
Making Impractical Implementations Practical:
Observationally Cooperative Multithreading Using HLE ∗

Melissa E. O’Neill Christopher A. Stone
Harvey Mudd College

{oneill,stone}@cs.hmc.edu

Abstract
Observationally Cooperative Multithreading (OCM) is a new
approach to shared-memory parallelism. Programmers write
code using the well-understood cooperative (i.e., nonpreemp-
tive) multithreading model for uniprocessors. OCM then al-
lows threads to run in parallel, so long as results remain
consistent with the cooperative model. OCM is easer to reason
about and allows simpler coding because, conceptually, task
switching only occurs at yield points, but its performance has
been disappointing until now.

We show that an extremely simple-minded OCM imple-
mention strategy (one that would normally not achieve any
parallel speedup at all!) can perform remarkably well under
Intel’s Hardware Lock Elision (HLE), a form of hardware
transactional memory. HLE is also a very good fit for OCM be-
cause HLE’s limitations do not violate any aspects of OCM’s
parallel model.

This work suggests that when considering how to use new
concurrency-control mechanisms such as HLE, we should
consider not only how they may be used to replace traditional
synchronization techniques that already perform fairly well,
but also how they may make viable strategies that would not
previously have been feasible.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming—Parallel program-
ming; D.3.2 [Programming Languages]: Language Classifi-
cations—Concurrent, distributed, and parallel languages

General Terms Languages, Performance

∗ This material is based upon work supported by the National Science
Foundation under Grant No. CCF-0917345. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science
Foundation.

[Copyright notice will appear here once ’preprint’ option is removed.]

Keywords Observationally cooperative multithreading, co-
operative multithreading, transactional memory, hardware
transactional memory, parallel model, hardware lock elision.

1. Introduction
Programmers writing shared-memory programs that require
irregular parallelism have traditionally had a choice between
approaches that offer excellent performance but are hard
to program correctly (such as lock-based strategies), or
approaches that are correct but whose performance is lacking
(such as software transactional memory [13, 20, 24]). Recently,
however, that state of affairs has started to change—today’s
mainstream CPUs have taken hardware transactional memory
(HTM) from an idea [9, 13] to reality. HTM has the potential
to offer both good speed and ease of access to shared data.

But the trade-offs made by today’s HTM implementations
may appear not to help either of these two approaches. If
we convert lock-based programs to HTM, the overheads
of beginning and ending transactions may be too large to
see any benefit from a transactional approach. Similarly, if
we wish to use hardware transactional memory to replace
software transactional memory, the limitations of the hardware-
based approach can mean that we cannot throw out the STM
infrastructure—it needs to remain as a fallback.

In this paper, however, we show how hardware transactional
memory, even with the limitations and restrictions present in
today’s implementations, can be an excellent fit for some
models of parallel computation. We will show that with
the right model, it’s possible to write elegant and simple
programs for problems whose synchronization requirements
cannot be easily handled by lock-based strategies and achieve
respectable parallel speedup.

Specifically, we will examine how Observationally Coop-
erative Multithreading (OCM) [25, 26], can be implemented
straightforwardly using Intel’s Hardware Lock Elision (HLE)
mechanism. OCM is inspired by traditional Cooperative Mul-
tithreading (CM) for uniprocessors, where threads run one at
a time and continue until they explicitly yield control. OCM
offers

• Simple semantics and syntax, taken from CM;

1 2015/6/10

• Parallel execution, taking advantage of modern hardware;
• Implementation flexibility, allowing a variety of contention

management methods (including transactional memory and
lock inference);

• Serializability, simplifying debugging and reasoning about
program behavior.

When we developed OCM a few years ago, we were
excited by the range of possible implementation strategies it
could support, both transactional (e.g., software transactional
memory) or nontransactional (e.g., by lock inference). But in
practice, our performance results for realistic programs were
disappointing—almost every implementation approach was
slower than simple serial execution! HLE changes that state
of affairs, allowing an implementation far simpler than any
we had previously created (almost embarrassingly simple, in
fact) but offering the potential for actual parallel speedup.

In this paper, we introduce CM and OCM for readers who
may be unfamiliar with this model, and then

• Describe how to implement OCM using HLE
• Highlight the design choices in OCM that allow it to be so

readily implemented using HLE
• Provide evidence that the HLE implementation of OCM

can allow good parallel speedup
• Describe optimizations that can further enhance the per-

formance of the implementation

2. Background: Cooperative Multithreading
The landscape of parallel computing is littered with attempts to
finally make concurrent programming accessible to ordinary
programmers. Much valuable progress has been achieved,
yet the models for concurrency in widespread use today are
still difficult for most programmers to use effectively (see
Section 7, Related Work, for more discussion).

In contrast, Cooperative Multithreading (CM) is a well-
known model for concurrency that significantly reduces
opportunities for racy interactions between concurrent threads.
In the CM model, at most one thread is running at any given
time and control switches from one thread to another only when
the currently executing thread yields control (or terminates).
Programmers place yield statements at specific points in their
code where it is safe to yield control—either to propagate
changes to shared data between threads, or just to be a “good
citizen” and let other threads execute.

As a programming model for multithreaded applications,
CM has some very attractive properties. In particular, the
text of the program specifies exactly where threads may be
interrupted. Although CM programs may be nondeterministic,
the ways in which nondeterminism can arise are relatively
restricted. Further, between yields we can reason about code
purely sequentially: until a thread yields, it will never see
the environment being changed by other threads, nor will its
changes be visible to other threads.

CM was originally conceived as a model for writing
uniprocessor multithreaded programs, where its one-at-a-time
nature presents few problems. On a multiprocessor machine,
however, running one thread at a time leaves all cores but
one idle. In Section 3, we’ll describe OCM which keeps the
appearance of running one thread at a time, while nevertheless
allowing parallelism.

2.1 Bank Accounts Example
As an example of the CM model, let us consider the familiar
example of two threads transferring funds within an array
of bank accounts, provided they do not become overdrawn.
Thread A moves $50 between accounts i and j if possible,
whereas Thread B loops, repeatedly moving $5 from account
x to y until x is drained. We must avoid any race conditions
(e.g., money being created out of nowhere, or vanishing).

Thread A

// try to move $50 from i to j
if (account[i] >= 50) {

// okay to move $50, so do it
account[i] = account[i] − 50;
account[j] = account[j] + 50;

}

Thread B

// move everything x to y
while (account[x] >= 5) {

// okay to move $5, so do it
account[x] = account[x] − 5;
account[y] = account[y] + 5;
yield;

}

Thread A always runs to completion without interruption.
From the perspective of other threads, the $50 moves atomi-
cally from accounts i to j and the total funds across all accounts
stays the same. Likewise for thread B, but other threads may
observe points in time where account x is partway through
being drained. If we removed B’s yield statement, it would
perform the entire account-draining process atomically.

Adding yields elsewhere in the code would allow more
interleavings, some of which would be erroneous. Placing
a yield between the two assignment statements would allow
people to observe moments in time when money has been taken
from one account and not yet put to another. Putting a yield
before both assignment statements could allow interleavings
where the condition was no longer true when the assignments
were executed. The explicitness of yield statements makes it
relatively straightforward to reason about what could happen
if we were to yield in those places.

Although CM has far fewer possible effect orderings than
other concurrency models, it nevertheless allows nondeter-
minacy. There is no guarantee which thread will run when
we yield; in fact the same thread may continue to run. In our
example, nondeterminacy is possible if i = y and j = x; the
$50 credit made by Thread A may escape being drained by
Thread B if the credit happens after Thread B’s loop is over.

Finally, it’s worth recognizing the ways in which this code
is simpler than strategies using atomic blocks or explicit locks.
An explicit-locking approach requires us to be mindful of
deadlock, and with atomic blocks it requires some thought to
replicate Thread B’s execution—we cannot place an atomic
block inside the loop, nor put the loop inside an atomic block.

2 2015/6/10

In both cases, experienced parallel programmers will see
solutions, but these solutions lack the simplicity of the CM
version.

2.2 Ants Example
In this example (based on a Clojure example proposed by
Rich Hickey), a group of ants explore a 2D grid, alternating
between thinking and moving towards (and consuming) any
nearby food (each item of food can only feed a single ant and
each ant moves randomly if there is no food in its immediate
vicinity). If we allow the explorations of two arbitrary ants to
occur concurrently, we must ensure that no race conditions or
deadlocks occur in examining and updating the 2D grid.

In CM, the code for each ant becomes

while stillAlive:
think();
yield;
(x, y) = grid.mostAttractiveCellNearTo(x, y);
if (grid.hasFood(x,y))

grid.eatFood(x,y);
yield;

Notice that exploring the grid and eating the food on a
grid square happen as an atomic unit because there is no yield
between these two steps (we assume that none of the grid
functions yield).

If we omitted the yield after think(), the execution of ants
would still be interleaved but there would be half as many
“chunks” to interleave. If thinking took a long time and we
desired even more chunks for interleaving, the ant could yield
inside think. For many CM programs, the choice of how long to
go between yields may not have any bearing on its correctness,
but may affect responsiveness or other performance properties.

2.3 Features Beyond yield

The examples we have seen above focus on yield, but a com-
plete CM system will have more concurrency-control prim-
itives than just yield. For example, the GNU Pth library for
CM [5] provides a plethora of concurrency-control mecha-
nisms, including interthread communication channels, condi-
tion variables, barriers, and mutexes.

It might seem like such mechanisms are unnecessary in a
world where only one thread runs at a time, but the moment
we have situations where one thread must wait for something
to happen before it can continue, these mechanisms become
useful. (We could instead busy-wait by yielding until the world
is to our liking, but doing so would not be efficient, and if the
system does not provide a yield-fairness guarantee, there is
actually no guarantee that doing so would be effective either.)

It is instructive to highlight the difference between
concurrency-control primitives in the CM world and those
elsewhere, with CM allowing simpler constructs. In most
systems that provide condition variables, a condition variable
must have an associated mutex and the mutex must be held
when accessing any data related to the condition to avoid

race conditions (such as “lost wakeup” bugs). In contrast, in
CM a condition variable does not need a mutex because its
one-thread-at-a-time nature means that these kinds of race
conditions can only occur if we are foolish enough to put
yield in the wrong place (e.g., adding a yield between finding
a buffer is full and waiting for someone to signal us to tell us
that they’ve emptied it).

2.4 Issues with CM
There are certainly instances where relying on cooperation is
inappropriate. Desktop operating systems such as Windows
and MacOS formerly employed CM but have long since
adopted preemptive scheduling, preventing one uncooperative
process from hanging the entire system. But within a single
program, a buggy thread failing to yield is no worse than an
accidental infinite loop in sequential code.

But the most obvious deficiency of CM as a model for
multithreaded computation is that it executes only one thread
at a time! Our goal for OCM, which we describe next, is
to retain the many advantages of CM but allow multicore
implementations.

3. Observationally Cooperative
Multithreading

Observationally Cooperative Multithreading (OCM) adopts
the simple semantics of cooperative multithreading (CM) that
we outlined in the previous section, but allows implementa-
tions that take advantage of multiprocessor parallelism when
possible.

From a programmer’s perspective, OCM and CM programs
are identical. The observable behavior (final results, I/O, etc.)
of a program is always consistent with a possible execution
under some CM model (i.e., nonpreemptive, uniprocessor).
We call this requirement CM serializability, and it is the
fundamental property of OCM.1 The difference between CM
and OCM is that a system implementing the OCM model
is free to run tasks in parallel, if it can do so while still
guaranteeing CM serializability. Thus, CM and OCM produce
the same results and have the same conceptual model, but
OCM may be able to produce those results faster because it
can potentially use all the cores on the machine whereas CM
can only use one.

For the banking example we outlined earlier, the threads A
& B can execute simultaneously if x and y are disjoint from
i and j. Likewise, for the ants example, two ants exploring
disjoint segments of the grid can explore simultaneously. When
two threads would interfere with each other, their execution
must be serialized to avoid the interference.

3.1 Implementation Agnosticism
The details of how an OCM system runs code while retaining
CM serializability (and the concurrency-control mechanisms

1 CM serializability also means that the semantics of OCM is by definition that
of CM; we can immediately reuse existing formalizations of CM semantics [1].

3 2015/6/10

it uses to do so) are implementation decisions, visible to users
only insofar as they affect performance. Any CM implemen-
tation (e.g., GNU Pth) is trivially an OCM implementation,
albeit one that fails to ever achieve any parallel speedup. Such
an implementation can be useful in practice because it provides
a minimum performance standard to use as a baseline.

From a parallel-execution perspective, code between any
two dynamically successive yield statements executes atomi-
cally in OCM, but exactly how that atomicity is achieved is an
implementation choice. Implementation techniques for OCM
include lock inference and software transactional memory,
allowing us to potentially compare the exact same program
under radically different concurrency-control schemes.

Unfortunately, prior to this paper, the results of such
comparisons did not reflect well on any of the schemes we
tested. In numerous experiments, we reached the unsatisfying
conclusion that in almost all situations where the inter-
thread synchronization problems were interesting enough
to warrant using OCM, the best-performing technique was
serial execution! Thankfully, the OCM implementation that
we describe in the next section actually does provide parallel
speedup for meaningful programs.

4. HLE Implementation of OCM
In this section, we describe an extremely simple but extremely
effective implementation technique for OCM, which owes its
good performance entirely to Intel’s HLE technology.

4.1 Naïve Implementation
One of the most simple-minded ways to implement OCM
(besides just using a CM system) is to use a single global
lock to protect all shared data. In this case, yield could be
implemented as globalLock.release() immediately followed
by globalLock.acquire(). Like CM, only one thread would run
at a time, but different threads might execute on different
cores.

Such a scheme should be expected to have mediocre
performance. With only one thread running at a time, we
can expect no parallel speedup, and thanks to the overheads
of thread creation and cache effects between processors, it is
quite likely that execution will run slower than it would on a
single core under CM.

On the positive side, this scheme is trivial to implement. It
also forms the basis for our next approach.

4.2 HLE Implementation
Intel’s Hardware Lock Elision (HLE) technology takes existing
code that uses a single global lock to ensure mutual exclusion
and uses transactional atomicity to replace the lock. If two
threads that wish to hold the lock do not otherwise interfere
with each other, HLE may execute them simultaneously. Thus,
as OCM is to CM, so HLE locks are to regular locks. In the
absence of introspection about what mode the CPU is in, the
only difference in behavior between HLE locks and regular

locks is the performance difference, with a potential benefit
from parallel execution.

Thus our HLE implementation of OCM takes the simple-
minded global lock and simply makes it an HLE global lock.
That’s all!

HLE does not guarantee to always elide the lock and execute
transactionally. If it cannot execute transactionally for some
reason (contention or system limitations such as transaction
size), it falls back performing a conventional lock acquisition.

4.2.1 Going Beyond yield

As we mentioned in Section 2.3, a complete implementation of
OCM should provide a broader array of concurrency-control
mechanisms than just yield to support the various scenarios in
which one thread may need to wait for another. But we cannot
carelessly reuse the concurrency-control mechanisms present
in the system that OCM is built on (e.g., POSIX threads).

It is, however, straightforward to implement suitable
concurrency-control mechanisms using system-provided prim-
itives. One method is to associate each thread with a system
mutex and condition variable that allows a thread to suspend
itself and another thread to wake it up. Before sleeping, it
acquires its own mutex, drops the global lock, and finally
waits to be woken. To wake another thread, we are already
holding the global lock (because we’re running), and we may
have to wait to acquire the target thread’s mutex because it
is still in the process of falling asleep, but eventually it will
become available and then we can signal the thread to wake.

With a mechanism to put threads to sleep and wake them
up again, it is straightforward to implement any desired con-
currency control primitive. Our implementation provides con-
dition variables, barriers, semaphores, and buffered commu-
nication channels.

4.3 Shrinking Atomic Regions
In our scheme as discussed so far, everything is atomic all
the time, with atomicity firmly enforced via a global lock that
must be held at all times (either a traditional mutex or one
implemented with HLE).

Interestingly, however, the global-lock scheme can be
optimized by delaying globalLock.acquire() until shared state is
about to be accessed for the first time since yielding. Likewise,
if the system can determine that a yield is imminent and that
no more accesses to shared data will occur before the next
yield is reached, it can perform the globalLock.release() action
ahead of the actual yield. We call these two lock optimizations
lazy acquire and eager release. Both optimizations preserve
CM serializability, yet allow thread executions to overlap in
parallel.

Implementing such a functionality requires a compiler to
know when the program is merely accessing thread-local state
and when it accesses (or may access) global state. Compilers
routinely perform these kinds of analysis because it affects a
wide variety of optimizations (including what can be stored in

4 2015/6/10

CPU registers), so simple variations of lazy acquire and eager
release require no significant new static analysis.

5. Performance
In this section, we will examine the performance of OCM
implemented using HLE and with a simple-minded global lock,
with and without the atomic-region–shrinking optimization.

The benchmark is the simplified variant of Rich Hickey’s
ant colony simulation we discussed in Section 2.2, where
multiple ants explore a 2D grid. This benchmark has sev-
eral useful properties. First, the synchronization demands are
unpredictable—ants move randomly and must avoid interfer-
ing with each other. Second, we can vary contention in two
ways, by changing the size of the grid (which affects how
often shared accesses interfere) and by altering how much
time ants spend “thinking” between their examinations of the
grid (which affects how often shared accesses occur at all).

In all cases, we compare speedup to a serial implementation
where all exploration is performed by a single thread. In
this way, we realistically show how much speedup a user
might expect from parallelizing serial code, rather than the
speedup from running a “parallel” implementation (with
all overheads it incurs) on different numbers of cores. In
our approach, the serial code uses one core, and parallel
code has four cores available.2 Thus the maximum possible
speedup is 4×, although the added complexities of any parallel
implementation make 4× speedup over serial execution
unlikely. For simplicity, only four ants explore the grid, but
similar results are obtained with larger numbers of ants.

We also do not favor parallel code by arranging data in a
friendly way. Each square of the grid is a single byte, which
leads to considerable false sharing when executed in parallel.
This arrangement is particularly hostile to HLE, because false
sharing will cause it to detect conflicts where none exist.

Figure 1(a) shows the performance when running the simu-
lation with approximately equal time spent between thinking
and grid exploration. The x-axis shows the grid size; con-
tention decreases with larger grid sizes. With four ants ex-
ploring an 8× 8 grid, and each ant examining its immediate
eight cells, we should expect significant contention and we do
see that (in fact, almost 20% of transactions fail due to con-
flicts). Nevertheless, both HLE implementations outperform
the serial implementation. In contrast, the simplistic global
lock fails badly, causing a significant slowdown over the serial
code. The optimized versions apply the ideas we discussed in
Section 4.3 so that the global lock is not held while thinking.
This optimization improves the performance of both schemes,
but is not enough to make the global-lock scheme outperform
serial execution.
2 When we performed our tests, Intel’s HLE implementations were restricted
to four-core systems (arguably the most common CPU configuration). Our
tests were run on a desktop machine with an Intel “Haswell” Core i7-4770
CPU, running at 3.40GHz with Turbo-boost disabled. In future work we
expect to test a server-class machine with a larger number of cores.

The optimized global lock scheme is about the best we
could hope for with a simple locking strategy, but some
readers may believe that a fine-grained locking scheme would
perform better. Even if we were to assume that better strategies
were possible with fine-grained locking, or clever lock-free
approaches, these approaches have the downside of being
much more complex.

In Figures 1(b) and 1(c), the ants do more computing
between accesses to shared state, so accesses to shared state
are less likely to clash (whether or not they actually interfere).
The performance of the serial code and the simplistic global
lock remains the same, but all the other schemes improve their
level of parallel speedup. In particular, the global lock that
is released while thinking finally performs better than serial
execution, but not as well as its HLE counterparts.

These results indicate that across a space of parallel
programs with different access patterns, HLE can offer useful
parallel speedup to extremely simple concurrency control
strategies. Using the OCM model and HLE, we can parallelize
programs with very modest effort and strong certainty about
their correctness, and yet achieve noticable parallel speedup.

6. Conclusions and Future Work
OCM provides a straightforward way to understand and
express problems that require irregular parallelism. The code
is easy to write and easy to reason about, but until now, many
programs written for this model have not seen useful parallel
speedup. Hardware transactional memory changes that state
of affairs, allowing even a very simple implementation of
OCM to offer good performance.

OCM is not intended to replace carefully written custom
synchronization schemes. Rather, we see it as a “kinder gen-
tler” form of multicore parallelism that is highly suited to
education, prototyping, and other areas where coding com-
plexity concerns trump absolute performance. Our original
expectations for OCM were that it would never be the fastest
technique, but it could often be the easiest one. The HLE
performance results we’ve shown in this paper show that,
at least sometimes, performance can actually be extremely
promising.

A key reason why HLE fits OCM so well is that OCM
doesn’t expose the concept of transactions or transaction
failure to the user. As such, the limitations of HLE (e.g., limits
on the length of transactions, some instructions, including
system calls, not being executed transactionally) pose no
problems for our model, merely causing some additional
serialization.

We’ve shown that an embarrassingly simple implementa-
tion scheme can offer good performance, but there are plenty
of opportunities for improvement. For example, it isn’t hard
to record information about yield points to determine whether
they usually execute transactionally or not, and skip transac-
tional execution when it will always abort. These kinds of
improvements are a worthy topic for future exploration.

5 2015/6/10

(a) Equal thinking and exploring.

(b) Two-to-one thinking vs exploring.

(c) Four-to-one thinking vs exploring.

Figure 1. Performance of the Ants Benchmark.

6 2015/6/10

We also hope that this example inspires others to consider
whether other previously embarrassingly bad strategies for
parallel coordination become not just feasible, but performant,
under HLE.

7. Related Work
We are not the first to see the CM model as a generally desirable
model for programmers [8, 28]. In recent years, it has been
suggested most often to combine the efficiency and simplicity
advantages of sequential event-driven code with a more natural
programming model [6, 29]. There is still debate about the
relative overheads of events and cooperative threads, but there
is no doubt that CM can provide an attractive and natural
model for systems programming.

Rossbach et al. [18] found that undergraduate students
in a systems class had more difficulty understanding the
transactional concurrency model than they did the coarse-
grained locking model. However, when they completed an
assignment using both the locking and transactional models,
many more students made errors with explicit locking than
with transactions. From this we see that both the transactional
and locking models have weaknesses when it comes to ease
of understanding and ease of use.

Skillicorn and Talia [22] observed that “conscious human
thinking appears to us to be sequential, so that there is
something appealing about software that can be considered in
a sequential way”, that “models ought to be as abstract and
simple as possible”, and that “[g]enerally, easy-to-use tools
with clear goals, even if minimal, are preferable to complex
ones that are difficult to use.” These views are echoed by
Sadowski and Kurniawan [19]. By making a firm commitment
to sequential cooperative semantics, we believe that the OCM
model makes significant progress towards these goals.

Yi et al. [30] use the easy-to-reason-about properties of
CM to advocate for programs with explicitly marked yields,
but in their approach yield is not a statement but an annotation
for programs that already include traditional synchronization.
Their approach allows the system to detect (and flag as an
error) program executions interleave in ways not explicitly
allowed by its yields. Our approach and theirs are compatible—
with our OCM implementation, a serial program can be made
parallel with yield statements, and then if higher performance is
desired, explicit synchronization can be added while retaining
the yields as annotations.

As a parallel model, OCM intersects with a significant
portion of prior work on parallelism and concurrency. There
is a vast literature describing parallel models, concurrency-
control mechanisms, debugging techniques, and so forth that
could be compared to OCM, but we cannot hope to do them
all justice here. Thus, we must restrict our discussion to
those techniques that we feel are of most interest because
they parallel, influence, or counterpoint OCM in particularly
significant ways.

7.1 HTM and Global Locks
One of the most widely known instances of global locking
are the “global interpreter locks” used by scripting language
interpreters such as Python and Ruby. Riley and Zilles [17]
were one of the first authors to discuss the value of hardware
transactional memory in eliding global locks for interpreters,
improving Python, although their work relied on a simple
simulator. Various authors have further developed the idea
[4, 27] of using HTM to elide Python’s global lock. Most
recently, Odaira and colleagues [14] showed fairly good
speedup for an implementation of Ruby where HTM was
used to eliminate the global lock. But whereas the global
lock in Python and Ruby was designed to protect shared data
representing the core state of the interpreter and relates to
the interpreter runtime (and is thus often highly contended),
our use of a global lock is far less specific—exactly what the
global lock protects depends entirely on the user program. In
the degenerate case, the lock protects nothing at all.

7.2 Other Models of Concurrency
There are, of course, many other models for parallel program-
ming, including monitors [10] and Java synchronized meth-
ods [7], communicating sequential processes [11], Threading
Building Blocks [16], Transactions with Isolation and Concur-
rency [23], Cilk [3] and OpenMP [15] to name just a few. We
cannot compare each in detail here, but to the extent that they
provide particular scheduling policies or ways to create new
threads (e.g., parallel for loops), they may be transferrable
to an OCM context. However, one model deserve specific
comparison with OCM.

Automatic Mutual Exclusion AME [2, 12] is a variant of
software transactional memory. Like OCM, AME makes
the assumption that all code should be executed atomically
by default, but provides nonatomic escape hatch in the
form of unprotected blocks. Consequently, atomic code is
dynamically delimited by the execution of unprotected blocks.
An AME system could easily be used to implement OCM (yield
corresponds to an empty unprotected block [2]), and AME
has already engendered work on the denotational semantics
of uniprocessor cooperative multithreading [1].

While we have found the AME work inspiring, there are
two ways in which OCM intentionally differs from AME.

First, although nonempty unprotected blocks can improve
performance, but they can also be a source of bugs and semantic
surprises [21]. By avoiding this feature, OCM sacrifices some
performance to offer a simpler and safer model.

AME also exposes the underlying STM implementation.
Its blockUntil operator permits users to roll back and retry
in the middle of an atomic transaction, allowing code that
is impossible without run-time tracking and undoing side-
effects. AME’s approach cannot be implemented using only
HLE because HLE sometimes executes atomic sections
nontransactionally.

7 2015/6/10

Acknowledgments
A number of undergraduates from Harvey Mudd College have
worked on the OCM project, from developing implementations
to porting benchmarks to testing usability. Specifically, we
would like to thank Joe Agajanian, Savannah Baron, Sonja
Bohr, Bartholomew Broad, John Brooks, Chloe Calvarin,
Adam Cozzette, Michael DeBlasio, Xiaofan Fang, Alec
Griffith, Ki Wan Gkoo, Alexander Gruver, Samuel Just,
Kwang Ketcham, Joseph Klonowki, Sean Laguna, Joshua
Landgraf, Stephen Levine, Jordan Librande, Alejandro Lopez-
Lago, Julia Matsieva, Joshua Peraza, Stuart Pernsteiner, John
Phillpot, Ari Schumer, Mary-Rachel Stimson, Alice Szeliga
and Jesse Werner. Their efforts and frustrations showed us
that for a wide variety of benchmarks and implementation
techniques, true parallel speedup seemed to be a remarkably
difficult goal to attain.

References
[1] M. Abadi and G. Plotkin. A model of cooperative threads. In

POPL ’09, pages 29–40, 2009.

[2] M. Abadi, A. Birrell, T. Harris, and M. Isard. Semantics of
transactional memory and automatic mutual exclusion. In POPL

’08, pages 63–74, 2008.

[3] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou. Cilk: An efficient multithreaded
runtime system. In PPoPP ’95, pages 207–216, 1995.

[4] C. Blundell, A. Raghavan, and M. M. Martin. Retcon: Transac-
tional repair without replay. In Proceedings of the 37th Annual
International Symposium on Computer Architecture, ISCA ’10,
pages 258–269, New York, NY, USA, 2010. ACM. ISBN
978-1-4503-0053-7.

[5] R. S. Engelschall. Gnu Pth—the GNU portable threads. June
2006. URL http://www.gnu.org/software/pth.

[6] J. Fischer, R. Majumdar, and T. Millstein. Tasks: language
support for event-driven programming. In PEPM ’07, pages
134–143, 2007.

[7] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java™
Language Specification (3rd Edition). Addison-Wesley Profes-
sional, 2005.

[8] A. Gustafsson. Threads without the pain. Queue, 3(9):34–41,
2005.

[9] T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy. Com-
posable memory transactions. In PPoPP ’05, pages 48–60,
2005.

[10] C. A. R. Hoare. Monitors: an operating system structuring
concept. Communications of the ACM, 17(10):549–557, 1974.

[11] C. A. R. Hoare. Communicating Sequential Processes. Prentice-
Hall, 1985.

[12] M. Isard and A. Birrell. Automatic mutual exclusion. In 11th
USENIX Workshop on Hot Topics in Operating Systems (HotOS
XI), pages 1–6, 2007.

[13] J. R. Larus and R. Rajwar. Transactional Memory. Synthesis
Lectures on Computer Architecture. Morgan & Claypool, 2007.

[14] R. Odaira, J. G. Castanos, and H. Tomari. Eliminating global
interpreter locks in ruby through hardware transactional memory.
In Proceedings of the 19th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’14,
pages 131–142, New York, NY, USA, 2014. ACM. ISBN
978-1-4503-2656-8.

[15] OpenMP Architecture Review Board. OpenMP Application
Program Interface, version 3.0. May 2008.

[16] J. Reinders. Intel Threading Building Blocks: Outfitting C++
for Multi-Core Processor Parallelism. O’Reilly, 2007.

[17] N. Riley and C. Zilles. Hardware tansactional memory support
for lightweight dynamic language evolution. In Companion
to the 21st ACM SIGPLAN Symposium on Object-oriented
Programming Systems, Languages, and Applications, OOPSLA
’06, pages 998–1008, New York, NY, USA, 2006. ACM. ISBN
1-59593-491-X.

[18] C. J. Rossbach, O. S. Hofmann, and E. Witchel. Is transactional
programming actually easier? In PPoPP ’10, pages 47–56,
2010.

[19] C. Sadowski and S. Kurniawan. Heuristic evaluation of pro-
gramming language features: Two parallel programming case
studies. In Proceedings of the 3rd ACM SIGPLAN Workshop
on Evaluation and Usability of Programming Languages and
Tools, PLATEAU ’11, pages 9–14, New York, NY, USA, 2011.
ACM. ISBN 978-1-4503-1024-6.

[20] N. Shavit and D. Touitou. Software transactional memory.
In Fourteenth Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC ’95), pages 204–213, 1995.

[21] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer,
D. Grossman, R. L. Hudson, K. F. Moore, and B. Saha. Enforcing
isolation and ordering in STM. In PLDI ’07, pages 78–88, 2007.

[22] D. B. Skillicorn and D. Talia. Models and languages for parallel
computation. ACM Computing Surveys, 30(2):123–169, 1998.

[23] Y. Smaragdakis, A. Kay, R. Behrends, and M. Young. Transac-
tions with isolation and cooperation. In OOPSLA ’07, pages
191–210, 2007.

[24] M. F. Spear. Lightweight, robust adaptivity for software
transactional memory. In 22nd ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA ’10), pages 273–283,
2010.

[25] C. A. Stone, M. E. O’Neill, and The OCM Team. Observation-
ally cooperative multithreading. In Proceedings of the ACM
International Conference Companion on Object Oriented Pro-
gramming Systems Languages and Applications Companion,
OOPSLA ’11, pages 205–206, New York, NY, USA, 2011.
ACM. ISBN 978-1-4503-0942-4.

[26] C. A. Stone, M. E. O’Neill, S. A. Bohr, A. M. Cozzette, M. J.
DeBlasio, J. Matsieva, S. A. Pernsteiner, and A. D. Schumer.
Observationally Cooperative Multithreading. ArXiv e-prints,
1502.05094, Feb. 2015 (originally written in 2011).

[27] F. Tabba. Adding concurrency in python using a commercial
processor’s hardware transactional memory support. SIGARCH
Computer Architecture News, 38(5):12–19, Apr. 2010. ISSN
0163-5964.

[28] R. von Behren, J. Condit, and E. Brewer. Why events are a bad
idea (for high-concurrency servers). In 9th USENIX Workshop

8 2015/6/10

on Hot Topics in Operating Systems (HotOS IX), pages 19–24.
USENIX Association, 2003.

[29] R. von Behren, J. Condit, F. Zhou, G. C. Necula, and E. Brewer.
Capriccio: scalable threads for internet services. In SOSP ’03,
pages 268–281, 2003.

[30] J. Yi, C. Sadowski, and C. Flanagan. Cooperative reasoning
for preemptive execution. In Proceedings of the 16th ACM
Symposium on Principles and Practice of Parallel Programming,
PPoPP ’11, pages 147–156, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-0119-0.

9 2015/6/10

