
2011 HMC NSF CISE SHF RUI CS Summer Research

Observationally Cooperative Multithreading
Motivation
Modern software uses threads to take advantage
of multicore processors, but coordination between
threads is difficult. OCM is a new programming
model for shared memory concurrency, designed to
make correct multithreaded programs easier to write.

Existing Models
A classic concurrency exercise involves money trans-
fers, with separate transfers in two threads:
while (account[i] >= $1):

take $1 from account[i]
put $1 in account[j]

while (account[x] >= $1):
take $1 from account[x]
put $1 in account[y]

Preemptive Multithreading — Familiar but Painful

In the preemptive model typical of C, C++, and Java,
threads run simultaneously and interleave their steps
(modulo memory models). Without any coordination
between threads, code can easily go wrong. For exam-
ple, if i==x, neither loop by itself can overdraw the
shared source, but their combination can.

To prevent unwanted interference between
threads, programmers use locks or monitors to enforce
mutual exclusion. But it’s hard to get the right locks, at
the right time, in the right order to prevent deadlock.
(Good lock-based code for this simple loop is far too
ugly to show here!) Further, lock-based code doesn’t
compose; atomic deposit and withdrawal operations
generally cannot be combined into an atomic transfer.

Cooperative Multithreading — Nice but Uniprocessor

In cooperative multithreading, one thread runs at a
time, and gets the whole computer until it voluntar-
ily yields control. For example:
while (account[i] >= $1):

take $1 from account[i]
put $1 in account[j]
yield

while (account[x] >= $1):
take $1 from account[x]
put $1 in account[y]
yield

Here neither thread can be interrupted between check-
ing the source account and performing the transfer, so
no account can become overdrawn. But intuitive as
this code is, it makes use of only one core.

The OCM Model
Observationally Cooperative Multithreading (OCM)
schedules cooperative programs on a multiprocessor, with-
out changing the answers. Cooperative threads can
safely run in parallel when not writing/reading the
same data; if the OCM system can identify threads
that do not conflict, it can take advantage of multipro-
cessor hardware. From the programmer’s perspective:
• Code from each yield to the (dynamically) next ex-

ecutes atomically, allowing sequential reasoning.
• At yield points, local changes are exported to the

outside world, and external changes are imported.

Research Opportunity: Implementation
OCM does not specify an implementation. Any concur-
rency control technique can be used behind the scenes,
as long as code between yields executes atomically.

Locks ensure exclusive access to data. We can en-
sure atomicity by having each yield lock shared data
that might be accessed before the next yield. Locks
can be inferred by static analysis or from programmer
annotations.

What the programmer writes:

yield

tmp = a
b = tmp + 1

yield

What actually happens:

release all locks()
acquire locks(a,b)

tmp = a
b = tmp + 1

release all locks()
acquire locks(...)

Software Transactional Memory (STM) systems
let programmers create transactions, which track reads
and writes. When transactions conflict, they undo and
retry; otherwise they commit with atomic behavior.
We can have each yield end the current transaction
and begin the next.

What the programmer writes:

yield

tmp = a
b = tmp + 1

yield

What actually happens:

end transaction()
begin transaction()

tmp = stm read(a)
stm write(b, tmp + 1)

end transaction()
begin transaction()

Comparing Implementation Techniques

OCM prototypes have been implemented for C/C++ and
Lua, both via locks and via STM. OCM algorithms should
work on any underlying implementation, so we can
use OCM to compare concurrency control techniques.

Consider Dijkstra’s classic concurrency problem.
There are N philosophers at a round table, alternately
thinking and eating. Between each pair is a utensil,
and philosophers need the closest two utensils to eat.
The simplest OCM solution is:

philosopher(int i):
for iter in (1..ITERS):

think()
yield
eat(fork[i],fork[(i+1)%N])
yield

This code is trivially correct if scheduled cooperatively
(one philosopher eating at a time). OCM systems
should realize that philosophers manipulating differ-
ent utensils can run simultaneously. How well did our
OCM prototypes exploit the available parallelism?

0 6 12 18 24 30 36 42 48
0

5

10

15

20

25

30

35

40

45

Number of Cores

Sp
ee

d
up

Global Lock

Lua, STM
(TinySTM)

Lazy Global Lock

C, STM
(TinySTM)

C, Lock
Inference

Lua,
Locks

C, STM
(TL2)

Research Opportunity: Usability
Is OCM a viable parallel programming model? We
have solved common parallel programming puzzles
in OCM and are porting performance benchmarks
(e.g., STAMP, PARSEC). User studies are in progress.

Nondeterministic parallel programs are difficult to
debug, but OCM behavior is always valid coopera-
tive behavior. We can (and do) record buggy execu-
tions and replay them as necessary with a cooperative
schedule implementation.

Research Opportunity: Design
What might we want from OCM, besides yield and a
method of creating threads? Cooperative multithread-
ing (i.e., OCM semantics) is compatible with locks,
barriers, message-passing, and many other traditional
mechanisms. Of course these can often be explained
simply in terms of OCM, e.g., barriers:

barrier():
++waiting
do yield while (waiting != NUM THREADS)

The semantics is clear, and naturally leads to discus-
sions of more efficient implementations.

Two other constructs seem particularly valuable:
•yieldUntil(c) ≡ do yield while (!c), i.e.,

Hoare’s conditional critical regions. As a primitive,
cleverer implementations may be possible.

•canYield. A yield performed to be a “good
citizen,” rather than because we actively desire to
switch threads. We have seen speedups of up to
300× by letting OCM decide dynamically whether
or not to yield.

Further Information
OCM was inspired by the STM-focused Automatic
Mutual Exclusion system of Abadi et al., and is com-
plementary to work by Yi et al. explaining code with
explicit locks in terms of cooperative multithreading.

For more details and a C++ library for OCM, see:

http://ocm-model.org/

Researchers
Students: Xiaofan Fang, Sean Laguna, Stephen Levine, Jordan
Librande, Stuart Pernsteiner, and Mary Rachel Stimson.
Faculty: Melissa O’Neill and Christopher Stone.
Previous work by: Sonja Bohr, Bartholomew Broad, Adam
Cozzette, Joe DeBlasio, Sam Just, Kwang Ketcham, Alejandro
Lopez-Lago, Julia Matsieva, Josh Peraza, and Ari Schumer.

This material is based upon work supported by the National Sci-
ence Foundation under Grant No. CCF-0917345. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

