
RZ: a Tool for Bringing Constructive and
Computable Mathematics Closer to
Programming Practice
ANDREJ BAUER, Faculty of Mathematics and Physics, University of Ljubljana,
Ljubljana, Slovenia
E-mail: Andrej.Bauer@fmf.uni-lj.si

CHRISTOPHER A. STONE, Computer Science Department, Harvey Mudd
College, Claremont, CA, USA
E-mail: stone@cs.hmc.edu

Abstract
Realizability theory is not just a fundamental tool in logic and computability. It also has direct application to the design and
implementation of programs, since it can produce code interfaces for the data structure corresponding to a mathematical
theory. Our tool, called RZ, serves as a bridge between the worlds of constructive mathematics and programming. By using
the realizability interpretation of constructive mathematics, RZ translates specifications in constructive logic into annotated
interface code in Objective Caml. The system supports a rich input language allowing descriptions of complex mathematical
structures. RZ does not extract code from proofs, but allows any implementation method, from handwritten code to code
extracted from proofs by other tools.

1 Introduction

Given a mathematical description of a mathematical structure (constants, functions, relations and
axioms), what should a computer implementation look like?

For simple cases, the answer is obvious. A group would have a type whose values represent group
elements, as well as an associative binary operation a constant neutral element and a unary inverse
operator.

But for more interesting structures, especially those arising in constructive mathematical analysis,
the answer is less clear. How do we implement the real numbers (a Cauchy-complete Archimedean
ordered field)? Or choose the operations for a compact metric space or a space of smooth
functions? Significant research goes into finding satisfactory representations [12, 15, 36, 37], while
implementations of exact real arithmetic [24, 29] show that theory can be put into practice quite
successfully.

The theory of realizability provides guidance in development of computable mathematics. Our
work shows that realizability is not only a fundamental tool in logic and computability, but also has
direct application to the design and implementation of programs: it can produce a description of the
data structure (a code interface) directly corresponding to a mathematical specification.

However, doing this manually is tedious. Worse, different but logically equivalent sets of axioms
correspond to different, although interdefinable, interfaces for code. One might then want to compare
several variations, since some interfaces will be more useful than others in practice. And few
programmers—even those with strong backgrounds in mathematics and classical logic—are familiar

Vol. 19 No. 1, © The Author, 2008. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org
Published online 2 August 2008 doi:10.1093/logcom/exn026

 at C
larem

ont U
niversity on O

ctober 4, 2013
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

 at C

larem
ont U

niversity on O
ctober 4, 2013

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

 at C
larem

ont U
niversity on O

ctober 4, 2013
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

 at C

larem
ont U

niversity on O
ctober 4, 2013

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

 at C
larem

ont U
niversity on O

ctober 4, 2013
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

 at C

larem
ont U

niversity on O
ctober 4, 2013

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

 at C
larem

ont U
niversity on O

ctober 4, 2013
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

 at C

larem
ont U

niversity on O
ctober 4, 2013

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

 at C
larem

ont U
niversity on O

ctober 4, 2013
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

 at C

larem
ont U

niversity on O
ctober 4, 2013

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

 at C
larem

ont U
niversity on O

ctober 4, 2013
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

 at C

larem
ont U

niversity on O
ctober 4, 2013

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

 at C
larem

ont U
niversity on O

ctober 4, 2013
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

 at C

larem
ont U

niversity on O
ctober 4, 2013

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

 at C
larem

ont U
niversity on O

ctober 4, 2013
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

 at C

larem
ont U

niversity on O
ctober 4, 2013

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

 at C
larem

ont U
niversity on O

ctober 4, 2013
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

 at C

larem
ont U

niversity on O
ctober 4, 2013

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

 at C
larem

ont U
niversity on O

ctober 4, 2013
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

 at C

larem
ont U

niversity on O
ctober 4, 2013

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

 at C
larem

ont U
niversity on O

ctober 4, 2013
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

 at C

larem
ont U

niversity on O
ctober 4, 2013

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

 at C
larem

ont U
niversity on O

ctober 4, 2013
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

 at C

larem
ont U

niversity on O
ctober 4, 2013

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

 at C
larem

ont U
niversity on O

ctober 4, 2013
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

 at C

larem
ont U

niversity on O
ctober 4, 2013

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

 at C
larem

ont U
niversity on O

ctober 4, 2013
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/
http://logcom.oxfordjournals.org/

18 RZ: Constructive Mathematics to Programming Practice

with constructive logic or realizability. Programmers are used to language constructs describing
interfaces (e.g. C++ header files, ML signatures or Java interfaces) and to using logical assertions
(e.g. preconditions and postconditions).

We have therefore implemented a system, called RZ, to serve as a bridge between the logical
world and the programming world.1 RZ translates specifications in constructive logic into standard
interface code in a programming language (currently Objective Caml [25], but other languages could
be used).

The constructive part of the original specification turns into interface code, listing types and values
to be implemented. The rest becomes assertions about these types and values. As these assertions
have no computational content, their constructive and classical meanings agree, and they can be
understood by programmers and mathematicians accustomed to classical logic.

RZ was designed as a lightweight system supporting a rich input language. Although transforming
complete proofs into complete code is possible [23], we have not implemented this. Other excellent
systems, including Coq [8] and Minlog [7], can extract programs from proofs. But they work best
managing the entire task, from specification to code generation. In contrast, interfaces generated by
RZ can be implemented in any fashion as long as the assertions are satisfied. Code can be written by
hand, using imperative, concurrent and other language features rather than a ‘purely functional’subset.
At the other extreme, the output of RZ can be viewed as a possible input to a program extraction tool,
where the distinction between computational and non-computational parts (in Coq these are Set
and Prop, respectively) has been automatically determined; a corresponding implementation would
then be provided via theorem-proving and program extraction.

The article is organized as follows. In Section 2 we present a version of realizability which is most
suitable for our purposes. Sections 3 and 4 describe the input and the output language of RZ, while
in Section 5 we explain how RZ translates from one to the other. Various implementation issues
are discussed in Section 6, and examples of RZ at work are shown in Section 7. We conclude with
remarks on related work in Section 8.

An earlier description of our RZ work appears in [4]; since then, the input syntax and underlying
implementation has been significantly revised and improved, and the support for dependent types
and hoisting is completely new.

2 Typed realizability

RZ is based on typed realizability by Longley [26]. This variant of realizability corresponds most
directly to programmers’ intuition about implementations.

We approach typed realizability and its relationship to real-world programming by way of example.
Suppose we are asked to design a data structure for the set G of all finite simple2 directed graphs
with vertices labelled by distinct integers. An exemplar directed graph G is shown in Figure 1. One
common representation of such graphs uses a pair of lists (�V ,�A), where �V is the list of vertex labels
and �A is the adjacency list representing the arrows by pairing the labels of each source and target.
For the above graph G, �V =[1;2;3;4] and �A =[(1,2);(2,2);(2,3);(3,2);(3;1)]. Thus we define the
datatype of graphs as3

type graph= intlist ∗ (int ∗ int)list

1RZ is publicly available for download at http://math.andrej.com/rz/, together with the abridged version of this article
presented at CiE 2007 [5].

2Simple means at most one arrow between any two vertices.
3We use OCaml notation in which tlist classifies finite lists of elements of type t, and t1 ∗t2 classifies pairs containing

a value of type t1 and a value of type t2.

http://math.andrej.com/rz/

RZ: Constructive Mathematics to Programming Practice 19

4

1 2

3

Figure 1. A finite directed graph G

However, this is not a complete description of the intended representation, as there are representation
invariants and conditions not expressed by the type, e.g.

1. The order in which vertices and arrows are listed is not important; e.g. [1;2;3;4] and [4;1;2;3]
represent the same vertices.

2. Each vertex and arrow must be listed exactly once.
3. The source and target of each arrow must appear in the list of vertices.

Thus, to implement the mathematical set G, we must not only decide on the underlying datatype
graph, but also determine what values of that type represent which elements of G. As we
shall see next, this can be expressed either using a realizability relation or a partial equivalence
relation (per).

2.1 Modest sets and pers

We now define typed realizability as it applies to OCaml. Other general-purpose programming
languages could be used instead, as long as they provide the usual ground types, product and function
types.4

Let Type be the collection of all (non-parametric) OCaml types. To each type t ∈Type we assign
the set [[t]] of values of type t that behave functionally in the sense of Longley [27]. Such values
are represented by terminating expressions that do not throw exceptions or return different results
on different invocations. They may use exceptions, store and other computational effects, provided
they appear functional from the outside; a useful example using computational effects is presented in
Section 7.6. A functional value of function type may diverge as soon as it is applied. The collection
Type with the assignment of functional values [[t]] to each t ∈Type forms a typed partial combinatory
algebra (TPCA), which provides a theoretical basis for the definition of a realizability model that
suits our needs.

Going back to our example, we see that an implementation of directed graphs G specifies a datatype
|G|=graph together with a realizability relation �G between G and [[graph]]. The meaning of
(�V ,�A)�G G is ‘OCaml value (�V ,�A) represents/realizes/implements graph G’. There are two
natural conditions that �G ought to satisfy: (i) for every G∈G there should be at least one realizer
(�V ,�A) representing it, and (ii) if (�V ,�A) represents both G and G′ then G=G′.5 If (�V ,�A) and
(�′

V ,�′
A) represent the same graph (e.g. because �V is a permutation of �′

V , and similarly for �A and �′
A)

we say that they are equivalent and write (�V ,�A)≈G (�′
V ,�′

A). The relation ≈G is a partial equivalence
relation (symmetric and transitive, but not reflexive) because not every (�V ,�A)∈[[graph]] represents
a graph.

4It is also convenient to work with a language that supports sum types, as this allows a more natural representation of
disjoint unions.

5The latter condition is called modesty and is not strictly necessary for the development of the theory, though programmers
would naturally expect it to hold.

20 RZ: Constructive Mathematics to Programming Practice

Ageneral definition is in order.Amodest set is a triple A= (〈A〉,|A|,�A) where 〈A〉 is the underlying
set, |A|∈Type is the underlying type, and �A is a realizability relation between [[|A|]] and 〈A〉,
satisfying

1. totality: for every x∈〈A〉 there is v∈[[|A|]] such that v�A x, and
2. modesty: if u�A x and u�A y then x=y.

The support of A is the set ‖A‖={v∈[[|A|]] |∃x∈〈A〉 .v�A x} of those values that realize something.
We define the relation ≈A on [[|A|]] by

u≈A v ⇐⇒ ∃x∈〈A〉 .(u�A x∧v�A x
)
.

From totality and modesty of �A it follows that ≈A is a per, i.e. symmetric and transitive. Observe
that ‖A‖={v∈[[|A|]] |v≈A v}, whence ≈A restricted to ‖A‖ is an equivalence relation. In fact, we may
recover a modest set up to isomorphism from |A| and ≈A by taking 〈A〉 to be the set of equivalence
classes of ≈A, and v�A x to mean v∈x.

The two views of implementations, as modest sets (〈A〉,|A|,�A), and as pers (|A|,≈A), are
equivalent.6 We concentrate on the view of modest sets as pers. They are more convenient to use in
RZ because they refer only to types and values, as opposed to arbitrary sets. Nevertheless, it is useful
to understand how modest sets and pers arise from natural programming practice.

Modest sets form a category whose objects are modest sets and morphisms are the realized
functions.Arealized function f :A→B is a function f : 〈A〉→〈B〉 for which there exists v∈[[|A|→|B|]]
such that, for all x∈〈A〉 and u∈|A|,

u�A x ⇒ vu�B f (x). (1)

This condition is just a mathematical expression of the usual idea that v is an implementation of f if
it does to realizers what f does to the elements they represent.

The equivalent category of pers has as objects pairs A= (|A|,≈A) where |A|∈Type and ≈A is a per
on [[|A|]]. A morphism A→B is represented by a function v∈[[|A|→|B|]] such that, for all u,u′ ∈‖A‖,

u≈A u′ ⇒ vu≈B vu′. (2)

Values v and v′ that both satisfy (2) represent the same morphism if, for all u,u′ ∈‖A‖, u≈A u′ implies
vu≈B v′ u′.

The category of pers has a very rich structure. For example, we may form a Cartesian product
A×B of pers A and B by

|A×B|=|A|∗|B|,
(u1,v1)≈A×B (u2,v2) ⇐⇒ u1 ≈A u2 ∧v1 ≈B v2.

The projections π1 :A×B→A and π2 :A×B→B are realized by fst and snd, respectively.

6And there is a third view, as a partial surjection δA :⊆[[|A|]]� 〈A〉, with δA(v)=x when v�A x. This is how realizability
is presented in Type Two Effectivity [37].

RZ: Constructive Mathematics to Programming Practice 21

The morphisms between pers A and B again form a per BA, also written as A→B, called the
exponential of A and B, with

|BA|=|A|→|B|,
‖BA‖={

v∈[[|A|→|B|]] |∀u,u′ ∈[[|A|]] .(u≈A u′ ⇒ vu≈B vu′)}

u≈BA v ⇐⇒ u,v∈‖A‖∧∀w∈‖A‖ .uw≈B vw.

The evaluation map e :BA ×A→B is realized by OCaml application, fun (u,v)→uv. If a function
f :C×A→B is realized by v, then its transpose f̃ :C →BA, f̃ (z)(x)= f (z,x), is realized by
funz x→v (z,x). This shows that the category of pers is Cartesian closed. In Section 5.1 we review
other canonical constructions on modest sets.

As an example we consider the cyclic group on seven elements (Z7,0,−,+). To implement the
group, we must give a representation of Z7 as a per Z = (|Z|,≈Z), and provide realizers for the neutral
element 0, negation − and addition +.

One possibility is to choose int as the underlying type |Z|, and to let ‖Z‖ be only the integers 0
through 6. Then negation and addition must work modulo 7 (i.e. must return an integer in the range
0–6 when given integers in this range). The neutral element would be the integer constant 0, and the
equivalence ≈Z would be integer equality.

Alternatively, we could take int as the underlying type |Z|, but let ‖Z‖ include all values of type
int. In this case, negation and addition could be simply integer addition and negation.7 Here the
neutral element could be implemented as any integer multiple of 7, and the equivalence ≈Z would
be equivalence-modulo-7.

Both of these pers happen to be decidable, i.e. it can be algorithmically decided whether two values
in ‖Z‖ represent the same element of Z7.

Not all pers are decidable. Examples include implementations of semigroups with an undecidable
word problem [31], implementations of computable sets of integers (which might be realized by
membership functions of type int→bool), and implementations of computable real numbers
(which might be realized by infinite Cauchy sequences). There is no presupposition that pers are
computable (implementable). We can require decidable equivalence by adding a suitable axiom; see
Section 7.1.

2.2 Interpretation of logic

In the realizability interpretation of logic, each formula φ is assigned a set of realizers, which can
be thought of as computations that witness the validity of φ. The situation is somewhat similar, but
not equivalent, to the propositions-as-types translation of logic into type theory, where proofs of a
proposition correspond to terms of the corresponding type. More precisely, to each formula φ we
assign an underlying type |φ| of realizers, but unlike the propositions-as-types translation, not all
terms of type |φ| are necessarily valid realizers for φ, and some terms that are realizers may not
correspond to any proofs (e.g. if they denote partial functions or use computational effects).

It is customary to write t �φ when t ∈[[|φ|]] is a realizer for φ. The underlying types and the
realizability relation � are defined inductively on the structure of φ; an outline is shown in Figure 2.
We say that a formula φ is valid if it has at least one realizer.

7Taking care to prevent integer overflow.

22 RZ: Constructive Mathematics to Programming Practice

Figure 2. Realizability interpretation of logic (outline)

In classical mathematics, a predicate on a set X may be viewed as a subset of X or a (possibly non-
computable) function X →bool, where bool={⊥,�} is the set of truth values. Accordingly, since
in realizability propositions are witnessed by realizers, a predicate φ on a modest set A may be viewed
as a subset of 〈A〉×[[|φ|]], or a (possibly non-computable) function 〈A〉×[[|φ|]]→{⊥,�}. In terms
of pers, which is what RZ uses, a predicate φ on a per A= (|A|,≈A) is a (possibly non-computable)
function φ : [[|A|]]×[[|φ|]]→bool, i.e.

• strict: if φ(u,v) then u∈‖A‖ and
• extensional: if φ(u1,v) and u1 ≈A u2 then φ(u2,v).

We illustrate how the realizability interpretation extracts the computational content of a proposition.
To make an interesting example, suppose we have implemented the real numbers R as a per R=
(real,≈R), and consider the statement that every cubic x3 +ax+b has a root,

∀a:R. ∀b:R. ∃x:R. x3 +ax+b=0. (3)

By computing according to Figure 2, we see that a realizer for this proposition is a value r
of type real→real→real×unit such that, if t realizes a∈R and u realizes b∈R, then
r tu= (v,w) with v realizing a real number x such that x3 +ax+b=0, and with w being trivial.
(This can be ‘thinned’ to a realizer of type real→real→real that does not bother to
compute w.) In essence, the realizer r computes a root of the cubic equation. Note that r is not
extensional, i.e. different realizers t and u for the same a and b may result in different roots.
To put this in another way, r realizes a multi-valued function8 rather than a per morphism. It
is well known in computable mathematics that certain operations, such as equation solving, are
only computable if we allow them to be multi-valued. They arise naturally in RZ as translations of
∀∃ statements.

There are propositions whose realizers are ‘irrelevant’ or free of computational content. For
example, realizers for � and equality have type unit. Another example is a negation ¬φ, which
is defined to be the same as φ⇒⊥, whose realizers have type |φ|→unit. Such realizers do not

8The multi-valued nature of the realizer comes from the fact that it computes any one of many values, not that it computes
all of the many values.

RZ: Constructive Mathematics to Programming Practice 23

compute anything useful, and we may as well throw them away. Sometimes only a part of a realizer is
computationally irrelevant, as we saw in the last example. Propositions that are free of computational
content are characterized as the ¬¬-stable propositions. A proposition φ is said to be ¬¬-stable, or
just stable for short, when ¬¬φ⇒φ is valid. Any negative proposition, i.e. one built from �, ⊥, =,
∧, ⇒ and ∀ is stable, but there may be other propositions that are stable and are not written in the
negative form.

It would be unproductive to bother the programmer with requirements for useless code. On input,
one can specify whether abstract predicates have computational content. On output, extracted realizers
go through a thinning phase, which removes irrelevant realizers.

2.3 Uniform families of modest sets

Many structures are naturally viewed as families of sets, or sets depending on parameters, or dependent
types as they are called in type theory. For example, the n-dimensional Euclidean space R

n depends
on the dimension n∈N, the Banach space C([a,b]) of uniformly continuous real functions on the
closed interval [a,b] depends on a,b∈R such that a<b, etc. In general, a family of sets {Ai}i∈I is an
assignment of a set Ai to each i∈ I from an index set I .

In the category of modest sets the appropriate notion is that of a uniform family {Ai}i∈I , which is an
assignment of a modest set Ai = (〈Ai〉,|A|,�Ai) to each i∈〈I〉, where I is an index modest set [19, 6.3].
The uniformity comes from the requirement that all the Ai’s share the same underlying type |Ai|=|A|.
It is a desirable restriction from the implementation point of view, because it removes dependencies
at the level of types. Note also that there is no dependency on the realizers, only on the elements of
the underlying set.

We may express uniform families in terms of pers, too. A uniform family of pers {Ai}i∈I indexed
by a per I is given by an underlying type |A| and a family of pers (≈Ai)i∈[[|I|]], i.e.

• strict: if u≈Ai v then i∈‖I‖, and
• extensional: if u≈Ai v and i≈I j then u≈Aj v.

We may form the sum �i∈I Ai of a uniform family {Ai}i∈I as

|�i∈I Ai|=|I|×|A|
(i1,u1)≈�i∈I Ai (i2,u2) ⇐⇒ i1 ≈I i2 ∧u1 ≈Ai1

u2

and the product �i∈I Ai as

|�i∈I Ai|=|I|→|A|
‖�i∈I Ai‖={v∈[[|I|→|A|]] |∀ i,j∈[[|I|]] .(i≈I j ⇒ vi≈Ai vj

)}
u≈�i∈I Ai v ⇐⇒ u,v∈‖�i∈I Ai‖∧∀ i,j∈[[|I|]] .(i≈I j ⇒ ui≈Ai v j

)
.

These constructions allow us to interpret (extensional) dependent type theory in the category of
modest sets.

As an example of a uniform family we consider the cyclic group (Zn,0,−,+) of order n. To keep
things simple, we assume that n ranges over natural numbers that can be represented by type int
(i.e. |N |=int), and that ≈N is equality. The uniform family {Zn}n∈N is then like the cyclic group
of order 7, with 7 replaced by n. Ignoring overflow, the underlying type would be |Zn|=int. Any
of the implementations suggested for Z7 would work here, with 7 replaced by the parameter n; in

24 RZ: Constructive Mathematics to Programming Practice

one case we would have u≈Zn v ⇐⇒ u=v and in the other u≈Zn v ⇐⇒ umodn=vmodn. Negation
would be specified as a constant of dependent type �n∈N Zn →Zn. Its realizer neg would then have
type |N |→|Zn|→|Zn|, i.e. int→int→int, so that neg(n) would be a realizer for negation on
Zn. The realizer for addition would similarly take an extra argument n.

3 Specifications as signatures with assertions

In programming we distinguish between implementation and specification of a structure. In OCaml
these two notions are expressed with modules and module types, respectively.9 A module defines
types and values, while a module type simply lists the types, type definitions and values provided by
a module. For a complete specification, a module type must also be annotated with assertions which
specify the required properties of declared types and values. For example, if we look at the definition
of module type Ab in Figure 3, we might guess that Ab is a signature for an Abelian group. However,
Ab requires an implementation that satisfies the signature of an Abelian group, but does not guarantee
an Abelian group. A complete description would contain the following further assertions:

1. there is a per ≈t on [[t]],
2. zero∈‖t‖.
3. for all u,v∈[[t]], if u≈t v then negu≈tnegv,
4. for all u1,u2,v1,v2 ∈[[t]], if u1 ≈t v1 and u2 ≈t v2 then add (u1,u2)≈tadd (v1,v2),
5. for all u∈‖t‖, add (zero,u)≈t u,
6. for all u∈‖t‖, add (u,negu)≈tzero,
7. for all u,v,w∈‖t‖, add (add (u,v),w)≈tadd (u,add (v,w)),
8. for all u,v∈‖t‖, add (u,v)≈tadd(v,u).

Assertions 2–4 state that zero, neg and add realize a constant, a unary and a binary operation,
respectively, while assertions 5–8 correspond to axioms for Abelian groups.

The output of RZ consists of module specifications, module types plus assertions about their
components. More specifically, a specification may contain value declarations, type declarations and
definitions, module declarations, specification definitions, proposition declarations and assertions.
The language of specifications is summarized in Figure 4.

A specification can describe an OCaml structure (a collection of definitions for types and values)
or an OCaml functor (a parameterized module, i.e. a function mapping modules to modules). The
latter would be appropriate, e.g. when describing a uniform implementation of the real numbers that
works given any implementation of natural numbers.

module type Ab =
sig
type t
val zero : t
val neg : t -> t
val add : t * t -> t

end

Figure 3. The module type Ab

9In object-oriented languages implementations and specifications are expressed with classes and interfaces, while in
Haskell they correspond to modules and declarations.

RZ: Constructive Mathematics to Programming Practice 25

Figure 4. The syntax of specifications (simplified)

Assertions within module specifications (which appear as code comments) are expressed in the
negative fragment of first-order logic, which contains constants for truth and falsehood, negation,
conjunction, implication, equivalence and universal quantification (but no disjunction or existential).
For convenience we also introduce the propositional case

match e with ‘l1x1 ⇒p1 |··· |‘lnxn ⇒pn

which is read ‘if e is of the form ‘li xi then pi holds (i=1,...,n)’, with the understanding that the
expression is false if e does not match any case. This can be expressed with the negative formula

(∀x1.e= ‘l1x1 →p1)∧···∧(∀xn.e= ‘lnxn →pn)∧
¬((∀x1.e �= ‘l1x1)∧···∧(∀xn.e �= ‘lnxn)).

26 RZ: Constructive Mathematics to Programming Practice

The negative fragment is the part of first-order logic that has no computational content in the
realizability interpretation. Consequently, the classical and constructive interpretations of assertions
agree. This is quite desirable, since RZ acts as a bridge between constructive mathematics and
real-world programmers, who typically are not familiar with constructive logic.

RZ ever produces only a small subset of OCaml types (the unit type, products, function types,
polymorphic variant types and parameter types). Correspondingly, the language of terms produced
is fairly simple (tuples, functions, polymorphic variants and local definitions). However, the
programmer is free to implement a specification using any types and terms that exist in OCaml.

A special kind of term is an obligation assure x:τ,p in e, which means ‘in term e, let x be any
element of [[τ]] that satisfies p’. An obligation is equivalent to a combination of Hilbert’s indefinite
description operator and a local definition, letx=(εx:τ.p)ine, where εx:τ.p means ‘any x∈[[τ]]
such that p’. The alternative form assure pin e stands for assure _:unit,p in e.

Obligations arise from the fact that well-formedness of the input language is undecidable; see
Section 4. In such cases the system computes a realizability translation, but also produces obligations
to be checked. The programmer must replace each obligation with a value satisfying the obligation
(i.e. demonstrate that the obligation can be satisfied). If such values do not exist, the specification is
unimplementable.

4 The input language

The input to RZ consists of one or more theories. A RZ theory is a generalized logical signature with
associated axioms, similar to a Coq module signature. Theories describe models, or implementations.
A summary of the input language appears in Figure 5.

The simplest theory 	 is a list of theory elements thy θ1 ... θn end. A theory element may specify
that a certain set, set element, proposition or predicate or model must exist (using the Parameter
keyword). It may also provide a definition of a set, term, proposition, predicate or theory (using
the Definition keyword). Finally, a theory element can be a named axiom (using the Axiom
keyword).

We allow model parameters in theories; typical examples in mathematics include the theory of a
vector space parameterized by a field of scalars, or the theory of the real numbers parameterized by
a model of the natural numbers.

Following Sannella, Sokolowski, and Tarlecki10 [32] RZ supports two forms of parameterization.
A theory of a parameterized implementation [m:	1]→	2 describes a uniform family of models
(i.e. a single implementation; a functor in OCaml) that maps every model m satisfying 	1 to a model
of 	2. In contrast, a theory λm:	1. 	2 maps models to theories; if T is such a theory, then T (M1)
and T (M2) are theories whose implementations might be completely unrelated.11

Propositions and predicates appearing in theories may use full first-order constructive logic, not
just the negative fragment. The grammar for logical inputs is shown in Figure 5. Most of this should
be familiar, including the use of lambda abstraction to define predicates.

The language of sets is rich, going well beyond the type systems of typical programming languages.
In addition to any base sets postulated in a theory, one can construct dependent Cartesian products
and dependent function spaces. We also supports disjoint unions (with labelled tags), quotient spaces
(a set modulo a stable equivalence relation), subsets (elements of a set satisfying a predicate). RZ
even permits explicit references to sets of realizers.

10‘parameterized (program specification) �= (parameterized program) specification’.
11Further, in some cases T (M1) might be implementable while T (M2) is not.

RZ: Constructive Mathematics to Programming Practice 27

Figure 5. Input syntax (simplified)

The term language includes introduction and elimination constructs for the set level. For product
sets we have tuples and projections (π1e, π2e, …), and for function spaces we have lambda
abstractions and application. One can inject a term into a tagged union, or do case analyses on the
members of a union. We can produce an equivalence class or pick a representative from a equivalence
class (as long as what we do with it does not depend on the choice of representative). We can produce
a set of realizers or choose a representative from a given set of realizers (as long as what we do with it

28 RZ: Constructive Mathematics to Programming Practice

does not depend on the choice of representative). We can inject a term into a subset (if it satisfies the
appropriate predicate), or project an element out of a subset. Finally, the term language also allows
local definitions of term variables, and definite descriptions (as long as there is a unique element
satisfying the predicate in question).

From the previous paragraph, it is clear that checking the well-formedness of terms is not decidable.
RZ checks what it can, but does not attempt serious theorem proving. Uncheckable constraints
remain as obligations in the final output, and should be verified by other means before the output can
be used.

5 Translation

Having shown the input and output languages for RZ, we now explain how the translation from one
to the other works. A theory is translated to a specification, where the theory elements are translated
as follows.

5.1 Translation of sets and terms

A set declaration Parameter s :Set is translated to

type s
predicate (≈s) : s → s → bool
assertion symmetric_s : ∀ x:s, y:s, x ≈s y → y ≈s x
assertion transitive_s : ∀ x:s, y:s, z:s, x ≈s y ∧ y ≈s z → x ≈s z
predicate ‖s‖ : s → bool
assertion support_def_s : ∀ x:s, x : ‖s‖ ↔ x ≈s x

This says that the programmer should define a type s and a per ≈s on [[s]]. Here ≈s is not an
OCaml value of type s→s→bool, but an abstract relation on the set [[s]]×[[s]]. The relation may
be uncomputable.

The translation of the declaration of a dependent set Parameter t :s→Set follows the
interpretation of dependent sets as uniform families (Section 2.3):

type t
predicate ≈t : s → t → t → bool
assertion strict_t : ∀ x:s, y:t, z:t, y ≈t x z → x : ‖s‖
assertion extensional_t :

∀ x:s, y:s, z:t, w:t, x ≈s y → z ≈t x w → z ≈t y w
assertion symmetric_t : ∀ x:s, y:t, z:t, y ≈t x z → z ≈t x y
assertion transitive_t :

∀ x:s, y:t, z:t, w:t, y ≈t x z ∧ z ≈t x w → y ≈t x w
predicate ‖t‖ : s → t → bool
assertion support_def_t : ∀ x:s, y:t, y : ‖t x‖ ↔ y ≈t x y

The underlying output type t is still non-dependent, but the per is parameterized by s.
A value declaration Parameter x :s is translated to

val x : s
assertion x_support : x : ‖s‖

which requires the definition of a value x of type s which is in the support of s. When s is not a
basic set, RZ computes the interpretation of the underlying type and support.

RZ: Constructive Mathematics to Programming Practice 29

A value definition Definition x :=e where e is an expression denoting an element of s is
translated to

val x : s
assertion x_def : x ≈s e

The assertion does not force x to be defined as e, only to be equivalent to it with respect to ≈s. This
is useful, as often the clearest or easiest ways to define a value are not the most efficient ways to
compute it.

Constructions of sets in the input language are translated to corresponding constructions of modest
sets. In Section 2.1 we saw how products, exponentials and their dependent versions are formed. We
briefly review the remaining constructions of modest sets. We only consider those constructions of
terms that are not entirely straightforward.

Disjoint union. A disjoint union of modest sets l1:A+l2:B is the modest set whose underlying type
is the sum of underlying types,

|l1:A+l2:B|= ‘l1of |A|+‘l2of |B|,
and the per is the disjoint union of pers ≈A and ≈B, so that we have

‘l1u≈l1:A+l2:B ‘l1v ⇐⇒ u≈s1 v,

‘l2u≈l1:A+l2:B ‘l2v ⇐⇒ u≈s2 v.

Subsets. The construction of subsets may look surprising at first, but it makes sense computationally.
Given a predicate φ on a per A, the sub-per {x :A |φ} has underlying type |A|×|φ| where
(u1,v1)≈{x:A|φ} (u2,v2) when u1 ≈A u2, v1 �φ(u1) and v2 �φ(u2). The point is that a realizer for
an element of {x :A |φ} carries information about why the element belongs to the subset, just like a
predicate φ carries information of type |φ| about why a particular instance of φ holds.

A type coercion e:t can convert an element of the subset s={x : t |φ(x)} to an element of t. At the
level of realizers this is achieved by the first projection, which keeps a realizer for the element but
forgets the one for φ(e). The opposite type coercion e′ :s takes an e′ ∈ t and converts it to an element
of the subset. This is only well formed when φ(e′) is valid. Then, if u�t e′ and v�φ(e′), a realizer
for e′ :s is (u,v). However, since RZ cannot in general know a v which validates φ(e′), it emits the
pair (u,(assure v:|φ|,φuv in v)).

Quotients. The category of modest sets has coequalizers, hence a quotient modest set A/ρ may be
constructed for an any equivalence relation ρ on A. However, because equality does not carry any
computational content, equality of equivalence classes [x]ρ =[y]ρ implies only ¬¬ρ(x,y), not the
usual ρ(x,y). As this may cause confusion and mistakes, it is better to permit only quotients by stable
equivalence relations, which behave as expected.

A stable equivalence relation on a per A is the same thing as a partial equivalence relation ρ

on |A| which satisfies x≈A y ⇒ ρ(x,y). Then the quotient A/ρ is the per with |A/ρ|=|A| and
x≈A/ρ y ⇐⇒ ρ(x,y).

Luckily, it seems that many equivalence relations occurring in computable mathematics are stable,
or can be made stable. For example, Cauchy sequences (of rational numbers) (an)n∈N and (bn)n∈N

represent the same real number when

∀ i∈N .∃ j∈N .∀m,n≥ j.|am −bn|≤2−i. (4)

30 RZ: Constructive Mathematics to Programming Practice

This defines an equivalence relation on the set of Cauchy sequences which does not seem to be
stable; intuitively a realizer for this equivalence would be a computation telling us at what point in
the sequence the terms will be within 2−i of each other. However, if we restrict attention just to the
rapid Cauchy sequences, i.e. those satisfying ∀ i∈N . |ai+1 −ai|≤2−i, then the equivalence relation
becomes

∀ i∈N . |ai −bi|≤2−i+3,

which is a negative formula; the above realizer is rendered unnecessary. It is interesting that most
practical implementations of real numbers follow this line of reasoning and represent real numbers
in a way that avoids annotating every sequence with its rate of convergence.

Translation of an equivalence class [e]ρ is quite simple, since a realizer for e also realizes its
equivalence class [e]ρ . The elimination term let [x]ρ =ξ in e, means ‘let x be any element of
ρ-equivalence class ξ in e’. It is only well formed when e does not depend on the choice of x, but
this is something RZ cannot check. Therefore, if u realizes ξ , RZ uses u as a realizer for x and emits
an obligation saying that the choice of a realizer for x does not affect e.

The underlying set of realizers. Another construction on a per A is the underlying per of realizers
rz A, defined by

|rz A|=|A|
u≈rz A v ⇐⇒ u∈‖A‖∧u=v,

where by u=v we mean observational equality of values u and v. An element r ∈rz A realizes a
unique element rz r ∈A. The elimination term let rz x=e1 in e2, which means ‘let x be any
realizer for e1 in e2’, is only well formed if e2 does not depend on the choice of x. This is an
uncheckable condition, hence RZ emits a suitable obligation in the output, and uses for x the same
realizer as for e1.

The construction rz A validates the Presentation Axiom (see Section 7.5). In the input language it
gives us access to realizers, which is useful because many constructions in computable mathematics,
such as those in Type Two Effectivity [37], are explicitly expressed in terms of realizers.

Definite description. Russell’s definite description operator ιx:s.φ(x) denotes the unique element
of {x:s | φ(x)}. In case such an x does not exist, or if there are several, the term is not well formed.
The RZ translation essentially just asks the programmer to provide suitable realizers for x and for
φ(x), and to check uniqueness,

assure x:s,b:|φ|, (x:‖s‖∧φxb∧∀x′:s.∀c:|φ|.(φx′c→x≈sx′)) in (x,b).

This is the best RZ can do, since in general it can check neither that x exists, nor that it is unique.

5.2 Translation of propositions

The driving force behind the translation of logic is a theorem [34, 4.4.10] that says that under the
realizability interpretation every formula φ is equivalent to one that says, informally speaking, ‘there
exists u∈|φ|, such that u realizes φ’. Furthermore, the formula ‘u realizes φ’is computationally trivial.

RZ: Constructive Mathematics to Programming Practice 31

The translation of a predicate φ then consists of its underlying type |φ| and the relation u�φ, expressed
as a negative formula.

Thus an axiom Axiom A :φ in the input is translated to

val u : |φ|
assertion A : u � φ

which requires the programmer to validate φ by providing a realizer for it. When φ is a compound
statement RZ computes the meaning of u�φ as described in Figure 2.

In RZ we avoid the explicit realizer notation u�φ in order to make the output easier to read.
A basic predicate declaration Parameter p :s→Prop is translated to

type ty_p
predicate p : s → ty_p → bool
assertion strict_p : ∀ x:s, a:ty_p, p x a → x : ‖s‖
assertion extensional_p :

∀ x:s, y:s, a:ty_p, x ≈s y → p x a → p y a

We see that the predicate p has gained an additional argument of type ty_p (which the programmer
is supposed to define in an implementation), and we write pxa instead of a�px. The two assertions
require that p be strict and extensional with respect to ≈s.

Frequently we know that a predicate is stable, which can be taken into account when computing its
realizability interpretation. For this purpose the input language has the subkind Stable of Prop.
When RZ encounters a predicate which is declared to be stable, such as p :s→Stable, it does not
generate a declaration of ty_p and does not give p an extra argument.

Another special kind in the RZ input language is the kind Equiv(s) of stable equivalence relations
on a set s. When an equivalence relation is declared with Parameter p :Equiv(s), RZ will output
assertions stating that p is strict, extensional, reflexive, symmetric and transitive.

6 Implementation

The RZ implementation consists of several sequential passes.
After the initial parsing, a type reconstruction phase checks that the input is well-typed (and checks

for well-formedness to the extent that it is easily decidable), and if successful produces an annotated
result with all variables explicitly tagged with types. The type checking phase uses a system of
dependent types, with limited subtyping (implicit coercions) for sum types and subset types. The
details are fairly standard, so are omitted here. One non-obvious consequence of the realizability
translation, however, is that the subset types with logically equivalent predicates, e.g. {x:α | ρ1(x)∧
ρ2(x)} and {x:α | ρ2(x)∧ρ1(x)} are isomorphic but not equal in general. An explicit coercion is
required to go from one type to the other, because subset values will be pairs containing realizers for
ρ1(x)∧ρ2(x) and ρ2(x)∧ρ1(x), and these realizers have potentially different types |ρ1(x)|∗|ρ2(x)|
and |ρ2(x)|∗|ρ1(x)|, respectively.

Next the realizability translation is performed as described in Section 5, producing interface code.
The flexibility of the full input language (e.g. n-ary sum types and dependent product types) makes
the translation code fairly involved, and so it is performed in a ‘naive’ fashion whenever possible.
The immediate result of the translation is not easily readable.

Thus, up to four more passes simplify the output before it is displayed to the user. A thinning pass
removes all references to trivial realizers produced by stable formulas. For example, direct translation

32 RZ: Constructive Mathematics to Programming Practice

of the free axiom in the output for Kuratowski-finite sets, see Figure 7 and Section 7.3, yields a
value specification for free of type

(A.a→S.s)→ (fin→S.s)∗(unit∗(A.a→unit)∗(fin→fin→unit))

where unit is the unit (terminal) type classifying the trivial realizer. Thinning replaces this by the
isomorphic type

(A.a→S.s)→fin→S.s

and appropriately modifies references to free in the assertions to account for this change in type.
An optimization pass applies an ad hoc collection of basic logical and term simplifications in

order to make the output more readable. Logical simplifications include applications of truth table
rules (�∧ϕ becomes ϕ), detection of syntactically identical premises and conclusions (ϕ1 ⇒ϕ1 ∧ϕ2
becomes ϕ1 ⇒ϕ2), and optimization of other common patterns we have seen arise (∀x:s. (x=e)⇒
ρ(x) becomes ρ(e)). Some redundancy may remain, but in practice the optimization pass helps
significantly.

Finally, the user can specify two optional steps that occur. RZ can perform a phase-splitting
pass [18]. This is an experimental implementation of a transformation that can replace a functor
(a relatively heavyweight language construct) by parameterized types and/or polymorphic values. The
idea is that although functors map modules containing types and terms to other modules containing
types and terms, constraints on the programming language ensure that output types depend only on
input types (and not input terms). Thus, we can split each functor into a mapping from input types
to output types, and then a separate (polymorphic) term mapping input types and terms to an output
term. See Section 7.3 for an example.

The other optional transformation is a hoisting pass which moves obligations in the output to top-
level positions. Obligations appear in the output inside assertions, at the point where an uncheckable
property was needed. Moving these obligations to the top-level make it easier to see exactly what one
is obliged to verify, and can sometimes make them easier to read, at the cost of losing information
about why the obligation was required at all. See Section 7.2 for an example of hoisting.

7 Examples

In this section, we look at several small examples which demonstrate various points of RZ. For a
serious case study from computable mathematics see the implementation of real numbers with RZ
by Bauer and Kavkler [3].

The main theme is that constructively reasonable axioms yield computationally reasonable
operations.

7.1 Decidable sets

A set S is said to be decidable when, for all x,y∈S, x=y or ¬(x=y). In classical mathematics all
sets are decidable, because decidability of equality is just an instance of the law of excluded middle.
But RZ requires an axiom

Parameter s : Set.
Axiom eq: ∀ x y : s, x = y ∨ ¬ (x = y).

RZ: Constructive Mathematics to Programming Practice 33

to produce a realizer for equality

val eq : s → s → [‘or0 | ‘or1]
assertion eq : ∀ (x:‖s‖, y:‖s‖), (match eq x y with

‘or0 ⇒ x ≈s y
| ‘or1 ⇒ ¬ (x ≈s y))

We read this as follows: eq is a function which takes arguments x and y of type s and returns
‘or0 or ‘or1. If it returns ‘or0, then x≈sy, and if it returns ‘or1, then ¬(x≈sy). In other
words eq is a decision procedure which tells when values x and y represent the same element of
the modest set.

7.2 Examples with obligations

In this section we show how RZ produces obligations, is sometimes able to optimize them away, and
show the effect of hoisting.

Consider how we might define division of real numbers. Assuming the set of real numbers real,
constantszero andone and multiplication operation ∗ have already been declared and axiomatized,
we might write:

Definition nonZeroReal := {x : real | ¬ (x = zero)}.
Parameter inv : nonZeroReal → real.
Axiom inverse : ∀ x : real, ¬ (x = zero) -> x * (inv x) = one.
Definition (/) (x : real) (y : nonZeroReal) := x * (inv y).

We have defined the set of non-zero reals nonZeroReal and the inverse operation inv
on it. Division x/y is defined as x∗inv y. This does not mean that the programmer must
necessarily implement division this way, only that the implementation of x/y must be equivalent to
x∗inv y.

In the axiom inverse, RZ encounters the subexpression inv x. Because x is quantified as
an element of real rather than nonZeroReal, the typechecking phase inserts a coercion that
makes the expression well-typed. Translation sees inv(x :nonZeroReal) instead of inv x and
translates this to

inv (assure u:unit, ¬ (x ≈real zero) in (x, u))

If this were the final output, the programmer would have to verify that x is not zero, and provide a
trivial realizer for it. However, in this case the thinning phase first removes the trivial realizer,

inv (assure ¬ (x ≈real zero) in x)

and then the optimizer determines that the obligation is not needed because the whole expression
appears under the hypothesis that x is not zero. So in the end the programmer sees

assertion inverse :
∀ (x:‖real‖), ¬ (x ≈real zero) → (x * inv x) ≈real one

Assuming further that a strict linear order < on real has been axiomatized, we might proceed by
relating it to inv:

Axiom inv_positive: ∀ x : real, zero < x → zero < inv x.

34 RZ: Constructive Mathematics to Programming Practice

Once again invx appears in the input, but this time the optimizer is unable to remove the obligation,
so the output is

assertion inv_positive: ∀ (x:‖real‖),
zero < x → zero < inv (assure (not (x ≈real zero)) in x)

Local obligations can sometimes be hard to read, but if we activate the hoisting phase (see Section 6),
the obligation can be moved to the top level.As this is done, the hypotheses under which the obligation
appears are collected, and we get

assertion inv_positive:
assure (∀ (x:‖real‖), zero < x → not (x ≈real zero))
in ∀ (x:‖real‖), zero < x → zero < inv x

Now it is easier to understand what must be checked, namely that positive reals are not zero—an
easy consequence of irreflexivity of <, but not something that the RZ optimizer is aware of.

Lastly, we could define the golden ratio as the positive solution of x2 =x+1,

the x : real, (zero < x ∧ x*x = x + one)

Not surprisingly, RZ cannot determine that there is a unique such x, so it outputs an obligation:

assure x:real,
(x : ‖real‖ ∧ zero < x ∧ x * x =real= x + one ∧
(∀ (x’:‖real‖), zero < x’ ∧ x’ * x’ ≈real x’ + one → x ≈real x’))

in x

7.3 Finite sets

There are many characterizations of finite sets, but the one that works best constructively is due
to Kuratowski, who identified the finite subsets of A as the least family K(A) of subsets of A that
contains the empty set and is closed under unions with singletons. This characterization relies on
powersets, which are not available in RZ. But the gist of it, namely that K(A) is an initial structure a
suitable sort, can be expressed as follows.

Recall that a ∨-semilattice is a set S with a constant 0∈S and an associative, commutative and
idempotent operation ‘join’ ∨ on S such that 0 is the neutral element for ∨, see Figure 6 for RZ
axiomatization of semilattices. The Kuratowski finite sets K(A) are the free semilattice generated by
a set A, where ∨ is union and 0 is the empty set. This is formalized in RZ as shown in Figure 7. The
theory K is parameterized by a model A which contains a set a. In the first line we include the theory

Figure 6. The theory of a semilattice

RZ: Constructive Mathematics to Programming Practice 35

of semilattices. Then we postulate an operation singleton which injects the generators into the
semilattice. The three definitions are just a convenience, so that we can refer to the parts of K(A) by
their natural names, e.g. emptyset instead of zero. The axiom free expresses the fact that K(A)
is the free semilattice on A.a: for every semilattice S and a map f : A.a→S.s from the generators
to the underlying set of S, there exists a unique semilattice homomorphism g : fin→S.s such that
f(x)=g(singleton x).

The output for Semilattice and K specifies values of suitable types for each declared constant
and operation. All axioms but the last one are equations and have straightforward translations in
terms of underlying pers. The output for the axiom free is shown in Figure 8. Because the axiom
quantifies over all models S of the theory Semilattice its translation is a functor Free which
accepts an implementation of a semilattice S and yields a realizer free validating the axiom. The
computational meaning offree is a combination map and fold operation, taking a mapf :A.a→S.s
and a finite set u={x1,...,xn}, and return f(x1)∨···∨f(xn), where ∨ is the join operation on the
semilattice S.

Figure 7. Kuratowski finite sets

Figure 8. Output of axiom free

36 RZ: Constructive Mathematics to Programming Practice

Applying phase-splitting to this axiom yields the even simpler specification

val free : α→ (α→α→α)→ (A.a→α)→fin→α

(with an appropriate assertion) that replaces the module parameter S by two extra term arguments
(corresponding to the module components S.zero and S.join) and a type argument α for the
type of lattice elements (corresponding to the module input S.s). This is even more recognizable as
a folding operation over the set.

It is important to note that, in contrast to fold operators found in typical functional languages,
free is only expected to work for suitablejoin arguments (e.g. idempotent and order independent).
These sets are not the typical finite set data structure: there is no membership predicate, nor is there
a way to compute the size of a set. There is no assumption that equality is decidable for set elements;
this permits finite sets of exact real numbers, for example. Decidable equality is required both for
membership and for detecting whether the same element has been added twice to the same set.12

Some operations are nevertheless computable. Using free carefully, one can determine whether
a finite set is empty. In the case of a set of exact real numbers, we cannot compute the sum of a set
(since there might be duplicate elements), but we could compute maximum or minimum.

More common set implementations (e.g. theSetmodule in the OCaml standard library) implement
sets over values with decidable total order; these could also be formalized in RZ.

7.4 Inductive types

To demonstrate the use of dependent types we show how RZ handles general inductive types, also
known as W-types or general trees [30]. Recall that a W-type is a set of well-founded trees, where
the branching types of trees are described by a family of sets B={T (x)}x∈S . Each node in a tree has
a branching type x∈S, which determines that the successors of the node are labelled by the elements
of T (x). For example, to get non-empty binary trees whose leaves are labelled by natural numbers,
define

S ={cons}∪{leaf(n) |n∈N}
T (cons)={left,right}

T (leaf(n))=∅.

Then a node of type cons has two successors, indexed by constants left and right, while a node
of type leaf(n) does not have any successors.

Figure 9 shows an RZ axiomatization of W-types. The theory Branching describes that a
branching type consists of a set s and a set t depending on s. The theory W is parameterized
by a branching type B. It specifies a set w of well-founded trees and a tree-forming operation tree
with a dependent type �x∈B.s(B.t(x)→w)→w. Given a branching typex and a mapf :B.t(x)→w,
tree x f is the tree whose root has branching type x and whose successor labelled by �∈B.t(x)
is the tree f(�). The inductive nature of w is expressed with the axiom induction, which states
that for every property M.p, if M.p is an inductive property then every tree satisfies it. A property is
said to be inductive if a tree tree x f satisfies it whenever all its successors satisfy it.

In the translation (see Appendix A for the complete output) dependencies at the level of types
and terms disappear. A branching type is determined by a pair of non-dependent types s and t

12The natural implementation would thus be an unordered collection of elements, possibly with duplicates.

RZ: Constructive Mathematics to Programming Practice 37

Figure 9. General inductive types

but the per ≈t depends on [[s]]. The theory W turns into a signature for a functor receiving a
branching type B and returning a type w, and an operation tree of type B.s→ (B.t→w)→w.
One can use phase-splitting to translate axiom induction into a specification of a polymorphic
function

induction : (B.s→ (B.t→w)→ (B.t→α)→α)→w→α,

which is a form of recursion on well-founded trees. Instead of explaining induction, we show
a surprisingly simple, handwritten implementation of W-types in OCaml. The reader may enjoy
figuring out how it works:

module W (B : Branching) = struct
type w = Tree of B.s * (B.t -> w)
let tree x y = Tree (x, y)
let rec induction f (Tree (x, g)) =
f x g (fun y -> induction f (g y))

end

7.5 Axiom of choice

RZ can help explain why a generally accepted axiom is not constructively valid. Consider the Axiom
of Choice:

Parameter a b : Set.
Parameter r : a → b → Prop.
Axiom ac: (∀ x : a, ∃ y : b, r x y) →

(∃ c : a → b, ∀ x : a, r x (c x)).

The relevant part of the output is

val ac : (a → b * ty_r) → (a → b) * (a → ty_r)
assertion ac :

∀ f:a → b * ty_r,
(∀ (x:‖a‖), let (p,q) = f x in p : ‖b‖ ∧ r x p q) →
let (g,h) = ac f in
g : ‖a → b‖ ∧ (∀ (x:‖a‖), r x (g x) (h x))

38 RZ: Constructive Mathematics to Programming Practice

This requires a function ac which accepts a function f and computes a pair of functions (g,h).
The input function f takes an x:‖a‖ and returns a pair (p,q) such that q realizes the fact
that rxp holds. The output functions g and h taking x:‖a‖ as input must be such that hx
realizes rx (gx). Crucially, the requirement g:‖a→b‖ says that g must be extensional, i.e. map
equivalent realizers to equivalent realizers. We could define h as the second component of f, but
we cannot hope to implement g, in general, because the first component of f is not assumed to be
extensional.

The Intensional Axiom of Choice allows the choice function to depend on the realizers:

Axiom iac: (∀ x : a, ∃ y : b, r x y) →
(∃ c : rz a → b, ∀ x : rz a, r (rz x) (c x)).

Now the output is

val iac : (a → b * ty_r) → (a → b) * (a → ty_r)
assertion iac :

∀ f:a → b * ty_r,
(∀ (x:‖a‖), let (p,q) = f x in p : ‖b‖ ∧ r x p q) →
let (g,h) = iac f in
(∀ x:a, x : ‖a‖ → g x : ‖b‖) ∧ (∀ (x:‖a‖), r x (g x) (h x))

This is exactly the same as before except the troublesome requirement g:‖a→b‖ was weakened to
∀x:a.(x:‖a‖→gx:‖b‖). We can implement iac in OCaml as

let iac f = (fun x -> fst (f x)), (fun x -> snd (f x))

The Intensional Axiom of Choice is in fact just an instance of the usual Axiom of Choice applied
torzA and B. Combined with the fact thatrzA covers A, this establishes the validity of Presentation
Axiom [1], which states that every set is an image of one satisfying the axiom of choice.

7.6 Modulus of continuity

As a last example we show how certain constructive principles require the use of computational
effects. To keep the example short, we presume that we are already given the set of natural
numbers nat with the usual structure.

A type 2 functional is a map f : (nat→nat)→nat. It is said to be continuous if the output of
f (a) depends only on an initial segment of the sequence a. We can express the (non-classical) axiom
that all type 2 functionals are continuous in RZ as follows:

Axiom continuity: ∀ f : (nat → nat) → nat, ∀ a : nat → nat,
∃ k, ∀ b : nat → nat, (∀ m, m ≤ k → a m = b m) → f a = f b.

The axiom says that for any f and a there exists k∈nat such that f(b)=f(a) when
sequences a and b agree on the first k terms. It translate to:

val continuity : ((nat → nat) → nat) → (nat → nat) → nat
assertion continuity :

∀ (f:‖(nat → nat) → nat‖, a:‖nat → nat‖),
let p = continuity f a in p : ‖nat‖ ∧
(∀ (b:‖nat → nat‖),

(∀ (m:‖nat‖), m ≤ p → a m ≈nat b m) → f a ≈nat f b)

RZ: Constructive Mathematics to Programming Practice 39

i.e. that continuityfa is a number p such that f(a)=f(b) whenever a and b agree on the first p
terms. In other words, continuity is a modulus of continuity functional. It cannot be implemented
in a purely functional language,13 but with the use of store we can implement it in OCaml as

let continuity f a = let p = ref 0 in
let a’ n = (p := max !p n; a n) in
f a’ ; !p

To compute a modulus for f at a, the program creates a function a′ that is just like a except that
it stores in p the largest argument at which it has been called. Then fa′ is computed, its value is
discarded, and the value of p is returned. The program works because f is assumed to be extensional
and therefore must not distinguish between extensionally equal sequences a and a′.

8 Related work

8.1 Coq and other tools

Coq provides complete support for theorem-proving and creating trusted code. Often one writes code
in Coq’s functional language (values whose types are Sets), states and proves theorems that the code
behaves correctly (where the theorems are Coq values whose types are Props), and has Coq extract
correct code. In such cases RZ is complementary to Coq; it can clarify the constructive content of
mathematical structures and hence suggests the appropriate division between code and theorems.
We hope RZ will soon be able to produce output in Coq’s input syntax.

In general, RZ is a smaller and more lightweight system and thus more flexible where it applies.
It is not always practical or necessary to do theorem proving in order to provide an implementation;
interfaces generated by RZ can be implemented in any manner. And, RZ provides a way to talk with
programmers about constructive mathematics without bringing in full theorem proving.

Komagata and Schmidt [23] describe a system that uses a realizability in a way similar to RZ.
Like Coq, it extracts code from proofs. An interesting implementation difference is that the algorithm
they use (attributed to John Hatcliff) does thinning as it goes along, rather than making a separate
pass as RZ does. (For example, the translation of the conjunction–introduction rule has four cases,
depending on whether the left and/or right propositions being proved are almost negative, in which
case the trivial contribution can be immediately discarded.) Unlike RZ, their system needs full
formal proofs as input; it checks the proofs, and generates executable code. RZ also handles a much
richer input language (including function, subset, quotient and dependent types; quantification over
theories; and parameterized theories) that goes well beyond simple predicate logic over integers
and lists.

The idea of annotating ML signatures with assertions is not new (e.g. [20]).

8.2 Other models of computability

Many formulations of computable mathematics are based on realizability models [2], even
though they were not initially developed, (nor are they usually presented) within the framework
of realizability: Recursive Mathematics [16] is based on the original realizability by Turing
machines [21]; Type Two Effectivity [37] on function realizability [22] and relative function

13There are models of λ-calculus which validate the choice principle AC2,0, but this contradicts the existence of a modulus
of continuity functional, see [35, 9.6.10].

40 RZ: Constructive Mathematics to Programming Practice

realizability [9], while topological and domain representations [6, 11] are based on realizability
over the graph model Pω [33]. A common feature is that they use models of computation which are
well suited for the theoretical studies of computability.

Other approaches are based on simple programming languages augmented with datatypes for real
numbers [17, 28] and topological algebras [36], or machine models augmented with (suitably chosen
subsets of) real numbers such as Real RAM [14], the Blum–Shub–Smale model [13] and the Exact
Geometric Computation model [38]. The motivation behind these ranges from purely theoretical
concerns about computability and complexity to practical issues in the design of programming
languages and algorithms in computational geometry. RZ attempts to improve practicality by using
an actual real-world programming language, and by providing an input language which is rich
enough to allow descriptions of involved mathematical structures that go well beyond the real
numbers.

Finally, we hope that RZ and, hopefully, its forthcoming applications, give plenty of evidence for
the practical value of Constructive Mathematics [10].

References
[1] J. Barwise. Admissible Sets and Structures. Springer, Berlin, 1975.
[2] A. Bauer. The Realizability Approach to Computable Analysis and Topology. PhD thesis,

Carnegie Mellon University, Pittsburgh, PA, USA, 2000.
[3] A. Bauer and I. Kavkler. Implementing real numbers with RZ. In Fourth International

Conference on Computability and Complexity in Analysis, K. Weihrauch and N. Zhong, eds.
Electronic Notes in Theoretical Computer Science, 2007. Forthcoming.

[4] A. Bauer and C. A. Stone. Specifications via realizability. In Proceedings of the Workshop
on the Constructive Logic for Automated Software Engineering (CLASE 2005) in Edinburgh,
Scotland, Vol. 153 of Electronic Notes in Theoretical Computer Science, pp. 77–92, 2006.

[5] A. Bauer and C. A. Stone. RZ: a tool for bringing constructive and computable mathematics
closer to programming practice. In Computation and Logic in the Real World, Third Conference
on Computability in Europe, in Siena, Italy,, Vol. 4497 of LNCS, pp. 28–42, Springer, Berlin,
2007.

[6] A. Bauer, L. Birkedal, and D. S. Scott. Equilogical spaces. Theoretical Computer Science, 1,
Elsevier, Amsterdam, 35–59, 2004.

[7] H. Benl, U. Berger, H. Schwichtenberg, M. Seisenberger, and W. Zuber. Proof theory at work:
program development in the Minlog system. In Automated Deduction: A Basis for Applications.
Volume II, Systems and Implementation Techniques, W. Bibel and P. H. Schmidt, eds. Kluwer
Academic Publishers, Dordrecht, 1998.

[8] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development. Springer,
Berlin, 2004.

[9] L. Birkedal. Developing Theories of Types and Computability. PhD thesis, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, USA, 1999.

[10] E. Bishop and D. Bridges. Constructive Analysis, Vol. 279 of Grundlehren der math.
Wissenschaften. Springer, Berlin, 1985.

[11] J. Blanck. Computability on Topological Spaces by Effective Domain Representations. PhD
thesis, Uppsala University, Department of Mathematics, Uppsala, Sweden, 1997.

[12] J. Blanck. Domain representability of metric spaces. Annals of Pure and Applied Logic, 83,
225–247, 1997.

RZ: Constructive Mathematics to Programming Practice 41

[13] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation. Springer,
New York, 1998.

[14] A. Borodin and J. I. Monro. The Computational Complexity of Algebraic and Numeric Problems.
Number 1 in Elsevier computer science library: Theory of computation series. American
Elsevier, New York, London, Amsterdam, 1975.

[15] A. Edalat and A. Lieutier. Domain theory and differential calculus (functions of one variable).
Mathematical Structures in Computer Science, 14, 771–802, 2004.

[16] Y. L. Ershov, S. S. Goncharov, A. Nerode, and J. B. Remmel, eds. Handbook of Recursive
Mathematics. Elsevier, Amsterdam, 1998.

[17] M. H. Escardó. PCF Extended with Real numbers. PhD thesis, Department of Computer Science,
University of Edinburgh, Edinburgh, Scotland, UK, 1997.

[18] R. Harper, J. C. Mitchell, and E. Moggi. Higher-order modules and the phase distinction.
In Proceedings of the 17th ACM Symposium on Principles of Programming Languages (POPL
’90) in San Francisco, pp. 341–354, ACM, Berlin, 1990.

[19] B. Jacobs. Categorical Logic and Type Theory. Elsevier Science, North-Holland, Amsterdam,
1999.

[20] S. Kahrs, D. Sannella, and A. Tarlecki. The definition of Extended ML: a gentle introduction.
Theoretical Computer Science, 173, 445–484, 1997.

[21] S. C. Kleene. On the interpretation of intuitionistic number theory. Journal of Symbolic Logic,
10, 109–124, 1945.

[22] S. C. Kleene and R. E. Vesley. The Foundations of Intuitionistic Mathematics, Especially
in Relation to Recursive Functions. North-Holland Publishing Company, North-Holland,
Amsterdam, 1965.

[23] Y. Komagata and D. A. Schmidt. Implementation of intuitionistic type theory and realizability
theory. Technical Report TR-CS-95-4. Kansas State University, Manhattan, KS, USA, 1995.

[24] B. Lambov. RealLib: an efficient implementation of exact real arithmetic. Mathematical
Structures in Computer Science, 17, 81–98, 2007.

[25] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Objective Caml system,
documentation and user’s manual - release 3.08. Technical report. INRIA, Rocquencourt,
France, 2004.

[26] J. Longley. Matching typed and untyped realizability. Electronic Notes in Theoretical Computer
Science, 23, 74–100, 1999.

[27] J. Longley. When is a functional program not a functional program? In International Conference
on Functional Programming (ICFP ’99) in Paris, pp. 1–7, ACM, 1999.

[28] J. R. Marcial-Romero and M. H. Escardó. Semantics of a sequential language for exact real-
number computation. In Proceedings of the 19th Annual IEEE Symposium on Logic in Computer
Science (LICS ’04) in Turku, Finland, pp. 426–435, IEEE, 2004.

[29] N. Müller. The iRRAM: exact arithmetic in C++. In Computability and Complexity in Analysis:
4th International Workshop, CCA 2000 Swansea, UK, September 17, 2000, Selected Papers,
Number 2064 in Lecture Notes in Computer Science, J. Blanck, V. Brattka, and P. Hertling, eds.
pp. 222–252. Springer, Berlin, 2001.

[30] B. Nordström, K. Petersson, and J. M. Smith. Programming in Martin-Löf’s Type Theory.
Oxford University Press, USA, 1990.

[31] E. Post. Recursive unsolvability of a problem of Thue. The Journal of Symbolic Logic, 12,
1–11, 1947.

[32] D. Sannella, S. Sokolowski, and A. Tarlecki. Toward formal development of programs from
algebraic specifications: parameterisation revisited. Acta Informatica, 29, 689–736, 1992.

42 RZ: Constructive Mathematics to Programming Practice

[33] D. S. Scott. Data types as lattices. SIAM Journal of Computing, 5, 522–587, 1976.
[34] A. S. Troelstra and D. van Dalen. Constructivism in Mathematics, An Introduction, Vol.

1. Number 121 in Studies in Logic and the Foundations of Mathematics. North-Holland,
Amsterdam, 1988.

[35] A. S. Troelstra and D. van Dalen. Constructivism in Mathematics, An Introduction, Vol. 2.
Number 123 in Studies in Logic and the Foundations of Mathematics. North-Holland, 1988.

[36] J. V. Tucker and J. I. Zucker. Computable functions and semicomputable sets on many-sorted
algebras. In Handbook of Logic in Computer Science, Vol. 5. S. Abramsky, D. M. Gabbay, and
T. S. E. Maibaum, eds, Clarendon Press, Oxford, 1998.

[37] K. Weihrauch. Computable Analysis. Springer, Berlin, 2000.
[38] C. K. Yap. Theory of real computation according to EGC, 2006. In Dagstuhl Seminar “Reliable

Implementation of Real Number Algorithms: Theory and Practice”, LNCS in 2006 in Dagstuhl,
Germany, January 8–13, 2006.

Appendix

A An interface for the theory of general inductive types

To give at least one complete example, we include here an unabridged output for the theory of
inductive types shown in Figure 9.

module type Branching =
sig

type s

(** predicate (=s=) : s -> s -> bool *)
(** assertion symmetric_s : forall x:s, y:s, x =s= y -> y =s= x

assertion transitive_s :
forall x:s, y:s, z:s, x =s= y /\ y =s= z -> x =s= z

*)

(** predicate ||s|| : s -> bool *)
(** assertion total_def_s : forall x:s, x : ||s|| <-> x =s= x
*)

(** branching types *)

type t

(** predicate (=t=) : s -> t -> t -> bool *)
(** assertion strict_t : forall x:s, y:t, z:t, y =(t x)= z -> x : ||s||

assertion extensional_t :
forall x:s, y:s, z:t, w:t, x =s= y -> z =(t x)= w -> z =(t y)= w

assertion symmetric_t :
forall x:s, y:t, z:t, y =(t x)= z -> z =(t x)= y

assertion transitive_t :
forall x:s, y:t, z:t, w:t, y =(t x)= z /\ z =(t x)= w ->

y =(t x)= w

RZ: Constructive Mathematics to Programming Practice 43

*)

(** predicate ||t|| : s -> t -> bool *)
(** assertion total_def_t :

forall x:s, y:t, y : ||t x|| <-> y =(t x)= y
*)

(** branch labels *)
end

module W : functor (B : Branching) ->
sig

type w

(** predicate (=w=) : w -> w -> bool *)
(** assertion symmetric_w :

forall x:w, y:w, x =w= y -> y =w= x

assertion transitive_w :
forall x:w, y:w, z:w, x =w= y /\ y =w= z -> x =w= z

*)

(** predicate ||w|| : w -> bool *)
(** assertion total_def_w : forall x:w, x : ||w|| <-> x =w= x
*)

val tree : B.s -> (B.t -> w) -> w
(** assertion tree_support :

forall x:B.s, y:B.s, x =B.s= y ->
forall f:B.t -> w, g:B.t -> w,

(forall z:B.t, t:B.t, z =(B.t x)= t -> f z =w= g t) ->
tree x f =w= tree y g

*)

val induction : (B.s -> (B.t -> w) -> (B.t -> ’ty_p) -> ’ty_p) -> w -> ’ty_p
(** assertion ’ty_p [p:w -> ’ty_p -> bool] induction :

(forall x:w, a:’ty_p, p x a -> x : ||w||) ->
(forall x:w, y:w, a:’ty_p, x =w= y -> p x a -> p y a) ->
forall f:B.s -> (B.t -> w) -> (B.t -> ’ty_p) -> ’ty_p,

(forall (x:||B.s||),
forall f’:B.t -> w,

(forall y:B.t, z:B.t, y =(B.t x)= z ->
f’ y =w= f’ z) ->

forall g:B.t -> ’ty_p,
(forall y:B.t, y : ||B.t x|| -> p (f’ y) (g y)) ->
p (tree x f’) (f x f’ g)) ->

forall (t:||w||), p t (induction f t)
*)

end

Received 29 September 2007

	RZ: a Tool for Bringing Constructive and Computable Mathematics Closer to Programming Practice
	1 Introduction
	2 Typed realizability
	3 Specifications as signatures with assertions
	4 The input language
	5 Translation
	6 Implementation
	7 Examples
	8 Related work
	A An interface for the theory of general inductive types

