context Γ
Γ ` s ≡ t : A s and t are equal terms of type A in context Γ

We use the following abbreviations:

Γ ` A type abbreviates Γ ` A : Type
Γ ` A ≡ B abbreviates Γ ` A ≡ B : Type

A.3 Contexts
ctx-empty

• ctx

ctx-extend
Γ ctx Γ ` A type x 6∈ dom(Γ)

(Γ, x :A) ctx
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A.4 Terms and types
Conversion

term-ty-conv
Γ ` t : A Γ ` A ≡ B

Γ ` t : B

Variable
term-var

(Γ, x :A) ctx
Γ, x :A ` x : A

term-var-skip
(Γ, y :B) ctx Γ ` x : A

Γ, y :B ` x : A

Universe
ty-type

Γ ctx
Γ ` Type type

Product
ty-prod
Γ ` A type Γ, x :A ` B type

Γ `
∏

(x:A) B type

term-abs
Γ, x :A ` t : B

Γ ` (λx:A.B . t) :
∏

(x:A) B

term-app
Γ ` s :

∏
(x:A) B Γ ` t : A

Γ ` s@x:A.B t : B[t/x]

Equality type

ty-eq
Γ ` A type Γ ` s : A Γ ` t : A

Γ ` EqA(s, t) type

term-refl
Γ ` t : A

Γ ` reflA t : EqA(t, t)

A.5 Equality
General rules

eq-refl
Γ ` t : A

Γ ` t ≡ t : A

eq-sym
Γ ` t ≡ s : A
Γ ` s ≡ t : A

eq-trans
Γ ` s ≡ t : A Γ ` t ≡ u : A

Γ ` s ≡ u : A

Conversion
eq-ty-conv
Γ ` s ≡ t : A Γ ` A ≡ B

Γ ` s ≡ t : B

Equality reflection

eq-reflection
Γ ` u : EqA(s, t)
Γ ` s ≡ t : A
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Computation
prod-beta

Γ, x :A ` s : B Γ ` t : A
Γ ` (λx:A.B . s) @x:A.B t ≡ s[t/x] : B[t/x]

Extensionality

eq-eta
Γ ` t : EqA(s, u) Γ ` v : EqA(s, u)

Γ ` t ≡ v : EqA(s, u)

prod-eta
Γ ` s :

∏
(x:A) B Γ ` t :

∏
(x:A) B

Γ, x :A ` (s@x:A.B x) ≡ (t@x:A.B x) : B
Γ ` s ≡ t :

∏
(x:A) B

A.5.1 Congruences
Type formers

cong-prod
Γ ` A ≡ C Γ, x :A ` B ≡ D[x/y]

Γ `
∏

(x:A) B ≡
∏

(y:C) D

cong-eq
Γ ` A ≡ B Γ ` s ≡ u : A Γ ` t ≡ v : A

Γ ` EqA(s, t) ≡ EqB(u, v)
Products

cong-abs
Γ ` A ≡ C Γ, x :A ` B ≡ D[x/y] Γ, x :A ` s ≡ t[x/y] : B

Γ ` (λx:A.B . s) ≡ (λy:C.D . t) :
∏

(x:A) B

cong-app
Γ ` A ≡ C Γ, x :A ` B ≡ D[x/y]

Γ ` s ≡ u :
∏

(x:A) B Γ ` t ≡ v : A
Γ ` (s@x:A.B t) ≡ (u@y:C.D v) : B[t/x]

Equality types
cong-refl

Γ ` A ≡ B Γ ` s ≡ t : A
Γ ` reflA s ≡ reflB t : EqA(s, s)

B The auto tactic

We include here the complete code for implementing a simple auto tactic from § 2.
We first define the map function to show how AML syntax works, and the auxiliary apply

function that folds application of a function over a list of arguments:
let rec map f xs =

match xs with
| [] ⇒ []
| ?x :: ?xs ⇒ (f x) :: (map f xs)
end

let rec apply f xs =
match xs with
| [] ⇒ f
| ?x :: ?xs ⇒ apply (f x) xs
end

TYPES 2016



5:30 Andromeda Proof Assistant

Next, we declare the failure operation that is triggered when the search fails:
operation failure : judgment

Next we define the function subgoals that takes a goal A and a hypothesis B and computes
a list of subgoals that together with B imply A. For instance, if B is equal to C → D → A
then the computed subgoals are [C, D]:
let rec subgoals A B =

match B with
| ` A ⇒ []
| ` ?P → ?Q ⇒ P :: ( subgoals A Q)
| _ ⇒ [ failure ]
end

The function derive takes a goal A and attempts to derive it. If the goal is an implication,
it introduces the antecedent as a hypothesis and calls itself recursively. Otherwise it tries to
prove the goal from the current hypotheses by simple backchaining:
let rec derive A =

match A with
| ` ?P → ?Q ⇒ λ (x : P), derive Q
| ` _ ⇒ backchain A hypotheses
end

and backchain A lst =
match lst with
| [] ⇒ failure
| (` ?f : ?B) :: ?lst ⇒

handle
apply f (map derive ( subgoals A B))

with
failure ⇒ backchain A lst

end
end

Note how backchain uses a handler to intercept failure, just like an ordinary exception
handler does. Finally, we declare an operation auto and define a global handler that handles
it. The handler only works when auto is used in checking mode:
operation auto : judgment

handle
| auto : ?T’ ⇒

match T’ with
| Some ?T ⇒ derive T
| None ⇒ failure
end

end

Now we can use auto to inhabit types. For example,
(λ (X : Type), auto : X → X)

computes to
` λ (X : Type) (x : X), x : Π (X : Type), X → X

and given the types
constant A : Type
constant B : Type
constant C : Type
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the computation
auto : (A → B → C) → (A → B) → (A → C)

results in
` λ (x : A → B → C) (x0 : A → B) (x1 : A), x x1 (x0 x1)

: (A → B → C) → (A → B) → A → C
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