

Decision Trees

Instructor: Jessica Wu -- Harvey Mudd College

The instructor gratefully acknowledges Eric Eaton (UPenn), who assembled the original slides, David Kauchak (Pomona), whose slides are also heavily used, and the many others who made their course materials freely available online.

Robot Image Credit: Viktoriya Sukhanova © 123RF.com

Decision Tree Basics

Learning Goals

- Define Decision Tree
- State expressiveness of decision trees (what data can it classify)

Sample Dataset

- Columns denote features X_i
- Rows denote labeled instances $(x^{(i)}, y^{(i)})$
- Class label denotes whether tennis game was played

		Predic	tors		Response	
	Outlook	Temperature	Humidity	Wind	Class	suppy cool normal
	Sunny	Hot	High	Weak	No	
	Sunny	Hot	High	Strong	No	Weak
	Overcast	Hot	High	Weak	Yes	
	Rain	Mild	High	Weak	Yes	overcast, cool, high,
	Rain	Cool	Normal	Weak	Yes	weak?
$(x^{(i)}, y^{(i)})$	Rain	Cool	Normal	Strong	No	Weak:
	Overcast	Cool	Normal	Strong	Yes	
	Sunny	Mild	High	Weak	No	Can you describe a
	Sunny	Cool	Normal	Weak	Yes	"model" that could be
	Rain	Mild	Normal	Weak	Yes	used to make
	Sunny	Mild	Normal	Strong	Yes	used to make
	Overcast	Mild	High	Strong	Yes	decisions in general?
	Overcast	Hot	Normal	Weak	Yes	
	Rain	Mild	High	Strong	No	

Based on slides by Eric Eaton and David Kauchak

- $\circ \mathcal{Y}$ is discrete-valued
- Unknown target function $f: \mathcal{X} \rightarrow \mathcal{Y}$
- Set of function hypotheses $H = \{h \mid h : \mathcal{X} \to \mathcal{Y}\}$
 - \circ each hypothesis h is a decision tree
 - \circ trees sort x to leaf, which assigns y

Decision trees have variable-sized hypothesis space

• As #nodes (or depth) increases, hypothesis space grows (can express more complex functions)

Another Example: Restaurant Domain (Russell & Norvig)

Model patron's decision of whether to wait for table at restaurant

I	Example		Attributes									Target
	Г	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
	X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
	X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
	X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
	X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
	X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
	X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
	X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
	X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
	X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
	X_{10}	т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10–30	F
	X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
	X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т
clid	o craditu Eric	Eaton			~7,	000 po	ossible	cases	;			

Slide credit: Eric Eaton

Basic Algorithm for Top-Down Induction of Decision Trees

[ID3, C4.5 by Quinlan]

node = root of decision tree

Main loop:

- 1. $A \leftarrow$ "best" decision attribute (feature) for next node.
- 2. Assign *A* as decision attribute for *node*.
- 3. For each value of *A*, create new descendant of *node*.
- 4. Sort training examples to leaf nodes.
- 5. If training examples are perfectly classified, stop. Else, recur over new leaf nodes.

How do we choose which attribute is best?

Based on slide by Eric Eaton [originally by Tom Mitchell]

|--|

Features									
Movie	Туре	Length	Director	Famous actors	Liked?				
m1	Comedy	Short	Adamson	No	Yes				
m2	Animated	Short	Lasseter	No	No				
m3	Drama	Medium	Adamson	No	Yes				
m4	Animated	Long	Lasseter	Yes	No				
m5	Comedy	Long	Lasseter	Yes	No				
m6	Drama	Medium	Singer	Yes	Yes				
m7	Animated	Short	Singer	No	Yes				
m8	Comedy	Long	Adamson	Yes	Yes				
m9	Drama	Medium	Lasseter	No	Yes				

	AP	Breaking	News
•			

Netflix offers \$1 million prize for better movie recommendations By MCH4EL LEDRE #P Business Write Tandag, Could*1 7008 (10-01) 21:05 PDT San Francisco (AP) – Online DVD rental poneer Netflix Inc. wards recommendations on how to improve its movie-recommendation system so its

> Detailed Submit

The prize, offered in a contest scheduled to begin Monday, is part of Netflix's effort to sharpen it's competitive edge as it continues a bitter duel with Blockbustler inc. and prepares for an anticipated onslaught of services that make it easier to download movies on to computer hand drives.

How much information do we gain from this split?

Based on slide by Ziv Bar-Joseph

Conditional Entropy

- Entropy measures uncertainty in specific distribution
- What if we have additional information?

Length	Liked?
Short	Yes
Short	No
Medium	Yes
Long	No
Long	No
Medium	Yes
Short	Yes
Long	Yes
Medium	Yes

- For example, say I want to know the label (Liked) entropy when Length is known
- This becomes a conditional entropy problem

 $H(\text{Liked} \mid \text{Length} = v)$ is the entropy of Liked among movies with Length v

Based on slide by Ziv Bar-Joseph

Conditional Entropy : Examples for Specific Values								
		Compute $H(\text{Li} \mid \text{Le} = v)$						
Length	Liked?							
Short	Yes	$H(I_i \mid I_0 - S) -$						
Short	No	II(II IE = 5) =						
Medium	Yes							
Long	No							
Long	No							
Medium	Yes	$H(\text{Li} \mid \text{Le} = \text{M}) =$						
Short	Yes							
Long	Yes							
Medium	Yes							
		$H(\text{Li} \mid \text{Le} = \text{L}) =$						

Conditional Entropy

Length	Liked?
Short	Yes
Short	No
Medium	Yes
Long	No
Long	No
Medium	Yes
Short	Yes
Long	Yes
Medium	Yes

- We can generalize the conditional entropy idea to determine $H(Li \mid Le)$
- That is, what is the expected uncertainty if we already know the value of Le for each of the records (samples)

Definition

Conditional Entropy H(X|Y) of X given Y

$$H(X|Y) = \sum_{v \ \in values(Y)} P(Y = v) H(X|Y = v)$$

Specific Conditional Entropy (we explained how to compute this in previous slide)

$$H(X|Y = v) = -\sum_{i=1}^{N} P(X = i|Y = v) \log_2 P(X = i|Y = v)$$

Based on slides by Ziv Bar-Joseph and Tom Mitchell

Conditional Entropy Example

 π

Length	Liked?
Short	Yes
Short	No
Medium	Yes
Long	No
Long	No
Medium	Yes
Short	Yes
Long	Yes
Medium	Yes

$$H(X|Y) = \sum_{v \in values(Y)} P(Y=v)H(X|Y=v)$$

Compute *H*(Li | Le)

Information Gain in Decision Trees

Information Gain ...

- is the mutual information between input attribute A and target variable Y
- is the expected reduction in entropy of target variable Y for data sample S, due to sorting on variable A

 $Gain(S, A) = I_S(A, Y) = H_S(Y) - H_S(Y|A)$

[Gain = H(parent) - weighted average H(children)]

• tells us how important a given attribute of the feature vector is

Example : Building a Decision Tree

P(Li = yes) = 2/3	Movie	Туре	Length	Director	Famous actors	Liked?
	m1	Comedy	Short	Adamson	No	Yes
$H(L1) \equiv 0.92$	m2	Animated	Short	Lasseter	No	No
	m3	Drama	Medium	Adamson	No	Yes
H(I; T) = 0.61	m4	Animated	Long	Lasseter	Yes	No
II(LI 1) = 0.01	m5	Comedy	Long	Lasseter	Yes	No
$H(\text{Li} \mid \text{Le}) = 0.61$	m6	Drama	Medium	Singer	Yes	Yes
$H(\text{Li} \mid \text{D}) = 0.36$	m7	Animated	Short	Singer	No	Yes
$\Pi(\Pi \mid D) = 0.00$	m8	Comedy	Long	Adamson	Yes	Yes
$H(\text{Li} \mid \text{F}) = 0.85$	m9	Drama	Medium	Lasseter	No	Yes

I(Li, T) =I(Li, Le) =I(Li, D) =I(Li, F) =

Based on slide by Ziv Bar-Joseph

Example : Building a Decision Tree

		or				
Adamson Singer						
	K	La	assete	er	4	
	Yes		???		Yes	

P(Li = Y) = 0.25H(Li) = 0.81 Movie Туре Length Famous actors Liked? m2 Animated Short No No m4 Animated Long Yes No m5 Comedy Long Yes No m9 Drama Medium No Yes ↑

> we eliminated the 'director' attribute (since all samples have the same director)

Based on slide by Ziv Bar-Joseph

This slide intentionally blank.

Decision Tree Overfitting

Learning Goals

- Define overfitting
- Describe how to avoid overfitting decision trees

Noisy Data

Many kinds of "noise" can occur in the examples

- Erroneous training data
 - two examples have same attribute/value pairs, but different classifications
 - feature noise
 - some values of attributes are incorrect because of errors in data acquisition process or preprocessing phase
 - label noise
 - instance was labeled incorrectly (+ instead of -)

\Rightarrow means training error not guaranteed to be 0

Overfitting

Consider error of hypothesis h over

- training data : *error*_{train}(*h*)
- entire distribution \mathcal{D} of data : $error_{\mathcal{D}}(h)$

Hypothesis $h \in H$ overfits training data if there is an alternative hypothesis $h' \in H$ such that

 $\mathit{error}_{\mathit{train}}(h) < \mathit{error}_{\mathit{train}}(h')$

and

$$\mathit{error}_{\mathcal{D}}(h) > \mathit{error}_{\mathcal{D}}(h')$$

- Idea
- model biased too much towards training data
 remember, goal is to
- learn a general model that will work on the training data as well as other data (i.e. test data)

Based on slides by David Kauchak and Pedro Domingos

Overfitting

Much more significant sources of "noise"

- Some attributes are irrelevant to decision-making process
 - if hypothesis space has many dimensions (large # of attributes), may find meaningless regularity in data that is irrelevant to true, important, distinguishing features
- Target function is **non-deterministic** in attributes
 - o in general, we cannot measure all variables needed to do perfect prediction ⇒ target function is not uniquely determined by attribute values
 - if too little training data, even a reasonable hypothesis will "overfit"

Based on slides by Eric Eaton (originally by M. desJardins & T. Finin) and Sara Sood

Avoiding Overfitting

How can we avoid overfitting?

- Acquire more training data
- Remove irrelevant attributes (manual process not always possible)

Decision Tree Pruning

- Prune while building tree (**stopping early**)
- Prune after building tree (**post-pruning**)

How to select "best" tree

- Statistical tests
- Measure performance over separate validation set

Depth-Limited Decision Trees

Split data into *training* and *validation* sets Grow tree with max depth *d* based on *training set* Evaluate each tree on *validation* set Pick tree with best performance

Slide credit: Eric Eaton Based on slide by Pedro Domingos

Ranking Classifiers

MODEL	CAL	ACC	FSC	LFT	ROC	APR	BEP	RMS	MXE	MEAN	OPT-SEL
BST-DT RF	PLT PLT	.843* .872*	.779 .805	.939 .934*	.963 .957	.938 .931	.929 * .930	.880 .851	.896 .858	.896 .892	.917 .898
BAG-DT	-	.846	.781	.938*	.962*	.937*	.918	.845	.872	.887*	.899
BST-DT	ISO	.826*	.860*	.929*	.952	.921	.925*	.854	.815	.885	.917*
RF	-	.872	.790	.934*	.957	.931	.930	.829	.830	.884	.890
BAG-DT	PLT	.841	.774	.938*	.962*	.937*	.918	.836	.852	.882	.895
RF	ISO	.861*	.861	.923	.946	.910	.925	.836	.776	.880	.895
BAG-DT	ISO	.826	.843*	.933*	.954	.921	.915	.832	.791	.877	.894
SVM	P.1.1	.024	.100	.030	,930	.050	.910	.031	.030	.002	.000
ANN	-	.803	.762	.910	.936	.892	.899	.811	.821	.854	.885
SVM	ISO	.813	.836*	.892	.925	.882	.911	.814	.744	.852	.882
ANN	PLT	.815	.748	.910	.936	.892	.899				
ANN	ISO	.803	.836	.908	.924	.876	.891	Τ	0	II I	
BST-DT	-	.834*	.816	.939	.903	.938	.929	IOD	x a	II Da	ased
KNN	PLI	.151	.707	.009	.918	.872	.872	100	0 0		
KNN	-	.750	.128	.889	.918	.872	.872				
KNN DOT CT	180	.755	.758	.882	.907	.854	.809	0	n va	rini	IC
BS1-S11	NP PLI	.724	.001	.870	.908	.803	.840	U			15
DCT_CT	/D 150	.017	744	.090	.930	.099	.915				-
DST-ST	4P 150	741	684	876	.005	.030	8.45	ovt	tone	ione	c of
DT	150	648	654	.818	.308	756	778	EXI	LEIIS		
DT	- 150	.647	.639	.810	.843	.762	.777				
DT	PLT	651	618	824	843	762	777	da	aicio	n + r	
LR	_	.636	.545	.823	.852	.743	734	ue	21210		ees
LR	ISO	.627	.567	.818	.847	.735	.742				
LR	PLT	.630	.500	.823	.852	.743	.734	.593	.604	.000	.093
NB	ISO	.579	.468	.779	.820	.727	.733	.572	.555	.654	.661
NB	PLT	.576	.448	.780	.824	.738	.735	.537	.559	.650	.654
NB	-	.496	.562	.781	.825	.738	.735	.347	633	.481	.489

Based on slide by Ziv Bar-Joseph

[Source: Rich Caruana & Alexandru Niculescu-Mizil,

An Empirical Comparison of Supervised Learning Algorithms, ICML 2006]

Summary: Decision Trees

Widely used in practice

• works very (very) well

Advantages

- one of most intuitive classifiers
- no prior assumption on data
- fast and simple to implement
- can convert to rules
- handles noisy data

Disadvantages

- univariate splits / partitioning on only one attribute limits types of possible learners (e.g. cannot learn simple linearly separable data sets)
- large trees may be hard to understand, slow, and perform poorly
- pruning / tuning can be tricky to get right
- requires fixed-length feature vectors
- non-incremental (i.e. batch method)
- sacrifices predictive power

Based on slides by Eric Eaton, Ziv Bar-Joseph, and David Kauchak

Basic Algorithm for Top-Down Induction of Decision Trees [ID3, C4.5 by Quinlan] node = root of decision tree Main loop: $A \leftarrow$ "best" decision attribute for next node. 1. 2. Assign A as decision attribute for node. For each value of A, create new descendant of node. 3. 4. Sort training examples to leaf nodes. If training examples are perfectly classified, stop. 5. Else, recur over new leaf nodes. what if A is empty or all examples see any what if S what if all examples have same values for attributes? problems? is empty? have same label? function BuildTree(S, A, C) // S : training set, A : input attributes, C : class attribute $a \leftarrow$ "best" decision attribute among A using S *tree* \leftarrow new tree with root node assigned attribute *a* for each value v_k of a $S_k \leftarrow$ examples from S with value v_k for attribute a recursion subtree \leftarrow BuildTree(S_k , A - a, C) missing base case? add *subtree* as child of *tree* with branch labeled $A = v_k$ return tree

