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We describe an object calculus that allows both extension of objects
and full width subtyping (hiding arbitrary components). In contrast
to other proposals, the types of our calculus do not mention “miss-
ing” methods. To avoid type unsoundness, the calculus mediates all
interaction with objects via “dictionaries” that resemble the method
dispatch tables in conventional implementations. Private fields and
methods can be modeled and enforced by scoping restrictions: for-
getting a field or method through subsumption makes it private. We
prove that the type system is sound, give a variant which allows co-
variant self types, and give some examples of the expressiveness of
the calculus.

One of the most important principles of software engineering is in-
formation hiding: the ability to build and enforce data or procedural
abstractions in order to make programs readable and maintainable.
Most object-oriented programming languages provide direct sup-
port for information hiding. Class-based languages like C++ and
Java [14], for instance, have mechanisms for hiding methods and
fields via private annotations; private methods and fields added to
an object may be accessed only by other methods defined within
the same class.

In this paper we give an elementary account of private fields
and methods in the presence of structural subtyping. We extend re-
cent object calculi [1, 20] with operations for hiding and renaming
methods, operations that can also be found in the class system of
Eiffel [19]. The primitives of the calculus also include object ex-
tension, method override, and arbitrary width subtyping and sub-
sumption (i.e., objects with more methods can always be used in
contexts expecting fewer methods). We prove that the type systems
prevent run-time type errors.

We take the somewhat novel approach of distinguishing be-
tween internal and external names of methods. In some sense, com-
mon implementations of object-oriented languages already use this
idea: classes with methods are compiled into a table, with a pointer
to each method, and the internal names are their location within the
table. Our calculus distinguishes internal from external names so
that methods can be made private, even after an object or class has

been created. Once the external name of the method has been lost
(either through an explicit operation or implicitly by subsumption),
the method cannot be overridden; other methods referring to this
method by its internal name are unaffected by the addition of new
methods, whatever their external name.

The distinction between internal and external names allows us
to avoid a well-known problem with object extension. In previ-
ous formalizations of extensible objects, the combination of object
extension and unrestricted width subtyping was unsound. For in-
stance, suppose we ignore this distinction and define an object p
containing two methods, x which always returns 3, and getx which
returns the value of the x method:

s x 3 : getx s x :

The variable s stands for “self”, and is dynamically bound to the ob-
ject upon method invocation. The type of p is x : getx : .
If p can also have the less precise type getx : , there is be
nothing to prevent us from adding a new method x returning the
value of type . In the dynamic semantics of [10, 18]
where an object can have at most one x component at a time, this
would override the earlier x method and cause getx to thereafter re-
turn the value ; This is a type error as getx is statically typed
as returning an integer. To avoid such errors, the type systems
of [10, 18] weaken the subtyping relation for extensible objects: ei-
ther methods may not be hidden at all, or components can be made
“inaccessible” (cannot be invoked) though still visible and overrid-
able. These mechanisms do prevent two methods with the same
name being added to the same object, but are unsatisfactory from
a software-engineering standpoint: they require the implementor
to expose implementation details in interfaces. Moreover, when
we use these calculi as a basis for classes, additions or changes to
the private methods of a base class may require subclasses to be
re-typechecked and possibly recompiled (a problem familiar from
C++ [16]). In the worst case, derived classes become ill-formed
and large pieces of code must be rewritten.

We approach this problem by allowing unrestricted hiding and
compensating in the dynamic semantics. When the above example
has been translated into our system, the getx method refers to x via
an internal name so that getx continues to return 3, even when the
new x method is added. Because the semantics of object extension
gives the newmethod a new internal name, the getxmethod remains
unaffected.

We begin with a first-order calculus (in the sense of [1]), i.e., the
calculus without a notion of self type. For simplicity, we limit the
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Table 1: Syntax of First-Order System

o :: b base type
o o function type
l : ol l I object type

K :: typing contexts
K x:o

v :: c constant
x y s o variables
hx:o e abstraction
s i ei : oi i 1 n

  object
e :: v value

e e function application
e l method invocation
e@  object renaming
e l s e : o object extension
e l s e method override

calculus to a simple delegation-based system; objects, being exten-
sible, also serve to encode classes. Variants of the calculus have
been carefully studied before (e.g., [9, 10, 11, 12, 18]). To keep the
setting simple, all objects are immutable and objects have no fields;
fields can be encoded as methods which ignore their self argument.

The language, whose syntax appears in Table 1, derives largely
from the object calculi of Abadi and Cardelli [1], Fisher, Honsell,
and Mitchell [10], and Liquori [18]. The types of the language in-
clude base types, function types, and object types. Object types
only mention the visible names of methods and their return types.
We identify object expressions or types differing only in the order
of their components.

In most object calculi, objects draw their method names from
a distinguished infinite set L of labels. Instead, our calculus distin-
guishes internal names from external names, and uses a dictionary
to map between the two. For convenience, we choose the natural
numbers N to serve as the internal names, L to serve as external
names, and use l or m to denote elements of the set L N. The
use of the natural numbers is meant to evoke “slots” in a method
table or array, and makes the notation slightly simpler. There is, of
course, nothing essential in using N, or even in distinguishing the
sets of external and internal labels.

A dictionary   is a finite partial function from the extended
set of labels L N to L N. Dictionaries appear as subscripts on
objects. For instance, the object

s 1 3 : x 1

has the dictionary x 1 ; when x is invoked, the actual code in-
voked is the method internally labeled by x 1 x 1. We use
  l n to denote the partial function that behaves exactly as  
except for mapping l to n, and id S to denote the identity function
with finite domain S L N.

There are three primitive operations on objects besides method
invocation. The operation e@  , alters the existing dictionary on an
object: it evaluates e to an object and composes   with its internal
dictionary. In addition to renaming components, this operation can
contract the number of methods visible in the object when the range
of   is smaller than the domain of the dictionary on the object. For
example,

s 1 3 : 2 s@  x :  @ getx getx

where   x 1 getx 2 , returns an object whose only visible
method is getx, because the dictionary will be getx 2 . Sim-
ilarly, one can increase the number of fields visible by mapping
several external labels to the same internal label. (In this case, if
one of these methods is overridden multiple methods may appear
to change.) The other two operations add or change the methods of
objects. The operation e0 l s e : o adds a new method l to the
object denoted by e0. The method expects a self parameter s, and
when invoked evaluates the body e of type o. An existing method
can be replaced within an object by the operation e0 l s e.

To give dynamic semantics to the language, we use Felleisen’s
“evaluation context” formulation [8] of Plotkin’s SOS [21]. The
syntax of evaluation contexts (a subset of those expressions con-
taining a single hole, denoted ) is given by the grammar

E :: E e v E
E l
E@ 
E l s e : o
E l s e

We write E e to denote the evaluation context E with the hole re-
placed by e. The local reduction relation is shown in Table 2.
These rules use a syntactic substitution operation, written s e e ,
which denotes the capture-free substitution of e for s in e . The im-
portant point to note for this system is that the dictionary is stripped
(and replaced by an identity dictionary) at method invocation. This
allows method code to assume a default dictionary, however the
object may be altered. Code for methods in method override and
object extension is then coerced to expect such stripped objects.
The relation in Table 2 is extended to a one-step evaluation relation
on programs by

e e e1 e2 e E e1 e1 e2 E e2 e

We can prove

Proposition 1 (Determinacy)
The relation is a partial function.

We use to denote the reflexive, transitive closure of .
The static semantics of the language is shown in Appendix A.

The novel aspects are the subsumption rule for width subtyping—
more precisely the fact that we allow naı̈ve width subtyping on
objects—and the treatment of dictionaries. The following theorem
shows that the static semantics prevents run-time type errors:

Theorem 2 (Soundness)
1. If e : o and e e , then e : o.

2. If e : o, then e is a value or e e for some expression e .

The first example shows the behavior of private methods. Let  
F 1 M 2 and define the explicit subtyping coercion o: o as
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Table 2: Local Reduction Steps of First-Order System

hx:o e v x v e

s i ei : oi i 1 n
  l s s i ei : oi i 1 n

id 1 n e  l

s i ei : oi i 1 n
  @  s i ei : oi i 1 n

   

s i ei : oi i 1 n
  l s e : o s i ei : oi i 1 n n 1 s s@  e : o       l n 1

s i ei : oi i 1 n
  l s e s i ei : oi i 1 n   l   l s s@  e : o  l  

shorthand for the term hx:o x o . Consider the terms

o : s F s 5 : M s s F 1 :
o : F : M :
o s 1 5 : 2 s@  F 1 :  

o1 : o F s 7
o1 : F : M :
o1 s 1 7 : 2 s@  F 1 :  

o2 : o: M :
o2 : M :
o2 s 1 7 : 2 s@  F 1 :  

o3 : o2 F s :
o3 : F : M :
o3 1 7 : 2 s@  F 1 :

3 : F 3 M 2

Here o has methods F and M. When a method is invoked, the self
parameter s is replaced with an object with an identity dictionary.
Thus, it is easy to see that o F evaluates to 5 and o M to 6. In o1
we override F with a method that returns 7; o1 F evaluates to 7 and
o1 M to 8. To obtain o2, we use subsumption on o to make method
F private, leaving only one visible methodM. Then o2 M still eval-
uates to 6. The type system would reject any attempt to override
F in o2, since o2 has no visible F method. It is legal, however,
to extend o2 to o3 by adding a new method called F (which here
happens to return a boolean value). The previous F method is still
present in the underlying object; and evaluating o3 M still gives 6,
while o3 F returns .

As this example shows, under our semantics extending an ob-
ject never changes the behavior of pre-existing methods. When a
method is added to an object, we arrange for its body to invoke
methods in self using internal labels. Its behavior does not change
unless one of these is overridden (which cannot occur unless there
is a corresponding external label).

This example also raises another point: object extension must
be used carefully. One may always use extension in place of method
override, but the consequences are different. For instance, consider
the term

o4 : o F s :

which resembles o1 except that we use extension rather than over-
ride. The term is typable because the object o is implicitly forced
(via subsumption) to have an object type with only one method M
so that o4 evaluates to the same object as o3. As such, o4 M returns
6 while o1 M returns 8. The programmer must be careful to deter-
mine which of these behaviors is correct and use the appropriate
operation.

As a second example, consider the term

f : ho: x : o getx s s x :

This function can be given the type

x : x : getx :

In contrast to other formalisms, this function may be applied to any
object with an xmethod of type , regardless of its other methods.
On the other hand, there is some information loss: if we apply this
function to an object with (public) methods x, y, and z, the result has
just two public methods x and getx; y and z are hidden in the act of
subsumption. An extension of the system with row variables [24]
or bounded polymorphism [7] might allow preservation of methods
in such cases.

In a calculus of immutable objects, it is natural to consider ob-
jects that can return updated copies of themselves. For example,
we might define a type of movable points, which could be defined
(using a recursive type definition) as:

PT : getx : move : PT

where the move operation takes an amount to offset the position of
the returned point. Now suppose we have such a point pt : PT , and
we extend it to a colored point by adding a getc method returning a
color. The resulting object would have type

CPT : getx : move : PT getc :

Unfortunately, if cpt :CPT then cpt move is a function which still
returns a value of type PT; the color is lost.

This motivates a move to a “second-order calculus” in the par-
lance of [1]. Method types can now refer to “the type of self” which
changes as the object is extended. Thus we define

PT : _ getx : move : _

where _ represents the type of self, and is bound within the object
type. Then the extension to add a color would have type

CPT : _ getx : move : _ getc :

Assuming pt : PT and cpt : CPT, the method invocation pt move
has type _ PT _ PT, and the method invocation
cpt move has type _ CPT _ CPT as desired.
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Table 3: Syntax of the Second-Order System.

o :: b base type
_ type variable
o o function type
o o dictionary type

_ l : ol l I object type
_ i : oi i 1 n

  layout type
K :: typing contexts

K x:o
K _ o

v :: c constant
x s d variable
hx:o e function
  dictionary

s:_ i ei : oi i 1 n
  object

e :: v value
e1 e2 application
e l method invocation
e&v dictionary replacement
e l s:_ d e : o object extension
e l s:_ d e method override
e vl invocation with dictionary
e vl s:_ d e override with dictionary

In parallel with the extension of syntax for object types, we also
extend object values to bind a type variable _ to represent the type
of self within the object:

s:_ i ei : oi i 1 n
 

(The entire syntax of the second-order language appears in Ta-
ble 3.) Because of the possibility of object extension and width
subtyping, there is no way to know when a method is typechecked
exactly what the type of self will be when the method is invoked.
Therefore, the standard technique for typechecking methods in-
volving such self types is to require they be parametric in the type
of self, so that they are guaranteed to work for any future version
of the object; normally this is implemented by using bounded poly-
morphism.

Because we have dictionaries, we have a further complication:
methods involving self types must work parametrically not only for
any extension of the object, but for any change to the object’s dic-
tionary as well. For example, the code for pt move and cpt move
above is the same by construction; however, pt and cpt will have
different dictionaries, and the values returned by themove functions
should have similarly different dictionaries. This causes difficulties
for our first-order system, in which invoking a method discards the
object’s dictionary. (Another way of looking at the first-order se-
mantics is that all methods added by extension or override start by
replacing the dictionary on self with their own dictionary.)

The second-order calculus avoids such coercions by providing
dictionaries as first-class values, and allowing operations to be pa-
rameterized by a dictionary. Both method lookup and method over-
ride can specify the particular dictionary to be used in finding the
internal name for the method. Thus the code for the move method
above will be able to access or override the getx method of self by
using the dictionary appropriate for points without modifying the
dictionary of self ; pt move will return a point and cpt move will
return a colored point.

We do not expect programmers to build dictionaries directly;
the current dictionary of an object is supplied for use in bodies at
method override or method extension time. As seen in Table 3, the
syntax for method override and method extension binds not only
a variable s representing self and a type variable _ representing
self type, but also a variable d which represents the dictionary of
the object at the time the method is added. Method override and
method invocation also may optionally specify a dictionary value.
For example, the operation e vl s:_ d e uses the dictionary v
to find the method that needs to be replaced (namely, the one with
internal label v l ). In general, v is likely to be either a variable d
or a constant dictionary.

The last operation we provide is dictionary replacement, writ-
ten e& , since there are occasions in which we still want to replace
the dictionary of an object entirely. For simplicity, we do not pro-
vide the dictionary renaming operation of the first-order system,
although it would not be difficult to add.

Not all dictionaries make sense in conjunction with all objects.
If all one knows is the external names of an object, it is impos-
sible to tell whether a particular dictionary is appropriate for that
object. Therefore we extend the type system with dictionary types
(written with ), and layout types. Layout types are object types
exposing the inner layout of an object and information about its dic-
tionary. The most precise type of an object is a layout type giving
the types and internal names for all its components, and exposing
the entries in its dictionary. Every layout type is a subtype of the
corresponding object type derived from the component types and
the dictionary specification. For instance, the layout type

_ 1 : 2 : _ x 1 move 2

is a subtype of the object type

_ x : move : _

An object type is thus more abstract than any of its possible layout
types.

Layout types are used in conjunction with dictionary types; a
dictionary of type o1 o2 can be used with objects of type o1 (usu-
ally a layout type or a type variable representing a layout type), and
when used to replace that object’s dictionary yields an object of
type o2. In the second-order system, we can restrict dictionaries to
finite, partial functions from L to N.

The static semantics of the second-order calculus appears in
Appendix B. The rules use the following abbreviations:

obj : _
x : o e e : hx:o e e

Here obj is the object type conveying the least information.
The typing rules resemble those of the first-order system, but

with two significant additions. First, since the type of self is now a
type variable, we need assumptions about the bounds of type vari-
ables. A new rule for this appears in the rules for well-formedness
of contexts. Second, the system includes rules for the new opera-
tions and values. The rules for checking objects, method override,
and method extension are the most complicated. These rules check
the bodies of methods using assumptions about the type of self and
(possibly) a dictionary d. In contrast to other systems in which the
type _ of self is a type variable bounded by some object type o, we
assume _ is an abstract object type, and supply a dictionary d of
type _ o. This corresponds to the idea that in order to make real
use of self as an object, we have to use a known dictionary rather
than the one currently attached to self . For methods within object
values, we have information about the underlying layout and hence
can make self type a type variable bounded by a layout type.

A technical constraint is that the type _ of self must appear
covariantly inside layout and object types. We say that _ appears
covariantly in o if any of the following is true:
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_ is not free in o;

o is _;

o is o1 o2 or o1 o2, where _ appears contravariantly in o1
and covariantly in o2;

o is _ l : ol l I or _ i : oi i 1 n
 , and _ occurs

covariantly in each oi.

Similarly, _ appears contravariantly in o if any of the following is
true:

_ is not free in o;

o is o1 o2 or o1 o2, where _ appears covariantly in o1 and
contravariantly in o2;

o is _ l : ol l I or _ i : oi i 1 n
 , and _ occurs

contravariantly in each oi.

We would need more restrictive width subtyping to avoid unsound-
ness if the _ were allowed to appear contravariantly (see [1] for
examples). As such, this system does not handle binary methods
(see [6] for a thorough discussion).

The dynamic semantics for the second-order calculus uses evalua-
tion contexts of the form

E :: E e v E
E&v
E l
E vl
E l s:_ d e : o
E l s:_ d e
E vl s:_ d e

The rules for reducing redexes appear in Table 4; these rules define
a relation . As with the dynamic semantics of the first-order
system, we write e e when there is an evaluation context E such
that e E e1 , e1 e2, and e E e2 . The dynamic semantics is
deterministic:

Proposition 3 (Determinacy)
The relation is a partial function.

We again use the relation to denote the reflexive, transitive clo-
sure of .

The static semantics is sound for the dynamic semantics:

Theorem 4 (Soundness)
1. If e : o and e e , then e : o.

2. If e : o, then e is a value or e e for some expression e .

Standard examples can now be written in the calculus. For instance,
we can write code matching the above point and color point types:

o : s:_ getx s:_ d 0 :
pt :: o move s : _ d

hy: z s dgetx
s dgetx s :_ d z y

cpt :: pt getc s:_ d :

There are many possible types for these objects besides PT and
CPT. The most specific types are the layout types

o : _ 1 : getx 1
pt : _ 1 : 2 : _ getx 1 move 2
cpt : _ 1 : 2 : _ 3 : getx 1 move 2 getc 3

These types are probably too detailed to report to the programmer,
and might be suppressed by a real system. Instead, the following
types are the most specific object types:

o : _ getx :
pt : _ getx : move : _ PT
cpt : _ getx : move : _ c : CPT

These types are supertypes of the above layout types.
The dynamic semantics of the language reduces these expres-

sions to the following values:

o s:_ 1 0 : getx 1

pt s:_ 1 0 : ,
2 hy: z s  getx

s  getx s :_ d z y :
_

 

cpt s:_ 1 0 : ,
2 hy: z s  getx

s  getx s :_ d z y :
_

3 :
getx 1 move 2 getc 3

where   getx 1 move 2 . Notice that the dictionary used in
the body of the move method is  , the one in place when the move
method was added to the object. Thus, the move method looks in
slot 1 for getx, and updates slot 1, even if a new method getx is
later added to the object. The return type of move is still the type
of self, so invoking move from both pt and cpt returns an object of
the right type.

We can go a step further and define a form of classes for points
and colored points, here instantiated as object-generating functions.
For example,

pt class : h x0 :
s:_
x s:_ d x0 :
getx s:_ d s dx :
move s:_ d
hy: z s dgetx

s dx s :_ d z y
: PT

cpt class : h x0: h c0:
pt class x0

c s : _ d c0 :
getc s:_ d s dc : : CPT

Here we have added the private field x, which is used by getx
and move, but hidden from view by subsumption; cpt class has
type PT. In particular, x is not in the scope of methods in
the class cpt class inheriting from pt class. Similarly, we have
added a private field c to the class of colored points, accessible
only by the getc method, but through coercion the type of cpt class
is CPT. To typecheck and compile cpt class we need
only know the above type of pt class which does not expose x.
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Table 4: Local Reduction Steps for Second-Order System.

hx:o e v x v e

s:_ i ei : oi i 1 n
  l s s:_ i ei : oi i 1 n

  _ A e  l A _ i : oi i 1 n
 

s:_ i ei : oi i 1 n
    l s s:_ i ei : oi i 1 n

  _ A e  l A _ i : oi i 1 n
 

s:_ i ei : oi i 1 n
  &  s:_ i ei : oi i 1 n

 

s:_ i ei : oi i 1 n
  l s:_ d e s:_ i ei : oi i 1 n   l   l d   e : o  l  

s:_ i ei : oi i 1 n
    l s:_ d e s:_ i ei : oi i 1 n   l   l d   e : o  l  

s:_ i ei : oi i 1 n
  l s:_ d e : o s:_ i ei : oi i 1 n n 1 d   e : o       l n 1

This series of examples did not use dictionary replacement; this
operation is useful when we want to delegate part of the action of a
method to a predeclared function. For instance, define the function
getf by:

getf : hp: _ F : p f

Then define the objects

o1 : s:_
F s:_ d 4 :
M s:_ d getf s&d :

o1 : _ F : M :

o2 : o1
F s:_ d 5 :
N s:_ d getf s&d :

o2 : _ F : M : N :

Then we have

o1 F 4 o2 F 5
o1 M 4 o2 M 4

o2 N 5

Although o2 M and o2 N appear to have the same code, they evalu-
ate to different values because the dictionaries they use have differ-
ent views of which field corresponds to F . Recall also that although
o2 has an object type with three components, because we used ex-
tension rather than override for the second F field, the underlying
representation has four methods.

There is a tradeoff in using explicit dictionaries: dictionary manip-
ulation may induce a run-time cost. In a setting where our object
calculus is used directly, there are methods for modestly reducing
the run-time costs of dictionaries. For example, in compiling the
dictionary composition operation e@  , one can either choose to
calculate the composition of e’s dictionary   with   directly, or
calculate the composition lazily as the new object gets requests for
methods. The former may be more efficient when there are fre-
quent compositions and method invocations, the latter more effi-
cient when there are fewer compositions.

Similarly, though it would be unsound to drop object compo-
nents when they are hidden by subsumption, it would be possible to
drop these components from the dictionary. By turning subsump-
tion into a run-time coercion on dictionaries, an implementation
can ensure that the order and position of entries in an object’s dic-
tionary always matches the static type; then dictionary lookups are
guaranteed to take constant time. Whether this is a good idea de-
pends on the frequency of subsumptions, and the cost of searching
a dictionary of unknown size.

If one knows more about the style of programming in the cal-
culus, more efficiencies can be gained. For instance, the calculus
makes a good compilation target for single-inheritance class-based
languages. In these languages, each class determines a “method ta-
ble” that can be shared among all objects of the class (the fields of
each object, of course, must be maintained separately). The map-
ping of method names to indices in the method table is the dictio-
nary. Since the method table can be statically determined, method
calls through self need not be matched to a slot in the method ta-
ble: they can immediately jump to the method. That is, when  
is statically determinable, the compiler can do dictionary lookups
at compile-time and not generate code involving this dictionary for
e@  l in the first-order calculus or e  l in the second-order cal-
culus.

Calls to methods from outside the method suite may still need to
go through the dictionary, however. In Java, for instance, suppose
we define two classes A and B and an interface C via the definitions

interface I {
public int m (int x);

}
class A implements I {
public int m (int x) { ... };

}
class B implements I {
public int k (int x) { ... };
public int m (int x) { ... };

}

In a context where a variable is known only to have type I, a
method invocation of m must go through the dictionary: the vari-
able could be an object from the class A (in which case m is the first
method in the method table) or from the class B (in which case m is
the second method in the method table).

In class-based languages, the only operations that create objects
are constructor functions. Thus, when compiling such a language
into our calculus, all of the object operations exceptmethod invoca-
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tion can be confined to the constructor functions. Constructor func-
tions first call their superclass constructor functions, which return
a partially constructed object, and then add or override methods.
If the superclass constructor is known—as it is in a language like
Java—the dictionaries are known, and so substitutions and compo-
sitions of dictionaries can be done at compile time. Even in a lan-
guage with parameterized classes, one can imagine doing much of
the manipulation of dictionaries at link time when the base classes
of parameterized classes become instantiated.

Any of the optimizations valid for untyped object-oriented lan-
guages should apply here as well.

Our calculus embodies solutions to two problems: providing a char-
acterization of private methods, and the combination of subtyping
and object extension. Previous work has attempted to address these
problems, and it is worth comparing these solutions to ours.

In the context of modeling private components in objects, Fisher
and Mitchell [13] give an account of private (as well as protected)
methods and fields using abstract types. Abstract types can be used
to hide the representations of objects from clients, even though the
objects themselves have access to the internal representations. In-
formation about the names of private fields and methods, however,
is still exposed. Their account is in some sense more fundamen-
tal than ours: our calculus directly supports hiding, and does not
attempt to describe it in more basic concepts. Rémy and Vouil-
lon [23] consider a more direct account of private data in classes,
but only as inlined constant values. In addition to not matching
a standard implementation, their approach does not extend well to
mutable fields in the presence of object cloning or functional update
of objects. Eiffel [19] has operations for redefining and “undefin-
ing” the methods of a class, much like our single renaming oper-
ation does in the first-order calculus. We are not aware, however,
of any formal accounts that establish the soundness of the Eiffel
type system. Bracha and Lindstrom [5] define a coercive operation
for hiding components of objects; this appears to behave similarly
to our subsumption operation, at least for first-order objects. They
formalize this operation within an untyped h-calculus.

More work has addressed the problems with object extension
and subtyping. Fisher and Mitchell [12], for instance, discuss the
unsoundness of width subtyping in the presence of object exten-
sion. Their solution is to distinguish the types of objects which ei-
ther method override and object extension (but no subtyping) from
those which support width and depth subtyping but not method
override or object extension. Later work has looked at other ways
of combining width subtyping with object extension without losing
soundness. Liquori [17, 18] gives first- and second-order systems in
which the types of extensible objects list the names and types of (a
superset of) methods hidden by subsumption; the types must match
if the object is extended by a new method with the same name as a
hidden method. The idea is related to an old idea: Jategaonkar and
Mitchell [15] and Rémy [22] use types that keep track of which
methods must be “absent” from an object. Bono, Bugliesi, Dezani,
and Liquori [4, 3, 2] take a different approach: object types con-
tain a conservative approximation of which methods each method
invokes via self. A collection of methods can be forgotten via sub-
sumption if no remaining methods might invoke a member of this
collection. This is not useful, however, for the purposes of model-
ing private methods (which exist for the sole purpose of being used
by public methods).

We have shown that there is a calculus with width subtyping and
object extension, one that allows a general notion of strong privacy

for fields and methods within classes. Whether we have chosen the
best set of primitives to describe this behavior is, however, open to
debate.

Given the choice of primitives, it appears that many extensions
should be possible. For instance, it should be possible to add mu-
table fields and methods and allow imperative update rather than
functional update. Variance annotations should also be simple to
add to the calculus to support richer forms of subtyping. We are
also interested in adapting this work to a setting in which classes
are a primitive notion. Finally, it would be interesting to extend
the language with bounded polymorphism, which would make the
calculus more expressive. We do not anticipate any major difficul-
ties in these directions. A much more difficult problem would be to
extend our characterization of private data to systems in which self
types are allowed to appear contravariantly.

Because of the relationship with implementation strategies for
object-oriented languages, we expect the calculus (or some variant
thereof) should be implementable in a fairly direct fashion. Never-
theless, as we discussed in Section 4.1, there are still a number of
tradeoffs to be explored when implementing the full calculus.

Some other, more difficult problems arise, the most important
of which is to find a better semantical framework for the calculus.
Our proofs of type soundness were purely operational; what would
be better is a deeper understanding of the calculus that would make
the static semantic rules obvious. A translation of the calculus into
a typed h-calculus might shed some light, or a denotational frame-
work might provide a better setting to evaluate different choices of
static rules.
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[18] L. Liquori. An extended theory of primitive objects: First
order system. In M. Aksit and S. Matsuoka, editors, Pro-
ceedings of ECOOP-97, International European Conference
on Object Oriented Programming, number 1241 in Lecture
Notes in Computer Science. Springer-Verlag, 1997.

[19] B. Meyer. Eiffel: The Language. Prentice-Hall, 1992.

[20] J. C. Mitchell. Toward a typed foundation for method spe-
cialization and inheritance. In Conference Record of the Sev-
enteenth Annual ACM Symposium on Principles of Program-
ming Languages, pages 109–124. ACM, 1990.

[21] G. D. Plotkin. A structural approach to operational seman-
tics. Technical Report DAIMI FN-19, Aarhus Univ., Com-
puter Science Dept., Denmark, 1981.
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Well-formed Contexts K

(1)

K o
K x:o

(2)

Well-formed Expressions K e : o

K
K c : c

(3)

K
K x : K x

(4)

K x : o e : o
K hx:o e : o o

(5)

K e : o o K e : o
K e e : o

(6)

K o o K e : o
K e : o

(7)

K e : l : o
K e l : o

(8)

K e : l : ol l I  

K e@  : l : o  l
l  

(9)

 
i 1 n : K s: j : o j j 1 n ei : oi

K s i ei : oi i 1 n
  : l : o  l

l  
(10)

m I
K e : l : ol l I K s: l : ol l I em : om

K e m s em : l : ol l I (11)

m I
K e : l : ol l I K s: l : ol l I m : om em : om

K e m s em : om : l : ol l I m : om
(12)

Well-formed Types K o

K

K b
(13)

K o K o

K o o
(14)

l I : K ol
K l : ol l I (15)

Width Subtyping K o1 o2

K o
K o o

(16)

K o1 o2 K o2 o3
K o1 o3

(17)

K o1 o1 K o2 o2
K o1 o2 o1 o2

(18)

K l : ol l I J

K l : ol l I J l : ol l I (19)
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Well-formed Contexts K

(20)

K o x K
K x:o

(21)

K o _ K
K _ o

(22)

Well-formed Expressions K e : o

K

K c : c
(23)

K
K x : K x

(24)

K x:o e : o
K hx:o e : o o

(25)

K e1 : o2 o K e2 : o2
K e1 e2 : o

(26)

K e : o K o _ l : o
K e l : _ o o

(27)

K e : o K v : o _ l : o
K e vl : _ o o

(28)

K e : o K v : o o

K e&v : o
(29)

K  
i 1 n : K _ _ j : o j j 1 n s:_ ei : oi

K s:_ i ei : oi i 1 n
  : _ i : oi i 1 n

 
(30)

K e1 : o K o _ m : om
K _ obj s:_ d:_ o e2 : om

K e1 m s:_ d e2 : o
(31)

K e1 : o K v : o _ m : om
K _ obj s:_ d:_ o e2 : om

K e1 vm s:_ d e2 : o
(32)

m I
K e1 : _ l : ol l I

K _ obj s:_ d:_ _ l : ol l I m : o e2 : o
K e1 l s:_ d e2 : o : _ l : ol l I m : o

(33)

K _ i : oi i 1 n
 

K   : _ i : oi i 1 n _ l : i : oi i 1 n
 

(34)

K e : o K o o

K e : o
(35)

Well-formed Types K o

K

K b
(36)

K K K _ o K

K _
(37)

K o1 K o2
K o1 o2

(38)

K o1 K o2
K o1 o2

(39)

i 1 n : K _ obj oi
_ occurs covariantly in oi

K l1 ln distinct
K _ li : oi i 1 n (40)

i 1 n : K _ obj oi
_ occurs covariantly in oi

K  

K _ i : oi i 1 n
 

(41)

Width Subtyping K o1 o2

K o
K o o

(42)

K K K _ o K K o o

K _ o
(43)

K o1 o1 K o2 o2
K o1 o2 o1 o2

(44)

K o1 o1 K o2 o2
K o1 o2 o1 o2

(45)

K _ l : ol l I J

K _ l : ol l I J _ l : ol l I (46)

   
K _ i : oi i 1 n m

   

K _ i : oi i 1 n m
  _ i : oi i 1 n

 
(47)

K _ i : oi i 1 n
  I  

K _ i : oi i 1 n
  _ l : o  l

l I (48)
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