
k Nearest Neighbor

The instructor gratefully acknowledges Eric Eaton (UPenn), David Kauchak (Pomona), and Andrew Moore
(CMU), and the many others who made their course materials freely available online.

Instructor: Jessica Wu Harvey Mudd College

Data Representation
Learning Goals

Describe how to represent complex data
View data graphically

Data Representation
Most learning algorithms require data in some
numeric representation

e.g. each input pattern is a vector
If data naturally has numeric (real valued)
features, just represent as vector of (real)
numbers

e.g. 28x28 image by 784x1 vector of pixel
intensities

If data has non numeric representation …
let’s look at some examples

Based on slide by Piyush Rai

Data to Features
Text document

Based on slide by Piyush Rai

Data to Features
Let’s consider dataset similar to Tennis Playing example

Features are categorical (Low/High, Yes/No, Overcast/Rainy/Sunny, etc)
Features with only 2 possible values

can be represented as 0/1
Features with more than 2 possible values

can we map Sunny=0, Overcast=1, Rainy=2?

Based on slide by Piyush Rai

Data to Features
Well, we could map Sunny=0, Overcast=1, Rainy=2…
But such a mapping may not always be appropriate

imagine feature values being red, blue, green
red=0, blue=1, green=2 implies red more similar to blue
than to green

Solution: for feature with K > 2 possible values, create
binary features, one for each possible value

Data Visualization

Weight Color Label

4 Red Apple

5 Yellow Apple

6 Yellow Banana

3 Red Apple

7 Yellow Banana

8 Yellow Banana

6 Yellow Apple

Let’s visualize this data

Based on slide by David Kauchak

Weight Color Label

4 0 Apple

5 1 Apple

6 1 Banana

3 0 Apple

7 1 Banana

8 1 Banana

6 1 Apple

Turn features into numerical values
(simple mapping used here to keep visualization simple)

Weight

Co
lo
r

0 10

0

1 B

A

A B

A

BA

We can view examples as points in an d dimensional space
where d is number of features

(This slide intentionally left blank.)

k Nearest Neighbor
Learning Goals

Describe kNN algorithm
Describe impact of k in kNN
Describe kNN variants (optional)

Examples in a Feature Space

Based on slide by David Kauchak

label 1

label 2

label 3

feature1

feature2 test example
what class?

Another classification algorithm?
To classify example x:

Label x with label of closest example to x in training set

k Nearest Neighbor (k NN)
To classify example x:

Find k nearest neighbors of x
Choose as label the majority label within k nearest
neighbors

To classify example x:
Find k nearest neighbors of x
Choose as label the majority label within k nearest
neighbors

Based on slide by David Kauchak

How do we measure “nearest”?
common approach : standard Euclidean distance metric
two dimensional:
dist(a,b) = sqrt((a1 – b1)2 + (a2 – b2)2)

n dimensional:
dist(a,b) = sqrt(i(ai – bi)2) (a1, a2, …, an)

(b1, b2,…, bn)

Other Distance Measures
Binary valued features

Hamming distance dist(a,b) = i I(ai bi)
counts number of features where two examples
disagree

Mixed feature types (some real, some binary)
mixed distance measures
e.g. Euclidean for real part, Hamming for binary part

Can also assign weights to features
dist(a,b) = i wi·d(ai,bi)

Based on slide by Piyush Rai

k NN Decision Boundaries

k NN gives locally defined decision boundaries between classes
(forms subset of Voronoi diagram for training data)

label 1
label 2
label 3

Where are decision boundaries for k NN?

Based on slide by David Kauchak

k NN Decision Boundaries
Can be changed by different distance metrics

Become more complex as more examples are stored

dist(a,b) = (a1 – b1)2 + (a2 – b2)2 dist(a,b) =(a1 – b1)2 + (3a2 – 3b2)2

Based on slide by Eric Eaton
(originally by Andrew Moore)

k Nearest Neighbor (k NN)
To classify example x:

Find k nearest neighbors of x
Choose as label the majority label within k nearest
neighbors

To classify example x:
Find k nearest neighbors of x
Choose as label the majority label within k nearest
neighbors

Based on slide by David Kauchak

How do we choose k?

k

What is role of k?

How does it relate to overfitting and underfitting?

How did we control this for decision trees?

Based on slide by David Kauchak

k Nearest Neighbor (k NN)
To classify example d:

Find k nearest neighbors of d
Choose as label the majority label within k nearest
neighbors

To classify example x:
Find k nearest neighbors of x
Choose as label the majority label within k nearest
neighbors

Based on slide by David Kauchak and Piyush Rai

How do we choose k?
Often data dependent and heuristic based

common heuristic : choose 3,5,7 (odd number)
Use validation data
In general, k too small or too big is bad

k Nearest Neighbor (k NN)
To classify example x:

Find k nearest neighbors of x
Choose as label the majority label within k nearest
neighbors

Based on slide by David Kauchak

Any variants?
Fixed distance

instead of k NN, count majority from all examples within
fixed distance (radius based neighbors)

Weighted
instead of treating all examples equally, weight “vote” of
examples so that closer examples have more vote/weight
(often use some sort of exponential decay)

kNN Problems and ML Terminology
Learning Goals

Describe how to speed up kNN
Define non parametric and parametric and
describe differences
Describe curse of dimensionality

Speeding up k NN
k NN is a “lazy” learning algorithm

does virtually nothing at training time
But classification / prediction can be costly
when training set is large

for n training examples and d features, how many
computations required for each test example?

Two strategies for alleviating this weakness
edited nearest neighbor : do not retain every
training instance
k d tree : use smart data structure to look up NN

Based on slide by David Page

Aside : Non parametric vs Parametric
non parametricmethod

not based on parameterized families of probability
distributions – make no assumptions about
distributions of variables being assessed
complexity grows with amount of training data
(not none parametric)

parametricmethod
makes inferences about parameters of underlying
data generating distribution
has fixed number of parameters

both DT and kNN
are non parametric

Curse of Dimensionality
Our intuitions about space/distance do not scale
with dimensions!
NN breaks down in high dimensional spaces
because “neighborhood” becomes very large
Ex: Suppose we have 5000 points uniformly
distributed in unit hypercube and want to apply
5 NN to test example at origin

on average, need to explore 5/5000 = 0.001 of volume
1D: must go distance of 0.001 on average
2D: must go sqrt(0.001) 0.0316 to get square that
contains 0.001 of volume
n D : in n dimensions, must go (0.001)1/n >> 0.001

Based on slides by David Kauchak and David Sontag

Summary: k NN
When to consider

examples map to points in d

small number (<20) attributes per instance
lots of training data

Advantages
“training” is very fast
simple to implement
learn complex target functions
adapts well to online learning
do not lose information
robust to noisy training data (when k > 1)

Disadvantages
slow prediction
easily fooled by irrelevant attributes
sensitive to range of feature values
not much insight into problem domain because no explicit model

Based on slides by David Sontag and David Page

