
P1: SYD/SWR P2: SAD/PCY QC: NTA

HIGHER-ORDER AND SYMBOLIC COMPUTATION KL673-01-Biagioni November 2, 1998 10:3

HIGHER-ORDER AND SYMBOLIC COMPUTATION 11, 209–225 (1998)
c© 1998 Kluwer Academic Publishers. Manufactured in The Netherlands.

Safe-for-Space Threads in Standard ML∗

EDOARDO BIAGIONI, KEN CLINE, PETER LEE, CHRIS OKASAKI AND CHRIS STONE
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213

Abstract. Threads can easily be implemented using first-class continuations, but the straightforward approaches
for doing so lead to space leaks, especially in a language with exceptions like Standard ML. We show how these
space leaks arise and give a new implementation for threads that is safe for space.

Keywords: continuations, coroutines, Standard ML, space safety, threads

1. Introduction

The ability to provide simple implementations of lightweight, concurrent threads is often
cited as one of the great attractions of first-class continuations. We show that this task is
not nearly as simple as previously thought, at least if one is concerned about space safety.

The term “space-safety” refers informally to the notion that the implementation of some
feature or mechanism will not, through normal use, leak heap or stack storage. This notion
is almost always informal (although Clinger [3] has attempted a formal characterization)
because it often depends on the intricate details of a particular implementation and what
constitutes “normal use.” Still, there are common practices in areas such as automatic
garbage collection that allow one to make useful conclusions about the space-safety of
mechanisms such as threads.

Programming with threads is common in domains such as networking, operating systems,
and user interfaces. Threads are not strictly necessary for such applications, but designing
these systems with threads leads to an overall system structure that is much easier to
understand and modify. Principles for programming with threads can be found in any
undergraduate textbook on operating-system design. An excellent source for advice is
Nelson’s book on Modula-3 [11].

As is well known, threads can be implemented elegantly in a language with first-class
continuations, such as Scheme [8, 14] or Standard ML extended withcallcc [4, 12].
However, naive implementations are likely to suffer from two potential space leaks, one in-
volving continuations and one involving exceptions. The space leak involving continuations

∗This is a revised version of a paper presented at the 1997 ACM SIGPLAN Workshop on Continuations. The
research was sponsored in part by the Advanced Research Projects Agency ITO under the title “The Fox Project:
Advanced Languages for Systems Software,” DARPA Order No. C533, issued by ESC/ENS under Contract
No. F19628-95-C-0050. The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied, of the Advanced
Research Projects Agency or the U.S. Government.



P1: SYD/SWR P2: SAD/PCY QC: NTA

HIGHER-ORDER AND SYMBOLIC COMPUTATION KL673-01-Biagioni November 2, 1998 10:3

210 BIAGIONI ET AL.

can easily be optimized away by a good compiler, but the space leak involving exceptions
cannot. In this paper, we describe the contortions necessary to implement safe-for-space
threads in Standard ML [10], using first-class continuations as provided by the Standard ML
of New Jersey system (SML/NJ) [1].

We begin by developing a simple threads package, and then point out and fix some bizarre
behavior that can be caused by exceptions. Next, we describe the two potential space leaks,
and show how they can be avoided with a clever use ofcallcc. We then sketch some of the
difficulties in achieving a comparable implementation using other control operators, such
as Felleisen’scontrol/prompt [6], Danvy and Filinski’sshift/reset [5], or Gunter,
Rémy, and Riecke’sset/cupto [7]. Finally, we draw some conclusions.

2. A simple threads package

We begin by considering the simple threads interface shown in figure 1. Three operations
are specified in the signatureCOROUTINE: fork, yield, andexit. Thefork procedure
takes a functionf as an argument and then evaluates the expressionf () in a newly created
thread. The new thread is called thechild whereas the thread that calledfork is theparent.
The computation of the two threads is expected to occur “concurrently”. There is also a
notion of a “main” thread, which is the one thread that was not created by a call tofork.
The main thread is the only thread whose return value is significant; its result is the result
of the entire program.

Concurrency amongst threads is obtained by having individual threads voluntarily sus-
pend themselves, thereby giving other threads a chance to execute. In this sense, our threads
are cooperative coroutines rather than parallel or pre-emptable (time-sliced) processes.1 A
thread callsyield to place itself on a queue of “ready” threads and activate the next thread.
The ready threads are typically executed in first-in-first-out order, although it is considered
bad programming style to depend on this ordering.

Theexit procedure terminates the current thread and activates the next ready thread.
Unlike yield, a call toexit never returns. Instead, it either transfers control directly
to a waiting thread or raises theNoReadyThread exception if there are no other threads
remaining in the queue. A child thread implicitly exits if the expression it is evaluating
complete (returns the unit value).

Though we do not formally specify these operations, there are certain properties we
would like to hold. Calls toexit should never return2 and if a thread callsexit, any
resources belonging only to that thread should be reclaimable. A call tofork andyield

signature COROUTINE = sig
exception NoReadyThread

val fork : (unit -> unit) -> unit
val yield: unit -> unit
val exit : unit -> ’a

end

Figure 1. An interface for a simple threads package.



P1: SYD/SWR P2: SAD/PCY QC: NTA

HIGHER-ORDER AND SYMBOLIC COMPUTATION KL673-01-Biagioni November 2, 1998 10:3

SAFE-FOR-SPACE THREADS IN STANDARD ML 211

should return exactly once (strictly speaking, should return at most once and returns exactly
once if all other threadsyield) and should never raise an exception.

There are some subtleties involving what should happen when the main thread returns.
Should it implicitly wait for all the other threads to also finish? From the point of view of the
implementor, the simplest approach is to make all the other threads silently disappear when
the main thread returns. This is the approach we will describe. There are also questions
about what should happen if the main thread callsexit rather than returning, or even if it
should be allowed to do so. We shall return to this matter in Section 4.

3. A first implementation

We use first-class continuations as provided by SML/NJ [1], with the built-in type’a cont
and primitive operatorscallcc andthrow.

Following the by-now standard approach, first advocated by Wand [14], we represent the
state of a thread as a continuation.

type thread = unit cont

A sleeping thread is activated by throwing to its continuation.
The queue of ready threads is then easily implemented as a queue of continuations.

Using the standard structureQueue (an implementation of imperative queues provided by
the SML/NJ library), we have the following definition of the ready queue:

val readyQueue : thread Queue.queue = Queue.mkQueue ()

A couple of auxiliary functions turn out to be useful. The first one, calleddispatch,
activates the next thread on the ready queue. If no threads are waiting on the ready queue,
theNoReadyThread exception is raised.

exception NoReadyThread

fun dispatch () =
let val t = Queue.dequeue readyQueue

handle Queue.Dequeue => raise NoReadyThread
in throw t () end

The second auxiliary function is simply a shorthand for enqueuing a continuation on the
ready queue:

fun enqueue t = Queue.enqueue (readyQueue, t)

With these helper functions in hand, we can now make simple definitions of the main
thread routines. The first isfork:



P1: SYD/SWR P2: SAD/PCY QC: NTA

HIGHER-ORDER AND SYMBOLIC COMPUTATION KL673-01-Biagioni November 2, 1998 10:3

212 BIAGIONI ET AL.

fun fork f =
callcc (fn parent =>

(enqueue parent;
f ();
exit ()))

To start a new thread, we first capture the continuation of the parent thread and enqueue
it. We then activate the child functionf. The return value off is irrelevant, so when and
if f returns, we end this thread by callingexit. Thus the code sequencef (); exit ()
comprises the child thread. There are several other ways to schedule the parent and child
threads during afork. For instance, the following code enqueues the state of the child and
continues with the parent.

fun fork’ f =
let val child =

callcc (fn return =>
(callcc (fn child => throw return child);
f ();
exit ()))

in enqueue child end

Alternatively, we could enqueue both threads and then calldispatch to run the next thread
on the ready queue.

Foryield, we have the following definition:

fun yield () =
callcc (fn thread =>

(enqueue thread;
dispatch ()))

We first capture and enqueue the current continuation, and then calldispatch to run the
next thread.

Finally, we haveexit, which immediately starts the next thread.

fun exit () = dispatch ()

Note thatexit does not capture the current continuation before callingdispatch. There-
fore, the current thread is lost.

This implementation is essentially similar to Wand’s implementation of threads in Scheme
[14]. Existing implementations of threads in Standard ML, such as ML-Threads [4] and
CML [12, 13], differ mainly in that they must handle exceptions specially, as discussed in
the following section.



P1: SYD/SWR P2: SAD/PCY QC: NTA

HIGHER-ORDER AND SYMBOLIC COMPUTATION KL673-01-Biagioni November 2, 1998 10:3

SAFE-FOR-SPACE THREADS IN STANDARD ML 213

4. The problem with exceptions

Although appealingly simple, the above implementation exhibits bizarre behavior in the
presence of exceptions. The key question is: when a thread raises an exception that is
not caught within that thread, where is the exception handled? This is not always obvious
whencallcc is involved. We choose the interpration in which handler stack is part of
the context that is captured bycallcc and restored bythrow. (We present an informal
semantics for this combination of exceptions and first-class continuations in Section 5.)
This is the behavior ofcallcc in the SML/NJ compiler, and is the most useful behavior
for implementing a threads package. We briefly discuss the alternative (wherecallcc and
throw do not affect exception handlers in Section 8.

Armed with this knowledge, we can easily see thatyield has no effect on the exception
handlers of a particular thread—the same handlers that were active before theyield are
again active when the yielding thread resumes.

fun yield () =
callcc (fn thread =>

(enqueue thread;
dispatch ()))

The current handlers are captured by thecallcc. Later, when this thread reaches the head
of the ready queue, the handlers are restored by thethrow in dispatch.

By the same reasoning,fork has no effect on the exception handlers of the parent thread.
However, note that althoughcallcc saves the current handlers, it does not change them.
Thus, inspecting the code forfork

fun fork f =
callcc (fn parent =>

(enqueue parent;
f ();
exit ()))

we see thatf is executed in an exception context inherited from its parent. So, an exception
that escapes a child thread may be caught within its parent thread. For example, the
following program will printSurprise!3

let fun child () = (1 div 0; ())
fun parent () = fork child handle Div => print "Surprise!"

in
fork parent;
...

end



P1: SYD/SWR P2: SAD/PCY QC: NTA

HIGHER-ORDER AND SYMBOLIC COMPUTATION KL673-01-Biagioni November 2, 1998 10:3

214 BIAGIONI ET AL.

This shows that the above definition offork fails to obey the “fork does not raise an
exception” property mentioned in Section 2. This is not an absolutely vital property;
unfortunately, the other more important properties fail as well:

let fun child () = (1 div 0; ())
fun parent () = ((fork child) handle Div => ();

x := !x + 1)
in

fork parent;
...

end

Now, whenchild raises theDiv exception,parent catches the exception and incre-
mentsx. But note that the parent thread is still in the ready queue. When it eventually
reaches the head of the ready queue and is dispatched, it will incrementx a second time!

In the above example, the exception prematurely woke an inactive thread. With another
slight change, the exception can actually resurrect a thread that has already exited.

let fun child () = (yield (); 1 div 0; ())
fun parent () = ((fork child) handle Div => ();

x := !x + 1)
in

fork parent;
...

end

In this example, the child thread voluntarily yields control and the parent thread executes
to completion. Later, when the child thread resumes, it raises an exception that resurrects
and re-executes the parent.

The situation becomes even more unpredictable given a slightly different implementation
strategy. For example, threads are sometimes represented as functions of typeunit ->
unit rather than continuations. The function passed tofork can be transferred directly
to the ready queue. (Later, when a thread is suspended, its continuation is coerced into a
function by partially applyingthrow.) In this setupdispatch simply removes and calls
the first function in the queue. However, calling the function passed tofork does not affect
the exception handlers; this function is executed not in the exception context of its parent,
but rather in the exception context of whatever thread first yielded control to the child. Any
exceptions escaping the child thread are thus caught by this unrelated thread rather than the
parent.

Returning to our implementation of thread using continuations, we take a first step to-
wards solving these kinds of problems by guaranteeing that no exception escapes its thread.
We accomplish this by installing around each new thread a universal handler that will catch
and discard any errant exceptions.



P1: SYD/SWR P2: SAD/PCY QC: NTA

HIGHER-ORDER AND SYMBOLIC COMPUTATION KL673-01-Biagioni November 2, 1998 10:3

SAFE-FOR-SPACE THREADS IN STANDARD ML 215

fun fork f =
callcc (fn parent =>

(enqueue parent;
f () handle _ => ();
exit ()))

This wrapper appears in both CML and ML-Threads.
However, this is not quite enough. What ifexit itself was the culprit? In other words,

what if f raised theNoReadyThread exception by callingexit when the ready queue was
empty (i.e., when all other threads had already exited)? The handler installed byfork
will catch the exception, but the exception will be immediately re-raised by the subsequent
exit. This exception will be caught either by an internal handler off’s parent, resurrecting
f’s parent from the dead, or by the handler wrapped aroundf’s parent byfork. In the latter
case, the exception will again be immediately re-raised by the subsequentexit. In this
fashion, theNoReadyThread exception can propagate through each off’s ancestors all the
way out to the main thread.

This problem can arise only if a child thread callsexit after the main thread has already
exited. However, since the result of the main thread is the result of the entire program, it
is reasonable to forbid the main thread from callingexit. This is easily accomplished by
keeping track of whether the current thread is the main thread or a child thread and raising
a new exceptionMainThreadCantExit if the main thread attempts to callexit. With
this approach, there will always be at least one thread in the ready queue whenever we are
executing a child thread—namely, the main thread. Therefore,dispatch can never fail
and there is no longer any need for theNoReadyThread exception.

Recall that when the main thread returns (as opposed to exiting), any sleeping threads
silently disappear. Therefore, if we forbid the main thread from exiting, then we should
also provide a way for the main thread to find out when it is safe for it to return (i.e., when
all the other threads have exited). It is not difficult to provide a primitive to allow the main
thread to sleep until the other threads have all exited. For the details of this primitive, as
well as the changes necessary to prevent the main thread from callingexit, see the full
implementation in Appendix.

5. Space-safety of the threads package

Neither of the threads implementations presented so far is safe for space. Both suffer from
two kinds of potential space leaks. In the first kind of leak, a child thread unnecessarily
retains its parent’s continuation. This potential leak is not too worrisome because the
control part of the continuation can be optimized away by a good compiler. The second
kind of leak, however, is more serious. In this leak, a child thread unnecessarily retains
its parent’s exception handlers. Unfortunately, this second leak is unlikely to be optimized
away without enormous advances in compiler technology.

The fact that these implementations leak storage is surprising, because implementations
like these (e.g., ML-Threads and CML [12, 13]) have been in use for many years. We can
only speculate that the kinds of idioms for which these space leaks prove problematic have



P1: SYD/SWR P2: SAD/PCY QC: NTA

HIGHER-ORDER AND SYMBOLIC COMPUTATION KL673-01-Biagioni November 2, 1998 10:3

216 BIAGIONI ET AL.

[x] = λh.λk.k x
[λx.M ] = λh.λk.k(λx.[M ])
[M N] = λh.λk.[M ] h (λm.[N] h (λn.m n h k))
[callcc M ] = λh.λk.[M ] h (λm.m k h k)
[throw M N] = λh.λk.[M ] h (λm.[N]h m)
[raise M ] = λh.λk.[M ]h h
[handle M with N] = λh.λk.[M ](λe.[N] h (λn.n e h k))k

Figure 2. CPS translation with exceptions.

not arisen until now, or that these leaks have been hidden by other, more obvious leaks. In
our experience, these leaks have shown to be fatal for long-running applications such as the
FoxNet web server [2].

For explanatory purposes, we assume that the compiler uses a CPS intermediate represen-
tation. This yields the most direct description of the implementation of exception-handling
and continuation primitives, as well as allowing a succinct explanation of the space leaks.
However, the leaks are not specific to CPS-based compilers, as any other compilation
strategy will have the same problems.

Figure 2 shows a translation of exception and continuation primitives into CPS; we write
[M ] to denote the translation of a termM . Translated expressions are parameterized by the
standard continuationk and an exception-handling continuationh to be invoked byraise.
The translation is relatively straightforward, and in most cases is simply the standard call-
by-value CPS translation augmented to pass along the exception continuation. The unusual
cases are forraise, which discards the standard continuation and invokes the exception
continuation, andhandle, which extends the exception continuation. (For simplicity, we
assume thathandle takes two expressions, the latter evaluating to a handler function that
accepts an exception as its argument. That is, the Standard ML codee1 handle x => e2

is represented ashandle e1 with λx.e2. In a fuller presentation there would be further
operations so thate2 could do case analysis on the particular exception caught.)

In this setting, the two space leaks arise when a child thread unnecessarily retains its
parent’s standard continuation,k, and exception-handling continuation,h. To see why this
occurs, consider thefork function.

fun fork f =
callcc (fn parent =>

(enqueue parent;
f () handle _ => ();
exit ()))

Applying our CPS translation to a callfork f, we get

[fork f] ≡ λh.λk.[enqueue] k h(λ().[f] () (λe.kexit ()) kexit)
wherekexit= λ().[exit] () h k

Because the continuationkexit mentions both the standard continuationk and the exception
continuationh of the parent, a simple tracing garbage collector will hang on to these



P1: SYD/SWR P2: SAD/PCY QC: NTA

HIGHER-ORDER AND SYMBOLIC COMPUTATION KL673-01-Biagioni November 2, 1998 10:3

SAFE-FOR-SPACE THREADS IN STANDARD ML 217

continuations in caseexit ever returns (invokesk) or raises an exception (invokesh).
Even if the parent thread exits,k andh cannot be garbage collected until the child thread
releases them. In fact, these continuations will also be part of the context of any descendants
of the child thread, so the parent thread’s memory may be retained until not only the child
thread, but all of the child thread’s descendants, have exited.

Fortunately, it is reasonable to hope that a good compiler would recognize thatexit
ends in a call tothrow, and therefore never invokes its standard continuation. If we rewrite
exit slightly as

fun dequeue () = Queue.dequeue readyQueue
fun exit () = throw (dequeue ()) ()

then the CPS translation ofexit is

[exit ()] ≡ λh.λk.[dequeue] () h (λk′.k′ ()).

Since it is syntactically obvious thatexit does not use its standard continuation, a smart
compiler could optimize the translation offork, either by inliningexit so that the reference
to k disappears

[fork f] ≡ λh.λk.[enqueue] k h(λ().[f] () (λe.kexit ()) kexit)
where kexit= λ().[dequeue] () h (λk′.k′ ())

or by simply replacingkexit with k′exit= λ().[exit] () h kdummy, wherekdummyis an arbitrary
(small) continuation. In that case, the system can release the extraneous pointer to the
parent continuation and avoid this space leak. Surprisingly, SML/NJ4 does not appear to
optimize throws in this fashion.

The picture is not so rosy when we turn to the second space leak, in which a child thread
retains its parent’s exception-handling continuation. Even if we eliminate the reference to
k in kexit, there is still a reference toh. Consider again the version ofkexit in whichexit
is inlined.

λ().[dequeue] () h (λk′.k′ ())

We happen to know that, since we have forbidden the main thread from callingexit, the
queue of ready threads is never empty while a child thread is executing and hencedequeue
will never raise an exception. Therefore, it would be safe to replaceh in kexit with a
dummy continuationhdummy. However,it is unreasonable to expect the compiler or run-
time system to be able to prove this fact. Without extremely sophisticated analysis tools, or
at least better tools for communicating these kinds of system invariants to the compiler, we
have no realistic hope that the compiler will eliminate this reference toh.

This leak is a problem even for non-CPS based compilers. Ifexit raises an exception
when the queue is empty, as discussed above there will be a chain of exceptions raised by
exit in the thread’s parent, the parent’s parent, and so on up to the main thread. Because



P1: SYD/SWR P2: SAD/PCY QC: NTA

HIGHER-ORDER AND SYMBOLIC COMPUTATION KL673-01-Biagioni November 2, 1998 10:3

218 BIAGIONI ET AL.

we do not expect any compiler to prove that the ready queue never empties, the compiler
will keep this chain of handlers at run-time, which takes space proportional to thefork
depth.

Because a thread may retain context from each of its ancestors, both of these space
leaks are most noticeable when there are deeply nested threads. For example, imagine a
server architecture in which each request is processed in its own thread. When a thread
receives a request, it immediately forks off a new thread to wait for the next request. In
this architecture, thedth request is processed in a thread of depthd. Obviously, such a
server cannot afford a space leak that grows with each new thread. Exactly this kind of
architecture appears in the FoxNet system [2].

6. Safe-for-space threads

In both implementations so far, problems arise because a child thread hangs on to some
of its parent’s context. We can avoid these problems by arranging for every thread to be
executed in a top-level context rather than in its parent’s context. We do this by using
first-class continuations to capture a “thread-activating” context at the top level.

val threadActivator : (unit -> unit) cont =
callcc (fn return =>

let val f = callcc (fn fc => throw return fc)
in

f () handle _ => ();
exit ()

end)

Then,fork can start each new thread in this context.

fun fork f =
callcc (fn parent =>

(enqueue parent;
throw threadActivator f))

Looking at the CPS translation

[fork f] ≡ λh.λk.[enqueue] k h(λ().[threadActivator] [f])

we see that the child now discards the parent’s context (k andh).
This is enough to avoid the space leak, but in fact we can do slightly better with only

a small change. Each child thread now creates its own exception handler. Since these
exception handlers are all the same, we would prefer for all children to share the same
handler. This can be accomplished by capturing the thread-activating contextinside the
exception handler that checks for uncaught exceptions.



P1: SYD/SWR P2: SAD/PCY QC: NTA

HIGHER-ORDER AND SYMBOLIC COMPUTATION KL673-01-Biagioni November 2, 1998 10:3

SAFE-FOR-SPACE THREADS IN STANDARD ML 219

val threadActivator : (unit -> unit) cont =
callcc (fn return =>

(let val f = callcc (fn fc => throw return fc)
in f () end
handle _ => ();
exit ()))

Now each child retains no more extra context than the context of the continuation
threadActivator. This includes the handler insidethreadActivator and any other
handlers that were active whenthreadActivator was created. If we are careful, this
should only be the default handler that catches uncaught exceptions at the top level. (If
the compiler is not smart enough to realize thatexit can never return,threadActi-
vatormay accidently retainexit’s continuation,return, which could potentially be very
large.)

7. Measurements

To determine the severity of the space leaks in the naive implementation of threads, we
conducted several experiments. The results are shown in Table 1.

We compared five implementations offork on four versions of a test loop. The first four
implementations offork are variations of the naive implementation given in Section 3.

fun fork f =
callcc (fn parent =>

(enqueue parent;
f ();
exit ()))

Table 1. Bytes Leaked Per Fork. All tests were run on a DEC AlphaStation 250 4/266 with 96 MB of memory,
using SML/NJ Version 109.30. We measured the amount of live data (usingexportML) every 50000 iterations.
The reported sizes are the average increase per iteration over 300000 iterations. There were unexplained variations
of up to about 30 KB (<0.7 bytes per iteration) between runs of 50000 iterations, which we assume are due to
vagaries in garbage collection.

Version of test loop

Without handler With handler

Version of fork No cont Cont No cont Cont

Without handler No raise 24 40 52 56
Raise 0 0 28 32

With handler No raise 44 60 72 76
Raise 24 24 60 64

With top-level activator 0 0 0 0



P1: SYD/SWR P2: SAD/PCY QC: NTA

HIGHER-ORDER AND SYMBOLIC COMPUTATION KL673-01-Biagioni November 2, 1998 10:3

220 BIAGIONI ET AL.

The versions offork labeled “With Handler” add an exception handler around each child
thread as discussed in Section 4.

...
f () handle _ => ();
...

The versions labeled “Raise” add a spuriousraise after theexit to trick the compiler into
releasing the continuation. (Note that SML/NJ optimizesraise to release its continuation
but does not optimizethrow.)

...
exit ();
raise TrickTheCompilerIntoReleasingCont

The final version offork uses a top-level thread activator as in Section 6.
The test loop recursively forks new threads up to a given depth:

fun loop i =
(yield (); (* let your parent finish *)
if i < alldone then

fork (fn () => loop (i+1))
else

())

Because each iteration of the loop begins by yielding back to its parent, which immediately
exits, no more than two threads are active at any given time. The versions of the test loop
labeled “With Handler” add a new exception handler around eachfork.

...
fork (fn () => loop (i+1)) handle _ => ()
...

The versions of the test loop labeled “Cont” add an extra action after thefork, so that
fork’s continuation must contain at least an extra integer.

...
i+i; (* continuation must save i *)
()

Inspecting Table 1, we see that the space leaks range from 24 bytes perfork to 76 bytes
perfork. These numbers can be made arbitrarily large if the user code adds more exception
handlers around eachfork and performs more non-trivial actions after eachfork. The
bottom row confirms that our final implementation of threads is in fact safe for space.



P1: SYD/SWR P2: SAD/PCY QC: NTA

HIGHER-ORDER AND SYMBOLIC COMPUTATION KL673-01-Biagioni November 2, 1998 10:3

SAFE-FOR-SPACE THREADS IN STANDARD ML 221

Interestingly, the version offork without an exception handler but with a spuriousraise
is also safe for space,provided the user never installs his own exception handlers. However,
this version suffers from both a space leak and the sorts of bizarre behavior described in
Section 4 when the user does use exceptions.

8. Other control operators

Researchers have studied many control operators besidescallccandthrow. In this section,
we briefly summarize some of the difficulties one encounters when trying to implement
safe-for-space threads using a few of these alternative control operators.

First, we consider Felleisen’scontrol/prompt [6] and Danvy and Filinski’s
shift/reset [5]. These seem like natural choices for implementing safe-for-space threads
since they essentially allow one to run a thread in a top-level context, much like the
threadActivator continuation does. If the user also has access to these operators, then
it becomes difficult to giveany reasonable implementation of threads, much less one that
is safe-for-space—even if we assume that the scheduler can set the outermost prompt. The
problem is that a prompt set by the user might mask the prompt set by the threads package,
or vice versa.

Gunter, Rémy, and Riecke’sset/cupto [7] allow named prompts, and present as an
example an implementation of threads similar in spirit to those described in this paper.
Unfortunately, their implementation of threads suffers from several space leaks; one leak
stems from the use of exception handlers. Fixing this leak is complicated by the fact that
their implementation ofset/cupto is buggy with respect to exceptions. Still, assuming a
correct implementation ofset/cupto, it should be possible to avoid this leak with careful
programming. A second, more serious leak involves the stack of control points maintained
by the control operators. Every time a thread yields and resumes, it pushes an extra control
point on the stack, so that a thread that has yielded and resumedn times has a control stack
of at least depthn. It is unclear whether this leak is inherent in any implementation of these
control operators, or an artifact of the particular implementation ofset/cupto presented
in [7].

Finally, Reppy has proposed variants ofcallccandthrow, calledcapture andescape,
that do not save and restore the exception handler stack [13, p. 136]. On the surface, these
operators sound like they might help prevent the retention of unnecessary exception handlers.
In fact, however, just the opposite is true. Suppose that we replacecallcc andthrow in our
threads package withcapture andescape, and consider the following program fragment:

(fork (fn () => exit ()); raise E) handle E => ...

First, we install theE handler, and then fork the child thread, which installs a new universal
handler. The child thread then exits, and the parent thread resumes, with both handlers
still active. Thus, when we raiseE, it will be caught by the universal handler of the
now defunct thread. Not only can this lead to faster space leaks by retaining too many
exception handlers, it also causes the kinds of bizarre behavior about which we complained



P1: SYD/SWR P2: SAD/PCY QC: NTA

HIGHER-ORDER AND SYMBOLIC COMPUTATION KL673-01-Biagioni November 2, 1998 10:3

222 BIAGIONI ET AL.

in Section 4, only worse. Now, a thread’s exceptions may be caught by another thread even
when we specifically attempt to handle the exception in the current thread.

9. Conclusions

This work was motivated by the discovery of a space leak in the FoxNet HTTP server [2].
We have experimentally observed such leaks for many different implementations of threads.
Although the leaks can be as small as 24 bytes perfork, the example of the FoxNet HTTP
server—expected to run for months at a time—shows that even slow leaks can be intolerable.
We have also modeled these space leaks in a semantics combining both exceptions and first-
class continuations.

Threads are an important structuring tool for real-world systems, and the ability to imple-
ment light-weight threads is often cited as one of the major benefits of first-class continua-
tions. However, as we have shown, implementations of threads that are both safe-for-space
and predictable in the presence of exceptions can be quite subtle and somewhat complicated.
This suggests, possibly, that threads ought to be a primitive notion in the language, instead
of constructed out of continuations. But until functional languages such as Standard ML
incorporate threads as primitive features, we can build on the techniques shown in this paper
to build threads that are fast and behave well even in long-running programs.

Acknowledgments

This paper grew from a tutorial presented at the Second International Summer School on
Advanced Functional Programming Techniques in Olympia, Washington [9]. We have
benefitted greatly from discussions with, and comments from, Olin Shivers, Olivier Danvy,
Bob Harper, the participants of the summer school, and the participants and referees of the
1997 Workshop on Continuations.

Appendix: Final implementation

signature COROUTINE =
sig

exception MainThreadCantExit
exception ChildThreadCantSync

val fork : (unit -> unit) -> unit
val yield: unit -> unit
val exit : unit -> ’a

val sync : unit -> unit
(* sync () yields until all other threads have completed *)

end



P1: SYD/SWR P2: SAD/PCY QC: NTA

HIGHER-ORDER AND SYMBOLIC COMPUTATION KL673-01-Biagioni November 2, 1998 10:3

SAFE-FOR-SPACE THREADS IN STANDARD ML 223

structure Coroutine : COROUTINE =
struct

exception MainThreadCantExit
exception ChildThreadCantSync

val callcc = SMLofNJ.callcc
val throw = SMLofNJ.throw

datatype threadType = Main | Child
type thread = unit cont * threadType

val readyQueue : thread Queue.queue = Queue.mkQueue ()
val syncCont : thread option ref = ref NONE
val currentThreadType = ref Main

fun enqueue thread = Queue.enqueue (readyQueue, thread)

fun dispatch () =
let val (t, typ) =

Queue.dequeue readyQueue
handle Queue.Dequeue =>

(* syncCont cannot be NONE *)
case !syncCont of SOME main => main

in
currentThreadType := typ;
throw t ()

end

fun exit () =
case !currentThreadType of

Main => raise MainThreadCantExit
| Child => dispatch ()

fun sync () =
case !currentThreadType of

Main => callcc (fn t =>
(syncCont := SOME (t, Main);
dispatch ()))

| Child => raise ChildThreadCantSync

fun yield () =
callcc (fn thread =>

(enqueue (thread, !currentThreadType);
dispatch ()))



P1: SYD/SWR P2: SAD/PCY QC: NTA

HIGHER-ORDER AND SYMBOLIC COMPUTATION KL673-01-Biagioni November 2, 1998 10:3

224 BIAGIONI ET AL.

val threadActivator : (unit -> unit) cont =
callcc (fn return =>

(let val f = callcc (fn fc => throw return fc)
in f () end
handle _ => ();
exit ();
(* raise dummy exception as hint to compiler *)
raise MainThreadCantExit))

fun fork f =
callcc (fn parent =>

(enqueue (parent, !currentThreadType);
currentThreadType := Child;
throw threadActivator f))

end

Notes

1. Extending the system for pre-emption is a straightforward exercise, given suitable primitives for interrupting
programs at regular intervals. To see how this is done in SML/NJ, the interested reader can consult the
source code for ML-Threads or CML, which are both part of the SML/NJ standard distribution, available from
ftp.research.bell-labs.com. The space-safety considerations discussed in this paper are applicable to
both coroutining and pre-emptable threads.

2. We make one exception to this; see Section 3.
3. In each of the following examples, we rely on the fact thatfork suspends the parent thread and immediately

executes the child thread. Similar examples can be devised for different scheduling policies.
4. Version 109.30.

References

1. Appel, A.W. and MacQueen, D.B. A Standard ML compiler. InProceedings of the Conference on Functional
Programming Languages and Computer Architecture, Lecture Notes in Computer Science. Springer-Verlag,
1987, vol. 274, pp. 301–324.

2. Biagioni, E., Harper, R., Lee, P., and Milnes, B.G. Signatures for a protocol stack: A systems application of
Standard ML. InProceedings of the 1994 ACM Conference on Lisp and Functional Programming, Orlando,
pp. 55–64, June 1994.

3. Clinger, W.D. Proper tail recursion and space efficiency. InACM SIGPLAN ’98 Conference on Programming
Language Design and Implementation, pp. 174–185, June 1998.

4. Cooper, E.C. and Morrisett, J.G. Adding threads to Standard ML. Technical Report CMU-CS-90-186, School
of Computer Science, Carnegie Mellon University, Dec. 1990.

5. Danvy, O. and Filinski, A. Abstracting control. InProceedings of the 1990 ACM Conference on Lisp and
Functional Programming, pp. 151–160, June 1990.

6. Felleisen, M. The theory and practice of first-class prompts. InProceedings of the 15th ACM Symposium on
Principles of Programming Languages, pp. 180–190, Jan. 1988.

7. Gunter, C.A., R´emy, D., and Riecke, J.G. A generalization of exceptions and control in ML-like languages.
In Proceedings of the 1995 Conference on Functional Programming Languages and Computer Architecture,
pp. 12–23, June 1995.



P1: SYD/SWR P2: SAD/PCY QC: NTA

HIGHER-ORDER AND SYMBOLIC COMPUTATION KL673-01-Biagioni November 2, 1998 10:3

SAFE-FOR-SPACE THREADS IN STANDARD ML 225

8. Haynes, C.T., Friedman, D.P., and Wand, M. Obtaining coroutines with continuations.Computer Languages,
11(3–4):143–153, 1986.

9. Lee, P. Implementing threads in Standard ML. InAdvanced Functional Programming, Lecture Notes in
Computer Science, vol. 1129, pp. 115–130, Aug. 1996.

10. Milner, R., Tofte, M., and Harper, R.The Definition of Standard ML. The MIT Press, Cambridge, MA, 1990.
11. Nelson, G. (Ed.)Systems Programming with MODULA-3. Prentice Hall, Englewood Cliffs, NJ, 1991.
12. Reppy, J.H. CML: A higher-order concurrent language. InACM SIGPLAN ’91 Conference on Programming

Language Design and Implementation, pp. 293–305, June 1991.
13. Reppy, J.H. Higher-order concurrency. Ph.D. thesis, Department of Computer Science, Cornell University,

Ithaca, New York, Jan. 1992.
14. Wand, M. Continuation-based multiprocessing. InProceedings of the 1980 LISP Conference, pp. 19–28,

Aug. 1980.


