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Linear Regression Setup
Learning Goals

Describe how regression differs from
classification
Describe the goal of linear regression



Regression
Given:

DataX = {x(1), …, x(n)} where x(i) d

Corresponding labels y = {y(1), …, y(n)} where y(i)
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Linear Regression
Quadratic Regression

Based on slide by Eric Eaton
[Data from G. Witt. Journal of Statistics Education, Volume 21, Number 1 (2013)]

Linear Regression
Hypothesis

Fit model (find ) by minimizing sum of squared errors

x

assume x0 = 1

Based on slide by Eric Eaton [Figures courtesy of Greg Shakhnarovich]

j’s are parameters
(weights)

(x(i), y(i))

fitted line used as predictor

Note:
linear regression is a parametricmethod

makes inferences about model
fixed number of parameters (d+1)



Cost Function

Fit by solving

More generally…

Based on slide by Eric Eaton

empirical risk /
training error

squared error

Q1: Why use squared error?
Q2: How do we optimize ?

different people use 1/(2n) vs 1/2

(This slide intentionally left blank.)



Probabilistic Interpretation
Learning Goals

Describe why we minimize squared error

Probabilistic Interpretation
Assume

What is (i)?
error term
captures un modeled effects (e.g. missing features)
captures random noise

How can we model (i)?



Probabilistic Interpretation

(This slide intentionally left blank.)



Maximum Likelihood Estimate (MLE)

(This slide intentionally left blank.)



Solving Linear Regression
Learning Goals

Describe shape of J( )

Describe two approaches for optimizing
Gradient Descent (stochastic and batch version)
Normal Equations

Compare tradeoffs of GD vs Normal Equations

Intuition behind Cost Function
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Based on slide by Eric Eaton
[Example by Andrew Ng]

y

x

(for fixed 1, this is a function of x) (function of the parameter 1)

h (x) J( 1)

J( 1)

1

For insight on J( ),
assume x(i) so = [ 0, 1]T.
Also fix 0 = 0.

h (x)

1 = 0.5

1 = 1



Intuition behind Cost Function

Based on slide by Andrew Ng

general shape of J( 0, 1)
(not for previous example)

Intuition behind Cost Function

(for fixed
( 0, 1),
this is a
fcn of x)

(fcn of the
parameter
s ( 0, 1))

h (x)

J( 0, 1)

contour map

Based on slide by Andrew Ng



Solving Linear Regression
Learning Goals

Describe shape of J( )

Describe two approaches for optimizing
Gradient Descent (stochastic and batch version)
Normal Equations

Compare tradeoffs of GD vs Normal Equations

Basic Search Procedure
Idea

Based on slide by Andrew Ng

1
0

J( 0, 1)

Choose initial value for
Until we reach minimum
–Choose new value for to reduce J( )

since the least squares objective function is convex,
we do not need to worry about local minima



Approach 1: Gradient Descent
update simultaneously for all j = 0, …, d

learning rate
(small, e.g., = 0.05)

For one training example (x, y)

Based on slide by Eric Eaton
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Batch versus Stochastic Mode
Batch Gradient Descent (BGD)

repeat until convergence {

}

Stochastic Gradient Descent (SGD)
repeat until convergence {

for i = 1 to n {

}
}

converged when
|| new – old||2 < 

To achieve simultaneous update:
At start of each GD iteration, compute h (x(i))
Use this stored value in update step

for every j simultaneously

for every j simultaneously

often will randomly shuffle points

Gradient Descent Example

Based on slide by Andrew Ng

(for fixed ( 0, 1), this is a function of x) (function of the parameter ( 0, 1))
h (x) J( 0, 1)

h(x) = – 900 – 0.1x



Batch versus Stochastic GD
Batch has to scan through entire training set before
taking single step (costly if n is large)
Stochastic makes progress “right away”

often gets “close” to minimummuch faster
but may never converge if it oscillates around arg min J( )

in practice, most values near minimum will be good
enough approximation to true minimum

alternatively, we can guarantee convergence if we allow step size
to decrease, e.g. , where k = outer loop iteration

Choosing step size

Based on slide by Eric Eaton
[Originally by Andrew Ng]

too small too large

To check if GD is working, print out J( ) each iteration
value should decrease each iteration
if it does not, adjust



Solving Linear Regression
Learning Goals

Describe shape of J( )

Describe two approaches for optimizing
Gradient Descent (stochastic and batch version)
Normal Equations

Compare tradeoffs of GD vs Normal Equations

Approach 2: Normal Equations
(closed form solution)

Vectorization
more compact equations
faster code (using optimized matrix libraries)

Let us consider our model

Let and . Then .



Matrix Vector Form
For n instances:

Let

Then
n 1 n (d+1) (d+1) 1

predictions for all instances

Matrix Vector Form of Cost Function
Let



Solve for analytically
attained when

Expanding J( ):

Solve for analytically
Take gradient, set equal to 0, then solve for :



Closed Form Solution
Can obtain by plugging inX and y into

Cost of invertingA = XTX ~ O(d3)
expensive for large d

IfA is not invertible (i.e. A is singular), may need to
use pseudo inverse (np.linalg.pinv)

Cholesky decomposition better
remove redundant (not linearly independent) features
remove extra features to ensure d n

Based on slide by Eric Eaton

Solving Linear Regression
Learning Goals

Describe shape of J( )

Describe two approaches for optimizing
Gradient Descent (stochastic and batch version)
Normal Equations

Compare tradeoffs of GD vs Normal Equations



Gradient Descent vs Normal Equation

Gradient Descent
requires multiple iterations
need to choose
works well when d is large
can support online learning

Normal Equations
non iterative
no need for
slow if d is large

matrix inversion is O(d3)

Based on slide by Eric Eaton

What Should You Be Able To Do?
Name cost function for linear regression and
provide rationale
Given model, find Maximum Likelihood Estimator
(MLE)
Optimize functions by taking derivative / gradient
State tradeoffs of gradient descent vs normal
equations
Homework

Extend linear regression to weighted linear regression
Implement (regularized polynomial) regression using
SGD and normal equations



(Extra Slides)

Linear Regression Extensions
Learning Goals

Describe how to extend linear regression to
more complex models using basis functions
Describe why we might scale features

Basis Functions
So far,

In the simplest case, we use linear basis functions:
j(x) = xj

More complex basis functions allow use of linear
regression techniques to fit non linear datasets.

Generally,

Typically, 0(x) = 1 so that 0 acts as bias.

basis function

new dimension

Based on slide by Eric Eaton
(originally by Chrisopher Bishop [PRML])

transform
features by



Extending Linear Regression
to More Complex Models

The inputsX for linear regression can be …
original quantitative inputs
transformation of quantitative inputs

e.g. log, exp, square root, square, etc

polynomial transformation
e.g. y = 0 + 1x + 2x 2 + 3x 3

dummy coding of categorical inputs
interactions between variables

e.g. x3 = x1x2

Based on slide by Eric Eaton

Polynomial Regression
Let x .

Polynomial basis functions:
j(x) = x j

These are “global” (a small change
in x affects all basis functions).

Fit a polynomial curve with
a linear model

Based on slide by Eric Eaton
(originally by Chrisopher Bishop [PRML])

x

y



Summary
Basic Linear Model

Once we have replaced the data by the outputs of the
basis functions, fitting the generalized linear model is
same problem as fitting the basic model, e.g.

Generalized Linear Model

Based on slide by Eric Eaton
(originally by Geoff Hinton)

(This slide intentionally left blank.)



Feature Scaling
Ensure features have similar scales

Why?
Make GD converge much faster
Avoid numerical issues in matrix vector products

Based on slide by Eric Eaton
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Feature Standardization
Rescale features to have zero mean, unit variance

Let

Replace each value with

Remember to apply same transformation to both
training and prediction

learn parameters ( , ) using only training set
see sklearn.preprocessing
outliers can cause problems

for j = 1, …, d
do not rescale x0

Based on slide by Eric Eaton


