

k-Nearest Neighbor

Instructor: Jessica Wu -- Harvey Mudd College

The instructor gratefully acknowledges Eric Eaton (UPenn), David Kauchak (Pomona), and Andrew Moore (CMU), and the many others who made their course materials freely available online.

Data Representation

Learning Goals

- Describe how to represent complex data
- View data graphically

- Well, we could map Sunny=0, Overcast=1, Rainy=2...
- But such a mapping may not always be appropriate
 - imagine feature values being red, blue, green
 - red=0, blue=1, green=2 implies red more similar to blue than to green
- Solution: for feature with K > 2 possible values, create binary features, one for each possible value

	Y	Out	т	R		Υ	(S?, O?, R?, T, R)
F	С	Sunny	Low	Yes		1	$\langle 1 , 0 , 0 , 0 , 1 \rangle$
1	N	Sunny	High	Yes		0	(1,0,0,1,1)
1	۱I	Sunny	High	No		0	(1,0,0,1,0)
F	>	Overcast	Low	Yes	\Rightarrow	1	<pre>(0, 1, 0, 0, 1)</pre>
F	>	Overcast	High	No		1	(0,1,0,1,0)
F	>	Overcast	Low	No		1	<pre>(0, 1, 0, 0, 0)</pre>
1	N	Rainy	Low	Yes		0	(0,0,1,0,1)
F	>	Rainy	Low	No		1	<pre>(0,0,1,0,0)</pre>

- Binary-valued features
 - Hamming distance $dist(\mathbf{a}, \mathbf{b}) = \sum_i I(a_i \neq b_i)$ counts number of features where two examples disagree
- Mixed feature types (some real, some binary)
 - mixed distance measures
 - e.g. Euclidean for real part, Hamming for binary part
- Can also assign weights to features $dist(a, b) = \sum_i w_i \cdot d(a_i, b_i)$

• Can be changed by different distance metrics

 $dist(a,b) = (a_1 - b_1)^2 + (a_2 - b_2)^2$

 $dist(a,b) = (a_1 - b_1)^2 + (3a_2 - 3b_2)^2$

• Become more complex as more examples are stored

Based on slide by Eric Eaton (originally by Andrew Moore)

k-Nearest Neighbor (*k*-NN)

To classify example **x**:

- Find k nearest neighbors of x
- Choose as label the majority label within k nearest neighbors

How do we choose k?

- Often data-dependent and heuristic-based
 - common heuristic : choose 3,5,7 (odd number)
- Use validation data
- In general, k too small or too big is bad

Based on slide by David Kauchak and Piyush Rai

k-Nearest Neighbor (k-NN)

To classify example **x**:

- Find k nearest neighbors of x
- Choose as label the majority label within *k* nearest neighbors

Any variants?

- Fixed distance
 - instead of k-NN, count majority from all examples within fixed distance (radius-based neighbors)
- Weighted
 - instead of treating all examples equally, weight "vote" of examples so that closer examples have more vote/weight (often use some sort of exponential decay)

kNN Problems and ML Terminology

Learning Goals

- Describe how to speed-up kNN
- Define non-parametric and parametric and describe differences
- Describe curse of dimensionality

Speeding up *k*-NN

- *k*-NN is a "lazy" learning algorithm
 does virtually nothing at training time
- But classification / prediction can be costly when training set is large
 - for *n* training examples and *d* features, how many computations required for each test example?
- Two strategies for alleviating this weakness
 - edited nearest neighbor : do not retain every training instance
 - k-d tree : use smart data structure to look up NN

Summary: k-NN

When to consider

- examples map to points in \mathbb{R}^d
- small number (<20) attributes per instance
- lots of training data

Advantages

- "training" is very fast
- simple to implement
- learn complex target functions
- adapts well to online learning
- do not lose information
- robust to noisy training data (when k > 1)

Disadvantages

- slow prediction
- easily fooled by irrelevant attributes
- sensitive to range of feature values
- not much insight into problem domain because no explicit model

Based on slides by David Sontag and David Page