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Decision Trees

The instructor gratefully acknowledges Eric Eaton (UPenn), who assembled the original slides, David Kauchak
(Pomona), whose slides are also heavily used, and the many others who made their course materials freely
available online.

Instructor: Jessica Wu Harvey Mudd College

Decision Tree Basics
Learning Goals

Define Decision Tree
State expressiveness of decision trees
(what data can it classify)



Sample Dataset
Columns denote features Xi

Rows denote labeled instances (x(i),y(i))

Class label denotes whether tennis game was played

Based on slides by Eric Eaton and David Kauchak

sunny, cool, normal,
weak?

overcast, cool, high,
weak?

Can you describe a
“model” that could be
used to make
decisions in general?

(x(i),y(i))

Decision Tree
A possible decision tree for data:

Each internal node: test one feature Xi

Each branch from node: selects one value for Xi

Each leaf node: predict Y [or p(Y | X leaf)]

Based on slide by Eric Eaton
(originally by TomMitchell)

What prediction would
we make for

<outlook=sunny,
temperature=hot,
humidity=high,
wind=weak> ?



Decision Tree
If features are continuous, internal nodes can
test value of feature against threshold

Slide credit: Eric Eaton

Decision Tree Learning
Problem Setting

Set of possible instances
each instance x in is feature vector
e.g.

Set of possible labels
is discrete valued

Unknown target function f : 
Set of function hypotheses H = {h | h : }

each hypothesis h is a decision tree
trees sort x to leaf, which assigns y

Based on slide by TomMitchell



Decision Tree – Decision Boundary
Decision trees divide feature space into axis parallel
(hyper )rectangles
Each rectangular region is labeled with one label

or probability distribution over labels

Slide credit: Eric Eaton
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Expressiveness
DTs can represent any boolean function of input features

In worst case, exponentially many nodes needed

Decision trees have variable sized hypothesis space
As #nodes (or depth) increases, hypothesis space grows
(can express more complex functions)

truth table row path to leaf

Slide credit: Eric Eaton



Converting Decision Trees to Rules

IF (Outlook = Sunny) AND (Humidity = High)
THEN PlayTennis = No

IF (Outlook = Sunny) AND (Humidity = Normal)
THEN PlayTennis = Yes

. . .
Slide credit: Eric Eaton
Based on slide by Pedro Domingos

Decision Tree Algorithm
Learning Goals

Define heuristic for optimal decision trees
Describe ID3 heuristic algorithm
Define entropy, conditional entropy,
information gain
Build a decision tree by hand



Another Example:
Restaurant Domain (Russell & Norvig)

~7,000 possible cases
Slide credit: Eric Eaton

A Decision Tree
from Introspection

Is this the best decision tree?
Slide credit: Eric Eaton



Preference bias: Ockham’s Razor
Principle stated by William of Ockham (1285 1347)

non sunt multiplicanda entia praeter necessitatem
entities are not to be multiplied beyond necessity
AKA Occam’s Razor, Law of Economy, or Law of Parsimony

Therefore, the smallest decision tree that correctly
classifies all of training examples is best

finding provably smallest decision tree is NP hard
... so instead of constructing the absolute smallest tree
consistent with training examples, construct one that is
pretty small

Idea: The simplest consistent explanation is the best

Slide credit: Eric Eaton

Hypothesis Search Space
Heuristic search
through space of
decision trees

search space is
exponential

Stops at smallest
acceptable tree
(ID3)

do not get globally
optimal tree

Based on slide by TomMitchell



Basic Algorithm for Top Down
Induction of Decision Trees

[ID3, C4.5 by Quinlan]

node = root of decision tree
Main loop:
1. A “best” decision attribute (feature) for next node.
2. Assign A as decision attribute for node.
3. For each value of A, create new descendant of node.
4. Sort training examples to leaf nodes.
5. If training examples are perfectly classified, stop.

Else, recur over new leaf nodes.

How do we choose which attribute is best?
Based on slide by Eric Eaton
[originally by TomMitchell]

This slide intentionally blank.



Choosing the Best Attribute
Key problem: choosing which attribute to split given
set of examples

Some possibilities are:
Random: select any attribute at random
Least Values: choose the attribute with the smallest
number of possible values
Most Values: choose the attribute with the largest number
of possible values
Max Gain: choose the attribute that has the largest
expected information gain

i.e., attribute that results in smallest expected size of subtrees
rooted at its children

ID3 algorithm uses Max Gain method of selecting the
best attribute

Slide credit: Eric Eaton

Choosing an Attribute
Idea: a good attribute splits the examples into subsets
that are (ideally) all positive or all negative

Which split is more informative: Patrons? or Type?

Slide credit: Eric Eaton
Based on slide by M. desJardins & T. Finin



ID3 induced Decision Tree

Based on slide by Eric Eaton
(originally by M. desJardins & T. Finin)

compare to introspection

Let’s build a tree

Movie Type Length Director Famous actors Liked?

m1 Comedy Short Adamson No Yes

m2 Animated Short Lasseter No No

m3 Drama Medium Adamson No Yes

m4 Animated Long Lasseter Yes No

m5 Comedy Long Lasseter Yes No

m6 Drama Medium Singer Yes Yes

m7 Animated Short Singer No Yes

m8 Comedy Long Adamson Yes Yes

m9 Drama Medium Lasseter No Yes

Features Labels

Length
Short Long

Yes: 2
No: 1

Yes: 1
No: 2

Yes: 3
No: 0

Medium

How much information do
we gain from this split?

Based on slide by Ziv Bar Joseph



Entropy
Measures amount of uncertainty of random
variable (with specific probability distribution)
Higher it is, less confident we are in its outcome

Definition
Entropy H(X) of r.v. X

Example
coin flip (n = 2)

H(X) = – P(X = 0)log2P(X = 0) – P(X = 1)log2 P(X = 1) 
if P(X = 1) = p = 1

H(X) = – 1 log2(1) – 0 log2(0) = 0 (no uncertainty)
if P(X = 1) = p = 0.5

H(X) = – 0.5 log2(0.5) – 0.5 log2(0.5) = –log2(0.5) = 1

(n = # of possible values for X)

Based on slides by Ziv Bar Joseph and Tom Mitchell

Interpreting Entropy
Measure of impurity

Use information theory
Assume both sender and receiver know distribution
How many bits, on average, would it take to transmit one
symbol?

if P(X = 1) = 1
then answer is 0 (we do not need to transmit anything)

if P(X = 1) = 0.5
then answer is 1 (transmit one bit for each equally likely message)

if 0 < P(X = 1) < 0.5 or 0.5 < P(X = 1) < 1
then answer is between 0 and 1 (why?)

Based on slides by Eric Eaton and Ziv Bar Joseph

minimum
impurity
/ entropy

maximum
impurity
/ entropy



Expected Bits Per Symbol
Assume P(X = 1) = 0.8

Then P(X = 11) = 0.64
P(X = 10) = P(X = 01) = 0.16
P(X = 00) = 0.04

Define the following code
for 11, send 0
for 10, send 10
for 01, send 110
for 00, send 1110

What is the expected bits / symbol?
(0.64)(1) + (0.16)(2) + (0.16)(3) + (0.04)(4) = 1.6 / 2 = 0.8

Entropy H(X) = – 0.8 log2(0.8) – 0.2 log2(0.2) = 0.7219
(entropy is lower bound for bits / symbol)

Based on slide by Ziv Bar Joseph

so message 01001101110001101110
can be broken into 01  00   11 01 11 00   01  10 11 10
which is encoded as 110 1110 0  110 0 1110 110 10 0 10

This slide intentionally blank.



Conditional Entropy
Entropy measures uncertainty in specific
distribution
What if we have additional information?

For example, say I want to know
the label (Liked) entropy when
Length is known
This becomes a conditional
entropy problem

H(Liked | Length = v)
is the entropy of Liked among
movies with Length v

Length Liked?

Short Yes

Short No

Medium Yes

Long No

Long No

Medium Yes

Short Yes

Long Yes

Medium Yes

Based on slide by Ziv Bar Joseph

Conditional Entropy :
Examples for Specific Values

Let’s compute H(Li | Le = v)
H(Li | Le = S) = ?

H(Li | Le = M) = ?

H(Li | Le = L) = ?

Length Liked?

Short Yes

Short No

Medium Yes

Long No

Long No

Medium Yes

Short Yes

Long Yes

Medium Yes

Based on slide by Ziv Bar Joseph

Compute H(Li | Le = v)

H(Li | Le = S) =

H(Li | Le = M) =

H(Li | Le = L) =



Conditional Entropy
We can generalize the conditional
entropy idea to determine H(Li | Le)
That is, what is the expected uncertainty
if we already know the value of Le for
each of the records (samples)

Definition
Conditional Entropy H(X|Y) of X given Y

Length Liked?

Short Yes

Short No

Medium Yes

Long No

Long No

Medium Yes

Short Yes

Long Yes

Medium Yes

Based on slides by Ziv Bar Joseph and Tom Mitchell

Specific Conditional Entropy (we explained
how to compute this in previous slide)

Conditional Entropy Example

Compute H(Li | Le)

Length Liked?

Short Yes

Short No

Medium Yes

Long No

Long No

Medium Yes

Short Yes

Long Yes

Medium Yes

Based on slides by Ziv Bar Joseph



Information Gain
How much do we gain from knowing one of the
attributes?
In other words, what is the reduction in entropy from
this knowledge?

Definition
Mutual Information (aka Info Gain) of X and Y

Notes

is always 0 (proof: Jensen’s inequality)

Based on slides by Ziv Bar Joseph and Tom Mitchell

Information Gain in Decision Trees
Information Gain …
is the mutual information between input
attribute A and target variable Y
is the expected reduction in entropy of target
variable Y for data sample S, due to sorting
on variable A

[Gain = H(parent) – weighted average H(children)]
tells us how important a given attribute of the
feature vector is

Based on slides by Tom Mitchell



Where We Are
We were looking for a good criteria for selecting the
best attribute for a node split
We defined entropy, conditional entropy and
information gain
We will now use information gain as our criteria for a
good split

Based on slides by Ziv Bar Joseph and Eric Eaton

node = root of decision tree
Main loop:
1. A “best” decision attribute for next node.
2. Assign A as decision attribute for node.
3. For each value of A, create new descendant of node.
4. Sort training examples to leaf nodes.
5. If training examples are perfectly classified, stop.

Else, recur over new leaf nodes.

based on information gain

Example : Building a Decision Tree
P(Li = yes) = 2/3

H(Li) = 0.92

H(Li | T) = 0.61

H(Li | Le) = 0.61

H(Li | D) = 0.36

H(Li | F) = 0.85

I(Li, T) =

I(Li, Le) =

I(Li, D) =

I(Li, F) =

Movie Type Length Director Famous actors Liked?

m1 Comedy Short Adamson No Yes

m2 Animated Short Lasseter No No

m3 Drama Medium Adamson No Yes

m4 Animated Long Lasseter Yes No

m5 Comedy Long Lasseter Yes No

m6 Drama Medium Singer Yes Yes

m7 Animated Short Singer No Yes

m8 Comedy Long Adamson Yes Yes

m9 Drama Medium Lasseter No Yes

Based on slide by Ziv Bar Joseph



Example : Building a Decision Tree

P(Li = Y) = 0.25

H(Li) = 0.81

Director
Adamson Singer

Yes Yes

Lasseter

???

Movie Type Length Famous actors Liked?

m2 Animated Short No No

m4 Animated Long Yes No

m5 Comedy Long Yes No

m9 Drama Medium No Yes

we eliminated the ‘director’
attribute (since all samples
have the same director)

Based on slide by Ziv Bar Joseph

This slide intentionally blank.



Summary of Decision Trees (so far)

Decision tree induction
Split based on attribute values, choosing best (based
on information gain)
Build tree greedily, recursing on children of split
Stop when all instances in child have same class

Based on slide by Eric Eaton
(originally by Pedro Domingos)

This slide intentionally blank.



Decision Tree Overfitting
Learning Goals

Define overfitting
Describe how to avoid overfitting decision
trees

Noisy Data
Many kinds of noise can occur in the examples
Erroneous training data

two examples have same attribute/value pairs, but
different classifications
feature noise

some values of attributes are incorrect because of errors in data
acquisition process or preprocessing phase

label noise
instance was labeled incorrectly (+ instead of )

means training error not guaranteed to be 0

Based on slides by Eric Eaton and Sara Sood



Overfitting in Decision Trees
Consider adding a noisy training example to the following tree:

What would be the effect of adding:
(outlook=sunny, temperature=hot, humidity=normal, wind=strong, playTennis=No) ?

Slide credit: Eric Eaton
(originally by Pedro Domingos)

Overfitting

Our decision tree learning procedure
always decreases training error

(increases accuracy)

Is this what we want?

Based on slide by David Kauchak
(originally by Pedro Domingos)



Overfitting in Decision Tree Learning

Based on slide by David Kauchak
(originally by Pedro Domingos)

Though training error is decreasing,
testing error can go up!

Overfitting
Consider error of hypothesis h over
training data : errortrain(h)
entire distribution of data : error (h)

Hypothesis h H overfits training data if there
is an alternative hypothesis h H such that

errortrain(h) < errortrain(h )

and
error (h) > error (h )

Based on slides by David Kauchak and Pedro Domingos

Idea
model biased too much
towards training data
remember, goal is to
learn a generalmodel
that will work on the
training data as well as
other data (i.e. test
data)



Overfitting
Much more significant sources of “noise”
Some attributes are irrelevant to decision making
process

if hypothesis space has many dimensions (large # of
attributes), may findmeaningless regularity in data that is
irrelevant to true, important, distinguishing features

Target function is non deterministic in attributes
in general, we cannot measure all variables needed to do
perfect prediction target function is not uniquely
determined by attribute values
if too little training data, even a reasonable hypothesis will
“overfit”

Based on slides by Eric Eaton (originally by M. desJardins & T. Finin) and Sara Sood

Avoiding Overfitting
How can we avoid overfitting?
Acquire more training data
Remove irrelevant attributes (manual process – not
always possible)

Decision Tree Pruning
Prune while building tree (stopping early)
Prune after building tree (post pruning)

How to select “best” tree
Statistical tests
Measure performance over separate validation set

Slide credit: Eric Eaton
(originally by Pedro Domingos)



Depth Limited Decision Trees

Split data into training and validation sets
Grow tree with max depth d based on training set
Evaluate each tree on validation set
Pick tree with best performance

Slide credit: Eric Eaton
Based on slide by Pedro Domingos

Ranking Classifiers

Top 8 all based
on various

extensions of
decision trees

Based on slide by Ziv Bar Joseph
[Source: Rich Caruana & Alexandru Niculescu Mizil,
An Empirical Comparison of Supervised Learning Algorithms, ICML 2006]



Summary: Decision Trees
Widely used in practice

works very (very) well

Advantages
one of most intuitive classifiers
no prior assumption on data
fast and simple to implement
can convert to rules
handles noisy data

Disadvantages
univariate splits / partitioning on only one attribute limits types of
possible learners (e.g. cannot learn simple linearly separable data sets)
large trees may be hard to understand, slow, and perform poorly
pruning / tuning can be tricky to get right
requires fixed length feature vectors
non incremental (i.e. batch method)
sacrifices predictive power

Based on slides by Eric Eaton, Ziv Bar Joseph, and David Kauchak

(Extra Slides)

Decision Tree Implementation
Learning Goals

Describe ID3 in pseudocode
Identify problems in and propose solutions for
decision tree implementations



Basic Algorithm for Top Down
Induction of Decision Trees

[ID3, C4.5 by Quinlan]

function BuildTree(S, A, C) // S : training set, A : input attributes, C : class attribute
a “best” decision attribute among A using S
tree new tree with root node assigned attribute a
for each value vk of a

Sk examples from S with value vk for attribute a
subtree BuildTree(Sk, A – a, C)
add subtree as child of tree with branch labeled A = vk

return tree

what if A is empty or all examples
have same values for attributes?

what if S
is empty?

recursion
missing

base case?

node = root of decision tree
Main loop:
1. A “best” decision attribute for next node.
2. Assign A as decision attribute for node.
3. For each value of A, create new descendant of node.
4. Sort training examples to leaf nodes.
5. If training examples are perfectly classified, stop.

Else, recur over new leaf nodes.

see any
problems?

what if all examples
have same label?

Basic Algorithm for Top Down
Induction of Decision Trees

[ID3, C4.5 by Quinlan]
function BuildTree(n, A, C) // n : training set, A : input attributes, C : class attribute

if n is empty
return leaf node with failure

else if all samples in n have same label lbl for C
return leaf node with lbl

else if A is empty or all n have same feature values
return leaf node with majority vote of values of C in n

else
a “best” decision attribute among A using n
tree new tree with root node assigned attribute a
for each value vk of a

nk examples from n with value vk for attribute a
subtree BuildTree(nk, A – a, C)
add subtree as child of tree with branch labeled A = vk

return tree

alternatively keep track of training set at parent
(if exists) and return majority vote of parent



Gain Ratio
Problem
Information gain biased towards attributes with many
values

Imagine using date = jun_3_1996 as attribute

Alternative
Use gain ratio instead

where Sv is subset of S for which A = v
SplitInformation measures “intrinsic value” of attribute

Based on slide by Eric Eaton
(originally by Pedro Domingos)

Non Boolean Features
Features with multiple
discrete values

Construct multi way splits
Test for one value versus
rest
Group values into disjoint
subsets

Real valued features
Use threshold split or
discretize
Use information gain or
sort and identify
adjacencies with different
classes

Based on slides by Eric Eaton, Ziv Bar Joseph,
Pedro Domingos, and David Kauchak

Rainy?
Rainy not Rainy

Overcast?

Overcast Sunny

Outlook
Rain SunnyOvercast

Humidity > 75%
No Yes

Humidity
<50%

50 75% 75 90%
>90%


