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Typed object calculi that permit adding new methods to existing objects must address the problem

of name clashes: what happens if a new method is added to an object already having one with
the same name but a different type? Most systems statically forbid such clashes by restricting

the allowable subtypings. In contrast, by reconsidering the runtime meaning of object extension,
the object calculus studied in the author’s previous work with Jon Riecke allowed any object

to be soundly extended with any method of any name, with unrestricted width subtyping. That

language permitted a simple encoding of classes as object-generators. Because of width subtyping,
subclasses could be typechecked and compiled with little knowledge of the class hierarchy and

without any information about superclasses’ private components; this made derived classes more
robust to changes in the implementations of base classes. However, the system was not well-suited
for encoding mixins or by-name subtyping of objects.

This paper addresses those deficiencies by presenting the Calculus of Objects and Indices (COI),
a lower-level typed object calculus in which extensible objects are more analogous to tuples than

to records. An object is simply a finite sequence of unnamed components referenced by their index
in the sequence. Names are then re-introduced by allowing these indices to be first-class values
(analogous to pointers to members in C++) that can be bound to variables. Since variables —
unlike record labels — freely alpha-vary, difficulties caused by statically undetectable name clashes
disappear.

By combining COI objects with standard type-theoretic mechanisms, one can encode mixins
and classes having the by-name subtyping of languages like C++ or Java but with the robustness

of the object-generator encodings. Using records, more standard extensible objects with named
components can also be encoded.
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General Terms: Languages
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1. INTRODUCTION

Early work on the foundations of object-oriented languages treated objects as par-
ticular uses of records, e.g., “Object-oriented programming is based on record struc-
tures (called objects) intended as named collection of values (attributes) and func-
tions (methods)” [Cardelli and Mitchell 1989]. Although it has more recently be-
come common to study systems in which objects are primitive [Abadi and Cardelli
1996; Fisher et al. 1994], such objects typically remain syntactically record-like:
each component is identified by and accessed with a unique label, the name of the
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2 · Christopher A. Stone

field or method.
This can cause difficulties in typed systems that permit new fields or methods

to be added to existing objects. Consider, for example, a simple object with two
methods: a component n containing an integer constant, and a accessor method
getn for that component:

obj self .{|n = 17 : int, getn = self .n : int|}.

Here, the variable self is a bound variable representing the entire object (sometimes
called this in object-oriented languages), which can be used in method code. (As
usual, for simplicity fields are modeled as constant methods not referencing self .)
Since both components return the integer 17 when invoked — n directly and getn
indirectly — the object naturally has the (structural) object type

{| n : int, getn : int |}.

Under the usual rules of width subtyping for objects, this object also has the type

{| getn : int |},

which, though less specific, is arguably more appropriate if the n field is expected
to be accessed only via the accessor method getn.

Suppose this object is now extended with an n component returning the boolean
value true. If all that is known statically about the object is that it has type
{| getn:int |}, there is no apparent reason to prohibit such an extension. What
should the result be? Overriding the pre-existing n field to obtain

obj self .{|n = true : bool, getn = self .n : int|}

would be unsound because this change causes the integer method getn to return a
boolean, a type error. However, record-like structures cannot have two components
with the same label:

obj self .{|n = 17 : int, getn = self .n : int, n = true : bool|}.

because references to the n component become ambiguous.
It might appear from this example as though the integer n component could

automatically be renamed out of the way when the boolean n component is added,
yielding an object such as

obj self .{|n’ = 17 : int, getn = self .n’ : int, n = true : bool|}

but this does not work in general. Labels do not have delimited scopes and cannot
alpha-vary as variables do. For example, given a function

project out n : {| n : int |} → int

that takes any object with an integer n component and returns the value of that
component, the original object could have been written equivalently as

obj self .{|n = 17 : int, getn = project out n(self ) : int|}.

In this case renaming the n component no longer works; the result would be

obj self .{|n’ = 17 : int, n = true : bool,
getn = project out n(self ) : int|}
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where getn again erroneously returns a boolean.
Of course the addition of the second n field could simply be detected and reported

as a run-time error, but if type systems can guarantee that code never invokes a
non-existent method at run time, it seems reasonable to expect object extension to
be statically checked as well.

Most systems of extensible objects forbid such problematic extensions by limiting
subtyping [Fisher and Mitchell 1995; Liquori 1997]. In the above example, the
original object would not be permitted to be given the type {| getn : int |} without
ruling out all further extension; there is always information about all components
when objects are extended and so clashes are always preventable. However, this
forces the names and/or types of private methods — never intended to be externally
accessed — to appear in the types of objects as long as extension (inheritance) is
possible, violating information-hiding principles.

In contrast, the author’s work with Jon Riecke [1998; 2002] allowed arbitrary
width subtyping and unrestricted object extension by modifying the representation
of objects in the semantics. The key innovation of that calculus (hereafter referred
to as RS) was to augment object values with “dictionaries”, explicit indirections
giving names to corresponding object components. In the above example, the
original object could be represented as:

obj self .{|17 : int, self.1 : int|}[n7→1,getn7→2].

The dictionary [n 7→ 1, getn 7→ 2] attached to this object specifies that externally
invoking the n method of this object will access the first component, while externally
invoking the getn method will run the code of the second component. Importantly,
methods can refer to each other (so-called “self-inflicted” method invocations) di-
rectly by their unique index, rather than using the object’s dictionary.1

The RS syntax for adding a new method is e1←+ l(s) = e2 : τ2, which denotes
the result of taking the object e1 and adding a new method named l whose code
e2 of type τ2 can refer to the entire object via the bound variable s. We can take
this last object above and add a new boolean n component

(. . .)←+ n(s) = true : bool

to obtain the object

obj self .{|17 : int, self.1 : int, true : bool|}[n7→3,getn7→2].

The dictionary [n 7→ 3, getn 7→ 2] now routes external invocations of n to the
new boolean component (the original n has been shadowed), but importantly the
behavior of all existing methods — getn in particular — remains unchanged. The
principal type of this object would be

{| n : bool, getn : int |},

which exposes only the types of the two externally-accessible components. In con-
trast to other calculi [Liquori 1997; Di Gianantonio et al. 1998], RS object extension

1In actuality, methods in RS often perform self-inflicted invocations via the dictionary in place

when the method code was added (rather than the dictionary at the point when the method was
invoked). In cases where that original dictionary is known, the lookup can be statically reduced

to the appropriate index.
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will never replace the code of an existing method or change the behavior of existing
methods. At most a pre-existing method may become externally shadowed as in
this example.

An operation on values is said to be type-preserving if, whenever the input has
type τ , then the output also has type τ . (In the presence of subtyping and sub-
sumption this does not require the output to have the same principal type as the
input; the output could have a strictly more precise type.) It is clear from the above
example that RS object extension is not type-preserving, as the original object has
type {| n : int, getn : int |} while the extended object has the incomparable
type {| n : bool, getn : int |}.2

The fact that object extension in RS is not type-preserving in general limits
the flexibility of the system, especially in the presence of abstract types and type
variables. The remainder of this section considers two specific issues: encoding
class types with by-name subtyping, and encoding mixins.

1.1 RS Limitation: Class Types

Primitive objects have often been used to study and model classes in conventional
object-oriented languages, decomposing relatively complex classes into uses of more
primitive type-theoretic constructs. One difficulty, however, is faithfully modeling
the type hierarchies found in class-based languages. Most formal studies of primitive
objects and subtyping assume structural typing, where the type of an object is
determined only by the types of its components. In contrast, classes in C++ or
Java act as types with a by-name subtyping hierarchy mirroring the inheritance
graph.

One of the most elegant approaches to modeling classes treats them simply as
object generators. Specifically, each class is encoded as a module with at least two
components: a type T representing the type of objects of that class, and a function
new to construct objects of type T.

Figure 1 shows an encoding of a class Point and a subclass Point2D built using
RS objects and a type-theoretic core in the syntax of Standard ML (SML) [Milner
et al. 1997]. (SML is used here primarily because it supports the creation of abstract
types through its module system.)

The signatures POINT and POINT2D are module interfaces representing the en-
codings of a classes for 1-dimensional points and 2-dimensional points respectively.
According to POINT, objects of the base class have (at least) a get1 method re-
turning an integer, while POINT2D specifies that objects of the subclass have (at
least) the methods get1 and get2. The constructor function for 1-dimensional
points takes an integer argument, while the constructor function for 2-dimensional
points is specified as requiring both an integer and a real. Further, the interface for
1-dimensional points requires an implementation also supply a “friend function” eq
that works on pairs of 1-dimensional points.

2Extension is type-preserving in some cases, of course. Had the new component been added with

the name b, for example, the result would be an object of type

{| n : int, getn : int, b : bool |},

a subtype of the original object’s type.
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signature POINT = sig

type T = {| get1 : int |}
val new : int -> T

val eq : T*T -> bool

end

signature POINT2D = sig

type T = {| get1 : int, get2 : real |}
val new : int*real -> T

end

structure Point :> POINT =

struct

type T = {| get1 : int |}
fun new(x1:int):T = (obj s.{| |} )

←+ x(s) = x1 : int
←+ get1(s) = s.x : int

fun eq (o1:T,o2:T):bool = (o1.get1 = o2.get1)

end

structure Point2D :> POINT2D =

struct

type T = {| get1 : int, get2 : real |}
fun new (x1:int, x2:real):T = Point.new(x1)

←+ x(s) = x2 : real

←+ get2(s) = s.x : real

end

Fig. 1. Class Encodings using RS Objects

Implementations are the Point and Point2D modules. The SML syntax

structure Point :> POINT = struct ... end

defines the Point module to contain all the definitions between struct and end,
and then hides any information about this module that does not appear explicitly
in the POINT interface. For example, the type Point.T is a synonym for the type
{| get1:int |} because this fact appears in the interface POINT. In contrast, although
the code for the function Point.new clearly creates objects of size two by taking
the empty object and extending it twice, the POINT interface merely guarantees
that the resulting object satisfies the supertype Point.T, i.e., only that it contains
get1. The type checker therefore will reject any attempt to access the x field of an
object returned by Point.new, effectively making the x field completely private.

The Point2D class defines its own object type Point2D.T, and creates two-
dimensional points by inheritance; the function Point2D.new creates objects by
first creating an object of the superclass and then extending it with two new com-
ponents. The result at run time will be an object with four components, but
statically only the two accessor methods are accessible because only these are guar-
anteed to exist by POINT2D. Although Point.new and Point2D.new independently
add components named x and these components have different types, the use of dic-
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tionaries ensures that the two fields nevertheless remain distinct and are by their
respective accessors.

This encoding of classes uses purely structural subtyping. Two-dimensional
points can be used as one-dimensional points not because of inheritance, but be-
cause the definitions of the types Point.T and Point2D.T exposed in the interfaces
are in a subtyping relationship. The type system cannot distinguish an object cre-
ated by Point.new from any other random object having a get1 method returning
an integer. Consequently, there is no easy way to implement friend functions or
binary methods with access to private components. For example, the function
Point.eq can be applied to any object with a get1 method returning an integer,
and so cannot directly access the x fields of its arguments; there is no guarantee
that such fields even exist. Conversely, if the arguments of eq were required to have
x fields, then the type system would prevent the function from being used with
objects created by Point.new — the POINT interface does not guarantee that all
such objects will have x fields3.

A natural type-theoretic fix is to make the type Point.T partially abstract. In-
stead of specifying that the type of objects created by Point.new satisfies the struc-
tural type {| get1: int |}, we can say that Point.T is some unknown type reflecting
the actual implementation of one-dimensional points, and that this unknown type
is guaranteed to be a subtype of the interface type {| get1: int |}. Thus, by sub-
sumption, we can still invoke the get1 method in an object created by the Point
class.

This is essentially the approach taken in Modula-3 [Nelson 1991], and although
SML does not include partially-abstract types in interfaces it would be a natural
extension in the presence of subtyping [Crary 1998]. In this case, the POINT interface
and Point module can be rewritten as shown in Figure 2. Point.T is now the type
of the object’s internal representation (including the private x field) rather than an
interface. The code for Point.new is unchanged, but now the code for Point.eq
requires its arguments satisfy the implementation type and hence the code can
directly compare the contents of the x fields.

Clients of this class can refer to the abstract type Point.T when an object of
this class is required, and can refer to its supertype {| get1:int |} when only the
public interface matters. Abstraction ensures that eq will be applied only to objects
created by this class, and hence it is sound for eq to assume its arguments have
x fields. The x field remains private (hidden and inaccessible outside the Point
module).

Unfortunately, as observed by Fisher and Reppy [2000] this change prevents
useful inheritance. The definition of Point.T is hidden by the POINT interface,
and hence there is no way to define a strict subtype Point2D.T. As extension is
not always type-preserving, there is no way to guarantee that the objects created
by Point2D.new (which calls Point.new and extends the result), still have the

3Point.new could randomly choose whether or not to return an object containing an x field without

violating the POINT interface. Changing the POINT interface to require such objects contain x would
leak private implementation details into the interface of the class, defeating the whole point (as

it were) of having RS objects in the first place.
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signature POINT = sig

type T � {| get1 : int |} (* Partially abstract *)

val new : int -> T

val eq : T*T -> bool

end =

structure Point :> POINT =

struct

type T = {| x : int, get1 : int |}
fun new(x1:int):T = (obj s.{| |} )

←+ x(s) = x1 : int

←+ get1(s) = s.x : int
fun eq (o1:T,o2:T):bool = (o1.x = o2.x)

end

Fig. 2. Revised RS Encoding for Point

implementation type Point.T. In fact, the run-time object values created by the
Point2D class in Figure 1 have principal type

{| x : real, get1 : int, get2 : real |}

(because there are four components, with the integer x having been shadowed in
the dictionary) and this is not a subtype of Point’s implementation type

{| x : int, get1 : int |}.

Consequently, objects created by Point2D.new must not be passed to the Point.eq
function in Figure 2; that code is expecting to use integer equality, but accessing
the x fields of Point2D objects yields reals.

Modula-3 does permit the creation of subtypes of such partially abstract object
types exactly as needed here, but, this does not seem to have been well-formalized.
Although the work of Abadi [1994] on Baby Modula-3, for example, includes an
operator for extending objects, this operation is artificially restricted to extending
only object values where all components are syntactically apparent and hence where
name clashes can be statically detected and forbidden.

1.2 RS Limitation: Mixins

The RS type system also cannot give the most useful types to code which extends
objects. This makes the language unsuitable for encoding constructs such as mixins
and parameterized classes. Ideally, one would like to be able to write code to extend
an arbitrary object with both public and private (hidden) components, and to track
this extension in the type system. However, again because of the potential for name
clashes this is not possible even using dictionaries.

In RS one can write a colorize function that adds a single method getc of some
type color to any object; such a function could model a very simple mixin [Bracha
and Cook 1990; Flatt et al. 1998]. However, the type of this function would be

{| |} → {| getc : color |}.

That is, colorize can be applied to any object at all by subsumption, but it guar-
antees only that the resulting object has a getc method. Because this function
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extends its argument, and because extension in RS never replaces existing compo-
nents, we know the object returned still contains all the components present in the
argument. The type does not express this fact.

Simply adding bounded polymorphism would not help, as the best type for such
a function would be

∀(α�{| |}). (α → {| getc : color |}),
which again does not express how the contents of the object returned depend on
the argument.

Cardelli and Mitchell [1989] addressed a similar problem in a language with
extensible records by defining a type 〈〈τ1 ← l : τ2〉〉, the type of values which result
from taking a record of type τ1 and adding a field l of type τ2. By adding an
analogous object type constructor τ←+l:σ (the type of objects created by taking an
object of type τ and adding a new component l of type σ) to RS, colorize could
be written to have the type

∀(α�{| |}). α → (α←+getc:color)

which very accurately describes the behavior of the code in question. Unfortunately,
such types are not very flexible. Since object extension is not type-preserving, the
type τ←+l:σ cannot be defined as a subtype of τ ; width subtyping cannot extend to
“forgetting” these extensions. As a consequence, a variant definition of colorize
which adds both a field c and a accessor method getc could reasonably be given
the very precise type

∀(α�{| |}). α → (α←+c:color←+getc:color)

or the less precise type

∀(α�{| |}). α → {|c : color, getc : color|}
or, if the c field should be private and externally hidden, even the type

∀(α�{| |}). α → {|getc : color|}.
However, the type

∀(α�{| |}). α → (α←+getc:color)

that both specifies the dependency but omits mention of the private component c
would be unsound. This last type implies that an argument having a component c
yields an output with a component c of the same type, whereas the assumed code
would shadow any pre-existing c component.

Thus, although types of the form τ←+l:σ would permit more precise typings for
mixins encoded as object-extending functions (or functors, when classes are struc-
tures), components added by these mixins cannot be made hidden and inaccessible
by subsumption, thus losing one of the greatest benefits of the RS system.

The remainder of the paper addresses the limitations of the RS system by moving
still further from tradition of record-like objects. Section 2 introduces an alternative
calculus COI in which objects lack labels (and dictionaries) entirely. Section 3 then
shows how the above limitations of RS can be overcome using COI. Section 4
extends the language to include variance annotations, while Section 5 sketches how
to encode labeled RS objects into COI. Finally, Section 6 concludes.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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Typing Contexts Γ ::= · Empty context

| Γ, s:τ Term variable specification
| Γ, α�τ ::κ Type variable specification

Types τ, σ ::= {| |} Empty object type

| α |β | · · · Type variable

| @τ Exact type
| τ←+τ Extended object type

| τ⇒τ Index type
| ∃α�τ ::κ.τ Package type

Kinds κ ::= In Inexact object types

| Ex Exact object types
| Ty All types

Values v ::= s |x | . . . Term variable

| obj s.{|e, . . . , e|} Object value
| pnq Index constant (n ≥ 1)
| pack τ and e as τ Existential package

Terms e ::= v

| e←+(e)=e:τ Object extension
| e←e(s)=e Method override

| e.e Method invocation
| next index(τ) Index allocation
| open e as α and x in e Unpacking existential

Fig. 3. Syntax of COI

2. THE COI SYSTEM

The Calculus of Objects and Indices (COI) addresses the limitations of RS by re-
moving labels (and RS dictionaries) from objects altogether. Objects become a
simple sequence of components, more like tuples than records. Object components
are indexed by number, and these index numbers are made first-class values, anal-
ogous to pointers to members in C++ [Stroustrup 1997].

This design has two very useful consequences. First, adding a new component at
the end of an object’s sequence cannot affect pre-existing methods in any way, not
even by shadowing them. Secondly, since variables — unlike labels — can freely
alpha-vary, index values can be bound to variables that can be used to refer to
method components without any possibility of unsound name clashes.

2.1 Syntax

The syntax of the COI system system is shown in Figure 3. The simplest type is
{| |}, the type of the empty object and, by subsumption, of every object. The type
of an object of τ extended with a new component of type σ is written τ←+σ. (This
is simpler than the syntax used in Section 1.2 because object components no longer
have labels.) Index values have types of the form τ⇒σ; this type classifies offsets
which access a component of type σ within an object of type τ . The exact type
@τ classifies objects whose principal (most-specific) type is exactly τ rather than
some subtype of τ ; extending an object has predictable results (i.e., determining
at what offset the new method will appear) only if we know the exact type of
the original object. Finally, the type system includes type variables and bounded
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existentials [Pierce 2002]; these are not part of the core object calculus but are
included only to represent the interaction with type abstraction. Specifically, the
type ∃α�τ1::κ.τ2 classifies packages containing a type σ that is a subtype of τ1 and
of kind κ, together with a term of type τ2

[
σ
/
α
]
.

Types of the form {| |} or τ←+σ are referred to as inexact object types; any
object with such a type has at least the components mentioned, but possibly more.
Conversely, types of type form @τ are said to be exact object types; an object
of type @τ has exactly those components mentioned in the corresponding inexact
object type τ , and no more.

By this definition, extending an exact type yields an inexact type; the type
(@τ)←+σ classifies objects that were created by taking an object of exactly type τ ,
adding a new component of type σ, and possibly further extensions. In contrast,
the exact type @((@τ)←+σ) specifies that there were no further additions after the
σ component was added.

It is sometimes important to know whether a given abstract type (or type vari-
able) is exact or not, and so the types are classified by a kind system containing
three constants: Ex, In, and Ty. These classify exact object types, inexact object
types, and all types, respectively.

Two shorthands are useful for writing COI types. More familiar object types —
though still with unlabeled components — can be expressed by repeatedly extending
the empty object type. Such types are defined recursively as:

{| τ1, . . . , τn |} := (@{| τ1, . . . , τn−1 |})←+τn.

According to the typing rules in Section 2.3, this classifies all objects beginning
with exactly n− 1 components having types τ1 through τn−1 in order, immediately
followed by an component of type τn. This is not an exact type, however, because
it leaves open the possibility that there are other components as well. Specifying an
objects that have only these n components requires the exact type @{| τ1, . . . , τn |}.

For example,

{| τ1, τ2 |} = (@{| τ1 |})←+τ2
= (@((@{| |})←+τ1))←+τ2

It is also convenient to extend an object type with several components at once:

τ←+(τ1, . . . , τn) := (@(τ←+τ1))←+(τ2, . . . , τn).

Thus the type abbreviated {| τ1, τ2 |} could also be written (@{| |})←+(τ1, τ2). Types
written these way are also inexact.

At the term level, the syntactic values include variables, objects (sequences of
methods parameterized by a variable representing the enclosing object), indices,
and existentially-typed packages. Other program terms include object extension,
method override, and method invocation. The last two operations require both an
expression yielding an object, and an expression (rather than the usual label) yield-
ing the component of interest. The index creation operator next index(τ) returns
the index of the first unused index in an object of the exact type τ . Finally, the
elimination form for existentials is standard [Pierce 2002]; a value of an existential
type is a pair containing a type and a term, and the open construct binds these two
components to local variables for the purposes of evaluating an expression e.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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(obj s.{|e1:τ1, . . . , en:τn|}).pkq ; ek
[
obj s.{|e1:τ1, . . . , en:τn|}

/
s
]

(obj s.{|e1:τ1, . . . , en:τn|})←+(s)=en+1:τn+1 ; obj s.{|e1:τ1, . . . , en:τn, en+1:τn+1|}

(obj s.{|e1:τ1, . . . , en:τn|})←pkq(s)=e′k ; obj s.{|e1:τ1, . . . , ek−1:τk−1, e
′
k:τk, . . . , en:τn|}

next index(@{|σ1, . . . , σn |}) ; pn+1q

open (pack τ and v as σ) as α and x in e ; e
[
τ
/
α
][
v
/
x
]

Fig. 4. Primitive Reduction Steps for COI

E ::= •
| E.e
| v.E
| E←+(s)=e:τ

| E←e2(s)=e3
| v1←E(s)=e3
| pack τ and E as σ

Fig. 5. Evaluation Contexts

2.2 Dynamic Semantics

The primitive reduction steps for the dynamic semantics appear in Figure 4. Given
the decision to access object components by run-time index values, these are largely
straightforward modifications of the conventional rules.

The only completely unfamiliar rule should be that for next index(τ), which com-
putes index values of components at run-time. Because this evaluation step depends
on the particular type τ , the semantics as presented here does not support a type-
erasure interpretation. (Section 6.2 sketches a slightly more complex formulation
that eliminates the dependency of the dynamic semantics on types.)

The primitive steps are extended to evaluation for full programs — arbitrary
closed expressions — by using the evaluation contexts defined by the grammar in
Figure 5. If E is an evaluation context (An expression with a “hole”, written •)
then E [e] denotes the term resulting by replacing the hole by the expression e.
Following Wright and Felleisen [1991], the small-step evaluation relation is then
extended from primitive steps to programs by specifying that e1 ; e2 if there
exist E , e′1, and e′2 such that e1 = E [e′1], e2 = E [e′2], and e′1 ; e′2 is an instance of a
primitive step from Figure 4.

For example, one can evaluate code to build an object with a field and an accessor
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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and to invoke the latter method as follows:(
((obj s.{||})←+(s′)=17:int)←+(s′′)=(s′′.p1q):int

)
.p2q

;
(
(obj s.{|17:int|})←+(s′′)=(s′′.p1q

)
:int).p2q

; (obj s.{|17:int, (s.p1q):int|}).p2q
; (s.p1q)

[
obj s.{|17:int, (s.p1q):int|}

/
s
]

= (obj s.{|17:int, (s.p1q):int|}).p1q
; 17.

2.3 Static Semantics

The remaining part of the definition of COI is the typing rules, or static semantics.
The entire set of rules are shown in Figures 6, 7, and 8; only the most interesting
will be discussed further.

2.3.1 Well-Formed Types. The kind system, which distinguishes exact object
types from inexact object types, is used in Rule 6 to forbid types of the form
@(@τ) from ever arising. Consequently, if @τ is well-formed then τ is always the
corresponding inexact object type.

Rule 7 specifies that only objects with exact types can be extended. This restric-
tion ensures that the location of the next component can be predicted just from
the type of the object, so that extending many objects of the same type requires
computing the index of the new method only once.

It would not be unsound to allow the extension of arbitrary objects, but doing so
does not appear useful. COI has no way to determine the right index for accessing
the new method, as extending two objects with the same inexact type {| |} could add
components at completely different offsets. (It is likely that one could, for example,
modify object extension to return both the extended object and the index of the
new component. The overhead of tracking in the type system that this particular
new index is usable with only this particular new object seems significant. Further,
that level of flexibility is not needed to overcome the limitations of RS discussed
above.)

2.3.2 Subtyping. Exact types are subtypes of the corresponding inexact type,
according to Rule 17; the premise ensures that the exact type @τ is well-formed.

The type (@τ1)←+τ2 classifies objects having at least n+1 components, with
the types of the first n being specified by the inexact object type τ1, and the
n+1st having type τ2. It is clear that such objects do not also have type @τ1,
which classifies objects having exactly n components; thus in general σ1←+σ2 is
not a subtype of σ1. However, objects of type (@τ1)←+τ2 do have at least the n
components specified in the inexact type τ1, and so (@τ1)←+τ2 can be a subtype
of τ1. (This is the point where the kind structure becomes important. Although
@(@τ) may be semantically reasonable as a redundant way of representing @τ , it
would be unsound to conclude that (@τ1)←+τ2 is a subtype of τ1 if τ1 itself were
exact; exact types must have no nontrivial subtypes.)

Rule 18 is the resulting subtyping rule for extended types. This rule is particularly
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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Well-formed Contexts

· ` ok
(1)

Γ ` τ :: Ty s 6∈ dom Γ

Γ, s:τ ` ok
(2)

Γ ` τ :: κ α 6∈ dom Γ

Γ, α�τ ::κ ` ok
(3)

Well-Formed Types

Γ ` ok

Γ ` {| |} :: In
(4)

Γ ` ok Γ = . . . , α�τ ::κ, . . .

Γ ` α :: κ
(5)

Γ ` τ :: In

Γ ` @τ :: Ex
(6)

Γ ` τ :: Ex Γ ` σ :: Ty

Γ ` τ←+σ :: In
(7)

Γ ` τ :: Ty Γ ` σ :: Ty

Γ ` τ⇒σ :: Ty
(8)

Γ ` τ1 :: κ Γ, α�τ1::κ ` τ2 :: Ty

Γ ` (∃α�τ1::κ.τ2) :: Ty
(9)

Γ ` τ :: κ1 Γ ` κ1 � κ2

Γ ` τ :: κ2
(10)

Fig. 6. Static Semantics of COI
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Subkinding

Γ ` ok

Γ ` Ex � Ty
(11)

Γ ` ok

Γ ` In � Ty
(12)

Γ ` ok

Γ ` κ � κ
(13)

Subtyping

Γ ` τ :: κ

Γ ` τ � τ :: κ
(14)

Γ ` τ1 � τ2 :: κ Γ ` τ2 � τ3 :: κ

Γ ` τ1 � τ3 :: κ
(15)

Γ ` ok Γ = . . . , α�τ ::κ, . . .

Γ ` α � τ :: κ
(16)

Γ ` τ :: In

Γ ` @τ � τ :: Ty
(17)

Γ ` τ1 :: In Γ ` τ2 :: Ty

Γ ` ((@τ1)←+τ2) � τ1 :: In
(18)

Γ ` τ ′1 � τ1 :: Ty Γ ` τ :: Ty

Γ ` (τ1⇒τ) � (τ ′1⇒τ) :: Ty
(19)

Γ ` τ1 � τ ′1 :: κ
Γ, α�τ1::κ ` τ2 � τ ′2 :: Ty

Γ, α�τ ′1::κ ` τ ′2 :: Ty

Γ ` (∃α�τ1::κ.τ2) � (∃α�τ ′1::κ.τ ′2) :: Ty
(20)

Γ ` τ1 � τ2 :: κ1 Γ ` κ1 � κ2

Γ ` τ1 � τ2 :: κ2
(21)

Fig. 7. Static Semantics of COI (continued)
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Well-Formed Expressions

Γ, s:{| τ1, . . . , τn |} ` e1 : τ1
.
..

Γ, s:{| τ1, . . . , τn |} ` en : τn

Γ ` obj s.{|e1:τ1, . . . , en:τn|} : @{| τ1, . . . , τn |}
(22)

Γ ` e1 : τ1 Γ ` e2 : τ1⇒τ
Γ ` e1.e2 : τ

(23)

Γ ` e1 : τ1 Γ ` τ1 :: Ex
Γ, s:τ1←+τ2 ` e2 : τ2

Γ ` e1←+(s)=e2:τ2 : @(τ1←+τ2)
(24)

Γ ` e1 : τ1 Γ ` e2 : τ1⇒τ3
Γ ` τ1 � τ ′1 :: Ty Γ ` τ ′1 :: In

Γ, s:τ ′1 ` e3 : τ3

Γ ` e1←e2(s)=e3 : τ1
(25)

Γ ` τ1 :: Ex Γ ` τ2 :: Ty

Γ ` next index(τ1) : (τ1←+τ2)⇒τ2
(26)

Γ ` τ1 :: Ty · · · Γ ` τn :: Ty k ∈ 1..n

Γ ` pkq : {| τ1, . . . , τn |}⇒τk
(27)

Γ ` ok s ∈ dom Γ

Γ ` s : Γ(s)
(28)

Γ ` σ � τ1 :: κ Γ ` e : τ2
[
σ
/
α
]

Γ ` (∃α�τ1::κ.τ2) :: Ty

Γ ` (pack σ and e as ∃α�τ1::κ.τ2) : (∃α�τ1::κ.τ2)
(29)

Γ ` e1 : (∃α�τ1::κ.τ2) Γ, α�τ1::κ, x:τ2 ` e2 : τ Γ ` τ :: Ty

Γ ` open e1 as α and x in e2 : τ
(30)

Γ ` e : τ1 Γ ` τ1 � τ2 :: Ty

Γ ` e : τ2
(31)

Fig. 8. Static Semantics of COI (cont.)
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important because the abbreviations from Section 2.1 yield the derived rule

Γ ` {|σ1, . . . , σn |} :: In Γ ` σn+1 :: Ty

Γ ` {|σ1, . . . , σn+1 |} � {|σ1, . . . , σn |} :: In
,

which is exactly (prefix) width subtyping for object types.
Rule 19 handles subtyping for method index types. Because an index of type

τ1⇒τ2 can be used both to invoke a method of type τ2 and to override that method,
index types are invariant in the type of the component. To see this, assume that
σ1 � σ2. First, suppose there was an object with a field of type σ1, and that
the index for this component had type τ⇒σ1. If index types were covariant in
the component type, then this index would also have type τ⇒σ2 and hence one
could override the field with a value of the supertype σ2. This is unsound because
other methods of the object may be expecting the field to contain a value of type
σ1 rather than of the more general type σ2. Contravariance fails as well; if there
was an object with a field of type σ2 and its index of type τ⇒σ2 were treated as
having type τ⇒σ1 then one could use the index to access the field expecting to
obtain a value of the subtype σ1. (This invariance corresponds to the usual lack of
depth subtyping in calculi with method override [Abadi and Cardelli 1996].) Index
types are contravariant in their domain type, because an index suitable for any
object with components of certain types is equally suitable for an object with more
components.

Existential types subtype covariantly as shown in Rule 20. Finally, Rule 21 is a
subsumption rule for subtyping that parallels Rule 10 for type well-formedness.

2.3.3 Well-Formed Expressions. In Rule 22, which handles the typing of object
values, each method is type checked assuming that the variable s will contain the
object itself. The resulting type of this object value can be exact because all of the
components are syntactically apparent. However, while type checking methods s is
assumed to have an inexact object type, i.e., we assume only that the object contains
at least the components e1 through en. By the time the the method is eventually
invoked the object may have been extended with still more components, so it would
be unsound for methods to assume they know the exact type of the object in which
they appear. Because only objects with exact types may be extended, it follows
that methods may not directly extend the objects which contain them.

Although Rule 23 for typing method selection does not explicitly mention object
types, the fact that there is an index value of the right type guarantees that e1 is
an object.

Rule 24 type checks extensions for objects of exact types. As in Rule 22, when
the code for the new method is type checked the type of the variable representing
the containing object is not assumed to be known exactly — even though the type
of the object resulting from this extension can be determined exactly. Extension is
still not quite type-preserving, because it does not preserve exact types. Extension
does preserve all (inexact) supertypes of the object’s exact type, however, and this
is enough to obtain useful variants of the class type and mixin encodings discussed
in Sections 1.1 and 1.2.

Rule 25 for method override is slightly more complex than one might expect.
Override is a type-preserving (and even principal-type-preserving) operation, and
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override is sound for any object whether or not its exact type is known. However,
when type checking the code e3 for the new method body, again the system cannot
assume that s has the same type as the object being extended if that type is exact.
To allow override to preserve all types, including exact types, the object’s type is
merely required have an inexact supertype τ ′1. This is used as the type of s when
type checking the method body because the object will still have type τ ′1 when the
method is invoked, regardless of intervening overrides and extensions.

Rule 26 types the expression next index(τ1), which yields the index at which a
new method would be found if it were added to an object of the exact type τ1. If
this new method returns a value of type τ2, then the extended object would have
type τ1←+τ2; hence, the index returned by the next index operator is usable with
objects having type τ1←+τ2 and, when used, accesses a component of type τ2.

Using these rules, one can show that every line in the example evaluation at
the end of Section 2.2 has type int. Further, the object being selected from
(both in the first line and thereafter) can be shown to have type {| int, int |},
i.e., (@((@{| |})←+int))←+int.

2.4 Soundness

The type system is appropriate to the dynamic semantics, in that evaluation either
terminates with a value or continues indefinitely, but cannot get “stuck”:

Theorem 1. (Type Preservation) If ` e : τ and e ; e′ then ` e′ : τ .

Theorem 2. (Progress) If ` e : τ then either e is a value or there exists e′ such
that e ; e′.

Proofs can be found in the appendix.

3. APPLYING COI

Figure 9 shows a revised encoding for the inheritance example with class types,
now expressed with COI primitives. As in Figure 2 the POINT interface specifies a
partially abstract implementation type T, but instead of requiring T to be a subtype
of a labeled object type, we merely require that T be inexact, and that there be
an index value named get1 that selects an integer method in values of type T. The
type for the constructor function new then specifies not only that values returned
satisfy type T, but guarantees they have exactly the type T.

The Point module now provides an unlabeled object type T that is the imple-
mentation type for this class’s objects. The module contains two more values than
before, the index values for the two components.4 The code for new is as before,
except that no labels are specified for the two components. Finally, although the
code for eq looks unchanged from Figure 2, the method invocations o1.x and o2.x
are no longer choosing the method with label x in the o1 and o2 objects; they are
invoking the method whose index is given by the variable x defined five lines earlier.

4T is completely known within Point so the two indices could have been defined as p1q and p2q
respectively, instead of using next index. Because Point.T is externally abstract, the type system
would still require the use of next index to obtain index values in the implementation of the

subclass Point2D.
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signature POINT = sig

type T � {| |} :: In

val get1 : T => int

val new : int -> @T

val eq : T*T -> bool

end =

structure Point :> POINT =

struct

type T = {| int, int |}
val x = next index(@{| |})
val get1 = next index(@{|int|})
fun new (x0:int) = obj s.{| |}

←+(s) = x0 : int

←+(s) = s.x : int

fun eq (o1:T,o2:T) = (o1.x = o2.x)

end

signature POINT2D = sig

type T � Point.T :: In

val get1 : T => int

val get2 : T => real

val new : int*real -> @T

end =

structure Point2D :> POINT2D =

struct

type T = @Point.T ←+ (real,real)

val x = next index(@Point.T)

val get2 = next index(@((@Point.T)←+real))

val get1 = Point.get1

fun new (x1, x2) = Point.new(x1)

←+(s) = x2 : real

←+(s) = s.x : real

end

Fig. 9. Class Encodings using COI Objects

In contrast to the Figure 2 encoding, a strict subtype Point2D.T of the abstract
type Point.T can be defined, and this relationship is revealed in the POINT2D
interface while still keeping Point2D.T abstract. The subclass Point2D extends
Point.T with two new components, whose indices are x and get2 respectively.
The POINT2D interface exposes the index values get1 and get2, but not the index
for either of the x fields, keeping them private.

Given these definitions one can conclude that Point.new(0) has type @Point.T
and hence also type Point.T. The function call Point2D.new(4, 7.5) has the types
@Point2D.T and Point2D.T and Point.T, but does not satisfy the type @Point.T
as it does not have exactly the same structure as an object created by the Point
class. Given an object p2 : Point2D.T, one can then invoke p2.(Point2D.get1)
to obtain an integer or p2.(Point2D.get2) to obtain a real. By subsumption and
the contravariance of index types one could also invoke p2.(Point.get1) to get
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(* Setup: an SML type for colors *)

datatype color = Red | Blue

(* Mixin definition *)

functor ColorMix(P : sig (* Argument interface *)

type T :: In

val new : int -> @T

end)

:> sig (* Result interface *)

type T � P.T :: In

val getc : T => color

val new : int*color -> @T

end =

struct

type T = @P.T ←+ (color, color) (* Adding 2 color components *)

val c = next index(@P.T) (* Index of c field *)

val getc = next index(@((@P.T)←+color)) (* Index of accessor *)

fun new(z0:int, c0:color) = (* Constructor *)

P.new(z0) ←+ c(s) = c0 : color

←+ getc(s) = s.c : color

end

(* Sample code: building and using a subclass: *)

signature CPOINT = sig

type T � Point.T :: In
val get1 : T => int

val getc : T => color

val new : int*color -> @T

end

structure ColorPoint :> CPOINT =

let

structure NewStuff = ColorMix(Point) (* Apply the mixin to Point *)

in

struct

type T = NewStuff.T (* Copy everything in the mixin’s result *)

val getc = NewStuff.getc (* into the ColorPoint module *)

val new = NewStuff.new

val get1 = Point.get1 (* And then copy anything else inherited *)

(* without change, in this case just the *)

(* offset for the get1 accessor method *)

end (* struct *)

end (* let *)

Fig. 10. A Mixin which Adds Color

that same integer; It would have been possible to rename or omit this index from
the subclass interface without breaking the subtyping relationship between Point.T
and Point2D.T.

Next, if classes are SML modules, then mixins or parameterized classes can be
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encoded as SML functors, which are simply module-level functions. Figure 10
shows a mixin for adding a private color field along with an accessor method.
The ColorMix functor expects its argument P to be a the encoding of a class,
i.e., a module containing an inexact type T and a constructor function creating
objects of type T.5 The functor’s result provides a subtype of the given type P.T, a
constructor function for creating values of this subtype, and an index for at a new
color component in values of the subtype.

The implementation of the ColorMix functor extends the given class with two
components: a color field, and an accessor method for that field.

Figure 10 also includes code that applies the ColorMix functor to the Point class
of Figure 9 to obtain a subclass ColorPoint of colored one-dimensional points.
Specifically, the definition of ColorPoint creates a temporary structure NewStuff
by applying the mixin to the Point module to obtain T, getc, and new, and then
copies this into the ColorPoint module along with the inherited index Point.get1.
(This extra copying is necessary because SML functors must return a module with
a fixed set of module components; they cannot generically extend their argument
structure.)

Thus, one can invoke ColorPoint.new(3, Red) to obtain a value satisfying the
types @ColorPoint.T and ColorPoint.T and Point.T, and on such an object one
can invoke methods with indices ColorPoint.get1 and ColorPoint.getc. It is also
possible to compare two such values as one-dimensional points using the function
Point.eq.

4. VARIANCE ANNOTATIONS

As mentioned in Section 2.3.2, the type τ1⇒τ2 must be invariant in its range type
τ2 because it provides both the capability to override and to invoke methods. How-
ever, Abadi and Cardelli [1996] note that by using variance annotations to restrict
override or invocation on a method-by-method basis, one can obtain more subtyp-
ings. This suggests that COI could be extended by annotating index types with a
variance a, where a ∈ {+, 0,−}. An index of type τ1⇒+ τ2 could be used to invoke
but not override a method and so such types can be covariant in τ2. An index of
type τ1⇒− τ2 could be used to override but not invoke a method, and such types
could be contravariant in τ2. Finally, indices of type τ1⇒0 τ2 could be used to either
override or invoke a method and thus remain invariant, as in the system originally
presented.

The annotation must be part of the index type rather than kept within the
object type because at the time when access or override is type checked the object
type may not be statically known (as in code that uses values of the abstract type
Point.T from Figure 9).

The necessary changes for adding variances are shown in Figure 11. The dynamic
semantics is unaffected and the language remains sound.

5Formally the code expects the argument class’s constructor function to take a single integer argu-

ment. The encoding could be generalized to expect an arbitrary type initial and a constructor
function new : initial -> @T. Then the module returned would include a constructor function

new : initial*color -> @T
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Changes to Syntax

τ, σ ::= . . .

| τ⇒a τ a ∈ {+,−, 0}

Changes to Well-Formed Types

Γ ` τ :: Ty Γ ` σ :: Ty a ∈ {+,−, 0}
Γ ` τ⇒a σ :: Ty

(8)

Changes to Subtyping

Γ ` τ ′1 � τ1 :: Ty Γ ` τ2 :: Ty

Γ ` (τ1⇒0 τ2) � (τ ′1⇒0 τ2) :: Ty
(19)

Γ ` τ ′1 � τ1 :: Ty Γ ` τ2 � τ ′2 :: Ty a ∈ {+, 0}
Γ ` (τ1⇒a τ2) � (τ ′1⇒+ τ ′2) :: Ty

(19’)

Γ ` τ ′1 � τ1 :: Ty Γ ` τ ′2 � τ2 :: Ty a ∈ {−, 0}
Γ ` (τ1⇒a τ2) � (τ ′1⇒− τ ′2) :: Ty

(19”)

Changes to Well-Formed Expressions

Γ ` e1 : τ1 Γ ` e2 : τ1⇒+ τ

Γ ` e1.e2 : τ
(23)

Γ ` e1 : τ1 Γ ` e2 : τ1⇒− τ3
Γ ` τ1 � τ ′1 :: Ty Γ ` τ ′1 :: In

Γ, s:τ ′1 ` e3 : τ3

Γ ` e1←e2(s)=e3 : τ1
(25)

Γ ` τ1 :: Ex

Γ ` next index(τ1) : (τ1←+τ2)⇒0 τ2
(26)

Γ ` τ1 :: Ty · · · Γ ` τn :: Ty k ∈ 1..n

Γ ` pkq : {| τ1, . . . , τn |}⇒0 τk
(27)

Fig. 11. Changes for Variance Annotations

5. ENCODING FIRST-ORDER RS OBJECTS

The first-order RS system (i.e., without a notion of SelfType or ThisType) can be
encoded within COI as well. COI objects were obtained by stripping the dictionaries
from RS objects. First-order RS objects with labeled components can be recovered
by packaging a bare COI object with an appropriate dictionary, which can be
represented as an ordinary labeled record of index values. The connection between
the object and the index values can be enforced by using existentials. Then, for
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example, the object type

{| get1 : int |}

could be encoded as the type

∃α�{| |}::In. (@α× {get1 : α⇒int}).

Such a type classifies values having both a type α and a pair containing a (dictionary-
less) COI object having some unknown implementation type @α, and a record of
indices suitable for this object; the record represents an RS dictionary. In this case,
the dictionary is required to have one component, giving the index of a method
get1.

Similarly, the object type

{| get1 : int, get2 : real |}

could be encoded as the type

∃α�{| |}::In. (@α× {get1 : α⇒int, get2 : α⇒real}).

Assuming width subtyping for records, the translation of two RS subtypes yields
COI subtypes.

Objects can be translated correspondingly; the RS object

obj s.{|31 : int, get1 = s.1 : int|}[x7→1,get17→2]

would become an existential package containing the underlying implementation
type for the object, {| int, int |}, along with a pair containing the corresponding
unlabeled object and a record of the two indices:

pack {| int, int |} and (obj s.{|31 : int, s.p1q : int|}, {x = p1q, get1 = p2q}) as
∃α�{| |}::In. (α× {x : α⇒int, get1 : α⇒int}).

The encoding of RS by-label method invocation must open the existential, project
the index value with that label from the dictionary record, and invoke that method
of the underlying COI object. Encoding of method override proceeds similarly,
except that the overridden COI object must then be repackaged with the original
dictionary. The encoding of object extension is then similar to method override,
except that the extended COI object must be packaged with a dictionary record
with a new index added.

The extensible-object calculus of Fisher and Mitchell [1995] has two sorts of
labeled object types: pro types, which permit override and extension but no width
or depth subtyping, and obj which permit both forms of subtyping but neither
override nor extension. Further, every pro type is a subtype of the corresponding
obj type. The above encoding for labeled objects can be viewed as a sort of pro
type that supports width subtyping. These COI types also have supertypes which
forbid extension and override but allow width and depth subtyping. Corresponding
to the type

∃α�{| |}::In. (@α× {get1 : α⇒int}),

used as the encoding for an extensible object type, would be the supertype

∃α�{| |}::In. (α× {get1 : α⇒+ int})
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that both forbids extension (since the underlying object no longer can be given an
exact type) and forbids override (since the index type has a variance annotation).
Encodings of in-between types (i.e., that permit extension but not override) are
possible as well.

These existential encodings are very reminiscent of the object encodings of Pierce
and Turner [1993], but there the value packaged with a record was only the state
(fields) of the object, while the method code resided in an attached record of func-
tions. In the above encodings, all the code resides in the object value, and the
record contents are merely capabilities granting access to the fields and methods
within that object.

Going back to the class encodings, we see that the objects created by the Point
class encoding in Figure 2 can be treated either as having the abstract type Point.T
or the less-precise interface type {| get1 : int |}. The objects created by the re-
vised encoding of Point.new in Figure 9 can be treated either as having the exact
type @Point.T (i.e., created by the Point class) or type Point.T (i.e., created by
Point or a derived class), but there is no corresponding interface type. This could
be addressed in COI by extending the Point structure with a run-time coercion
function which transforms objects of the abstract type Point.T into objects with
interface types by adding dictionaries and existential types as sketched above.

6. CLOSING REMARKS

6.1 Global Uniqueness

Why not simply require some sort of global-uniqueness property for labels added
to objects, thus trivially avoiding unintended clashes?

If the uses of object extension are sufficiently restricted then it may be possible
to statically check that no object is extended with a given label more than once.
A special case of this would be a conventional class-based language, where each
component name logically consists both of the programmer-specified name and the
name of the class in which it was added. As long as classes have globally unique
names — usually checkable at link-time — then there can be no collisions. A Point
class and its subclass Point2D can both have x fields because the former is identified
internally by the interpreter or compiler as Point::x and the latter Point2D::x.

There is no doubt this is practical, but it is theoretically somewhat inelegant.
Soundness depends on global invariants enforced by restricting classes to be rela-
tively static entities; for example, it depends on there being no way to get object
extension (inheritance) inside a run-time loop. This may not be a problem if classes
are modeled as top-level primitives, but trying to maintain this sort of reasoning
formally when lower-level, more flexible constructs are available (as in RS or COI)
is significantly more difficult.

6.2 Implementation Considerations

The class encodings of Section 3 appear to make method invocation slightly less
efficient than implementations found in C++ and other traditional class-based lan-
guages, because the offsets of fields and methods within objects are run-time values
rather than constants.
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An important goal of the work presented here is to provide a semantic basis for
compilation of subclasses with minimal knowledge of superclasses. The advantage
is that superclasses can be extended or refactored without requiring recompilation
of subclasses (addressing the so-called fragile base class problem). The cost of this
flexibility is the possibility that index values might not be determined until link-
time, or possibly even run time (e.g., if the construction of classes or the application
of mixins is allowed to depend on run-time control flow)

If one is willing to give up complete separate compilation and use incremental
or full-program compilation techniques, then standard cross-module optimization
techniques are likely to statically determine all offsets. In this case, the offsets can
again be embedded in code as constants. This appears to be the approach used to
implement Binary Compatibility guarantees of Java [Gosling et al. 2000].

Because the dynamic semantics as presented for next index(τ) depends on know-
ing the type σ, either the compiler must be able to determine τ at compile-time
or else some object types must be generated and tested at run time [Harper and
Morrisett 1995; Morrisett 1995].

To avoid run-time type passing and analysis by the next index operator, one could
instead use run-time term values representing the layout — or at least the size —
of objects. This could be formalized using the representation type framework of
Crary et al. [1998]. In a simpler form, the system could be extended with a new
type SizeOf(τ) classifying object-size values: a constant zero : SizeOf(@{| |}) that
holds the object-size of the empty object, and an operator

inc : ∀α::Ex.∀β::Ty.(SizeOf(α) → SizeOf(α←+β))

for incrementing object-size values. Then the next index operator can be modified
to have type

∀α::Ex.∀β::Ty.(SizeOf(α) → ((α←+β)⇒β))

and can, at run time, depend only on object-size values for objects — rather than
the types themselves — to determine the appropriate index value. Each class
module as encoded in Section 3 would then need not just a type T and a constructor
function, but also a value T size of type SizeOf(T).

6.3 Other Related Work

The COI calculus has connections with a number of ideas which have appeared in
other sources, in addition to those systems already mentioned.

COI is somewhat reminiscent of the untyped language λinkς studied by of Fisher
et al. [2000]. Their language is intended for relatively low-level compiler represen-
tations of object-oriented languages; it may be possible to use the ideas here to
obtain a typed variant.

The two different extensions of the RS system to allow covariant self-types both
used dictionaries as first-class values [Riecke and Stone 1998; 2002]. Later, Vouillon
[2001] significantly extended the original RS system with first-class “views” (named
interfaces) to permit encodings of inheritance-based subtyping and binary meth-
ods. An index value here might be considered a very primitive form of first-class
dictionary or view, describing exactly one component. It might also be possible to
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extend the ideas used to encode RS into COI to encode these other more general
calculi.

The distinction between exact and inexact object types in COI is somewhat
parallel to the distinction between (extensible) pro and (inextensible) obj types
of Fisher and Mitchell [1995]. For example, for soundness both calculi must type
check method bodies assuming that the variable representing “self” is inextensible.
The analogy is not perfect, however. COI does not prevent methods from being
overridden in objects of inexact types, and it would not be intrinsically unsound to
permit extension for objects of inexact types.

Other approaches have been suggested to achieve by-name subtyping of classes
using object calculi. Fisher and Mitchell [1998] first define all the classes with ex-
posed interfaces, and then use after-the-fact abstraction to hide everything but the
by-name hierarchy from client code using these classes; this may cause difficulties
for modularity and separate compilation. League et al. [1999] get the proper sub-
typing behavior by encoding the class hierarchy within the types of objects; this
requires every class know the identity of all superclasses and requires specific object
layouts containing extra indirections. Alternatively, Bono et al. [1999] and Fisher
and Reppy [2000] have studied the difficulties in encoding classes with standard
extensible objects and have suggested extending object calculi with primitive class
mechanisms.

Ohori [1995] describes a typed intermediate language for compiling polymorphic
record calculi which uses integer indices corresponding to record components as
values. The goals and mechanisms seem very different, however, as the connections
between indices and records are enforced primarily in the kind system, rather than
in the type system as in COI. Further, languages such as Ohori’s that use row-
polymorphism generally do not support subsumption.

The C++ language [Stroustrup 1997] includes pointers-to-member, which are
essentially equivalent to the indices here.

Bruce [1997] has applied exact types in object-oriented languages, primarily in
the context of typing binary methods.

Finally, the idea of avoiding name clashes by avoiding labels in objects also occurs
in multimethod approaches to object-oriented programming [DeMichiel and Gabriel
1987; Chambers 1992]. Multimethods — functions which dynamically dispatch
based on the types or classes of their arguments — are bound to variables, and
hence their names can formally alpha-vary as well. However, the arguments of these
multimethods remain collections of values (fields), and some similar mechanism may
be necessary distinguish these components at run-time.

6.4 Future Work

There are a number of ways in which this work could be extended. Many systems of
object calculi have been extended to allow self-types, at least in covariant positions,
but there has been no work as yet on adding covariant self-types to COI. At a
minimum, such a system would seem to require index values to have polymorphic
types, e.g., the index of a clone method in an object of type t would require a type
along the lines of ∀α�t.α⇒α.

Alternatively, one could go beyond object extension to object concatenation, in
which two objects are merged into a single object. Multiple inheritance in C++
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can be viewed as a concatenation of objects, and it appears that the COI system
already contains most of the mechanisms necessary to directly model the classical
approach to implementing C++ multiple inheritance. (Extra bookkeeping of offsets
within an object [Lippman 1996] is used; these offsets could likely be represented
by index values.)

It would be useful to know to how far the encodings of Section 3 can handle fea-
tures of conventional class-based languages. Adding a method to invoke overridden
methods (super) seems likely to be possible. Downcasting and run-time class tests
could be simulated with the addition of a run-time tagging mechanism, e.g., along
the lines of the extensible datatype exn in Standard ML [Milner et al. 1997] or as
extended to subtyping by Reppy and Riecke [1996].

6.5 Conclusion

By removing all labels from objects, the COI calculus retains the benefits of the
RS system — specifically the ability to add new methods without needing to know
of all pre-existing methods — but further permits encodings of useful class and
mixin constructs with by-name subtyping. These are quite clearly encodings —
the facilities of this calculus are much too low-level to want to use directly —
but it is interesting to consider the language’s suitability for describing lower-level
implementations of class-based languages, or even implementations of object calculi
such as RS.

The calculus has a number of desirable properties, including the comparatively
unusual ability to create strict subtypes of abstract types. This removes a principal
difficulty of encoding the class inheritance hierarchy as a type hierarchy using very
standard type abstraction techniques.
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Proof of the Soundness Theorems

Lemma 3. (Validity)

(1 ) If Γ ` κ1 � κ2 then Γ ` ok.
(2 ) If Γ ` τ :: κ then Γ ` ok.
(3 ) If Γ ` τ1 � τ2 :: κ then Γ ` τ1 :: κ, Γ ` τ2 :: κ, and Γ ` ok.
(4 ) If Γ ` e : τ then Γ ` τ :: Ty and Γ ` ok.

Proof. By simultaneous induction on the assumed derivations.

Lemma 4. (Weakening) Let J represent an arbitrary judgment form.

(1 ) If Γ ` J and Γ′ ⊇ Γ and Γ′ ` ok then Γ′ ` J .
(2 ) If Γ1, s:σ,Γ2 ` J and Γ1 ` τ � σ :: Ty then Γ1, s:τ,Γ2 ` J .

Proof. Each part follows by induction on the proof of the first assumption.

Lemma 5. (Substitution) Let J represent an arbitrary judgment form.

(1 ) If Γ1, s:τ,Γ2 ` J and Γ ` v : τ then Γ1,Γ2 ` J
[
v
/
s
]
.

(2 ) If Γ1, α�τ ::κ,Γ2 ` J and Γ ` σ � τ :: κ then Γ1, (Γ2

[
σ
/
α
]
) ` J

[
σ
/
α
]
.

Proof. Each part follows by induction on the proof of the first assumption.

Lemma 6. (Inversion of Kinding)

(1 ) If ` τ :: In then τ = {| |} or τ = τ1←+τ2 where ` τ1 :: Ex and ` τ2 :: Ty.
(2 ) If ` τ :: Ex then τ = @τ1 where ` τ1 :: In.
(3 ) If ` τ :: In then τ = {|σ1, . . . , σn |} where n ≥ 0 and ` σi :: Ty for all i ∈ 1..n.
(4 ) If ` τ :: Ex then τ = @{|σ1, . . . , σn |} where n ≥ 0 and ` σi :: Ty for all i ∈ 1..n.
(5 ) If Γ ` τ1⇒τ2 :: κ then κ = Ty.
(6 ) If Γ ` τ1←+τ2 :: κ then κ = In or κ = Ty.
(7 ) If Γ ` @τ :: κ then κ = Ex or κ = Ty.
(8 ) If Γ ` (∃α�τ1::κ1.τ2) :: κ then κ = Ty.

Proof. Parts 1 and 2 follow by inspection of the type-validity rules. Parts 3
and 4 follow by simultaneous induction on τ . Parts 4–8 follow by induction on the
proofs of the assumptions, and inspection of the subkinding rules.

Lemma 7. (Subtypes)

(1 ) If ` τ � @σ :: κ then τ = @σ.
(2 ) If ` τ � {|σ1, . . . , σn |} :: κ then τ = {|σ1, . . . , σn, σn+1, . . . , σn+m |} or

τ = @{|σ1, . . . , σn, σn+1, . . . , σn+m |} for some m ≥ 0.
(3 ) If ` τ � σ1⇒σ2 :: Ty then τ = τ1⇒σ2 with ` σ1 � τ1 :: Ty.
(4 ) If ` τ � (∃α�σ1::κ1.σ2) :: Ty then τ = (∃α�τ1::κ1.τ2) with ` σ1 � τ1 :: κ1

and α�σ1::κ1 ` τ2 � σ2 :: Ty.

Proof. Each part can be proved by induction on the proof of the assumption,
and cases on the last rule used.
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(1) If the proof ends with a use of Rule 15 then the inductive hypothesis is used
twice. By Lemma 6 the proof cannot end with a use of Rule 18.

(2) If the proof ends with a use of Rule 15 then we can apply the inductive hy-
pothesis, and then either use part 1 or the inductive hypothesis again to get
the desired result. The case for Rule 18 follows by the definition of unlabeled
object types.

(3) If the proof ends with a use of Rule 15 then we can apply the inductive hypoth-
esis twice and apply transitivity to obtain the desired results. By Lemma 6,
the proof cannot end with a use of Rule 17 or 18.

(4) If the proof ends with a use of Rule 15 then we can apply the inductive hypoth-
esis twice and apply part 2 of Lemma 4 and transitivity to obtain the desired
results. By Lemma 6, the proof cannot end with a use of Rule 17 or 18.

The other possible cases are similar or trivial.

Lemma 8. (Supertypes)

(1 ) If Γ ` @τ � σ :: κ then σ = @τ or Γ ` τ � σ :: κ.
(2 ) If Γ ` (@τ1)←+τ2 � σ :: κ then σ = (@τ1)←+τ2 or Γ ` τ1 � σ :: κ.
(3 ) If Γ ` τ1⇒τ2 � σ :: κ then σ = σ1⇒τ2 and Γ ` σ1 � τ1 :: Ty.
(4 ) If Γ ` (∃α�τ1::κ1.τ2) � σ :: κ then σ = ∃α�σ1::κ1.σ2 where Γ ` σ1 � τ1 :: κ1

and Γ, α�σ1::κ1 ` τ2 � σ2 :: Ty.
(5 ) If Γ ` {| τ1, . . . , τn |} � σ :: κ then for some m ∈ 0..n we have σ = {| τ1, . . . , τm |}.
(6 ) If Γ ` @{| τ1, . . . , τn |} � σ :: κ then either σ = @{| τ1, . . . , τn |} or else for some

m ∈ 0..n we have σ = {| τ1, . . . , τm |}.

Proof. Parts 1–4 each follow by induction on the proofs of the subtyping premise.
Parts 5 and 6 follow by simultaneous induction on n, using parts 1 and 2.

Lemma 9. (Inversion of Typing)

(1 ) If ` obj s.{|e1:τ1, . . . , en:τn|} : σ then σ = @{| τ1, . . . , τn |} or there exists
m ∈ 0..n such that σ = {| τ1, . . . , τm |}. Further, for all i ∈ 1..n we have
s:{| τ1, . . . , τn |} ` ei : τi.

(2 ) If ` pκq : σ then σ = (@{| τ1, . . . , τn |})⇒τk with k ∈ 1..n or else
σ = {| τ1, . . . , τn |}⇒τk with k ∈ 1..n.

(3 ) If ` (pack τ1 and e as τ2) : σ then σ = ∃α�σ1::κ1.σ2 where ` τ1 � σ1 :: κ1

and ` e : σ2

[
τ1
/
α
]
.

Proof. By induction on the proofs of the premises, using Lemma 8, and (for
part 3) Lemma 5.

Lemma 10. (Canonical Forms)

(1 ) If ` v : @τ then τ = {|σ1, . . . , σn |} and v = obj s.{|e1:τ1, . . . , en:τn|}.
(2 ) If ` v : {| τ1, . . . , τn |} then

v = obj s.{|e1:τ1, . . . , en:τn, en+1:τn+1, . . . , en+m:τn+m|} with m ≥ 0.
(3 ) If ` v : τ1⇒τ2 then v = pkq and either τ = {|σ1, . . . , σn |} with k ∈ 1..n and

τ2 = σk, or else τ = @{|σ1, . . . , σn |} with k ∈ 1..n and τ2 = σk.
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(4 ) If ` v : ∃α�τ1::κ1.τ2 then v = (pack σ1 and v′ as σ2) with ` σ1 � τ1 :: κ1 and
` v′ : τ2

[
σ1

/
α
]
.

Proof. Each part follows by induction on the proof of the assumption, and cases
on the last rule used.

(1) If the proof ends with a use of Rule 31 then the desired result follows by
Lemma 7 and induction. Otherwise the proof concludes with Rule 22, in which
case the desired result follows trivially.

(2) The only possible case is that the proof ends with a use of Rule 31. By Lemma 7,
either the premise of this rule shows that v has an exact type (in which case
the desired result follows from part 1) or else it has an inexact object type (in
which case the desired result follows by induction).

The remaining parts of the proof follow similarly.

Lemma 11. (Decomposition and Replacement) If Γ ` E [e] : τ then there exists a
type σ such that Γ ` e : σ, and whenever Γ ` e′ : σ we have Γ ` E [e′] : τ .

Proof. By induction on the proof of the assumption.

Proof of Theorem 1

Proof. By Lemma 11, it suffices to consider only the cases in which e ; e′ is
a primitive step. Also, without loss of generality we may assume that the proof
` e : τ does not end with a use of the subsumption rule (Rule 31).

— Case: e = (obj s.{|e1:τ1, . . . , en:τn|}).pkq and
e′ = ek

[
obj s.{|e1:τ1, . . . , en:τn|}

/
s
]
. By inversion of Rule 23 there exists a type σ

such that ` obj s.{|e1:τ1, . . . , en:τn|} : σ and ` pκq : σ⇒τ . By Lemma 9, we have
that τ = τk and for all i ∈ 1..n, s:{| τ1, . . . , τn |} ` ei : τi. Thus by Rules 22 and 31
` obj s.{|e1:τ1, . . . , en:τn|} : {| τ1, . . . , τn |} and so by Lemma 5 we have
` ek

[
obj s.{|e1:τ1, . . . , en:τn|}

/
s
]

: τk as desired.
— Case: e = (obj s.{|e1:τ1, . . . , en:τn|})←+(s)=en+1:τn+1, and

e′ = obj s.{|e1:τ1, . . . , en+1:τn+1|}. By inversion of Rule 24, Lemma 3, and
Lemma 6, we have that τ = @{| τ1, . . . τn+1 |}. By inversion of Rule 24 and
Lemma 9 we have that s:{| τ1, . . . , τn |} ` ei : τi for all i ∈ 1..n, and that
s:{| τ1, . . . , τn+1 |} ` en+1 : τn+1. By Lemma 4, for all i ∈ 1..(n+1) we have
s:{| τ1, . . . , τn+1 |} ` ei : τi, and hence
` obj s.{|e1:τ1, . . . , en+1:τn+1|} : @{| τ1, . . . , τn+1 |} as desired.

— Case: e = (obj s.{|e1:τ1, . . . , en:τn|})←pkq(s)=e′k and
e′ = obj s.{|e1:τ1, . . . , ek−1:τk−1, e

′
k:τk, ek+1:τk+1, . . . , en:τn|}. By inversion of

Rule 25 there exist types σk and σ′ such that ` obj s.{|e1:τ1, . . . , en:τn|} : τ , that
` pkq : τ⇒σk, that ` τ � σ′ :: Ty, that ` σ′ :: In, and that s:σ′ ` ek :: σk. By
Lemma 9 there are two cases: either τ = @{| τ1, . . . , τp |} with p = n or
τ = {| τ1, . . . , τp |} with p ∈ 1..n. Either way, by Lemma 9 we have that k ∈ 1..p
and σk = τk. By Lemmas 8 and 6 we know σ′ = {| τ1, . . . , τm |} for some m ∈ 0..p.
Then by Lemma 4 we have s:{| τ1, . . . , τn |} ` e′k : τk, so by Lemma 9 and Rule 22
and (if τ is inexact) Rule 31, we have ` e′ : τ as required.
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— Case: e = next index(@{| τ1, . . . , τn |}) and e′ = pn+1q. By inversion of
Rule 26 and Lemma 6, we have τ = {| τ1, . . . , τn+1 |}⇒τn+1 for some type τn+1. By
Rule 27 we have ` pn+1q : {| τ1, . . . , τn+1 |}⇒τn+1, as desired.

— Case: e = open (pack τ ′ and v as σ) as α and x in e1 and
e′ = e1

[
τ ′
/
α
][
v
/
x
]
. By inversion of Rule 30 we have

` pack τ ′ and v as σ : ∃α�τ1::κ.τ2, α�τ1::κ, x:τ2 ` e1 : τ , and that α is not free in
τ . By Lemma 9, ` τ ′ � τ1 :: κ and ` v : τ2

[
τ ′
/
α
]
. By Lemma 5 applied twice, and

using the fact that α is not free in τ , we have ` e1

[
τ ′
/
α
][
v
/
x
]

: τ , as desired.

Proof of Theorem 2

Proof. By induction on the proof of ` e : τ , and cases on the rule used to prove
the conclusion.

— Case: Rules 22, 27, or 29. Then the given expression is a value.
— Case: Rule 23, so that e = e1.e2. By the inductive hypothesis, either e1 ; e′1,

e2 ; e′2, or both are values. In the first case, we have e1.e2 ; e′1.e2. If e1 is a value
but e2 is not, then e1.e2 ; e1.e

′
2. Finally, if both are values then by Lemma 10,

e1 = obj s.{|e′1:τ ′1, . . . , e
′
n:τ ′n|} and e2 = pκq. By Lemma 9 we have k ∈ 1..n, so

e1.e2 ; e′k
[
e1

/
s
]
.

— Case: Rule 24, so that e = e1←+(s)=e2:τ2. By the inductive hypothesis,
either e1 ; e′1 or e1 is a value. In the former case, we have e1←+(s)=e2:τ2 ;

e′1←+(s)=e2:τ2. Otherwise, by Lemma 6 and Lemma 10, e1 = obj s.{|e′1:τ ′1, . . . , e
′
n:τ ′n|}

for some n ≥ 0. Thus e1←+(s)=e2:τ2 ; obj s.{|e′1:τ ′1, . . . , e
′
n:τ ′n, e2:τ2|}.

— Case: Rule 25, so that e = e1←e2(s)=e3. By the inductive hypothesis, either
e1 ; e′1, e2 ; e′2, or both are values. In the first case, we have e1←e2(s)=e3 ;

e′1←e2(s)=e3. If e1 is a value but e2 is not, then e1←e2(s)=e3 ; e1←e′2(s)=e3.
Finally, if both e1 and e2 are values then by Lemmas 6 and 7, and Lemma 10 we
have e1 = obj s.{|e′1:τ ′1, . . . , e

′
n:τ ′n|} and e2 = pκq. By Lemma 9 we have k ∈ 1..n, so

e1←e2(s)=e3 ; obj s.{|e′1:τ ′1, . . . , e
′
k−1:τ ′k−1, e3:τ ′k, e

′
k+1:τ ′k+1, . . . , e

′
n:τ ′n|}.

— Case: Rule 26, where e = next index(τ1) and ` τ1 :: In. By Lemma 6, τ1 =
{| τ ′1, . . . , τ ′n |}, so next index(τ1) ; pn+ 1q.

— Case: Rule 28. Cannot occur, since the typing environment was assumed to
be empty.

— Case: Rule 30, so that e = open e1 as α and x in e2. By the inductive
hypothesis, either e1 ; e′1, in which case e ; open e′1 as α and x in e2, or else
e1 is a value. In the latter case by Lemma 10, e1 = pack τ ′1 and v′1 as τ ′2, so that
e ; e2

[
τ ′1
/
α
][
v′1
/
x
]
.

— Case: Rule 31. Follows immediately by the inductive hypothesis.
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