
Experimentation
and Evaluation

Robot Image Credit: Viktoriya Sukhanova © 123RF.com

The instructor gratefully acknowledges Eric Eaton (UPenn), David Kauchak (Pomona), and the many others
who made their course materials freely available online.

Instructor: Jessica Wu Harvey Mudd College

Experimental Procedure
Learning Goals

Describe how cross validation (k fold, leave
one out) is used to evaluate model and
optimize hyperparameters
Describe how to compare models statistically
using the t test
Describe how bootstrapping is used to
evaluate test performance



Proper Evaluation?
Current plan

Learn algorithm on training data (subset of full data)
Evaluate on test data (subset of full data)
Repeat until happy with results

Is this okay?
No! Although we are not explicitly looking at test data, we are
still “cheating” by biasing our algorithm to test data
Once you look at / use test data, it is no longer test data!

So, how can we evaluate our algorithm during
development?
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Repeat until happy

Classification Evaluation
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Any problems with this?



k Fold Cross Validation
Why just choose one particular “split” of data?

in principle, we should do this multiple times since
performance may be different for each split

k Fold Cross Validation (e.g., k = 10)
randomly partition all training data of n instances into k
disjoint subsets (each roughly of size n/k)
choose each fold in turn as validation set; train model
on the other k – 1 folds and evaluate
compute statistics over k test performances, or choose
best of k models
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Example: 3 Fold CV
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report CV performance (summary statistics over k performances)
choose model with best validation performance
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Optimizing Model Parameters
Can also use CV to choose value of model parameter P

Search over space of parameter values p values(P)

evaluate model with P = p on validation set
Choose value p with highest validation performance
Learn model on full training set with P = p
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found that
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optimal P = pk

choose value p of model with best validation performance
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Example : Comparing Models

…

sp
lit

1
sp
lit

2…

sp
lit

3…

…

evaluate
model 1

score 1

score 2

score 3

…

evaluate
model 2

score 1

score 2

score 3

Based on slide by David Kauchak



Comparing Models

split M1 M2

1 87 88

2 85 84

3 83 84

4 80 79

5 88 89

6 85 85

7 83 81

8 87 86

9 88 89

10 84 85

avg 85 85

Is model 2 better than model 1?

Sample 1
split M1 M2

1 87 87

2 92 88

3 74 79

4 75 86

5 82 84

6 79 87

7 83 81

8 83 92

9 88 81

10 77 85

avg 82 85

Sample 2
split M1 M2

1 84 87

2 83 86

3 78 82

4 80 86

5 82 84

6 79 87

7 83 84

8 83 86

9 85 83

10 83 85

avg 82 85

Sample 3
split M1 M2

1 80 82

2 84 87

3 89 90

4 78 82

5 90 91

6 81 83

7 80 80

8 88 89

9 76 77

10 86 88

avg 83 85

Sample 4
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How do we decide if model 2 is better than model 1?

Statistical tests
Setup

assume some default hypothesis about data that you would like
to disprove, called the null hypothesis
e.g. model 1 and model 2 are not statistically different in
performance

Test
calculate test statistic from data (often assuming something
about data)
calculate p value from test statistic

p value = probability of seeing test statistic at least as extreme as one
actually observed given null hypothesis is true

compare p value to threshold (significance level)
reject null hypothesis if p <
note that statistically significant difference is not necessarily a
large magnitude difference
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t test
Determines whether two samples come from same underlying
distribution or not

Null hypothesis
model 1 and model 2 accuracies are no different, i.e. come from same
distribution

Assumptions
there are a number that often are not completely true, but we are
often not too far off

Our formulation
do “paired t test”

values can be thought of as pairs, calculated under same conditions (in our
case, same train/test split)
gives more power than unpaired t test (we have more information)

for almost all experiments, do “two tailed” version
no a priori knowledge of which model is better
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Comparing Models

split M1 M2

1 87 88

2 85 84

3 83 84

4 80 79

5 88 89

6 85 85

7 83 81

8 87 86

9 88 89

10 84 85

avg 85 85

Is model 2 better than model 1?

Sample 1
split M1 M2

1 87 87

2 92 88

3 74 79

4 75 86

5 82 84

6 79 87

7 83 81

8 83 92

9 88 81

10 77 85

avg 82 85

sdev 5.9 3.9

Sample 2
split M1 M2

1 84 87

2 83 86

3 78 82

4 80 86

5 82 84

6 79 87

7 83 84

8 83 86

9 85 83

10 83 85

avg 82 85

sdev 2.3 1.7

p = 1

Sample 3
split M1 M2

1 80 82

2 84 87

3 89 90

4 78 82

5 90 91

6 81 83

7 80 80

8 88 89

9 76 77

10 86 88

avg 83 85

sdev 4.9 4.7

Sample 4

p = 0.15 p = 0.007 p = 0.001
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Leave One Out CV (LOOCV)
Special case where k = n
– Each partition now one example
– Train using n – 1 examples, validate on remaining example
– Repeat n times, each with different validation example
– Finally, choose model with smallest average validation
error

When is it used?
– Can be expensive for large n, so typically used when n is
small

– Useful in domains with limited training data (maximizes
data used for training)
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Summary : Cross Validation
Cross validation generates an approximate estimate
of how well the classifier will do on unseen” data

as k n, model becomes more accurate (more training
data)
… but, CV becomes more computationally expensive (have
to train k models)
choosing k < n is a compromise

It is an even better idea to do CV repeatedly!
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Multiple Trials of k Fold CV
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Comparing Multiple Classifiers
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Test each candidate learner on
same training/testing splits

Allows us to do paired summary
statistics (e.g., paired t test)

C1 perf C2 perf C1 perf C2 perf C1 perf C2 perf



Statistical Tests on Test Data
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cross validation with t test
to determine best model

can we do that here?

Bootstrapping
Given set of n examples
Sample n elements from this set with replacement
to create new training set
Use set of examples not selected
as validation set
Repeat t times
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Experimentation Good Practices
Never look at your test data!

During development
compare different models / hyperparameters on
development data
use cross validation to get more consistent results
if you want to be confident with results, use t test

For final evaluation, use bootstrap resampling
combined with t test to compare
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Avoiding Pitfalls
Is my held aside test data really representative
of going out to collect new data?
Did I repeat my entire data processing
procedure on every fold of cross validation,
using only training data for that fold?
Have I modified my algorithm so many times,
or tried so many approaches, on this same
data set that I (human) am overfitting it?
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The Short Way
(that Many People Actually Use)

Split into only training data + validation data
Train on training data, evaluate on validation data
Report cross validation performance

possibly also training performance

Why is this used?
might not be enough data to create held out test set
you cannot trust that authors did not peek at test data
anyway =P


