
Equational Theories with Recursive Types

Christopher A. Stone and Andrew P. Schoonmaker

2005

Abstract

Studies of equivalence for recursive types often consider impoverished type systems, where
the equational theory is generated only by the fold/unfold rule µX. T (X) ≡ T (µX. T (X)).
Recursive types have been applied in much richer contexts, including systems with β and η-
equivalence, but without any guarantee that the implementations are correct. Though there
are plausible ways to adapt standard recursive-type algorithms to richer equational theories,
Colazzo and Ghelli observed that two “obvious” ways of extending the algorithm in a different
direction (adding universally-quantified types) both fail. Extended systems may not even be
formally specified; combining βη-equivalence with coinductive equivalence of recursive types
requires care to avoid inconsistency.

In this paper we both define and analyze coinductive equivalence for recursive types combined
with other common equational principles. We start by adding pairing and projection, allowing
even pairs to be recursively defined. (This permits direct definitions for collections of mutually-
recursive types.) We show that our definition yields a decidable theory with all the expected
equational properties.

We then extend the system with first-order (non-recursive) type operators and β-equivalence,
and show the same equational and decidability properties hold. Finally we add extensionality
for both pairs and functions, obtaining a coinductively-defined theory of recursive types with
βη-equivalence.

1 Introduction

A number of researchers have studied theories of equivalence or subtyping for recursive types [AC93,
AF96, BH97, GLP02]. With only a few exceptions — typically adding isomorphisms such as asso-
ciativity and commutativity of products [PZ00, Fio04, DPR05] — recursive types are studied in iso-
lation, and the only nontrivial equivalences arise from recursive types and the so-called fold/unfold
rule.

In practice, however, this may not be enough. For example, recursive types can be useful in
the presence of parameterized types [BCP99], yet studies of recursive types generally omit type
operators. Similarly, the FLINT and TILT implementations of Standard ML [LS98, VDP+03] have
used a slightly more restrictive variant of recursive type equivalence (based on an unfold/unfold
rule), combined with β and η-equivalence and primitive notions of mutually-recursive types.

A common assumption is that algorithms designed for the simple system of recursive types will
continue to work when the type system changes. However, Colazzo and Ghelli [CG99] observed
that in the presence of universally quantified types (and hence of bound variables that cannot
be eliminated through unfolding), the most obvious ways to extend the algorithm either fail to
terminate or are unsound.

1

The goal of this paper is to verify that existing ideas from the study of equivalence of recursive
types do extend to richer equational theories. We begin by reviewing some basic results used to
study the simple system of recursive types, based on the presentation of Gapeyev et al. [GLP02].
We show how to extend the coinductive definition of equivalence to include pairs of types and
projection operators (along with recursive definitions of pairs), and show that a sound, complete,
and terminating equivalence algorithm can still be obtained. This extension allows direct definitions
of mutually-recursive types, without specialized primitives or unintuitive encodings.

The approach for pairs then extends further to include type operators and β-reduction, provided
that kinds are restricted to first order (no arrows in negative positions). We finally add extension-
ality principles: pointwise-equivalent functions are equivalent, and componentwise-equivalent pairs
are equivalent. We thus obtain a coinductive theory of βη-equivalence with recursive types.

A number of proofs have been abbreviated for space reasons; full arguments can be found in
Stone and Schoonmaker [?].

2 Review

2.1 Recursive Types

There are two traditional frameworks for recursive types, differing in how the type µX. T (X) relates
to the equation X = T (X). In the isorecursive approach, recursive types induce no interesting type
equivalences. The type µX. T (X) is isomorphic to but not equal to T (µX. T (X)), and there are
inverse term-level operators

foldµX. T (X) : T (µX. T (X)) → µX. T (X)

unfoldµX. T (X) : µX. T (X) → T (µX. T (X))

witnessing this isomorphism. Often these operators have no observable run-time effects, but their
presence simplifies type checking [VDP+03], just as systems with explicit type coercions are gen-
erally easier to type check than systems with implicit subsumption.

However, explicit coercions can be unwieldy at times. The equirecursive approach defines the
type µX. T (X) to be equal to T (µX. T (X)). Explicit fold and unfold term operators become
unnecessary, but this immediately leads to a non-trivial equational theory of types.

Given the decision to study an equirecursive system, as we will do here, there is still a choice
whether equivalence should be defined inductively (as usual in the absence of recursive types) or
coinductively. Coinductive equivalence is often motivated by a view of recursive types as finite
representations of potentially infinite µ-free types. Thus, µX. int→X is a finite representation of
the infinite type

int→int→int→· · ·.

The same infinite type can be represented by µX. int→int→X, because repeated unfoldings ap-
proach the same limit. Though no finite sequence of foldings and unfoldings can make the two
recursive types identical (i.e., the types are not inductively equivalent), they have the same limit
and so coinductively we have

µX. int→X ≡ µX. int→int→X.

The coinductive approach tends to be more useful than the inductive approach, as it safely
equates more types. For example, suppose we have two separately-defined recursive types T1 and

2

T2. If instead we were encode the two as mutually-recursive types — the degenerate case where the
types could refer to each other but don’t — we typically obtain results that are coinductively but
not inductively equivalent to the original T1 and T2. (Mutually-recursive definitions are described
in more detail in Section 4.) We thus consider coinductive equivalence here.

2.2 Coinduction

We first review what if means to define equivalence coinductively. By following the presentation of
Gapeyev et al. [GLP02], we can work directly with syntactic types, rather than defining types as
reasoning about infinite trees (and reduction steps for infinite trees).

Assume F : 2U → 2U is a function from the subsets of U to the subsets of U . If F is monotone
then it has a unique greatest fixed point, written νF , satisfying νF = F (νF). A defining property
of this greatest fixed point is the following:

Definition 1 (Principle of Coinduction)
Assume F is monotone, so that νF exists. If A ⊆ F (A) then A ⊆ νF .

The premise of the Principle of Coinduction can be weakened; A ⊆ νF if A is a subset of F (A),
or of the larger set F (A∪F (A)), or of the still larger set F (A∪F (A∪F (A))), and so on. Pushing
this idea to the limit we obtain the following generalization:

Proposition 2 (Extended Principle of Coinduction)
Let F be a monotone function on sets, and A be a set. Define

F+A(X) := A ∪ F (X).

Then A ⊆ F (νF+A) if and only if A ⊆ νF .

Proof: Assume A ⊆ F (νF+A). Then νF+A = A ∪ F (νF+A) ⊆ F (νF+A). By the Principle of
Coinduction νF+A ⊆ νF , and thus A ⊆ νF .

Conversely, assume A ⊆ νF . Since pointwise F ⊆ F+A we have νF ⊆ νF+A. Then by
monotonicity A ⊆ νF = F (νF) ⊆ F (νF+A).

Corollary 3
Assume F is a monotone function on sets. If A ⊆ F (A) ∪ F (F (A)) then A ⊆ νF . More generally,
if A ⊆

⋃
n≥1 F

n(A) then A ⊆ νF .

Proof: Assume A ⊆
⋃
n≥1 F

n(A). An easy inductive argument shows that Fn(A) ⊆ νF+A for

every n ≥ 0, and so using monotonicity, A ⊆
⋃
n≥1 F

n(A) =
⋃
n≥0 F (Fn(A)) ⊆

⋃
n≥0 F (νF+A) =

F (νF+A). Therefore A ⊆ νF by Proposition 2.

The application of greatest fixed points to type equivalence is that equivalence for recursive types
can be defined coinductively as the greatest fixed point (rather than the more usual inductively-
defined least fixed point) of the inference rules:

3

T ≡ T
(1)

T1 ≡ S1 T2 ≡ S2
T1→T2 ≡ S1→S2

(2)

{µX. T
/
X}T ≡ S

µX. T ≡ S
(3)

T ≡ {µX. S
/
X}S

T ≡ µX. S
(4)

Here the notation {S
/
X}T denotes the capture-avoiding substitution of S for free occurrences of

X in the type T .
These rules can be viewed as a function from a set of premises to the set of those conclusions

derivable in one step:

Fµ(J) := { (T ≡ T) | for all types T}
∪ { (T1→T2 ≡ S1→S2) | (T1 ≡ S1) ∈ J and (T2 ≡ S2) ∈ J }
∪ { (µX. T ≡ S) | ({µX. T

/
X}T ≡ S) ∈ J }

∪ { (T ≡ µX. S) | (T ≡ {µX. S
/
X}S) ∈ J }

The usual inductive interpretation of inference rules corresponds to the least fixed point of Fµ, while
the coinductive interpretation is the greatest fixed point νFµ. To assert a coinductive equivalence
judgment T ≡ S is to say that (T ≡ S) ∈ νFµ.

2.3 Algorithms

In some cases the decidability of membership in a greatest fixed point can be determined directly
from properties of the generating function [GLP02].

A monotone function F : 2U → 2U is said to be invertible if for all x ∈ U , the collection of sets
sufficient to produce x,

suff [F](x) := {A ⊆ U | x ∈ F (A)}

is either empty or has a minimum element with respect to inclusion. When F is invertible, we
define

support [F](x) :=

{
min suff [F](x) if suff [F](x) 6= ∅
↑ otherwise

In the context of functions mapping premises to conclusions, invertibility corresponds to proof
search being deterministic. The support of a judgment is then the unique, minimal set of premises
required to prove that judgment.

Given an invertible F : 2U → 2U and x ∈ U and A ∈ 2U , let

pred [F](x) :=

{
∅ if support [F](x) = ↑
support [F](x) otherwise

pred [F](A) :=
⋃
x∈A

pred [F](x)

4

The set of elements reachable from a set A is

reachable[F](A) :=
⋃
n≥0

pred [F]n(A).

An invertible function F : 2U → 2U is said to be finite-state if for all x ∈ U , the set
reachable[F]({x}) is finite. In the context of inference rules, this means that proof search finds
only finitely many judgments before looping or terminating.

Proposition 4
If F : 2U → 2U is invertible and finite-state then membership in νF is decidable.

Proposition 4 can be proved constructively by presenting a sound, complete, and terminating
algorithm; several are available. The following simple (though not most efficient) algorithm is a
generalization of the subtyping algorithm of Amadio and Cardelli [AC93]:

gfpac[F](A, x) := if x ∈ A then true
else if support [F](x) = ↑ then false
else

∧
y∈A′ gfpac[F](A ∪ {x}, y)

where A′ := support [F](x)

If F is invertible and finite-state, then gfpac[F](∅, x) = true if x ∈ νF , and gfpac[F](∅, x) = false
otherwise. (More generally, gfpac[F](A, x) tests x for membership in νF+A.) Partial correctness
follows by induction on the execution of the algorithm. Termination follows by observing that the
set A grows at each recursive call, but the set is bounded by reachable[F]({x}), which is finite by
assumption [?].

The function Fµ defined above is not invertible, since an equivalence µX. T ≡ µY. S can follow
either from {µX. T

/
X}T ≡ µY. S or from µX. T ≡ {µY. S

/
Y}S. However, the closely-related

“algorithmic” variant

F a
µ (J) := { (int ≡ int) }

∪ { (X ≡ X) | for all variables X}
∪ { (T1→T2 ≡ S1→S2) | (T1 ≡ S1) ∈ J and (T2 ≡ S2) ∈ J }
∪ { (µX. T1 ≡ S) | ({µX. T1

/
X}T1 ≡ S) ∈ J }

∪ { (T ≡ µX. S1) | T is not of the form µX. T1 and
(T ≡ {µX. S1

/
X}S1) ∈ J }

is both invertible and finite-state. Further, we have νF a
µ = νFµ [GLP02], so we can use it to test

equivalence. Instantiating the general algorithm for membership in the greatest fixed point with
the function F a

µ , we have that T ≡ S if and only if gfpac[F a
µ](∅, (T ≡ S)) returns true, where

5

expanding the definition we have:

gfpac[F a
µ](A, (T ≡ S)) =

if (T ≡ S) ∈ A then true
else if T = int and S = int then true
else if T = X and S = X then true
else if T = T1→T2 and S = S1→S2 then

gfpac[F a
µ](A ∪ {(T ≡ S)}, (T1 ≡ S1)) ∧

gfpac[F a
µ](A ∪ {(T ≡ S)}, (T2 ≡ S2))

else if T = µX. T1 then
gfpac[F a

µ](A ∪ {(T ≡ S)}, ({µX. T1
/
X}T1 ≡ S))

else if S = µX. S1 then
gfpac[F a

µ](A ∪ {(T ≡ S)}, (T ≡ {µX. S1
/
X}S1))

else false.

3 Recursive Types and Pairing

Applications of recursive types often require mutually-recursive types. Theoretical studies of re-
cursive types usually ignore this issue, as mutual recursion can be encoded in terms of nested
recursion (see Section 4). For the purposes of clarity and implementation efficiency, however, it
may be worthwhile to have a language of types that can directly handle mutual recursion. We
therefore extend the standard calculus of recursive types with pairs of types and projections from
such pairs. We allow not just pairs of recursively-defined types, but recursively-defined pairs as
well.

This extension is also of interest because it represents a particularly simple but non-trivial
extension of the traditional equational theory for recursive types.

3.1 Syntax

The syntax of the type system is specified by the following grammar:

K,L ::= *

| K×K

S, T, U ::= int

| X | Y | Z | · · ·
| T→T
| µX::L. T
| 〈T, T 〉
| π1 T
| π2 T

The kind system distinguishes proper types of kind * from type-level pairs. The pair 〈T1, T2〉
is a collection of two types and will have a kind of the form K1×K2. (Note that 〈T1, T2〉 is not the
proper type that would classify a pair of values; such a type T1×T2 would have kind *. Types of
pairs could be added, but since they are equationally very similar to types of the form T1→T2 they
have been omitted.)

6

The notation FV (T) denotes the set of free variables in T , where µX::L. S binds X in S. Types
are identified up to renaming of bound variables.

3.2 Weak Head Reduction

Our generalization of the “unfolding” transformation for recursive types is weak head reduction.
To define this relation we use the concept of an elimination context E. These contexts are defined
inductively according to the following grammar:

E ::= • | π1E | π2E

Every elimination context contains a single hole, written •. If E is an elimination context, we write
E[T] for the type obtained by replacing the hole in E with T . For example, if E = π1 (π2 •) then
E[π1X] = π1 (π2 (π1X)). A type of the form E[X] or E[int], an elimination context applied to a
variable or constant, is called a path and denoted P .

The weak head reduction relation ; on types is defined by two axioms:

E[πi 〈T1, T2〉] ; E[Ti]

E[µX::L. T] ; E[{µX::L. T
/
X}T].

Unfolding and projections may occur inside projections. Thus, when

S := µX::*×*. 〈int→π2X,π1X→int〉

we have π2 S ; π2 〈int→π2 S, π1 S→int〉 ; π1 S→int. We use ;∗ to denote the reflexive,
transitive closure of this relation, and write T 6; when T is weak head normal (cannot be reduced).

3.3 Well-Formedness

Well-formedness of types is relative to a typing (or in this system, kinding) context Γ, defined by
the following grammar:

Γ ::= ·
| Γ, X::K

Contexts can be treated as partial functions from variables to their kinds. When dom(Γ1) ∩
dom(Γ2) = ∅, we write Γ1,Γ2 to be the concatenation of the two contexts.

The well-formedness judgment for types is defined inductively, as usual, by the following se-
quence of inference rules:

Γ ` int :: *
(5)

X ∈ dom(Γ)

Γ ` X :: Γ(X)
(6)

Γ ` T1 :: * Γ ` T2 :: *

Γ ` T1→T2 :: *
(7)

Γ, X::L ` T :: L

Γ ` µX::L. T :: L
(8)

7

Γ ` T1 :: K1 Γ ` T2 :: K2

Γ ` 〈T1, T2〉 :: K1×K2
(9)

Γ ` T :: K1×K2

Γ ` πi T :: Ki
(10)

Proposition 5 (Basic Properties of Well-Formedness)
1. If Γ ` T :: K1 and Γ ` T :: K2 then K1 = K2.

2. If Γ ` T :: K then FV (T) ⊆ dom(Γ).

3. If Γ1,Γ3 ` T :: K and dom(Γ1,Γ3) ∩ dom(Γ2) = ∅ then Γ1,Γ2,Γ3 ` T :: K.

4. If Γ1, Y ::K ′,Γ2 ` T :: K and Γ ` T ′ :: K ′ then Γ1,Γ2 ` {T ′
/
Y}T :: K.

Proposition 6 (Characterization of Kinds)
1. If Γ ` T :: * then T ; T ′ or T is a path or T = T1→T2.

2. If Γ ` T :: K1×K2 then T ; T ′ or T is a path or T = 〈T1, T2〉.

Beyond the well-formedness rules, we follow usual practice for equirecursive types by requiring
that all types considered are contractive, a global syntactic restriction discussed further in the
following section.

3.4 Contractiveness

Equirecursive recursive types are often motivated as finite representations of (potentially infinite)
µ-free types, the limit of repeated unfoldings. Thus, µX::*. int→X unfolds to int→int→int→· · ·,
while µX::*. X→X unfolds to (· · ·→· · ·)→(· · ·→· · ·), an infinite binary tree where every node is→,
while µX::*. int unfolds to simply int. Not all syntactic recursive types correspond to such µ-free
types, though; the type µX::*. X unfolds only to itself. Such types are typically forbidden; types
that correspond to trees are said to be contractive.

Although we do not define equivalence in terms of infinite trees, in order to obtain a sound
theory we must make a similar syntactic restriction. Otherwise, coinduction and Rule 3 would
imply that (µX.X) ≡ S holds for every type S.

In simple systems contractiveness can be syntactically enforced in the grammar itself, for ex-
ample by requiring that the body of every recursive type be a function arrow [BH97]. Here we
formalize the intuition that µ-bound variables should appear only inside → by using a notion of
unguarded variables. The unguarded variables of a type T , written UV (T), are defined by:

UV (int) := ∅
UV (T1→T2) := ∅

UV (X) := {X}
UV (πi T) := UV (T)

UV (〈T1, T2〉) := UV (T1) ∪UV (T2)
UV (µX::L. T) := UV (T) \ {X}

8

A type is then said to be contractive if every occurrence of a recursive type µX::L. T satisfies
X 6∈ UV (T). Thus, the type π2 (µY ::*×*. 〈π2 Y , π1 Y 〉) (which reduces to itself in four steps) is
not contractive since Y ∈ UV (〈π2 Y , π1 Y 〉).

Contractiveness is still purely syntactic, is not context-sensitive, and is preserved by capture-
avoiding substitutions and by reductions. Following convention, we assume for the rest of the paper
that all types mentioned are contractive.1

We depend on two properties of contractive types: any subcomponent of a contractive type is
itself contractive (by definition of contractiveness), and weak head reduction of contractive types
terminates.

There are several ways to prove the latter property. For example, we can explicitly define a
nonnegative “height” measure for recursive types that is strictly reduced by weak head reduction.
(Simpler type systems can just count the outermost µ’s in a recursive type.)

height(int) := 0
height(T1→T2) := 0

height(X) := 0
height(π1 T) := height(T)
height(π2 T) := height(T)

height(〈T1, T2〉) := 1 + max(height(T1), height(T2))
height(µX::K.T) := 1 + height(T)

Proposition 7 (Basic Properties of Reduction)
1. If T ; S1 and T ; S2 then S1 = S2.

2. If T ; T ′ then ({S
/
X}T) ; ({S

/
X}T ′).

3. If T is contractive and T ; T ′ then height(T) > height(T ′).

4. If Γ ` T :: K and T ; T ′ then Γ ` T ′ :: K.

5. If T ; T ′ then FV (T) ⊇ FV (T ′).

3.5 Defining Type Equivalence

The following collection of inference rules defines equivalence of well-formed types. In contrast
to the definition of the well-formedness judgment, these rules are to be interpreted coinductively,
where the universe of potential equivalences is

Ueq := {(Γ ` T ≡ S :: K)
∣∣ Γ ` T :: K and Γ ` S :: K}.

Ueq is intended as an upper bound and contains judgments that are not provable.

1Crary et al. [CHP99] give a closely-related definition of contractiveness for well-formed types, but they expand
the set of contractive types to include every type provably equivalent to some type that is syntactically contractive in
our sense. In the absence of defined type variables this extra flexibility does not appear useful, especially compared
to the complexity introduced by defining contractiveness mutually with of well-formedness and type equivalence.
Though we do rule out types such as µX::*. π1 〈X→X,X〉 that their approach would allow, one could write the
syntactically-contractive type µX::*. X→X in the first place. We conjecture that equivalence with their more general
notion of contractiveness would be a conservative extension of equivalence as defined here.

9

Fπ(J) := { (Γ ` P ≡ P :: K) | Γ ` P :: K}
∪ { (Γ ` T1→T2 ≡ S1→S2 :: *) |

(Γ ` T1 ≡ S1 :: *) ∈ J and (Γ ` T2 ≡ S2 :: *) ∈ J }
∪ { (Γ ` T ≡ S :: K) | T ; T ′ and (Γ ` T ′ ≡ S :: K) ∈ J and Γ ` T :: K}
∪ { (Γ ` T ≡ S :: K) | S ; S′ and (Γ ` T ≡ S′ :: K) ∈ J and Γ ` S :: K}
∪ { (Γ ` 〈T1, T2〉 ≡ 〈S1, S2〉 :: K1×K2) |

(Γ ` T1 ≡ S1 :: K1) and (Γ ` T2 ≡ S2 :: K2) ∈ J }

Figure 1: Generating Function for Equivalence with Pairs and Projections

Γ ` T :: K

Γ ` T ≡ T :: K
(11)

Γ ` T1 ≡ S1 :: * Γ ` T2 ≡ S2 :: *

Γ ` T1→T2 ≡ S1→S2 :: *
(12)

Γ ` E[{µX::L. T
/
X}T] ≡ S :: K Γ ` µX::L. T :: L

Γ ` E[µX::L. T] ≡ S :: K
(13)

Γ ` T ≡ E[{µX::L. S
/
X}S] :: K Γ ` µX::L. S :: L

Γ ` T ≡ E[µX::L. S] :: K
(14)

Γ ` E[Ti] ≡ S :: K Γ ` T3−i :: K ′

Γ ` E[πi 〈T1, T2〉] ≡ S :: K
(15)

Γ ` T ≡ E[Si] :: K Γ ` S3−i :: K ′

Γ ` T ≡ E[πi 〈S1, S2〉] :: K
(16)

Γ ` T1 ≡ S1 :: K1 Γ ` T2 ≡ S2 :: K2

Γ ` 〈T1, T2〉 ≡ 〈S1, S2〉 :: K1×K2
(17)

The corresponding generating function Fπ : 2Ueq→2Ueq appears in Figure 1. The well-formedness
constraints ensure that Fπ does map 2Ueq to 2Ueq . Fπ is monotone, and hence has a greatest fixed
point νFπ. We take this set of judgments as the formal definition of equivalence, i.e., we say that
Γ ` T ≡ S :: K if and only if (Γ ` T ≡ S :: K) ∈ νFπ.

There are two differences between Fπ and the inference rules above. One is an inessential
notational convenience: weak head reduction has been used to merge Rules 13 and 15 into a single
line in the definition of Fπ, and similarly to merge Rules 14 and 16.

The other change is more substantive. Though Rule 11 states that any type is equal to itself,
the definition Fπ builds in reflexivity only for paths (which include the type int and projections
from variables). This change makes Fπ easier to work with, yet does not change the greatest fixed
point: Rule 11 is admissible.

We try to avoid including admissible rules in our generating functions. Some additions are
innocuous, but adding admissible rules to the generating function can actually change the greatest

10

fixed point. For example, symmetric and transitive closure rules are admissible but were purposely
omitted from definition of equivalence. If we were to augment the definition of Fπ(J) with the line

∪ { (Γ ` T ≡ S :: K) | (Γ ` S ≡ T :: K) ∈ J }

then the greatest fixed point would suddenly be Ueq itself, equating all types of the same kind.
Explicitly requiring transitive closure would make equivalence similarly inconsistent.

Instead, the rules have been carefully designed to obtain an equivalence relation. For example,
we have both Rules 13 and 14 to maintain symmetry, and the two rules each build in a nontrivial
step of transitivity (compared to simply having the two axioms µX::L. T ≡ {µX::L. T

/
X}T and

{µX::L. T
/
X}T ≡ µX::L. T).

The presence of elimination contexts in a declarative definition of equivalence might also be
surprising, but they seem necessary to obtain all the desired equivalences. Consider the equation
π1 (µX::*×*. 〈int, int〉) ≡ int. If the elimination contexts E were dropped from Rules 13–16
then this equation would not be coinductively provable because it would not match the conclusion
of any inference rule, even if we added more congruence rules. (In an inductive presentation this
equivalence could follow from an appeal to the transitive rule.)

3.6 Properties of Type Equivalence

By definition νFπ is closed under weak head expansion (as long as well-formedness is preserved).
Less obviously, it is closed under reduction as well.

Proposition 8
1. If Γ ` T ′ ≡ S′ :: K, T ;∗ T ′, S ;∗ S′, Γ ` T :: K, and Γ ` S :: K then Γ ` T ≡ S :: K.

2. If Γ ` T ≡ S :: K, T ;∗ T ′, and S ;∗ S′ then Γ ` T ′ ≡ S′ :: K.

Proof:

1. By Proposition 8, all reducts along the way from T to T ′ and from S to S′ are well-formed.
By repeatedly applying the fact that by definition νFπ is closed under single well-formed weak
head expansions, we obtain the desired result.

2. By induction on height(T) + height(S), and cases on the justification for (Γ ` T ≡ S :: K) ∈
νFπ = Fπ(νFπ).

• Case: T 6; and S 6;. Then T = T ′ and S = S′, so the desired result is true by
assumption.

• Case: Γ ` T ≡ S :: K because T ; U , Γ ` T :: K, and Γ ` U ≡ S :: K. If
U ;∗ T ′ then Γ ` T ′ ≡ S′ :: K follows inductively. Otherwise, since reduction is
deterministic T = T ′, and the inductive hypothesis yields Γ ` U ≡ S′ :: K, so that
(Γ ` T ′ ≡ S′ :: K) ∈ Fπ(νFπ) = νFπ.

• Case: Γ ` T ≡ S :: K because S ; U , Γ ` S :: K, and Γ ` T ≡ U :: K. Analogous to
the previous case.

Then we can show that ≡ as defined is both a partial equivalence relation and a congruence.

11

Proposition 9 (Reflexivity)
If Γ ` T :: K then Γ ` T ≡ T :: K.

Proof: We want to show that I ⊆ νFπ, where I := {(Γ ` T ≡ T :: K) | Γ ` T :: K}. By
Corollary 3 it suffices to show I ⊆ Fπ(I) ∪ Fπ(Fπ(I)). Let (Γ ` T ≡ T :: K) ∈ I be given,
and consider the possible cases, given that T is well-formed. We show two cases of the proof; the
remainder are analogous.

• Case: T = T1→T2 and K = *. Then Γ ` T1 :: * and ` T2 :: *, so (Γ ` T1 ≡ T1 :: *) ∈ I and
(Γ ` T2 ≡ T2 :: *) ∈ I. Thus (Γ ` T1→T2 ≡ T1→T2 :: *) ∈ Fπ(I).

• Case: T ; T ′ for some T ′. Then by Proposition 8, ` T ′ :: K as well, and so (Γ ` T ′ ≡ T ′ ::
K) ∈ I. Thus (Γ ` T ≡ T ′ :: K) ∈ Fπ(I), so (Γ ` T ≡ T :: K) ∈ Fπ(Fπ(I)).

The fold/unfold rule and the projection rule for pairs hold:

Corollary 10
If Γ ` T :: K and T ; T ′ then Γ ` T ≡ T ′ :: K.

Proof: By Propositions 10 and 9.

Proposition 11 (Transitivity)
If Γ ` T1 ≡ T2 :: K and Γ ` T2 ≡ T3 :: K then Γ ` T1 ≡ T3 :: K.

Proof: We must show that νFπ is transitively closed, i.e., TR(νFπ) ⊆ νFπ, where

TR(J) := {(Γ ` T1 ≡ T3 :: K) | ∃T2. (Γ ` T1 ≡ T2 :: K), (Γ ` T2 ≡ T3 :: K) ∈ J }

is the transitive-closure operator. It suffices to show that TR(νFπ) ⊆ Fπ(TR(νFπ)), because then
TR(νFπ) ⊆ νFπ follows by coinduction. Assume (Γ ` T1 ≡ T3 :: K) ∈ TR(νFπ) because (Γ ` T1 ≡
T2 :: K) ∈ νFπ and (Γ ` T2 ≡ T3 :: K) ∈ νFπ. We must show (Γ ` T1 ≡ T3 :: K) ∈ Fπ(TR(νFπ)),
and this follows by induction on height(T2) and cases on the justifications for the two assumed
equivalences. We show a few typical cases.

• Case: T1 = T ′1→T ′′1 , T2 = T ′2→T ′′2 , T3 = T ′3→T ′′3 , and (Γ ` T1 ≡ T2 :: K) ∈ νFπ and
(Γ ` T2 ≡ T3 :: K) ∈ νFπ because (Γ ` T ′1 ≡ T ′2 :: *), (Γ ` T ′′1 ≡ T ′′2 :: *), (Γ ` T ′2 ≡ T ′3 :: *),
(Γ ` T ′′2 ≡ T ′′3 :: *) ∈ νFπ. Then (Γ ` T ′1 ≡ T ′3 :: *) ∈ TR(νFπ) and (Γ ` T ′′1 ≡ T ′′3 :: *) ∈
TR(νFπ), so (Γ ` T ′1→T ′′1 ≡ T ′3→T ′′3 :: *) ∈ Fπ(TR(νFπ)).

• Case: (Γ ` T1 ≡ T2 :: K) ∈ νFπ because (Γ ` T ′1 ≡ T2 :: K) ∈ νFπ, T1 ; T ′1, and Γ ` T1 :: K.
Then (Γ ` T ′1 ≡ T3 :: K) ∈ TR(νFπ), so (Γ ` T1 ≡ T3 :: K) ∈ Fπ(TR(νFπ)).

• Case: (Γ ` T1 ≡ T2 :: K) ∈ νFπ because (Γ ` T1 ≡ T ′2 :: K) ∈ νFπ, T2 ; T ′2, and Γ ` T2 :: K.
By Proposition 9, (Γ ` T ′2 ≡ T3 :: K) ∈ νFπ, By Proposition 8 we know that height(T2) >
height(T ′2), so the induction hypothesis applies and (Γ ` T1 ≡ T3 :: K) ∈ Fπ(TR(νFπ)).

Proposition 12 (Symmetry)
If Γ ` T ≡ S :: K then Γ ` S ≡ T :: K.

12

F a
π (J) := { (Γ ` P ≡ P :: K) | Γ ` P :: K}

∪ { (Γ ` T1→T2 ≡ S1→S2 :: *) |
(Γ ` T1 ≡ S1 :: *) ∈ J and (Γ ` T2 ≡ S2 :: *) ∈ J }

∪ { (Γ ` T ≡ S :: K) | T ; T ′, (Γ ` T ′ ≡ S :: K) ∈ J , and Γ ` T :: K}
∪ { (Γ ` T ≡ S :: K) | T 6; , S ; S′, (Γ ` T ≡ S′ :: K) ∈ J and Γ ` S :: K}
∪ { (Γ ` 〈T1, T2〉 ≡ 〈S1, S2〉 :: K1×K2) |

(Γ ` T1 ≡ S1 :: K1) ∈ J and (Γ ` T2 ≡ S2 :: K2) ∈ J }

Figure 2: Algorithmic Generating Function for Equivalence with Pairs and Projections

Proof: Similar to the previous proposition; by coinduction we can show that SY (νFπ) ⊆
Fπ(SY (νFπ)) where SY (·) is the symmetric closure operator.

Proposition 13 (Congruence)
1. If Γ ` T ≡ S :: K1×K2 then Γ ` πi T ≡ πi S :: Ki.

2. If Γ, X::L ` S1 ≡ S2 :: L then Γ ` µX::L. S1 ≡ µX::L. S2 :: L.

Proof: Simplified versions of the proofs for Propositions 34 and 38.

3.7 Decidability of Equivalence

Decidability of equivalence in the presence of pairs is not a trivial corollary of decidability for
recursive types in isolation. We cannot first reduce all projections and then proceed as before;
as shown in Section 3.2, unfoldings can introduce new opportunities to project, while projections
can introduce new opportunities to unfold. The termination of weak head reduction does not
automatically guarantee that finite-state properties still hold. A priori, each unfolding could yield
more projections from more pairs, and we might never see the same types twice.

To show that equivalence is decidable, we want an invertible, finite-state function F a
π : Ueq→Ueq

such that νF a
π = νFπ. Such a function appears in Figure 2; it differs from Fπ only in one line,

where we require T to be weak head normal before allowing S ; S′ as a justification.
Fπ and F a

π have the same greatest fixed point. Intuitively, if we wish to know whether two
types are equal it does not matter which one we weak head reduce first; completely reducing the
left-hand type before starting on the right-hand type, as suggested by proof search using F a

π , is
thus a sound and deterministic strategy.

Proposition 14
νFπ = νF a

π .

Proof: Since pointwise F a
π ⊆ Fπ, we know νF a

π ⊆ νFπ. To show νFπ ⊆ νF a
π it suffices to

show νFπ ⊆ F a
π (νFπ). Since the definitions of Fπ and F a

π differ only in one line, there is only one
interesting case:

• Case: (Γ ` T ≡ S :: K) ∈ νFπ because (Γ ` T ≡ S′ :: K) ∈ νFπ and S ; S′ and Γ ` S :: K.
There are two subcases:

– Subcase: T 6;. Then (Γ ` T ≡ S :: K) ∈ F a
π (νFπ).

13

T v T
(18)

T v Si
T v S1→S2

(19)

T v Si
T v 〈S1, S2〉

(20)

T v E[{µX::L. S
/
X}S]

T v E[µX::L. S]
(21)

T v E[Si]

T v E[πi 〈S1, S2〉]
(22)

T v S
T v πi S

(23)

T � T
(24)

T � Si
T � S1→S2

(25)

T � Si
T � 〈S1, S2〉

(26)

T � E[S]

{µX::L. S
/
X}T � E[µX::L. S]

(27)

T � E[Si]

T � E[πi 〈S1, S2〉]
(28)

T � S
T � πi S

(29)

Figure 3: Top-Down and Bottom-Up Subterms

– Subcase: T ; T ′. By Proposition 9, (Γ ` T ′ ≡ S :: K) ∈ νFπ, so since Γ ` T :: K we
have (Γ ` T ≡ S :: K) ∈ F a

π (νFπ).

F a
π is finite-state. Following Brandt and Henglein [BH97] and Gapeyev et al. [GLP02], we define

two sets of “subterms” of types. We say that T is a top-down subterm of S if T v S is provable
from the rules in Figure 3. The top-down subterms are recognizable as the types that we might see
in some comparison while running a proof-search algorithm:

Proposition 15 (Top-Down Transitivity)
If T1 v T2 and T2 v T3 then T1 v T3.

Proof: By induction on the proof of T2 v T3.

Proposition 16
1. If (Γ′ ` T ′ ≡ S′ :: K ′) ∈ pred [F a

π](Γ ` T ≡ S :: K) then T ′ v T and S′ v S and Γ = Γ′.

2. If (Γ′′ ` T ′′ ≡ S′′ :: K ′′) ∈ reachable[F a
π]({Γ ` T ≡ S :: K}) then T ′′ v T and S′′ v S and

Γ = Γ′′.

Proof:

1. By definition of F a
π .

2. By Part 1 and Proposition 17.

14

Next, we define the bottom-up subterms, also shown in Figure 3. The rules for T being a
bottom-up subterm of S, written T � S, are nearly the same except for the difference between
Rule 21 and Rule 27. (Despite the notation, this relation has nothing to do with subtyping.) The
key advantage of the bottom-up formulation is that the set of bottom-up subterms of every type
is finite, a fact easily shown by induction. Because of Rule 21, a priori this might not be the case
for the top-down subterms.

Lemma 17
The set {S | S � T } is finite for every type T .

Proof: By induction on T .

We would like to relate the top-down and bottom-up subterms. In the absence of pairing and
projection, every top-down subterm is a bottom-up subterm, and hence the top-down subterms are
finite in number [GLP02]. Here this is no longer true. For example, put

U := µX::*×*. 〈π1X→π2X,π2X→π1X〉.

The type π1 U has π2 〈π1 U→π2 U, π2 U→π1 U〉 as a top-down subterm, but not as a bottom-up
subterm.

However, it turns out that every top-down subterm is a weak head reduct of some bottom-up
subterm. For example, the above top-down subterm is a reduct of the bottom-up subterm π2 U .

We show the this relationship using two lemmas characterizing the bottom-up subterm relation.

Lemma 18
If T � πi S then πi S ;∗ T or T � S.

Proof: By induction on the proof of the assumption, and cases on the last rule used. We show
just two cases:

• Case: T � πi S because S = 〈S1, S2〉 and T � Si. Then by Rule 26, T � 〈S1, S2〉 = S.

• Case: T � πi S because S = E[πj 〈S1, S2〉] and T � πi (E[Sj]). By the inductive hypothesis
there are two subcases:

– Subcase: πi (E[Sj]) ;
∗ T . Then πi S = πi (E[πj 〈S1, S2〉]) ; πi (E[Sj]) ;

∗ T .

– Subcase: T � E[Sj]. Then T � E[πj 〈S1, S2〉] = S by Rule 28.

Lemma 19
If S � ({U

/
X}T) then either S � U or there exists T ′ � T with ({U

/
X}T ′) ;∗ S.

Proof: By induction on T . We again show two cases:

• Case: T = 〈T1, T2〉. Then S � ({U
/
X}T) = 〈({U

/
X}T1), ({U

/
X}T2)〉. By inspection of the

definition of �, there are only two possibilities:

– Subcase: S � ({U
/
X}T1). By the inductive hypothesis either S � U , in which case we

are done, or else there exists T ′1 with T ′1 � T1 and ({U
/
X}T ′1) ;∗ S. By Rule 26 we

have T ′1 � 〈T1, T2〉 = T .

15

– Subcase: S � ({U
/
X}T2). Similar.

• Case: T = πi T1. Then S � {U
/
X}T = πi ({U

/
X}T1). By Lemma 20 there are two possibili-

ties:

– Subcase: πi ({U
/
X}T1) ;∗ S. We can put T ′ = T = πi T1.

– Subcase: S � {U
/
X}T1. By the inductive hypothesis, either S � U , in which case we

are done, or else there exists T ′1 with T ′1 � T1 and ({U
/
X}T ′1) ;∗ S. By Rule 29 we

have T ′1 � πi T1 = T .

Proposition 20
Every top-down subterm of a type is a weak head reduct of a bottom-up subterm of that type: if
S v T then there exists S′ such that S′ � T and S′ ;∗ S.

Proof: By induction on the proof that S v T , and cases on the last rule used. Because the
definitions of v and � differ only in one rule (Rule 27 vs. Rule 21), there is only one interesting
case; the rest follow directly from the inductive hypothesis.

• Case: T = E[µX::L. T1] and S v T because S v E[{µX::L. T1
/
X}T1]. By the inductive

hypothesis, there exists S′1 such that S′1 � E[{µX::L. T1
/
X}T1] and S′1 ;∗ S. Then E

has no free variables, so S′1 � {µX::L. T1
/
X}(E[T1]) and hence by Lemma 21 there are two

possibilities:

– Subcase: S′1 � µX::L. T1. Then we can take S′ = S′1 because using Rule 29 we have
S′1 � E[µX::L. T1] = T .

– Subcase: There exists T ′1 such that T ′1 � E[T1] and ({µX::L. T1
/
X}T ′1) ;∗ S′1. Put S′ =

({µX::L. T1
/
X}T ′1), so that S′ ;∗ S′1 ;∗ S. By Rule 27, S′ = ({µX::L. T1

/
X}T ′1) �

E[µX::L. T1] = T .

Since the elements of a finite set of (contractive) types can be weak head reduced deterministi-
cally only finitely many times, we have:

Corollary 21
The set {S | S v T } is finite for every type T .

Corollary 22
F a
π is finite-state

Proof: By Proposition 18 and Corollary 23, given any judgment Γ ` T ≡ S :: K, the judgments
reachable by working backwards through F a

π involve a finite set of pairs of types. Further, the
reachable judgments all have the same context Γ, and the classifying kind is determined uniquely
by Γ and the types being compared. Hence the set of reachable judgments is finite.

Corollary 23
Membership in νFπ (that is, type equivalence) is decidable.

16

Though we could directly apply gfpac[F a
π](∅, ·) to decide equivalence, the algorithm can be fur-

ther simplified. If the original two types being compared are well-formed, then all other comparisons
done by the algorithm will automatically involve well-formed types and so there is no need to ex-
plicitly check well-formedness. Further, since the typing context never changes and the classifying
kinds in each judgment are uniquely determined by the types being compared, the accumulator set
A needs to contain only pairs of types as in Section 2.3, rather than the general judgment 4-tuple.

4 Mutual Recursion

Various ways of taking mutually-recursive types as primitive have been introduced [HS97b, HS97a,
CS02], but usually these arise in isorecursive systems. The reason may be that with coinductive
equivalence and the fold-unfold rule, Bekić’s Theorem shows that mutually-recursive types are
definable using simple µ-types [Win93].

For example, if we want types X1 and X2 satisfying

X1 ≡ T1(X1, X2)
X2 ≡ T2(X1, X2)

then we can take
X1 := µY1::*. T1(Y1, µY2::*. T2(Y1, Y2))
X2 := µY2::*. T2(µY1::*. T1(Y1, Y2), Y2).

A more direct definition (involving T1 and T2 only once each) would be

X ′ := µY ::*×*. 〈T1(π1 Y, π2 Y), T2(π1 Y, π2 Y)〉
X1 := π1X

′

X2 := π2X
′,

especially if simple syntactic sugar were used, allowing the first definition to be written X ′ :=
µ〈Y1::*, Y2::*〉.〈T1(Y1, Y2), T2(Y1, Y2)〉.

Either definition is acceptable in νFπ, as they are coinductively equivalent:

Proposition 24
Let T1(X1, X2) and T2(X1, X2) be two types such that Γ, X1::*, X2::* ` T1(X1, X2) :: * and
Γ, X1::*, X2::* ` T2(X1, X2) :: *. Then

Γ ` π1 (µ〈Y1::*, Y2::*〉. 〈T1(Y1, Y2), T2(Y1, Y2)〉) ≡
µY1::*. T1(Y1, µY2::*. T2(Y1, Y2)) :: *

Γ ` π2 (µ〈Y1::*, Y2::*〉. 〈T1(Y1, Y2), T2(Y1, Y2)〉) ≡
µY2::*. T2(µY1::*. T2(Y1, Y2), Y2) :: *.

Proof: Execution of the equivalence algorithm.

5 Adding Type Abstractions

Next, we consider the addition of type abstractions and β-equivalence. In general, type systems
with bound variables (other than those bound in recursive types, so that the limit of unfolding still

17

contains bound variables) can be tricky when combined with recursive types [CG99, GP04]. A key
problem is that the definition of equivalence is no longer obviously finite-state, because premises of
equivalence rules need not have the same typing context as the conclusion; consider the standard
rule for equivalence of λ-abstractions. We might get into an infinite loop in which the same pairs of
types appear (or the same up to renamings of variables) but all the judgments differ because they
have different variables in the typing context. Colazzo and Ghelli [CG99] showed that attempting
to short-circuit such loops by naively merging multiple bindings of what was originally a single
bound variable could lead to incorrect results.

We sidestep this problem by restricting the language to first order, forbidding kind arrows in
negative positions. All function arguments are then proper types (or tuples of proper types) and
hence after some finite number of “outer” lambdas no more bound variables will enter the context
during the algorithm’s search process; all further type abstractions will be entirely β-reduced away.

5.1 Extending the Syntax

The syntax of the system with type operators is as follows:

L ::= * | L×L
K ::= L | K×K | L⇒K

S, T, U ::= int

| X | Y | Z | · · ·
| T1→T2 | µX::L. T
| 〈T, T 〉 | π1 T | π2 T
| λX::L.T
| T T

E ::= • | π1E | π2E | E T

We now use L to denote the kinds of (tuples of) proper types, and K to denote an arbitrary kind.
Thus, µ-types cannot be type operators. However, type operators can accept or return recursive
proper types, or even recursively-defined pairs. This is enough to handle most examples of ML-like
datatypes. (In ML, list is a type operator that when given a proper type such as int returns a
recursive proper type classifying lists of integers).

The definition of contractiveness remains unchanged, once we extend the definition of unguarded
variables:

UV (T1 T2) := UV (T1) ∪UV (T2)
UV (λX::L.T) := UV (T) \ {X}.

We still require that all types be syntactically contractive.

5.2 Extending Well-Formedness

The existing well-formedness rules can remain. The additional two rules are completely standard,
given the first-order restriction:

Γ, X::L ` T :: K

Γ ` λX::L.T :: L⇒K
(30)

18

Γ ` T1 :: L⇒K Γ ` T2 :: L

Γ ` T1 T2 :: K
(31)

The expected properties continue to hold:

Proposition 25 (Basic Properties of Well-Formedness)
1. If Γ ` T :: K1 and Γ ` T :: K2 then K1 = K2.

2. If Γ ` T :: K then FV (T) ⊆ dom(Γ).

3. If Γ1,Γ3 ` T :: K and dom(Γ1,Γ3) ∩ dom(Γ2) = ∅ then Γ1,Γ2,Γ3 ` T :: K.

4. If Γ1, Y ::K ′,Γ2 ` T :: K and Γ ` T ′ :: K ′ then Γ1,Γ2 ` {T ′
/
Y}T :: K.

5.3 Extending Reduction

The weak head reduction relation is extended to reduce function applications:

E[(λX::L.T)S] ; E[{S
/
X}T]

E[πi 〈T1, T2〉] ; E[Ti]

E[µX::L. T] ; E[{µX::L. T
/
X}T]

It continues to obey the same properties as before: it is deterministic, invariant under substitution,
and preserves well-formedness of types.

Proposition 26 (Characterization of Kinds)
1. If Γ ` T :: * then T ; T ′ or T is a path or T = T1→T2.

2. If Γ ` T :: K1×K2 then T ; T ′ or T is a path or T = 〈T1, T2〉.

3. If Γ ` T :: K1⇒K2 then T ; T ′ or T is a path or T = λX::L1.T2.

Instead of defining a height metric and using it to show that weak head reduction must ter-
minate, it is more convenient at this point to go the other direction. We show that weak head
reduction terminates, and then define height as the number of steps required.

The translation function |·| maps each type into a type without µ.

|int| := int

|T1→T2| := int

|X| := X
|πi T | := πi |T |
|〈T1, T2〉| := 〈|T1|, |T2|〉
|µX::L. T | := (λX::*.|T |) int
|T1 T2| := |T1| |T2|
|λX::L.T | := λX::L.|T |

Then |·| maps weak head reduction sequences in the system with recursive types into reduction
sequences in the simply-typed (or in this case, simply-kinded) lambda calculus with pairs. The

19

!Fλ(J) := { (Γ ` int ≡ int :: *) | for all Γ}
∪ { (Γ ` X ≡ X :: K) | Γ ` X :: K}
∪ { (Γ ` πi P1 ≡ πi P2 :: Ki) | (Γ ` P1 ≡ P2 :: K1×K2) ∈ J }
∪ { (Γ ` P1 T1 ≡ P2 T2 :: K) |

(Γ ` P1 ≡ P2 :: L⇒K) ∈ J and (Γ ` T1 ≡ T2 :: L) ∈ J }
∪ { (Γ ` T1→T2 ≡ S1→S2 :: *) | (Γ ` T1 ≡ S1 :: *), (Γ ` T2 ≡ S2 :: *) ∈ J }
∪ { (Γ ` T ≡ S :: K) | T ; T ′ and (Γ ` T ′ ≡ S :: K) ∈ J and Γ ` T :: K}
∪ { (Γ ` T ≡ S :: K) | S ; S′ and (Γ ` T ≡ S′ :: K) ∈ J and Γ ` S :: K}
∪ { (Γ ` 〈T1, T2〉 ≡ 〈S1, S2〉 :: K1×K2) |

(Γ ` T1 ≡ S1 :: K1) ∈ J and (Γ ` T2 ≡ S2 :: K2) ∈ J }
∪ { (Γ ` λX::L.T ≡ λX::L.S :: L⇒K) | (Γ, X::L ` T ≡ S :: K) ∈ J }

Figure 4: Equivalence with Type Abstractions

two key steps are the translation of a recursive type into a β-redex (ensuring that every step of
weak head normalization, including unfolding, becomes one application or projection), and the
replacement of arrow types by int (a type with no free variables). These, in combination with the
requirement that types are contractive, ensure that |µX::L. T |;β |{µX::L. T

/
X}T |.

Proposition 27
1. If Γ ` T :: K then Γ ` |T | :: K and |T | has no µ’s.

2. UV (T) = FV (|T |).

3. If T ; S then |T |;βπ |S|, where ;βπ is weak head reduction without unfolding.

4. Thus, ; is normalizing for well-formed types.

We then define height(T) to be the (finite) number of reduction steps required to reduce T to
a weak head-normal form.

Finally, the same properties listed in Proposition 8 continue to hold:

Proposition 28 (Basic Properties of Reduction)
1. If T ; S1 and T ; S2 then S1 = S2.

2. If T ; T ′ then ({S
/
X}T) ; ({S

/
X}T ′).

3. If T is contractive and T ; T ′ then height(T) > height(T ′).

4. If Γ ` T :: K and T ; T ′ then Γ ` T ′ :: K.

5. If T ; T ′ then FV (T) ⊇ FV (T ′).

5.4 Extending Type Equivalence

Figure 4 shows a generating function Fλ whose fixed point νFλ is an appropriate definition of
equivalence in the presence of type operators. Asserting Γ ` T ≡ S :: K now means that (Γ `

20

T ≡ S :: K) ∈ νFλ. The definition of Fλ corresponds to the addition of three new rules, still to be
interpreted coinductively:

Γ ` E[{T2
/
X}T1] ≡ S :: K Γ ` E[(λX::L.T1)T2] :: K

Γ ` E[(λX::L.T1)T2] ≡ S :: K
(32)

Γ ` T ≡ E[{S2
/
X}S1] :: K Γ ` E[(λX::L.S1)S2] :: K

Γ ` T ≡ E[(λX::L.S1)S2] :: K
(33)

Γ, X::L ` T ≡ S :: K

Γ ` λX::L.T ≡ λX::L.S :: L⇒K
(34)

as well as replacing the reflexive case of path equivalence with the following four more general
rules (since once elimination contexts contain types, path equivalence is no longer just syntactic
equality):

Γ ` int ≡ int :: *
(35)

Γ ` X ≡ X :: Γ(X)
(36)

Γ ` P1 ≡ P2 :: K1×K2

Γ ` πi P1 ≡ πi P2 :: Ki
(37)

Γ ` P1 ≡ P2 :: L⇒K Γ ` T1 ≡ T2 :: L

Γ ` P1 T1 ≡ P2 T2 :: K
(38)

Proposition 29
1. If Γ ` T ′ ≡ S′ :: K, T ;∗ T ′, S ;∗ S′, Γ ` T :: K, and Γ ` S :: K then Γ ` T ≡ S :: K.

2. If Γ ` T ≡ S :: K, T ;∗ T ′, and S ;∗ S′ then Γ ` T ′ ≡ S′ :: K.

Proof: Same argument as for Proposition 9.

As before, equivalence as defined by membership in νFλ is reflexive, symmetric, and transitive.
Similar admissible rules follow as well, e.g.,

Proposition 30 (Congruence for Projections)
If Γ ` T ≡ S :: K1×K2 then Γ ` πi T ≡ πi S :: Ki.

Proof: By induction on height(T) + height(S).

• Case: (Γ ` T ≡ S :: K1×K2) ∈ νFλ with T = P1, S = P2. Then immediately (Γ ` πi P1 ≡
πi P2 :: Ki) ∈ Fλ(νFλ) = νFλ.

• Case: T = 〈T1, T2〉, S = 〈S1, S2〉, (Γ ` T1 ≡ S1 :: K1) ∈ νFλ, and (Γ ` T2 ≡ S2 :: K2) ∈ νFλ.
Then Γ ` πi T :: Ki, Γ ` πi S :: Ki, πi T ; Ti, and πi S ; Si, so (Γ ` πi T ≡ πi S :: Ki) ∈
Fλ(Fλ(νFλ)) = νFλ.

21

• Case: T ; T ′, (Γ ` T ′ ≡ S :: K1×K2) ∈ νFλ and Γ ` T :: K1×K2. Then by the inductive
hypothesis, (Γ ` πi T

′ ≡ πi S :: Ki) ∈ νFλ. Then Γ ` πi T :: Ki and πi T ; πi T
′, so

(Γ ` πi T ≡ πi S :: Ki) ∈ Fλ(νFλ) = νFλ.

• Case: S ; S′, (Γ ` T ≡ S′ :: K1×K2) ∈ νFλ and Γ ` S :: K1×K2. Similar to the previous
case.

Proposition 31 (Weakening)
If Γ1,Γ3 ` T ≡ S :: K and dom(Γ1,Γ3) ∩ dom(Γ2) = ∅ then Γ1,Γ2,Γ3 ` T ≡ S :: K.

Proof: Let

W (J) := {(Γ1,Γ2,Γ3 ` T1 ≡ T2 :: K) |
(Γ1,Γ3 ` T1 ≡ T2 :: K) ∈ J and dom(Γ1,Γ3) ∩ dom(Γ2) = ∅}.

By Corollary 3, proving W (νFλ) ⊆
⋃
n≥1 Fn

λ (W (νFλ)) suffices to get W (νFλ) ⊆ νFλ. The desired
result follows by induction on height(T1) + height(T2).

Proposition 32 (Functionality)
Put

H(J) := {(Γ1,Γ2 ` {T2
/
Y}T1 ≡ {S2

/
Y}S1 :: K) |

(Γ1, Y ::L,Γ2 ` T1 ≡ S1 :: K) ∈ J and (Γ1 ` T2 ≡ S2 :: L) ∈ J }.

1. νFλ ⊆ H(νFλ).

2. H(νFλ) ⊆ νFλ.

3. If Γ1, Y ::L,Γ2 ` T1 ≡ S1 :: K and Γ1 ` T2 ≡ S2 :: L then Γ1,Γ2 ` {T2
/
Y}T1 ≡ {S2

/
Y}S1 :: K.

Proof:

1. Assume Γ ` T1 ≡ T2 :: K. Pick X 6∈ dom(Γ); by Proposition 35 we have Γ, X::* ` T1 ≡ T2 ::
K. Since Γ ` int ≡ int :: *, we have Γ ` T1 ≡ T2 :: K ∈ H(νFλ).

2. We wish to show that H(νFλ) ⊆ νFλ. By the Coinduction Principle, it suffices to show that
H(νFλ) ⊆ Fλ(H(νFλ)). We proceed by cases on the justification for (Γ1, Y ::L,Γ2 ` T1 ≡
S1 :: K) ∈ νFλ = Fλ(νFλ). By Proposition 27, in all cases we have Γ1,Γ2 ` {T2

/
Y}T1 :: K

and Γ1,Γ2 ` {S2
/
Y}S1 :: K.

• Case: T1 = E1[X] and T2 = E2[X].

If X = Y then since E1[X] and E2[X] are well-formed and L contains no arrows, we
know that E1 and E2 consist only of projections (and hence, have no free variables). In
this case, by definition of Fλ, E1 = E2; we will denote this common elimination context
by E. By repeated use of Proposition 34 we have Γ1 ` E[T2] ≡ E[S2] :: K, and by
Proposition 35, Part 1, and monotonicity we have (Γ1,Γ2 ` E[T2] ≡ E[S2] :: K) ∈
νFλ = Fλ(νFλ) ⊆ Fλ(H(νFλ)).

Otherwise, when X 6= Y , there are three subcases depending on the structure of E; in
each, the desired result follows directly from the definitions of H and Fλ.

22

T v E[{S2
/
X}S1]

T v E[(λX::L.S1)S2]
(39)

T v Si
T v S1 S2

(40)

T � E[S1] X 6∈ FV (E)

{S2
/
X}T � E[(λX::L.S1)S2]

(41)

T � Si
T � S1 S2

(42)

Figure 5: Additional Top-Down and Bottom-Up Subterms

• Case: T2 ; T ′2 and (Γ ` T ′1 ≡ S1 :: K) ∈ νFλ. Then (Γ1,Γ2 ` {T2
/
Y}T ′1 ≡ {S2

/
Y}S1 ::

K) ∈ H(νFλ) and by Proposition 30 we have {T2
/
Y}T1 ; {T2

/
Y}T ′1, so (Γ1,Γ2 `

{T2
/
Y}T1 ≡ {S2

/
Y}S1 :: K) ∈ Fλ(H(νFλ)).

The remaining cases follow similarly.

3. This is a restatement of Part 2.

We can then prove the admissibility of the standard rule that applying equals to equals yields
equals.

Proposition 33 (Congruence for Applications)
If Γ ` T1 ≡ S1 :: L⇒K and Γ ` T2 ≡ S2 :: L then Γ ` T1 T2 ≡ S1 S2 :: K.

Proof: By induction on height(T1 T2) + height(S1 S2). We show just one case.

• Case: T1 = λX::L.T ′1, S1 = λX::L.T ′2, and (Γ, X::L ` T ′1 ≡ T ′2 :: K) ∈ νFλ. Then
(Γ ` {T2

/
X}T ′1 ≡ {S2

/
X}T ′2 :: K) ∈ νFλ by Proposition 36. Thus (Γ ` (λX::L.T ′1)T2 ≡

(λX::L.T ′2)S2 :: K) ∈ Fλ(Fλ(νFλ)) = νFλ.

Proposition 34 (Congruence for Recursive Types)
Let

C(J) :={(Γ1,Γ2 ` {µX::L. S1
/
Y}T1 ≡ {µX::L. S2

/
Y}T2 :: K) |

(Γ1, Y ::L,Γ2 ` T1 ≡ T2 :: K), (Γ1, X::L ` S1 ≡ S2 :: L) ∈ J ,
X 6∈ dom(Γ1), Y 6∈ dom(Γ1,Γ2) }.

1. C(νFλ) ⊆ νFλ.

2. If Γ, X::L ` S1 ≡ S2 :: L then Γ ` µX::L. S1 ≡ µX::L. S2 :: L.

Proof: Very similar to the proof of Proposition 36.

23

F a
λ−(J) := { (Γ ` int ≡ int :: *) | for all Γ}

∪ { (Γ ` X ≡ X :: K) | K = Γ(X)}
∪ { (Γ ` πi P1 ≡ πi P2 :: Ki) | (Γ ` P1 ≡ P2 :: K1×K2) ∈ J }
∪ { (Γ ` P1 T1 ≡ P2 T2 :: K) |

(Γ ` P1 ≡ P2 :: L⇒K) ∈ J and (Γ ` T1 ≡ T2 :: L) ∈ J }
∪ { (Γ ` T1→T2 ≡ S1→S2 :: *) |

(Γ ` T1 ≡ S1 :: *) ∈ J and (Γ ` T2 ≡ S2 :: *) ∈ J }
∪ { (Γ ` T ≡ S :: K) | T ; T ′ and (Γ ` T ′ ≡ S :: K) ∈ J and Γ ` T :: K}
∪ { (Γ ` T ≡ S :: K) | T 6;, S ; S′, (Γ ` T ≡ S′ :: K) ∈ J , and Γ ` S :: K}
∪ { (Γ ` 〈T1, T2〉 ≡ 〈S1, S2〉 :: K1×K2) |

(Γ ` T1 ≡ S1 :: K1) ∈ J and (Γ ` T2 ≡ S2 :: K2) ∈ J }

F a
λ (J) := F a

λ−(J)
∪ { (Γ ` λX::L.T ≡ λX::L.S :: L⇒K) | (Γ, X::L ` T ≡ S :: K) ∈ J }

Figure 6: Invertible Equivalence with Type Abstractions

5.5 Decidability

Since we do not allow recursively-defined type operators, unfolding a β-normal type yields a β-
normal type. This suggests we can compare types by β-normalizing and then using the previous
algorithm. Unfortunately, it is not immediately obvious that this algorithm would be complete.
Fortunately, the proof techniques used for pairs can be reapplied with functions with few changes.

We can extend the definition of bottom-up and top-down subterms, as shown in Figure 5. We
also add to Rules 21 and 27 the requirement that X 6∈ FV (E), which is always possible by renaming
of bound variables.

The following two lemmas continue to hold in the extended system; though there are more cases
to check, the proofs follow essentially the same pattern because we can take advantage of the the
fact that we are only substituting for variables with arrow-free kinds:

Lemma 35
If T � πi S then πi S ;∗ T or T � S.

Lemma 36
Assume Γ ` U :: L and Γ, X::L ` T :: K. If S � {U

/
X}T then either S � U or there exists T ′ � T

with {U
/
X}T ′ ;∗ S.

Proposition 37
If Γ ` S :: K and T v S then there exists T ′ such that T ′ � S and T ′ ;∗ T .

Proposition 38
The set {T | T v S } is finite for every well-formed type S.

Next, Figure 6 defines two invertible generating functions. The function F a
λ , though written as

a combination of two parts, differs from Fλ only in the left-to-right ordering of reductions. As for
Fπ and F a

π before, the two functions have the same fixed point, for the same reasons: νFλ = νF a
λ .

24

Unfortunately, though F a
λ is invertible we cannot directly use finiteness of top-down subterms

to show that it is also finite-state. When comparing two type abstractions the predecessor has a
different context, so repeating the same pair of types is no guarantee that the whole judgment has
been repeated.

Therefore, we temporarily restrict attention to the function F a
λ−, which never changes typing

contexts. The finite state property for F a
λ− follows as for F a

π .

Proposition 39
If (Γ′ ` T ′ ≡ S′ :: K ′) ∈ reachable[F a

λ−]({Γ ` T ≡ S :: K}) then T ′ v T and S′ v S and Γ = Γ′.

Corollary 40
F a
λ− is finite-state.

We would like to show next that F a
λ and F a

λ− agree on comparisons at the base kind *, but
this is insufficient as a coinductive hypothesis; checking the equivalence of types at kind * may
require comparisons at higher kinds. For example, checking a judgment of the form X::(*×*)⇒* `
X〈T1, T2〉 ≡ X T3 :: * requires comparing X with itself at kind (*×*)⇒* and comparing 〈T1, T2〉
with T3 at kind *×*. However, we can guarantee that when starting with a comparison at kind *,
if we reach a comparison at a kind K1×K2 then neither K1 nor K2 contain arrows (pair kinds can
only arise when comparing function arguments) and if we compare at a kind L⇒K then we are
doing so because we are comparing two paths being applied to arguments. In all such cases, the
difference between F a

λ and F a
λ− is irrelevant:

Lemma 41
Put

A := { (Γ ` T ≡ S :: K) ∈ Ueq |
K is arrow-free, or T and S both reduce to paths. }

1. If J ∈ A then pred [F a
λ−](J) = pred [F a

λ](J) ⊆ A.

2. If J ∈ A then reachable[F a
λ]({J}) = reachable[F a

λ−]({J}) ⊆ A.

Proof:

1. By definition of F a
λ and F a

λ−.

2. By induction and Part 1.

Proposition 42
F a
λ is finite-state.

Proof: We show that reachable[F a
λ]({Γ ` T ≡ S :: K}) is finite, by induction on K. Assume

Γ ` T :: K and Γ ` T :: S. Without loss of generality we may assume that T and S are weak head
normal; otherwise a finite number of weak head reducts are added.

• Case: K = *. Then by Lemma 47, reachable[F a
λ]({Γ ` T ≡ S :: *}) = reachable[F a

λ−]({Γ `
T ≡ S :: *}), which is finite.

25

Fη(J) := { (Γ ` int ≡ int :: *) | for all Γ}
∪ { (Γ ` X ≡ X :: K) | Γ ` X :: K}
∪ { (Γ ` πi P1 ≡ πi P2 :: Ki) | (Γ ` P1 ≡ P2 :: K1×K2) ∈ J }
∪ { (Γ ` P1 T1 ≡ P2 T2 :: K) |

(Γ ` P1 ≡ P2 :: L⇒K) ∈ J and (Γ ` T1 ≡ T2 :: L) ∈ J }
∪ { (Γ ` T1→T2 ≡ S1→S2 :: K) |

(Γ ` T1 ≡ S1 :: K) ∈ J and (Γ ` T2 ≡ S2 :: K) ∈ J }
∪ { (Γ ` T ≡ S :: K) | T ; T ′, (Γ ` T ′ ≡ S :: K) ∈ J , and Γ ` T :: K}
∪ { (Γ ` T ≡ S :: K) | S ; S′, (Γ ` T ≡ S′ :: K) ∈ J , and Γ ` S :: K}
∪ { (Γ ` T ≡ S :: K1×K2) | at least one of T and S is not a path,

(Γ ` π1 T ≡ π1 S :: K1) ∈ J , and (Γ ` π2 T ≡ π2 S :: K2) ∈ J }
∪ { (Γ ` T ≡ S :: L1⇒K2) | at least one of T and S is not a path,

Z 6∈ FV (T)∪FV (S), and (Γ, Z::L1 ` T Z ≡ S Z :: K2) ∈ J }

Figure 7: Generating Function for Equivalence with Extensionality

• Case: K = K1×K2. If T and S are not pairs, then Lemma 47 and Corollary 46 imply
reachable[F a

λ]({Γ ` T ≡ S :: K1×K2}) is finite. Otherwise, when T = 〈T1, T2〉 and S =
〈S1, S2〉, by the inductive hypothesis, reachable[F a

λ]({Γ ` T1 ≡ S1 :: K1}) and reachable[F a
λ]({Γ `

T2 ≡ S2 :: K2}) are both finite.

• Case: K = L1⇒K2. If T and S are not type abstractions, then again by Lemma 47
reachable[F a

λ]({Γ ` T ≡ S :: L1⇒K2}) is finite. Otherwise, if T = λX::L1.T2 and S =
λX::L1.S2, then inductively reachable[F a

λ]({Γ, X::L1 ` T2 ≡ S2 :: K2}) is finite.

Corollary 43
Membership in νFλ is decidable.

6 Adding Extensionality

A further extension to the system is extensionality (η-equivalence) for pairs and functions: pairs
with equivalent components are equivalent, and pointwise-equivalent functions are equivalent. No
changes to the syntax, well-formedness, or reduction is necessary, so all such properties remain
unaltered. The only change is to add two rules

T and S are not both paths
Γ ` π1 T ≡ π1 S :: K1 Γ ` π2 T ≡ π2 S :: K2

Γ ` T ≡ S :: K1×K2
(43)

T and S are not both paths
Z 6∈ FV (T) ∪ FV (S)

Γ, Z::L1 ` T Z ≡ S Z :: K2

Γ ` T ≡ S :: L1⇒K2
(44)

26

and to omit the (now admissible) structural congruence rules 17 and 34 for pairs and functions.
The resulting generating function Fη for equivalence is shown in Figure 7.

Rules 43 and 44 require that at least one of T and S be a non-path. This is necessary for con-
sistency, given that equivalence is defined coinductively. Let J be the set containing the following
three judgments:

X::*×*, Y ::*×* ` X ≡ Y :: *×*
X::*×*, Y ::*×* ` π1X ≡ π1 Y :: *
X::*×*, Y ::*×* ` π2X ≡ π2 Y :: *

If we drop the non-path restriction then we would have J ⊆ Fη(J) and so by the Principle of
Coinduction all three judgments would be in the greatest fixed point: the first judgment would
produce the last two by Rule 37, and the last two would produce the first by Rule 43. None of the
three should be provable in any consistent system. A similar problem would arise for functions if
the path restriction were removed from Rule 44.

Proofs for most of the expected equational properties then follow straightforwardly, in most
cases with few changes.

Proposition 44 (Reflexivity)
If Γ ` T :: K then Γ ` T ≡ T :: K.

Corollary 45 (Fold/Unfold and β-Equivalence)
If Γ ` T :: K and T ; T ′ then Γ ` T ≡ T ′ :: K.

Proposition 46 (Symmetry)
If Γ ` T ≡ S :: K then Γ ` S ≡ T :: K.

Proposition 47 (Weakening)
If Γ1,Γ3 ` T ≡ S :: K and dom(Γ1,Γ3) ∩ dom(Γ2) = ∅ then Γ1,Γ2,Γ3 ` T ≡ S :: K.

Proposition 48 (Congruence for Projections)
If Γ ` T ≡ S :: K1×K2 then Γ ` πi T ≡ πi S :: Ki.

Proposition 49 (Congruence for Pairs)
If Γ ` T1 ≡ S1 :: K1 and Γ ` T2 ≡ S2 :: K2 then Γ ` 〈T1, T2〉 ≡ 〈S1, S2〉 :: K1×K2.

Proof: Γ ` πi 〈T1, T2〉 :: Ki and Γ ` πi 〈S1, S2〉 :: Ki, so (Γ ` πi 〈T1, T2〉 ≡ πi 〈S1, S2〉 :: Ki) ∈
Fη(Fη(νFη)) = νFη. Thus by extensionality (Γ ` 〈T1, T2〉 ≡ 〈S1, S2〉 :: K1×K2) ∈ Fη(νFη) = νFη.

Proposition 50 (Congruence for Abstractions)
Assume Γ, X::L1 ` T ≡ S :: K2. Then Γ ` λX::L1.T ≡ λX::L1.S :: L1⇒K2.

Proof: We have Γ, X::L1 ` (λX::L1.T)X :: K2, so by Rule 32, Γ, X::L1 ` (λX::L1.T)X ≡ S ::
K2. By a similar application of Rule 33 we have Γ, X::L1 ` (λX::L1.T)X ≡ (λX::L1.S)X :: K2.
By extensionality, Γ ` λX::L1.T ≡ λX::L1.S :: L1⇒K2.

Proposition 51 (Functionality)
If Γ1, Y ::L,Γ2 ` T1 ≡ S1 :: K and Γ1 ` T2 ≡ S2 :: L then Γ1,Γ2 ` {T2

/
Y}T1 ≡ {S2

/
Y}S1 :: K.

27

Proposition 52 (Congruence for Applications)
If Γ ` T1 ≡ S1 :: L⇒K and Γ ` T2 ≡ S2 :: L then Γ ` T1 T2 ≡ S1 S2 :: K.

Proposition 53 (Congruence for Recursive Types)
If Γ, X::L ` S1 ≡ S2 :: L then Γ ` µX::L. S1 ≡ µX::L. S2 :: L.

The fact that equivalence is closed under reductions is less obvious in the presence of exten-
sionality, but it follows easily once we have a strengthening property (i.e., that we can drop unused
variables from the typing context). This is easy to show because all kinds are inhabited, and hence
we can apply Proposition 57, where the substitutions have no effect for unused variables.

Proposition 54 (Inhabitation of Kinds)
Define TK by induction on kinds as follows:

T* := int

TK1×K2 := 〈TK1 , TK2〉
TL1⇒K2 := λX::L1.(TK2)

Then for every kind K we have ` TK :: K.

Proof: By induction on K.

Corollary 55 (Strengthening)
If Γ1, X::L,Γ2 ` T ≡ S :: K and X 6∈ FV (T) ∪ FV (S) then Γ1,Γ2 ` T ≡ S :: K.

Proof: Assume Γ1, X::L,Γ2 ` T ≡ S :: K and X 6∈ FV (T) ∪ FV (S). By Propositions 60, 50,
and 53, Γ1 ` TL ≡ TL :: L. Thus by Proposition 57, Γ1,Γ2 ` T ≡ S :: K.

Proposition 56
1. If Γ ` T ′ ≡ S′ :: K, T ;∗ T ′, S ;∗ S′, Γ ` T :: K, and Γ ` S :: K then Γ ` T ≡ S :: K.

2. If Γ ` T ≡ S :: K, T ;∗ T ′, and S ;∗ S′ then Γ ` T ′ ≡ S′ :: K.

Proof:

1. Same argument as for Proposition 9

2. By induction on K and height(T) + height(S) (ordered lexicographically), and cases on the
justification for (Γ ` T ≡ S :: K) ∈ νFη = Fη(νFη).

• Case: Γ ` T ≡ S :: L1⇒K2 because Γ, Z::L1 ` T Z ≡ S Z :: K2, where Z 6∈ FV (T) ∪
FV (S). Then T Z ;∗ T ′ Z and S Z ;∗ S′ Z, so by the inductive hypothesis Γ, Z::L1 `
T ′ Z ≡ S′ Z :: K2. If T ′ and S′ are not both paths then Γ ` T ′ ≡ S′ :: L1⇒K2

follows by extensionality. Otherwise it must be that Γ, Z::L1 ` T ′ ≡ S′ :: L1⇒K2. By
Proposition 30 and Corollary 61, Γ ` T ′ ≡ S′ :: L1⇒K2.

The remaining cases are similar.

28

The greatest difficulty caused by extensionality is proving that equivalence remains transitive.
Specifically, it might be that Γ ` P1 ≡ T2 :: K and Γ ` T2 ≡ P3 :: K hold only because of
extensionality (where T2 is not a path), but then the desired conclusion Γ ` P1 ≡ P3 :: K does not
itself follow directly from extensionality. We handle this case separately.

Lemma 57
Define EK by induction on K as follows:

E* := •
EK1×K2 := EK1 [π1 •]
EL1⇒K2 := EK2 [• TL1]

Then for every Γ ` T :: K we have Γ ` EK [T] :: *.

Proof: By induction on K.

Lemma 58
Assume Γ ` P1 :: K and Γ ` P3 :: K. If Γ ` E[P1] ≡ P2 :: K ′ and Γ ` P2 ≡ E[P3] :: K ′ then
(Γ ` P1 ≡ P3 :: K) ∈ Fη(TR(νFη)).

Proof: We proceed by induction on E:

• Case: E = •. By cases on the forms of P1, P2, and P3, as in the proof of Proposition 12.

• Case: E = πiE
′. Then by definition of Fη it must be that P2 = πi P

′
2, Γ ` E′[P1] ≡

P ′2 :: K1×K2, Γ ` P ′2 ≡ E′[P3] :: K1×K2, and K = Ki. By the inductive hypothesis
(Γ ` P1 ≡ P3 :: K) ∈ Fη(TR(νFη)).

• Case: E = E′ S. Then by definition of Fη it must be that P2 = P ′2 S2, Γ ` E′[P1] ≡ P ′2 ::
L⇒K, and Γ ` P ′2 ≡ E′[P3] :: L⇒K. By the inductive hypothesis, (Γ ` P1 ≡ P3 :: K) ∈
Fη(TR(νFη)).

Corollary 59
If Γ ` P1 ≡ T2 :: K and Γ ` T2 ≡ P3 :: K then (Γ ` P1 ≡ P3 :: K) ∈ Fη(TR(νFη)).

Proof: By Lemma 63 and Propositions 54 and 58, Γ ` EK [P1] ≡ EK [T2] :: * and Γ ` EK [T2] ≡
EK [P3] :: *. Since EK [P1] and EK [P3] are paths, the definition of νFη and determinacy of reduction
ensure that EK [T2] ;

∗ P2 with Γ ` EK [P1] ≡ P2 :: * and Γ ` P2 ≡ EK [P3] :: *. By Lemma 64,
(Γ ` P1 ≡ P3 :: K) ∈ Fη(TR(νFη)).

Proposition 60 (Transitivity)
If Γ ` T1 ≡ T2 :: K and Γ ` T2 ≡ T3 :: K then Γ ` T1 ≡ T3 :: K.

Proof: We must show that TR(νFη) ⊆ νFη. It suffices to show TR(νFη) ⊆ Fη(TR(νFη)).
Assume (Γ ` T1 ≡ T3 :: K) ∈ TR(νFη) because (Γ ` T1 ≡ T2 :: K) ∈ νFη and (Γ ` T2 ≡ T3 :: K) ∈
νFη. We proceed by induction on height(T2) and cases on the justifications for the two equivalences
being assumed. We show just one case.

29

F a
η−(J) := { (Γ ` int ≡ int :: *) | for all Γ}

∪ { (Γ ` X ≡ X :: K) | Γ ` X :: K}
∪ { (Γ ` πi P1 ≡ πi P2 :: Ki) | (Γ ` P1 ≡ P2 :: K1×K2) ∈ J }
∪ { (Γ ` P1 T1 ≡ P2 T2 :: K) |

(Γ ` P1 ≡ P2 :: L⇒K) ∈ J and (Γ ` T1 ≡ T2 :: L) ∈ J }
∪ { (Γ ` T1→T2 ≡ S1→S2 :: *) |

(Γ ` T1 ≡ S1 :: *) ∈ J and (Γ ` T2 ≡ S2 :: *) ∈ J }
∪ { (Γ ` T ≡ S :: *) | T ; T ′ and (Γ ` T ′ ≡ S :: *) ∈ J and Γ ` T :: *}
∪ { (Γ ` T ≡ S :: *) | T 6;, S ; S′, (Γ ` T ≡ S′ :: *) ∈ J , and Γ ` S :: *}
∪ { (Γ ` T ≡ S :: K1×K2) | at least one of T and S is not a path,

(Γ ` π1 T ≡ π1 S :: K1) ∈ J , and (Γ ` π2 T ≡ π2 S :: K2) ∈ J }

F a
η (J) := F a

η−(J)

∪ { (Γ ` T ≡ S :: L1⇒K2) | at least one of T and S is not a path,
Z 6∈ FV (T)∪FV (S) and (Γ, Z::L1 ` T Z ≡ S Z :: K2) ∈ J }

Figure 8: Algorithmic Generating Function for Equivalence with Extensionality

• Case: K = L1⇒K2, where Γ, Z::L1 ` T1 Z ≡ T2 Z :: K2, Z 6∈ FV (T1) ∪ FV (T2), and T1
and T3 are not both paths. Then Γ, Z::L1 ` T2 Z ≡ T3 Z :: K2 by Propositions 53 and 54,
so (Γ, Z::L1 ` T1 Z ≡ T3 Z :: K2) ∈ TR(νFη). By extensionality, (Γ ` T1 ≡ T3 :: K2) ∈
Fη(TR(νFη)).

6.1 Decidability

The corresponding algorithmic (invertible) generating function for equivalence is shown in Figure 8.
The function F a

η differs from Fη in only two respects: the usual asymmetric restriction for the re-
duction cases, and the restriction of the reduction cases to proper types of kind *. Since application
and projection commute with reduction, we can choose to apply equal projections or applications
to non-paths and then reduce only once we reach kind *.

As for Fπ and F a
π before, the two functions have the same fixed point:

Proposition 61
νF a

η = νFη.

Again F a
η is invertible but not immediately finite-state because predecessor judgments may

again have different contexts. Therefore, we consider F a
η−, which never changes typing contexts.

Because of extensionality for pairs, predecessor types are not longer guaranteed to be top-down
subterms of the original pair of types; for example, the predecessor of (X::*×* ` X ≡ 〈π1X,π2X〉 ::
×) contains (X::*×* ` π1X ≡ π1 〈π1X,π2X〉 :: *). However, we can show that any non-subterm
types are created by projections from top-down subterms.

Definition 62
We say that T πv S if T = E[T ′] and T ′ v S for some T and E where E contains only projections,
i.e., if T is a projection from a top-down subterm of S.

30

Lemma 63
1. If U v E[T] and T v S where E contains only projections, then U = E′[U ′] for some U ′ v S

where E′ contains only projections.

2. If U v T1 and T1 πv S then U πv S.

3. If U πv T1 and T1 πv S then U πv S.

Proof:

1. By induction on U v E[T].

• Case: U = E[T]. Take E′ = E and U ′ = T .

• Case: E = • and U v T . Take E′ = E and U ′ = T .

• Case: E = πiE1 and U v E1[T]. By the inductive hypothesis.

• Case: E = E1[πi •], T = 〈T1, T2〉, and U v E1[Ti]. By the inductive hypothesis, since by
transitivity any top-down subterm of Ti is a top-down subterm of S.

• Case: U v E[T ′] where T ; T ′. By the inductive hypothesis (since T ′ v T v S).

2. This is a rewording of Part 1.

3. By Part 2, since adding more projections to a projection doesn’t matter.

Proposition 64
If (Γ′′ ` T ′′ ≡ S′′ :: K ′′) ∈ reachable[F a

η−]({Γ ` T ≡ S :: K}) then Γ = Γ′′ and T ′′ πv T and
S′′ πv S.

Corollary 65
F a
η− is finite-state.

Proof: There are only finitely many top-down subterms, and for each there are only finitely many
well-formed projections possible.

Proposition 66
F a
η is finite-state.

Proof: Exactly analogous to the proof for F a
λ .

Corollary 67
Membership in νFη is decidable.

31

7 Related Work

The most interesting previous extensions of coinductive equivalence or subtyping with fold/unfold
rules are those involving type isomorphisms [PZ00, DPR05]. These are motivated by the problem
of searching libraries of code (specifically class interfaces, which can be self-referential) ignoring the
order or currying/uncurrying of arguments.

Studies of inductive equivalence with β-equivalence and fold/unfold are more common than the
coinductive case. For example, Bruce’s [Bru02] target for object encodings includes the fold/unfold
rule in an inductively-defined type equivalence relation. Statman [Sta02] has described a decidabil-
ity proof for an inductive definition of equivalence for a simply-typed lambda calculus with βη for
functions and a fixed-point combinator Y : (0→ 0)→ 0. The proof does not directly apply to pairs
encoded as functions, because the Y combinator cannot be used to recursively define functions.

8 Conclusion and Future Work

We have defined some interesting extensions of the usual coinductive theory for recursive types,
up to βη-equivalence with first-order type operations and recursively-defined pairs. In all cases we
have shown that equivalence is well-behaved and decidable. The results presented here are enough
to allow a straightforward proof of type soundness (“well-typed programs don’t go wrong”) for a
term language with this type system.

Though we have studied type equivalence, we conjecture that the ideas in this paper should be
directly applicable to subtyping as well.

The issue with bound variables that caused us to consider only first-order type operators is
exactly the same issue that Colazzo and Ghelli [CG99] encountered in combining recursive types
with bounded polymorphism in Kernel Fun. They showed decidability of equivalence and subtyping
for simple recursive types extended with bounded universal quantifiers. More recently the work of
Gauthier and Pottier [GP04] showed that through a transformation analogous to DeBruijn num-
bering, universally-bound variables could be eliminated while preserving equivalence of recursive
types; perhaps these ideas could be adapted here to remove the restriction of type operators to
first-order.

Finally, this paper studies only a syntactic equational theory. We have not provided a semantic
model for our types, or even formally related our types to µ-free infinite trees. An open question
is how best to do so because a reduction relation on infinite trees may be necessary. If so, the
restriction to contractive types, guaranteeing termination of weak head reduction, could make the
trees involved easier to work with than arbitrary infinite lambda terms.

References

[AC93] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM Transactions
on Programming Languages and Systems, 15(4), September 1993.

[AF96] Mart́ın Abadi and Marcelo P. Fiore. Syntactic considerations on recursive types. In
IEEE Symp. on Logic in Computer Science (LICS’96), pages 242–252, 1996.

[BCP99] Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing object encodings.
Information and Computation, (155):108–133, 1999.

32

[BH97] Michael Brandt and Fritz Henglein. Coinductive axiomatization of recursive type equal-
ity and subtyping. In Third International Conf. on Typed Lambda Calculi and Applica-
tions (TLCA ’97), volume 1210, pages 63–81, 1997.

[Bru02] Kim B. Bruce. Foundations of Object-Oriented Languages. MIT Press, 2002.

[CG99] Dario Colazzo and Giorgio Ghelli. Subtyping recursive types in Kernel Fun. In IEEE
Symp. on Logic in Computer Science (LICS ’99), pages 137–146, 1999.

[CHP99] Karl Crary, Robert Harper, and Sidd Puri. What is a recursive module? In ACM SIG-
PLAN ’99 Conference on Programming Language Design and Implementation (PLDI
’99), pages 50–63, 1999.

[CS02] Gregory D. Collins and Zhong Shao. Intensional analysis of higher-kinded recursive
types. Technical Report YALEU/DCS/TR-1240, Department of Computer Science,
Yale University, 2002.

[DPR05] Roberto Di Cosmo, François Pottier, and Didier Rémy. Subtyping recursive types mod-
ulo associative commutative products. In Seventh International Conference on Typed
Lambda Calculi and Applications (TLCA ’05), 2005.

[Fio04] Marcelo Fiore. Isomorphisms of generic recursive polynomial types. In ACM Symposium
on Principles of Programming Languages (POPL ’04), pages 77–88, 2004.

[GLP02] Vladimir Gapeyev, Michael Levin, and Benjamin Pierce. Recursive subtyping revealed.
Journal of Functional Programming, 12(6):511–548, 2002.

[GP04] Nadji Gauthier and François Pottier. Numbering matters: First-order canonical forms
for second-order recursive types. In Proceedings of the Ninth ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP ’04), pages 150–161, 2004.

[HS97a] Robert Harper and Christopher Stone. An interpretation of Standard ML in type
theory. Technical Report CMU-CS-97-147, School of Computer Science, Carnegie Mellon
University, 1997.

[HS97b] Robert Harper and Christopher Stone. A type-theoretic account of Standard ML 1996
(version 2). Technical Report CMU-CS-96-136R, School of Computer Science, Carnegie
Mellon University, 1997.

[LS98] Christopher League and Zhong Shao. Formal semantics of the FLINT intermediate
language. Technical Report Yale-CS-TR 1171, Department of Computer Science, Yale
University, 1998.

[PZ00] Jens Palsberg and Tian Zhao. Efficient and flexible matching of recursive types. In
IEEE Symp. on Logic in Computer Science (LICS ’00), pages 388–398, 2000.

[Sta02] Rick Statman. On the Lambda Y calculus. In IEEE Symp. on Logic in Computer
Science (LICS ’02), pages 159–166, 2002.

33

[VDP+03] Joseph C. Vanderwaart, Derek R. Dreyer, Leaf Petersen, Karl Crary, and Robert Harper.
Typed compilation of recursive datatypes. In International Workshop on Types in Lan-
guage Design and Implementation (TLDI ’03), pages 98–108, 2003.

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages: An Introduction.
MIT Press, 1993.

34

